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Abstract The present work looks for the existence of com-
pletely new wormhole geometries in the bulge of the Milky
Way galaxy (MWG) situated on the dark matter (DM) density
profile followed from MacMillan (MNRAS 76:465, 2017)
and Boshkayev and Malafarina (MNRAS 484:3325, 2019)
concerned with Global Monopole Charge. The obtained
shape function is positively increasing against the radial
coordinate and it increases faster with the increasing values
of Global Monopole Charge. Moreover, the reported shape
function satisfies all the essential criterions and hence it con-
structs wormhole geometry in the bulge of the MWG. Fur-
ther, the DM candidate around bulge is suitable to harbor
wormhole by violating the null energy condition(NEC) cor-
responding to three different redshift functions. The strik-
ing point of our solution is that for zero Global Monopole
Charge the wormholes are asymptotically flat corresponding
to the first two choices of redshift functions while for positive
values of Global Monopole Charge wormhole becomes non
asymptotically flat and Global Monopole Charge also has
the crucial effect on the violation of NEC. In our solutions,
one can note that the total amount of averaged NEC violat-
ing matter in the wormhole spacetime depends on the Global
Monopole Charge η. Furthermore, the respective wormhole
solutions are in equilibrium positions.

1 Introduction

One of the fundamental properties of general relativistic
wormhole geometry is that this spacetime is tunnel-like
spacetime connecting two widely disconnected regions of
a same universe or two different universes and supported by
exotic matter, which can characterize by the stress–energy
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tensor of the spreading matter content in the wormhole that
violates the null energy condition(NEC) Tμνv

μ < 0, where
vμ is a null vector [1,2]. Hochberg and Visser [3–5] showed
that the wormhole generically violates the NEC after the
wormhole throat and they also provided some striking the-
orems that generalized the Morris–Thorne seminal results
on the exotic matter with the help of the theory of embed-
ded hypersurfaces on the Riemann tensor and stress–energy
tensor after the wormhole throat radius. The first wormhole
solution, Einstein–Rosen bridge, was provided by Einstein
and Rosen [6] and it was regarded as a mathematical prod-
uct because of its non traversable property. Later in the year
1973, Ellis [7] provided a new spherically symmetric worm-
hole solution with a ghost massless scalar field. Moreover,
these wormholes are traversable and neither have singular-
ity nor horizon showed by Morris and Thorne [1]. Further,
Shinkai and Hayward [8] showed that Ellis wormholes are
unstable and this result ensures that Ellis wormholes are prac-
tically nonexistent. However, inter-universe travel is certainly
possible with a stable traversable wormhole [9,10].

The connecting and traveling characteristics of worm-
holes attract the theoretical research community and from
the last few decades many researchers have intensively stud-
ied various aspects of traversable wormholes within Ein-
stein gravity as well as in different theories of modified
gravity [3,11–55]. Further, in the last year, more different
wormhole like geometries are found in the bumblebee grav-
ity [56], Einstein–Cartan Garvity [57], exponential f (R, T )

gravity [58], modified gravity with ρ(R, R′) matter [59] and
Novel Einstein-scalar-Gauss–Bonnet gravity [60].

It is well-known from the Standard Model of Cosmology
that the universe contains only 5% ordinary matter and energy
of the total mass–energy of the Universe. The remaining 95%
matter and energy of total mass–energy are distributed into
the dark sector, which is divided in dark matter (DM) and dark
energy (DE). The unseen DM component is about roughly
27% of the dark sector and the DE, which is the main fuel
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that drives the current cosmic acceleration of the universe is
about 68% of the dark sector. In the year 1933, astronomer
Zwicky firstly concluded the existence of DM with the help
of the Virial theorem, which is described as Dunkle Materie
in the galaxy cluster [61,62]. The presence of DM within the
universe, particularly in the Milky Way, is established on the
basis of sound observational grounds [63–65]. From the last
few years [66,67], the detailed descriptions of DM distribu-
tion in the galaxy are obtained by the tremendous numerical
simulations. Further, several observables have used, namely,
star counts, the motion of gas and stars or microlensing events
in order to constrain Milky Way mass models. Applying
microlensing observations and dynamical measurement con-
cepts Iocco et al. [68] have showed that constraints can be
set on the DM distribution, which provides complementary
evidence for the existence of DM in the galaxy. The exi-
tance of the DM in the galactic halo is also deduced from its
gravitational impression on the rotational curve of a spiral
galaxy [69–71].

In astronomy, the bulge is a tightly packed collection of
celestial compact stars within a galaxy. The bulge exclusively
refers to the central group of compact stars, which is found
in most of the spiral galaxies. Nowadays, it is considered
that there are at least two types of bulges: (i) Bulges that are
elliptical like and (ii) Bulges that are like spiral. The common
two scenarios for the bulge formation are: (i) the merging of
the early disks and fragments, and (ii) the secular evolution
of disks and bars. An enrich bulge component forms from a
clump-unstable, star-bursting disk. Mamon et al. [72] studied
the mass and shape of the galactic dark halo, the large-scale
structure of the Milky Way and provided the evidence that
the inner Galaxy is dominated by baryonic matter. They have
also studied the bulge formation from clumpy, gas-rich disks,
disk-like, enrich bulges similar to the galactic bulge. From
the last few decades, several studies supposed from star count
observations that the galaxy must contain a separate, new,
flat long bar component, twisted relative to the barred bulge.
Martinez-Valpuesta [73] has study the boxy bulge and planar
long bar in MWG.

Inspired from the different studied of wormholes in differ-
ent modified gravities, many researchers have gave attention
to find the wormhole geometries in galactic level. From that
attention wormhole solutions are found in the central region
as well as the outer of the galactic halo supported by the
exotic dark matter (DM). Rahaman et al. [74] have showed
that DM supports the wormhole geometry in the outer region
of the galactic halo. Moreover, the central region also con-
tains the wormhole [75,76]. Sarkar et al. [77] have found that
wormhole also exists in the isothermal galactic halo and void
supported by the DM. Moreover, Kuhfitting [78] has studied
the gravitational lensing of wormholes in the galactic halo
region.

Pando et al. [79] have proposed that topological defects are
responsible for the structure formation of the galaxies. Nuca-
mendi et al. [80] have suggested that the monopole (its energy
density proportional to 1/r2) could be the galactic dark mat-
ter in the spiral galaxies. Thus it seems monopoles (one of
the topological defects) take part an important contribution
of the galaxy formations. In the year 2003, Nueamendi [81]
has studied the static spherically symmetric spacetimes black
holes with Global Monopole Charge. Very recently, the cos-
mic censorship hypothesis for the Reissner–Nordström anti-
de-Sitter black holes with Global Monopole Charge have
studied in Ref. [82].

In this article, we have obtained the traversable wormholes
in the bulge of the MWG concerned with Global Monopole
Charge. Here, we have considered the MacMillan [83,84]
DM density profile of the bulge of the MWG to generate
our wormhole solutions. The content of this article has been
designed as follows: we have set up the Einstein field equa-
tions with a Global Monopole Charge in Sect. 2. Section 3
is arranged for the wormhole formulation in the bulge of
MWG into two subsections: Sect. 3.1 contains the details of
our wormhole structure while Sect. 3.2 deals with the null
energy condition(NEC) corresponding to three different red-
shift functions, Sect. 3.2.1: the tidal force redshift function,
Sect. 3.2.2: the rational redshift function, and Sect. 3.2.3: the
redshift function obtained from the flat rotational curve of
the galactic halo. We have estimated embedding surface and
proper radial distance of wormhole in Sect. 5 and Matched
our reported solutions to the external Schwarzschild solution
in Sect. 6. Finally, the discussion and conclusion of our work
have been made in Sect. 8.

2 Einstein’s field equations with a Global Monopole
Charge

In this section, we are going to compute the Einstein
field equations with Global Monopole Charge which can
obtain from the 3+1 dimensional action. In the gravitational
unit(c = G = 1), the 3+1 dimensional action without a
cosmological constant is given as

S =
∫ √−g

(
L + �

16π

)
d4x + Sm (1)

The Lagrangian density for a self-coupling scalar triplet
φa can be written as [85]

L = −λ

4
(φ2 − η2)2 − 1

2

∑
a

gi j∂iφ
a∂ jφ

a (2)

where a = 1, 2, 3 and λ, η are the self-interaction term, scale
of a gauge-symmetry breaking, respectively. The monopole
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Fig. 1 The density is plotted with respect to the radial coordinate r
corresponding to the parameters ρ0 = 0.004 kpc−2, α = 0.5 and r0 =
2 kpc

describing field configuration can be represented as

φa = η

r
f (r)xa (3)

where xa = (r sin θ cos φ, r sin θ sin φ, r cos θ) such that∑
a x

ax2 = r2.

Now, we consider Morris–Thorne traversable wormhole
space-time [1], which is given by the following line element

ds2 = e2�(r)dt2−
(

1 − b(r)

r

)−1

dr2−r2(dθ2+sin2θdφ2)

(4)

where �(r) and b(r) are the functions of the radial coordinate
r only and termed as the redshift function and shape func-
tion, respectively. The minimum radius r = rth in the metric
coefficient grr of the line element (4) is termed as the throat
radius of the wormhole, where b(rth) = rth . Formation of
an event horizon should be avoided in order for the worm-
hole to be traversable i.e. the redshift function φ(r) should
be finite everywhere. Again, from the fundamental definition
of traversable wormhole, the shape function must satisfy the
following conditions to presents wormhole solutions:

(i) The redshift function �(r) should be well-defined and
regular for r ≥ rth .

(ii) The shape function b(r) should be well-defined for r >

rth
(iii) The shape function b(r) should satisfy the condition(

1 − b(r)
r

)
> 0 for r > rth i.e. b(r)

r < 1 for r > rth .

Fig. 2 The shape function b(r) is plotted with respect to the radial
coordinate r corresponding to the parameters ρ0 = 0.004 kpc−2, α =
0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

(iv) The shape function b(r) should satisfy the flare-out con-
dition [86]: [b(r) − rb′(r)]/b2(r) > 0 for r > rth in
which b′(rth) < 1.

Now, in terms of f (r), the Lagrangian density express as

L = −η2 f 2

r2 − λη4

4
( f 2 − 1)2 −

(
1 − b(r)

r

)
η2( f ′)2

2
(5)

Also, the Euler–Lagrange equation for the field f yields(
1 − b(r)

r

)
f ′′ +

{(
b(r) − rb′(r)

2r2

)
+ 2

r

(
1 − b(r)

r

)}

× f ′ −
{

2

r2 + λη2( f 2 − 1)

}
f = 0 (6)

From the Lagrangian density (2), the energy momentum
tensor is obtaines as

T̄i j = ∂iφ
a∂ jφ

a − 1

2
gi j g

μν∂μφa∂νφ
a − gi jλ

4
(φ2 −η2)2 (7)

From Eq. (7), the individual expression of the components
of energy–momentum are given as follows

T̄ t
t = −η2

{
f 2

r2 +
(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

}
(8)

T̄ r
r = −η2

{
f 2

r2 −
(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

}
(9)

T̄ θ
θ = T̄ φ

φ = −η2
{(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

}
.

(10)

One can easily see that the Eq. (6) is a complicated equa-
tion, which cannot be solved exactly. To solve the Eq. (6), it
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Fig. 3 The ratio function b(r)/r is plotted with respect to the radial
coordinate r corresponding to the parameters ρ0 = 0.004 kpc−2, α =
0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

is sufficient to take f (r) → 1 outside the wormhole. There-
fore, for this choice of f (r), the components of energy–
momentum reduce as

T̄ t
t = T̄ r

r � −η2

r2 , T̄ θ
θ = T̄ φ

φ � 0. (11)

The Einstein field equations is written as

Gi j = Ri j − 1

2
gi j R = 8πTi j , (12)

where Ti j is the total energy–momentum tensor of matter
fluid and matter fields and it can be expressed as

Ti j = T (0)
i j + T̄i j (13)

Since the anisotropy plays a crucial role in the equilib-
rium of wormhole, so for our study we shall consider the
anisotropic matter distribution. Later, we shall discuss the
equilibrium for our reported wormholes. The components
of energy–momentum tensor for anisotropic matter fluid is
given as follows

T i
j

(0) = (−ρ(r),Pr (r),Pθ (r),Pφ(r)). (14)

For the Morris–Thorne traversable wormhole metric (4),
Einstein tensor components are

Gt
t = −b′(r)

r2 , (15)

Gr
r = −b(r)

r3 + 2

(
1 − b(r)

r

)
�′

r
, (16)

Gθ
θ =

(
1 − b(r)

r

) {
�′′ + (�′)2 − b′r − b

2r(r − b)
�′

Fig. 4 The function [b(r) − rb′(r)]/b2(r) is plotted with respect
to the radial coordinate r corresponding to the parameters ρ0 =
0.004 kpc−2, α = 0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

− b′r − b

2r2(r − b)
+ �′

r

}
,

Gφ
φ = Gθ

θ . (17)

Finally, the Einstein field equations with the Global
Monopole Charge are given as follows:

ρ(r) = 1

8π

(
b′(r)
r2 − 8πη2

)
, (18)

Pr (r) = 1

8π

[(
1 − b(r)

r

) (
1

r2 + 2φ′(r)
r

)
− 1

r2 + 8πη2

r2

]
,

(19)

Pt (r) = 1

8π

(
1 − b(r)

r

)
φ′′(r) +

(
1 − b(r)

r

)
φ′2(r)

+1

2

(
b(r)

r2 − b′(r)
r

)
φ′(r) + 1

r

(
1 − b(r)

r

)
φ′(r)

+ 1

2r

(
b(r)

r2 − b′(r)
r

)
. (20)

where ′ stands for d
dr .

3 Wormhole formulation in the bulge of Milky Way
galaxy

Here, we are willing to obtain a new wormhole structure
representing shape function with the help of a DM density
profile of the bulge in MWG.
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Fig. 5 b′(rth) is plotted with respect to η corresponding to the parame-
ters ρ0 = 0.004 kpc−2, α = 0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

3.1 Wormhole structure

We consider a DM density profile of the bulge in MWG as
follows from the striking work of MacMillan [83,84]

ρ(r) = ρ0

(r1

r

)α

exp

[
−

(
r

r0

)β
]

(21)

where α, β, r1 are the model dependent parameters and
ρ0, r0 are the core density, radius of the bulge, respectively.
For simplicity, we have considered r0 = r1.

Motivation: Recently, several authors have studied the
possible exitances of wormholes in outer, inner regions of
galaxy and void with the help of the NFW, quasi-isothermal
or Burkert and isothermal density profiles [74–77]. Con-
sequently, all these studies effectively increase the interest
among the theoretical researchers to study the wormhole
structures in galactic level and encourage the scientific com-
munity to find the observational evidences. In this study, we
consider the observationally verified MacMillan density pro-
file (21) of the bulge to show the possible existence of worm-
hole in the bulge of MWG with Global Monopole Charge.
The consideration of Global Monopole Charge is for gener-
alization and to see the effect of Global Monopole Charge in
wormhole formations, if we off the Global Monopole Charge
we come to the Einstein gravity and the corresponding solu-
tions are analyzed. Hopefully, our study may inspire the sci-
entific community to search observational evidence of the
presence of wormhole in the Milky Way bulge region.

The entire behavior of density profile (21) is displayed
through graphical demonstration in Fig. 1 corresponding to
the parameters ρ0 = 0.004 kpc−2, α = 0.5, r0 = 2kpc
and 0.2 ≤ β ≤ 1. Figure 1 ensures that the density profile
is positively decreasing from inner region to outer region of
the bulge.

Now, on imposing the above density profile (21) in
Eq. (18) and after using the condition b(rth) = rth , we obtain
the following shape function

Fig. 6 ρ(r) + Pr (r) is plotted with respect to the radial coordinate r
corresponding to the parameters ρ0 = 0.004 kpc−2, α = 0.5, β =
0.8, rth = 1 kpc and r0 = 2 kpc

Fig. 7 NEC is shown at the radial distance r = 1.5 kpc with respect to
the Global Monopole Charge η corresponding to the parameters ρ0 =
0.004 kpc−2, α = 0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

b(r) = 8πr3

3β

[
βη2 − 3ρ0

( r0
r

)α
F(r)

] + A (22)

whereas

F(r) = E

[
α + β − 3

β
,

(
r

r0

)β
]

(23)

A = 8πρ0

β
r3−α
th rα

0 F(rth) − 8

3
πr3

thη
2 + rth (24)

Here, E[m, x] is called as the exponential integral func-
tion, defined as

E[m, y] =
∫ 1

0
e− y

ξ ξm−2dξ ; y > 0 (25)

To explain the actual characteristic of the reported shape
function we have explored some graphical demonstrations
for that shape function in Figs. 2, 3, 4 and 5 with respect to
the particular choice of parameters ρ0 = 0.004 kpc−2, α =
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0.5 β = 0.8, rth = 1 kpc, r0 = 2 kpc and the Global
Monopole Charge 0 ≤ η ≤ 0.006. Jusufi [87] has taken
the value of Global Monopole Charge η = 10−5 in his
study of wormhole with Global Monopole Charge. From
this small value of η, we have considered a small range of
Global Monopole Charge 0 ≤ η ≤ 0.006 to generate our sys-
tems. Figure 2 shows the exact behavior of shape function
against the radial coordinate r , it is well-defined and posi-
tively increasing in nature after the throat r = rth = 1kpc.
The obtained shape function is less than the radial coordinate
r for r > rth , clear from Fig. 3. Figure 4 indicates that the
flare-out condition is satisfied by our indicated shape func-
tion and moreover b′(rth) < 1 for 0 ≤ η ≤ 0.006, clear from
Fig. 5. So, based on the DM density profile (21), the quali-
tative features meet all the requirements for the existence of
a wormhole and consequently, the reported shape function
is perfectly well-fitted to form a wormhole geometry in the
bulge region of the MWG. Note that, for η = 0 the solu-
tion will associate with the Einstein gravity without Global
Monopole Charge.

3.2 Null energy condition

Here, we are going to be primarily concerned with the null
energy condition (NEC) to complete our discussion on the
possible formation of wormhole. The violation of NEC is an
indispensable condition to hold a wormhole like geometry by
the matter content contained in wormhole. In GTR, the NEC
is given as Tμνv

μvν ≥ 0, nν is a null vector, its explicit form
is ρ(r)+Pr (r) ≥ 0. So the NEC is violated if ρ(r)+Pr (r) <

0. Now, to compute the exact expression of radial pressure
Pr (r) from Eq. (19) we need to know redshit function f (r).
So, to fix the exact expression of the radial pressure Pr (r)
and check the NEC we shall consider three different redshift
functions.

3.2.1 Redshift function �(r) = 0

The redshift function �(r) = 0 [88] is known as tidal force
and being finite it avoids event horizon. According to M.
Cataldo etc [89], there does not exits wormhole solution sus-
tained everywhere by an isotropic perfect fluid corresponding
to the tidal force redshift function and hence our assumption
of anisotropic matter distribution is appropriate. On impos-
ing the redshift function �(r) = 0 and the shape function
given in Eq. (22) in Eq. (19) we obtain the following explicit
expression of radial pressure

Pr (r) = ρ0

β
F(r)

(r0

r

)α − A

8πr3 + 1

3
η2

(
3

r2 − 1

)
(26)

Fig. 8 ρ(r) + Pr (r) is plotted with respect to the radial coordinate r
corresponding to the parametersρ0 = 0.004 kpc−2, alpha = 0.5, β =
0.8, rth = 1 kpc, τ = 2.5 and r0 = 2 kpc

Figure 6 ensures that ρ(r) + Pr (r) < 0 corresponding to
the specific choice of parameters ρ0 = 0.004 kpc−2, α =
0.5, β = 0.8, rth = 1 kpc, r0 = 2 kpc and the Global
Monopole Charge 0 ≤ η ≤ 0.006. So, our solution present-
ing DM content of the bulge violates NEC after the wormhole
throat. This proves that the DM contained in the bulge gives
fuel to sustain wormhole in the bulge region of the MWG.
Moreover, it is clear from Fig. 7 that the Global Monopole
Charge η reduces the probability of violation of NEC near
the throat and hence our considered DM density profile and
the Global Monopole Charge have the crucial effect on the
violation of NEC.

3.2.2 Redshift function �(r) = τ
r

The redshift function �(r) = τ/r [88], τ is non zero constnt,
is always finite for r > 0 i.e. it does not has any kind of event
horizon after the throat radius of wormhole. Here, on the
basis of this redshift function we obtain radial pressure from
Eq. (19) as

Pr (r) = rα
0

24πβr4+α

[
24πρ0F(r)r3(r − 2τ) + β

(
r

r0

)α

×{
6Aτ − 3r(A + 2τ) − 8πη2r2

(
r2 − 2τr − 3

) }]

(27)

Here, we also have ρ(r)+Pr (r) < 0, clear from Fig. 8 and
hence the NEC is indeed violated by the wormhole containing
DM candidate of the bulge. Consequently, the DM content
supports wormhole structure. Here, the Global Monopole
Charge η is also reducing the probability of violation of NEC
near the throat (see Fig. 9).
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Fig. 9 NEC is shown at the radial distance r = 1.5 kpc with respect to
the Global Monopole Charge η corresponding to the parameters ρ0 =
0.004 kpc−2, alpha = 0.5, β = 0.8, rth = 1 kpc, τ = 2.5 and
r0 = 2 kpc

2 4 6 8 10 12
1.11

1.12

1.13

1.14

1.15

1.16

r kpc

e2
r

Fig. 10 e2�(r) is plotted with respect to the radial coordinate r corre-
sponding to the parameters C = 0.05, j = 1, k = 1, δ = 0.1, and
γ = 0.001

3.2.3 Redshift Function �(r) from the Flat Rotational
Curve

One can know from the Refs. [90,91] that for the circular
stable geodesic motion in the equatorial plane the tangen-
tial velocity can be obtain from from the flat rotation curve
as

vφ(r) = √
r�′(r) (28)

One can easily fit the flat rotational curve for DM on using
Eq. (28). Rahaman et al. [75,76] proposed a flat rotational
curve profile in the region of the DM as

vφ(r) = γ (1 − e− jr ) + βre−kr (29)

where γ , δ, k and j are positive parameters.

Fig. 11 ρ(r) + Pr (r) is plotted with respect to the radial coordinate
r corresponding to the parameters ρ0 = 0.004 kpc−2, α = 0.5, β =
0.8, rth = 1 kpc,C = 0.05, j = 1, k = 1, δ = 0.1, γ = 0.001 and
r0 = 2 kpc

Therefore the redshift function is obtained by imposing
Eq. (29) in Eq. (28) as

�(r) = γ 2{ln(r) + 2E[1, jr ] − E[1, 2 jr ]} + C − δ2e−2ir

2i

×
[
r + 1

2i

]
− 2δγ e−ir

[
1

i
− 1e− jr

(i + j)

]
(30)

where E[x, y] is exponential integral function, defined in
Eq. (25) and C is an integration constant. For the above red-
shift function (30), e2�(r) is depicted in Fig. 10. Similarly,
for monitoring the NEC we shall compute the radial pressure
from Eq. (19) using the above redshift function (30).

Now, Eq. (19) yields the explicit expression of radial pres-
sure by using the redshift function (30) and the shape func-
tion, given in Eq. (22) as

Pr (r) = 1

24πr3kβ

[
24πrη2kβ − 3kβA − 8πr3kχ1(r)

+2δe−2( j+k)r
(r0

r

)α
{
χ2(r) − 2krγ e( j+k)r

−re2 jr (krδ − δ − 4kγ )

}{
24ρ0πr

3F(r)

−β(3(A − r) + 8πr3η2)

(
r

r0

)α }]
(31)

whereas

χ1(r) = η2β − 3ρ0F(r)
(r0

r

)α

(32)

χ2(r) = kδe2kr (e2 jr − 2e jr ) + kδe2kr (33)

Figure 11 evidently ensures that ρ(r) + Pr (r) < 0 i.e.
the NEC is completely violated after the wormhole throat
rth = 1 kpc. Note that, here, we have taken following values
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Fig. 12 NEC is shown at the radial distance r = 1.5 kpc with respect
to the Global Monopole Charge η corresponding to the parameters ρ0 =
0.004 kpc−2, α = 0.5, β = 0.8, rth = 1 kpc,C = 0.05, j = 1, k =
1, δ = 0.1, γ = 0.001 and r0 = 2 kpc

Fig. 13 The embedding diagram of z(r)

of parameters ρ0 = 0.004 kpc−2, α = 0.5, β = 0.8, rth =
1 kpc,C = 0.05, j = 1, k = 1, δ = 0.1, γ = 0.001 and
r0 = 2 kpc. So, the DM within the bulge sustains wormhole
geometry nicely. Furthermore, the Global Monopole Charge
has the same effect on NEC near the wormhole throat, clear
from Fig. 12.

4 Average null energy condition violating matter

Here, we are willing to investigate how the total amount
of averaged null energy condition (ANEC) violating mat-
ter in the spacetime of wormholes depends on the Global
Monopole Charge η. The total ANEC violating matter is
quantified by the following integral [92]

I =
∮

{ρ(r) + Pr (r)}dV = 2
∫ ∞

rth
4πr2{ρ(r) + Pr (r)}dr

(34)

where, dV = r2 sin θdrdθdφ and the factor 2 comes for the
both mouths of wormhole.

The exact results of the above integral (34) can not be
found explicitly for our solutions due to the presence of com-
plicated forms of exponential and exponential integral func-
tions within the solutions. It is obvious that the dependence
of the integral (34) on η will follow the dependence of the
factor r2{ρ(r) +Pr (r)} on η near the wormholes throat. For
that reason, we will analyze the fact with respect to the fac-
tor r2{ρ(r)+Pr (r)}. Now, interestingly, we obtain the same
value of r2{ρ(r)+Pr (r)} for each of our wormhole solutions
near the wormhole throat as

r2{ρ(r) + Pr (r)}|r→rth = η2 − 1

8π
+ ρ0r

2
th

(
r0

rth

)α

× exp

[
−

(
rth
r0

)β
]

(35)

The above result shows that it depends on the several
parameters ρ0, r0, rth, α, β and the Global Monopole
Charge η. If we kept fixed the parameters ρ0, r0, rth, α, β

then η plays a significant role in it and it will reduce for reduc-
ing values of η. Consequently, the total amount of ANEC
violating matter in the wormhole spacetime depends on η

and can be reduced and minimized with reducing values of
η.

5 Embedding surface and proper radial distance of
wormhole

The embedding surface of the wormhole is denoted by the
function z(r) and given by the following differential equation
[1]

dz(r)

dr
= ±

(
r

b(r)
− 1

)− 1
2

(36)

It is noted that for the above equation dz(r)/dr does not
converse at the throat of the wormhole as b(rth) = rth and it
concludes that the embedding surface indeed becomes ver-
tical at the wormhole throat. The differential equation (36)
gives the following integral expression for the embedding
surface z(r)

z(r) = ±
∫ r

r+
th

(
r

b(r)
− 1

)− 1
2

(37)

Also, the proper radial distance of wormhole is defined as

l(r) = ±
∫ r

r+
th

(
1 − b(r)

r

)− 1
2

(38)
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Fig. 14 The diagram of proper radial length l(r)

Fig. 15 The full visual diagram of wormhole

where r+
th is an arbitrary nearest distance of the throat from

right hand side.
Now, one can see that our reported shape function given

in Eq. (22) is complicated one due to the presence of expo-
nential integral function E[x, y] in it. Therefore, we can not
solve the above integrals provided in Eqs. (37) and (38) using
the analytical technique. But to know the behavior of z(r)
and l(r) we have performed the numerical technique on the
integrals Eqs. (37) and (38) using the Mathematica software.
Both the numerical integrations are done by fixing a partic-
ular value of lower limit r+

th = 1.1 kpc and by changing the
upper limit. The corresponding obtained values of z(r) and
l(r) are provided in Table 1 for selected some upper limit
of integration. The diagrams of embedding surface z(r) and
radial proper distance l(r) of 4-dimensional wormhole have
been depicted in Figs. 13 and 14, respectively. Note that, to
draw the diagrams for z(r) and l(r) we have taken a very
small step length of the integration. Now, if we rotted the
embedding diagram of z(r) about the Z -axis then we get the
full visualization picture of 4D wormhole. For our solution,
the full visualization diagram of 4D wormhole is given in
Fig. 15.

6 Matching to the external Schwarzschild solution

Matching concept is needed whenever wormhole is not
asymptotically flat. For the asymptotical flat wormhole
geometry b(r)/r → 0 and e2�(r) tends to unity as r →
∞. For the choice of the values of parameter ρ0 =
0.004 kpc−2, α = 0.5, β = 0.8, rth = 1 kpc, r0 = 2 kpc,
we can see from the Fig. 3 that the b(r)/r tends to zero
as r → ∞ for the zero Global Monopole Charge η. More
specifically, for those values of parameters we obtain the
redshift function from Eq. (22) as b(r) = 1

r [3.22628 −
0.177715r2.5E[−2.125, 0.574349r0.8]], which tends to zero
as r tends to infinity(One can see using Mathematica soft-
ware). Also, only for the first two choices of redshift functions
e2�(r) tends to unity as r → ∞. So, only these two redshift
functions associated with zero Global Monopole Charge pro-
vide asymptotically flat wormholes. But for positive values
of η, b(r)/r does not approach zero, clear from Fig. 3 and
hence in this case wormhole is not asymptotically flat, also
for third choice of �(r) e2�(r) does not tend to unity as
r → ∞ (see Fig. 10). The wormhole must, therefore, be cut
off at some R > rs , Schwarzschild radius and joined to the
external Schwarzschild vacuum solution.

Now, let us consider the Schwarzschild line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2θdφ2), (39)

where M represents the mass of wormhole. Now, directly
we get b(R) = 2M . Next, there is an arbitrary constant
C in the expression of redshift function (30) and we have
to choose the value of this constant C in such a way that
�(R) = 1

2 ln(1 − 2M/R). This condition gives the value of
C as

C = 1

2
ln(1 − 2M/R) + δ2e−2iR

2i

[
R + 1

2i

]
+ 2δγ

×e−iR
[

1

i
− 1e− jR

(i + j)

]
− γ 2{ ln(r) + 2E[1, jR]

−E[1, 2 jR]} (40)

Then the wormhole representing line element becomes

ds2 = −e2�(r)dt2 +
(

1 − b(r)

r

)−1

dr2 + r2(dθ2

+sin2θ dφ2), for r < R (41)

and

ds2 = −
(

1 − b(R)

r

)
dt2 +

(
1 − b(R)

r

)−1

dr2

+r2(dθ2 + sin2θ dφ2), for r ≥ R. (42)
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Fig. 16 Two forces are plotted with respect to the radial coordinate r
corresponding to the parameters η = 0.003, ρ0 = 0.004 kpc−2, α =
0.5, β = 0.8, rth = 1 kpc and r0 = 2 kpc

Fig. 17 Three forces are plotted with respect to the radial coordinate r
corresponding to the parameters η = 0.003, ρ0 = 0.004 kpc−2, α =
0.5, β = 0.8, rth = 1 kpc, r0 = 2 kpc along with τ = 2.5 and
C = 0.05, j = 1, k = 1, δ = 0.1, γ = 0.001, respectively

7 Equilibrium condition

The equilibrium position can be occurred by satisfying
the generalized Tolman–Oppenheimer–Volkof f (TOV)
equation. The generalized TOV equation is given as:

−Mg(r)(ρ + Pr )

r
e{ν(r)−λ(r)}/2 − dPr

dr
+ 2

r
(Pt − Pr ) = 0,

(43)

where ν(r) = 2�(r), λ(r) = − log(1 − b(r)/r) and Mg(r)
stands for the effective gravitational mass from the throat of
wormhole to some radius r and is obtained from Tolman-
Whittaker formula and the Einstein field equations as:

Mg(r) = 1

2
re{λ(r)−ν(r)}/2 ν′. (44)

The TOV equation (43) reduces on using the value of
Mg(r) from Eq. (44) as

−ν′(r)
2

{ρ(r) +Pr (r)} − dPr (r)

dr
+ 2

r
{Pt (r) −Pr (r)} = 0.

(45)

The above equation can also be represented as

Fg(r) + Fh(r) + Fa(r) = 0, (46)

where Fg(r) = − ν′(r)
2 {ρ(r)+Pr (r)} is termed gravitational

force, Fh(r) = − dPr (r)
dr , is termed as hydrostatics force and

Fa(r) = 2
r {Pt (r) − Pr (r)} is termed as anisotropic force.

For the tidal force redshift function �(r) = 0, the gravita-
tional force Fg(r) becomes zero and in this case, the equi-
librium stage of the wormhole is achieved due to the com-
bined effect of hydrostatic force and anisotropic force (see
Fig. 16). Figure 17 ensures that the systems corresponding
to the redshift functions �(r) = τ/r and obtained from flat
rotational curve are balanced by the simultaneous action of
Fg(r), Fh(r) and Fa(r). It is noted that, in the case of redshift
functions obtained from the flat ration curve, the gravitational
force Fg(r) is too small (see Fig. 17). Here, one can say that
the anisotropic force within the anisotropic medium plays
as a catalyst to achieve the equilibrium for each of reported
wormhole systems.

8 Discussions and conclusion

In this article, we have manifested the existence of wormhole
in the bulge of the MWG on the basis of dark DM density
profile and Global Monopole Charge. As have mentioned in
introduction part that the possible existence wormholes in the
galactic halo region has already been successfully discussed
on the basis the NFW, Universal Rotation Curve, Isothermal
and Void density profiles. In our study, we have considered
an observationally motivated DM density profile of the bulge
followed from MacMillan [83,84] in the following form

ρ(r) = ρ0

(r0

r

)α

exp

[
−

(
r

r0

)β
]

(47)

The behavior of this density profile is shown in Fig. 1
corresponding to the suitable values of parameters ρ0 =
004 kpc−2, α = 0.5, r0 = 2(kpc) and 0.2 ≤ β ≤ 1,
which shows that this profile is positively decreasing against
the radial coordinate r . The characteristic of our reported
shape function corresponding to the above density profile
is displayed in Figs. 2, 3, 4 and 5. Figure 2 ensures that
the shape function positive and incresing in behavior while
Fig. 3 indicates that the shape function is less than the radial
coordinate r after the wormhole throat. Moreover, the shape
function satisfies the flare-out condition, clear from Figs. 4
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Table 1 Some specific numerical values of the embedding surface z(r) and proper radial distance l(r) corresponding to the parameters ρ0 =
0.004 kpc−2, α = 0.5, β = 0.8, r+

th = 1.1 kpc, r0 = 2 kpc along with η = 0, 0.003 and 0.006, respectively

r (kpc) z(r) for η = 0 z(r) for η = 0.003 z(r) for η = 0.006 l(r) for η = 0 l(r) for η = 0.003 l(r) for η = 0.006

1.2 0.275766 0.275811 0.275945 0.293479 0.293521 0.293647

2 1.47495 1.47538 1.47665 1.74138 1.74173 1.74279

3 2.44493 2.44621 2.45006 3.13549 3.13644 3.13927

4 3.25502 3.25784 3.26631 4.42264 4.42454 4.43028

5 3.99152 3.99678 4.01261 5.66464 5.66800 5.67812

6 4.68299 4.69185 4.71849 6.88046 6.88587 6.90219

7 5.34154 5.35537 5.39696 8.07785 8.08599 8.11064

8 5.97311 5.9935 6.05487 9.26061 9.27227 9.30766

9 6.58101 6.60981 6.69648 10.43091 10.4469 10.4958

10 7.16741 7.20668 7.32486 11.59021 11.6115 11.6768

11 7.73386 7.78594 7.94256 12.73951 12.7672 12.8522

12 8.28169 8.34914 8.55184 13.87973 13.9149 14.0232

and 5. Therefore, our presenting shape function satisfies all
the fundamental criterions to hold wormhole like geometry.
It is well-known that the solution of Einstein field equations
would sustain wormhole by violating of the null energy con-
dition(NEC). Here, we have checked the NEC by considering
three different redshift functions, a tidal force, a rational red-
shift functions and the redshift function obtained from the
flat rotational curve. One can see that e�(r)s are finite for the
first two choices of redshift functions and for third choice of
redshift function of e�(r) is demonstrated in Fig. 10, which
is regular for r ≥ rth . Therefore, all these redshift functions
fulfil the condition to present the traversable wormholes. For
each of these redshift functions respective model violates the
NEC(see Figs. 6, 8, 11). Consequently, the bulge DM content
of MWG plays as the suitable candidate to harbor worm-
hole. Moreover, for each of respective considered redshift
function, the probability of violation of NEC near the throat
reduces whenever the Global Monopole Charge increases
(see Figs. 7, 9 and 12) and hence our considered DM den-
sity profile and the Global Monopole Charge have the crucial
effect on the violation of NEC. The total reducing amount of
ANEC violating matter in the wormhole spacetime depends
on the reducing values of Global Monopole Charge η. The
values of the embedding surface z(r) and proper radial dis-
tance l(r) are calculated by applying numerical technique
corresponding to ρ0 = 0.004 kpc−2, α = 0.5, β =
0.8, r+

th = 1.1 kpc, r0 = 2 kpc along with η = 0, 0.003 and
0.006, respectively and provided in Table 1. The sketches for
z(r) and l(r) are shown in Figs. 13 and 14, respectively corre-
sponding to η = 0, and 0.006. The full visualization diagram
is obtained by rotating z(r) about the Z -axis, for our model it
is shown in Fig. 15. The reported shape function satisfies all
the essential conditions mentioned in Sect. 2 to present the
traversable wormhole (see Figs. 2, 3, 4, 5). One can see that

the first two choices of redshift functions are definitely well-
defined and regular for r ≥ rth and third redshift function
is also regular and well-defined, shown in Fig. 10. Conse-
quently, the wormholes are traversable in nature. We want to
mention here that for the first two choices of redshift func-
tions our solutions present asymptotically flat wormholes on
the absence of Global Monopole Charge η while positive η

i.e. the presence of Global Monopole Charge provides non
asymptotically flat wormhole like geometry (see Fig. 3). So,
for our model, the Global Monopole Chargeη plays an impor-
tant role on the asymptotical flatness of wormhole. Moreover,
the non asymptotically flat wormhole is matched with the
external Schwarzschild vacuum solution at the certain radial
distance r = R > rs , Schwarzschild radius. The equilib-
rium positions are also analyzed for the reported solutions.
The gravitational force Fg(r) becomes zero for the tidal force
redshift function �(r) = 0, and in this case, the equilibrium
stage of the wormhole is maintained due to the combined
effect of hydrostatic force and anisotropic force, clear from
Fig. 16. Figure 17 shows that the wormhole structures corre-
sponding to the redshift functions �(r) = τ/r and obtained
from flat rotational curve are balanced by the simultaneous
action of three foreces Fg(r), Fh(r) and Fa(r). Moreover,
for the redshift functions obtained from the flat ration curve,
the gravitational force Fg(r) becomes too small (see Fig.
17). Here, one can see that the anisotropic force within the
anisotropic medium plays as a catalyst to achieve the equi-
librium for each of the wormhole structure. Recently, sev-
eral proposals are suggested for observing wormholes. Event
Horizon Telescope (EHT) has observed the black hole (BH)
shadow that has opened a new direction of the tests of grav-
ity in the strong field regime and that includes the probes
of violations of the no-hair theorem [93]. It is argued that
some black hole solutions was found to effectively mimic
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a wormhole and the BH shadow probes the geometry of
space-time in the vicinity of the event horizon. The search
of the iron Kα line profiles emitted from probable accretion
disks nearby the traversable wormholes (using X-ray reflec-
tion spectroscopy) may a possible proof of the presence of
astrophysical wormholes in active galactic nuclei [94]. It is
known that a traversable wormhole easily connects two dif-
ferent spacetimes. De-Chang Dai et al. [95] proposed that
the objects circulating in a neighborhood of a wormhole in
one space should affect the objects propagating in the other
space. In this way, wormholes may be observed.

Finally, we can say that our solution seems entirely pos-
sible existence of wormholes in the bulge of the Milky Way
galaxy. So, our study may inspire the scientific community to
search observational evidence of the presence of wormhole
in the Milky Way bulge region.
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