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We derive the kT resummation for a transverse-momentum-dependent charmonium wave function, 
which involves the bottom quark mass mb , the charm quark mass mc , and the charm quark transverse 
momentum kT , up to the next-to-leading-logarithm (NLL) accuracy under the hierarchy mb � mc � kT . 
The resultant Sudakov factor is employed in the perturbative QCD (PQCD) approach to the Bc → J/ψ

transition form factor ABc→ J/�
0 (0) and the B+

c → J/ψπ+ decay. We compare the NLL resummation effect 
on these processes with the leading-logarithm one in the literature, and find a (5 − 10)% enhancement 
to the form factor ABc→ J/�

0 (0) and a (10 − 20)% enhancement to the decay rate B R(B+
c → J/�π+). The 

improved kT resummation formalism is applicable to the PQCD analysis of heavy meson decays to other 
charmonia.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Bc meson decays contain rich heavy quark dynamics in both perturbative and nonperturbative regimes, that is worth of thorough 
exploration with high precision. It is thus crucial to develop an appropriate theoretical framework for analyzing Bc meson decays, for 
which data have been accumulated rapidly. A framework available in the literature is the perturbative QCD (PQCD) approach, which 
basically follows the conventional one for B meson decays: the dependence on the finite charm quark mass is included in hard decay 
kernels but neglected in the kT resummation formula for meson wave functions [1–10]. Hence, a theoretical challenge from these decays 
is to derive the kT resummation associated with energetic charm quarks with a finite mass. Such a rigorous kT resummation formalism 
for a typical transition Bc → J/ψ was first attempted in [11]. The derivation relies on the power counting for the involved multiple scales, 
the bottom (charm) quark mass mb (mc) and the parton transverse momentum kT . We have adopted the power counting rule proposed in 
[12], which obeys the hierarchy mb � mc � kT . An intermediate impact of this hierarchy is that the large infrared logarithms ln(mc/kT ), 
in addition to the ordinary ones ln(mb/kT ), appear in the PQCD evaluation of Bc meson decays, and need to be resummed.

To proceed with the kT resummation, we considered the Bc → J/ψ transition process, constructed the transverse-momentum-
dependent (TMD) Bc and J/ψ meson wave functions in the kT factorization theorem [13,14], and then performed the one-loop evaluation 
according to the wave-function definition as a nonlocal hadronic matrix element. The large logarithms attributed to the overlap of the 
collinear and soft radiative corrections were found to differ from those in B meson decays into light mesons [15], because of the ad-
ditional charm quark scale. However, only the leading double logarithms from the correction to the quark-Wilson-line vertex in meson 
wave functions were captured in [11], namely, the kT resummation for the Bc → J/ψ decays was achieved at the leading-logarithm (LL) 
accuracy so far. How the charm quark mass dependence in the LL kT resummation affects the Bc → J/ψ transition form factor and the 
B+

c → J/ψπ+ branching ratio was then investigated [11].
In this letter we will complete the kT resummation for the Bc and J/ψ meson wave functions up to the next-to-leading-logarithm 

(NLL) accuracy. Since the analysis involves the convolution with the corresponding hard decay kernel at the NLL accuracy, it is more 
convenient to perform the resummation in the impact parameter b space, which is conjugate to the transverse momentum kT . We start 
with the one-loop calculation for the J/ψ meson wave function, from which all important logarithms are identified. It is found that these 
logarithms are grouped into two sets, ln(mbb) and ln(mcb), with their coefficients being identical but opposite in sign. It hints that the 
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resummation technique can be applied to these two sets of logarithms separately: the kT resummation is constructed for the first set, that 
for the second set can be inferred trivially via the replacement of the argument mb by mc , and the final result is given by the difference 
between them. Moreover, the resummation technique applied to the first set of logarithms is the same as the one applied to a light meson 
case [16] without the intermediate scale mc . We emphasize that the matching to the one-loop J/ψ meson wave function is crucial for 
achieving the NLL accuracy. The NLL kT resummation for the Bc meson wave function is then done in a similar way. At last, the NLL 
resummation effect is employed in the PQCD evaluation of the Bc → J/ψ transition form factor and the B+

c → J/ψπ+ branching ratio, 
and compared with the LL effect observed in [11].

2. Bc and J/ψ meson wave functions

In this section we construct the definitions of the TMD wave functions for the Bc and J/ψ mesons. Consider the Bc(P1) → J/ψ(P2)

transition at the maximal recoil, where

P1 = mBc√
2

(1,1,0T ) , P2 = mBc√
2

(1, r2
J/ψ ,0T ), (1)

label the Bc and J/ψ meson momenta in the light-cone coordinates, respectively, with r J/ψ = m J/ψ/mBc , mBc (m J/ψ ) being the Bc ( J/ψ ) 
meson mass. Denote the anti-charm quark momenta as k1 = x1 P1 in the Bc meson, and k2 = x2 P2 in the J/ψ meson with the momentum 
fractions x1 and x2. Allowing the charm quarks to be off-shell only slightly, i.e., k2

1 − m2
c ∼ k2

2 − m2
c ∼ O (mc�QCD), �QCD being the QCD 

scale, we have postulated that the shapes of the Bc and J/ψ meson wave functions exhibit peaks around x1 ∼ mc/mb and x2 ∼ 1/2, 
respectively [11]. A charm quark, carrying a longitudinal momentum initially, gains transverse momenta by radiating gluons [14], which 
generate the kT dependence of a TMD wave function.

We point out that the power counting for a parton transverse momentum kT is nontrivial, compared to the power counting for 
the fixed mass scales like mb and mc . First, the kT factorization is suitable for a multi-scale process, such as the region of a small parton 
momentum fraction x in a process with a large scale Q . The small x introduces an additional intermediate scale xQ 2 ∼ Q �QCD, respecting 
the hierarchy Q 2 � xQ 2 � �2

QCD. A parton kT , being an integration variable in a kT factorization formula, can take values of orders of the 
above scales. The criteria for applying the kT factorization include: 1) the hard kernel of a considered process depends on the large scale 
Q 2 and the intermediate scale Q �QCD, but not on the small scale �2

QCD; 2) the factorization of the relevant TMD wave functions hold for 
a parton kT at both the intermediate and small scales. Once these two criteria are satisfied, the kT dependence in the hard kernel is not 
negligible, and a convolution between the hard kernel and the TMD wave functions can be derived. If the hard kernel involves only the 
large scale, the kT dependence of the hard kernel can be neglected. It is then integrated out in the wave functions, and one is led to the 
collinear factorization. An integrated TMD wave function can be written as a convolution of its corresponding distribution amplitude with 
a perturbative kernel [17]. A typical example for establishing the kT factorization at the one-loop level is referred to [18]: the matching 
between the QCD diagrams and the pion TMD wave function for the πγ ∗ → γ process gives the hard kernel in Eq. (40) of [18], that 
depends on Q 2 and xQ 2 + k2

T , but not on k2
T . Namely, the resultant hard kernel satisfies the first criterion, no matter which scale of kT

is. It can be shown that the eikonalization for factorizing the pion TMD wave function in Eq. (21) of [18] holds, as required by the second 
criterion, for both k2

T ∼ l2T ∼ O (Q �QCD) and O (�2
QCD), which are lower than the dominant invariant Q 2 in that equation.

Since a TMD wave function contains the contributions characterized by both the intermediate and small scales, it is legitimate to further 
factorize the former out of the wave function, as the intermediate scale is regarded as being perturbative. Motivated by this observation, 
the joint resummation which organizes the mixed logarithms formed by the two invariants xQ 2 and k2

T has been performed for the pion 
wave function [19]. This resummation, like an ordinary kT resummation, is justified perturbatively for the scale k2

T ∼ O (Q �QCD). After 
this organization, the remaining pion wave function involves only the small scale �2

QCD. Similarly, it is also legitimate to further factorize 
the contribution characterized by an intermediate scale out of a hard kernel in the kT factorization. This re-factorization yields the jet 
function defined in [20], through which the logarithms of xQ 2 are resummed to all orders.

Because more scales are involved in the Bc → J/ψ transition than in the πγ ∗ → γ process, there exist more leading infrared regions 
than in the latter. It has been argued [11] that a collinear region for the Bc → J/ψ transition is described by the power counting

lμ = (l+, l−, lT ) ∼
(

mb

mc
�,

mc

mb
�,�

)
, (2)

where l is the momentum of a radiative gluon with the invariant mass squared of O (�2), and � = mc or kT represents a lower scale. 
If the relation mbkT ∼ m2

c is assumed [21], a collinear gluon momentum lμ ∼ (mbkT /mc, mckT /mb, kT ) for � = kT will be equivalent to 
lμ ∼ (mc, k2

T /mc, kT ). The soft radiation in the Bc → J/ψ transition is characterized by lμ ∼ (�, �, �) [11]. The dominant collinear (soft) 
enhancement is absorbed into the J/ψ (Bc) meson wave function, and the remaining contribution goes into a hard decay kernel. It is 
easy to see that the hard kernel for the Bc → J/ψ transition involves the scales down to m2

c : the hard gluon invariant mass squared 
(k1 − k2)

2 contains k2
1 ∼ k2

2 ∼ m2
c . It will be explained that the Bc and J/ψ meson wave functions can be factorized for the scales up to 

m2
c . The above observations indicate that the kT factorization is appropriate for the analysis of the Bc → J/ψ transition. As the scale mc

is regarded as perturbative [21], a hard piece with the scale mc can be further factorized out of the wave-function definitions. Such a 
re-factorization has been applied to the light-cone distribution amplitudes of doubly-heavy mesons, which are then expressed as products 
of perturbatively calculable distribution parts and non-relativistic QCD (NRQCD) matrix elements [22,23].

The collinear gluons in the Bc → J/ψ transition can be collected by a gauge link, which is required by the gauge invariance of a TMD 
wave function. The one-loop diagram, in which a radiative gluon attaches to the valence b quark in the Bc meson and the valence c
quark in the J/ψ meson, gives the collinear enhancement from Eq. (2). The b quark line is eikonalized in this region into nν/n · l, with 
ν labeling the gluon vertex, and a gauge link in the direction n = (1, 1, 0T )/

√
2 along the Bc meson momentum is generated as shown 

in Fig. 1(a). The diagram, in which a radiative gluon attaches to the c̄ quark in the Bc meson and the c quark in the J/ψ meson, also 
contains the collinear enhancement from Eq. (2). The eikonalization of the c̄ quark line in the Bc meson results in a gauge link in the 
direction n shown in Fig. 1(b). The appearance of the gauge links in Figs. 1(c) and 1(d) can be explained similarly. The Fierz identity is 
2
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Fig. 1. One-loop vertex corrections to the J/ψ meson wave function.

then inserted to factorize the fermion flow [14] between the one-loop effective diagrams in Fig. 1 and the other parts of the transition 
process. Note that the above factorization procedure holds for k2

T up to the scale m2
c , which is lower than the invariant mass squared of 

O (m2
b) (O (mbmc)) of the eikonalized b (c̄) quark.

The J/ψ meson wave function � J/ψ factorized out of the above transition process depends on two external vectors, the momentum 
P2 and the direction n of the gauge link. Since the Feynman rule for the gauge link is scale-invariant in n, � J/ψ must depend on n
through the ratio of the Lorentz invariants, ξ2 = 4(P2 · n)2/|n2| [24,25]. We define the J/ψ meson wave function � J/ψ (x, kT , ξ2, mc) as

� J/ψ(x,kT , ξ2,mc) =
∫

d4 y

(2π)3
e−ik·y〈0|c̄(y)W y(n)†/n−W0(n)c(0)| J/ψ(P2)〉δ(u · y), (3)

where k = (xP+
2 , xP−

2 , kT ) is the c̄ quark momentum, and y = (y+, y−, yT ) denotes the coordinate of the c̄ quark field. The projector 
/n− with the null vector n− = (0, 1, 0T ) along the minus direction arises from the aforementioned insertion of the Fierz identity. The 
integration over the momentum orthogonal to the c̄ quark momentum leads to the function δ(u · y), with dimensionless vector u =
(−1/r2

J/ψ , 1, 0T )/
√

2, which specifies the location of c̄ on the y+-y− plane. Besides, � J/ψ also depends on the factorization scale μ f , 
which is not shown explicitly. The factor W y(n) represents the gauge link operator

W y(n) = P exp

⎡
⎣−ig

∞∫
0

dλn · A(y + λn)

⎤
⎦ . (4)

A vertical link to connect the two links W y(n) and W0(n) at infinity is implicit. The removal of the gauge-link self-energy corrections [26]
from the definition in Eq. (3) is understood, which is, however, irrelevant to the kT resummation to be performed in the next section.

The soft region characterized by the power counting lμ ∼ (�, �, �) with � denoting mc or kT , also contributes dominantly to the 
one-loop diagrams discussed above. This contribution is factorized into the Bc meson wave function by eikonalizing the charm quark line 
on the J/ψ meson side, and the same gauge link in the direction n is chosen. Under the considered hierarchy mb � mc , the Bc meson 
wave function can be defined in a way similar to the B meson wave function,

�Bc (x,kT , ξ2,mc) =
∫

d4 y

(2π)3
e−ik·y〈0|c̄(y)W y(n)†γ5/n+W0(n)b(0)|Bc(P1)〉δ(u′ · y), (5)

where k = (xP+
1 , xP−

1 , kT ) is the c̄ quark momentum, and the projector γ5/n+ arises from the insertion of the Fierz identity. The dimen-
sionless vector u′ = (−1, 1, 0T )/

√
2, i.e., a vector in the z direction, is introduced to specify the location of c̄ on the y+-y− plane: c̄ is 

located on the time axis in this case. If one adopts an alternative power counting for the involved heavy quark masses, mb ∼ mc , it will be 
more appropriate to define the Bc meson wave function in the effective theory of NRQCD rather than in QCD directly, since the separation 
between the bottom and charm quarks in coordinate space is much larger than 1/mb .

To identify the important logarithms in the J/ψ meson wave function, we calculate the one-loop effective diagrams displayed in Fig. 1
with an on-shell charm quark. Though the factorization of the J/ψ wave functions holds for kT up to the scale mc , we consider the 
hierarchy mb � mc � kT , which generates the largest logarithms. Assume that the c̄ quark carries the momentum k = xP2, and the c
quark carries k̄ ≡ P2 − k = (1 − x)P2. Fig. 1(a), which does not induce a transverse momentum of the charm quark, gives the loop integral

�
(1)
a = − i

4
g2μ2ε

f

∫
d4−2εl

(2π)4−2ε
tr

[
/n+

/̄k + /l + mc

(k̄ + l)2 − m2
c
γν/n−

]
1

l2 − m2
g

nν

n · l
, (6)

with the color factor C F = 4/3, the on-shell condition k̄2 ≈ m2
c , the factorization scale μ f , the gluon momentum l, and the gluon mass mg

as an infrared regulator. The projectors /n+ and /n− select the leading twist contribution. A straightforward computation yields

�
(1)
a = αs

4π
C F

[
1

ε
+ ln

4πμ2
f

m2
c eγE

− 2 ln
(1 − x)2ξ2

m2
c

ln
(1 − x)2ξ2

m2
g

+ ln
(1 − x)2ξ2

m2
c

+ 2 − π2

3

]
, (7)

where 1/ε represents an ultraviolet divergence and γE is the Euler constant. It is found that the collinear divergence regularized by the 
charm quark mass mc and the soft divergence regularized by the gluon mass mg overlap to produce the product of the corresponding 
logarithms in the above expression.

For Fig. 1(b), the transverse loop momentum lT , flowing through the hard decay kernel, is not negligible in the kT factorization as 
explained before. To facilitate the loop calculation, we apply the Fourier transformation to turn the convolution between the hard kernel 
and the J/ψ meson wave function into a product, and write the integral for the latter in the impact parameter b space as
3
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�
(1)

b = i

4
g2C F

∫
d4l

(2π)4
exp(ilT · b)tr

[
/n+

/̄k + /l + mc

(k̄ + l)2 − m2
c
γν/n−

]
1

l2 − m2
g

nν

n · l
. (8)

After performing the integration, we get

�
(1)

b = αs

4π
C F

[
1

2
ln2 (1 − x)2ξ2

m2
c

+ 2 ln
(1 − x)2ξ2

m2
c

ln
2(1 − x)ξ

bm2
geγE

]
. (9)

Compared to Eq. (7), the above expression is free of an ultraviolet divergence due to the Fourier factor exp(ilT · b). Note that the inte-
gration over the transverse momentum lT in the presence of exp(ilT · b) generates a Bessel function K0, which can be approximated by 
a logarithmic function as its argument approaches to zero. Hence, Eq. (9) is valid only up to the logarithmic term, strictly speaking. This 
approximation works well enough for the matching between the NLL resummation and the one-loop result.

The sum of Eqs. (7) and (9) gives

�
(1)

a+b = αs

4π
C F

[
1

ε
+ ln

4πμ2
f

m2
c eγE

+ 1

2
ln2 (1 − x)2ξ2

m2
c

− 2 ln
(1 − x)2ξ2

m2
c

ln
(1 − x)ξbeγE

2
+ ln

(1 − x)2ξ2

m2
c

+ 2 − π2

3

]

= αs

4π
C F

[
1

ε
+ ln

4πμ2
f

m2
c eγE

− 1

2
ln2 (1 − x)2ξ2b2e2γE−1

4
+ 1

2
ln2 m2

c b2e2γE −1

4
+ 2 − π2

3

]
. (10)

It is seen in the first line that the infrared regulator mg has been canceled as expected, and the soft scale has been replaced by 1/b. It 
implies that the color transparency argument holds, and the soft divergences disappear in the summation over diagrams. The ultraviolet 
logarithm can be removed by choosing the factorization scale μ f = mc , which defines the initial scale for the evolution of the J/ψ meson 
wave function in μ f . In the second line we have reorganized the sum into the desired form: the logarithms are grouped into two sets, one 
containing ln2(ξb) and another containing ln2(mcb), as postulated in [11]. The difference between them arises only from the arguments 
(1 − x)ξ and mc , and from the sign. This must be the case, because the collinear and soft divergences are regularized by the charm mass 
mc and the impact parameter 1/b, respectively, in the present calculation. Hence, the overlap of the corresponding logarithms should not 
generate ln2(1/b), such that the above two sets of double logarithms have equal coefficients but with opposite signs. The sum of the 
contributions from Figs. 1(c) and 1(d) can be obtained simply by substituting the momentum fraction x for (1 − x) in Eq. (10),

�
(1)

c+d = αs

4π
C F

[
1

ε
+ ln

4πμ2
f

m2
c eγE

− 1

2
ln2 x2ξ2b2e2γE−1

4
+ 1

2
ln2 m2

c b2e2γE−1

4
+ 2 − π2

3

]
. (11)

A remark is in order. It has been elaborated recently [27] that the coefficient of a double logarithm associated with an on-shell parton 
is half of the coefficient in the off-shell case. Taking Fig. 1(a) as an example, we have evaluated its contribution for an energetic charm 
quark off-shell by −k2

T , and obtained [11]

�
(1)
a = αs

4π
C F

[
1

ε
+ ln

4πμ2
f

m2
c eγE

− ln2 (1 − x)2ξ2

k2
T

+ ln2 m2
c

k2
T

+ ln
(1 − x)2ξ2

m2
c

+ 2 − 2

3
π2

]
. (12)

Comparing Eq. (12) with Eq. (7), we indeed find that the coefficients of the double logarithms have been reduced to half in the on-
shell case. We explain that the fixed-order calculation with an off-shell quark is required for the proof of the kT factorization [14], in 
which the common parton virtuality −k2

T is adopted to regularize the infrared divergences in both QCD and effective diagrams. The kT

factorization holds, if the infrared logarithms ln k2
T could be shown to cancel between these two sets of diagrams [14]. As deriving the 

kT resummation formula, we consider an on-shell initial parton, which becomes virtual by transverse momenta through radiations. The 
resummation technique aims at collecting these radiations to all orders.

3. NLL kT resummation

We first proceed with the NLL kT resummation for the J/ψ meson wave function based on the complete one-loop results in the 
impact parameter space presented in the previous section, assuming ξ � mc � 1/b � �QCD. The strategy is to focus only on the first set 
of logarithms ln(ξb), whose treatment is similar to that of a light meson case, and then infer the resummation formula for the second set 
via the replacement of ξ by mc . The choice of n is arbitrary in principle, which does not affect the collection of the collinear enhancement. 
This is the key observation for performing the resummation. We then study the variation of the J/ψ meson wave function with the gauge 
link direction n, which is equivalent to the variation with the dominant component P+

2 of the J/ψ meson momentum via the scale ξ ,

P+
2

d

dP+
2

� J/ψ = ξ
d

dξ
� J/ψ = − n2

P2 · n
Pα

2
d

dnα
� J/ψ . (13)

The technique of varying gauge links has been applied to the resummation of various types of logarithms, such as the rapidity logarithms
in the B meson wave function [28], and the joint logarithms in the pion wave function [19]. The differentiation of each eikonal vertex and 
of its associated eikonal propagator on the gauge link with respect to nα ,

− n2

Pα
2

d
α

nμ

= n2 (
P2 · l

nμ − Pμ
2

)
1 ≡ n̂μ

, (14)

P2 · n dn n · l p · n n · l n · l n · l

4
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Fig. 2. Graphic representation of the derivative ξd� J/ψ /dξ .

Fig. 3. (a) soft function and (b) hard function at O (αs).

leads to the derivative ξd� J/ψ/dξ depicted in Fig. 2. The summation in Fig. 2 includes different attachments of the new vertex n̂μ defined 
by the last expression in Eq. (14), and represented by the symbol “•”.

As stated before, terms of O (m2
c ) can be dropped for the resummation of the first set of logarithms. If the loop momentum l is parallel 

to P2, the factor P2 · l, being of O (m2
c ), is negligible. When the second term Pμ

2 in n̂μ is contracted with a vertex in � J/ψ , where 
all momenta are mainly parallel to P2, the contribution from this collinear region is also of O (m2

c ), and negligible. That is, the leading 
regions of l are soft and hard. According to [24], as the loop momentum flowing through the new vertex is soft, only the diagram with 
the new vertex being located at the outer most end of the gauge link dominates, and gives large single logarithms. In this soft region the 
subdiagram containing the new vertex can be factorized using the eikonal approximation, and the remainder is assigned to � J/ψ . This 
subdiagram is absorbed into a soft function K , whose O (αs) contribution is displayed in Fig. 3(a). As the loop momentum flowing through 
the new vertex is hard, only the diagram with the new vertex being located at the inner most end of the gauge link dominates. In this 
region the subdiagram containing the new vertex is factorized into a hard function G , whose O (αs) contribution is displayed in Fig. 3(b), 
and the remainder is identified to be � J/ψ .

We arrive at the differential equation in the impact parameter space

P+
2

d

dP+
2

� J/ψ = 2
[

K (bμ,αs(μ)) + G(P+
2 /μ,αs(μ))

]
� J/ψ , (15)

where the arguments of K and G specify their characteristic scales. Fig. 3(a) contributes

K = −ig2C F μ
ε

∫
d4−εl

(2π)4−ε

n̂μ

n · l

gμν

l2
Pν

2

P2 · l
[1 − exp(ilT · b)] − δK , (16)

with δK being an additive counterterm. The Fourier factor exp(ilT · b) appears in the second diagram of Fig. 3(a), because the loop 
momentum flows through � J/� , such that the scale 1/b serves as an infrared cutoff of the loop integral in Eq. (16). The O (αs) contribution 
to G from Fig. 3(b), where the soft subtraction is to avoid double counting of the soft contribution, is written as

G = −ig2C F μ
ε

∫
d4−εl

(2π)4−ε

n̂μ

n · l

gμν

l2

[
/P 2 + /l

(P2 + l)2
γ ν − Pν

2

P2 · l

]
− δG , (17)

where the charm quark mass mc has been dropped as explained before, and δG is an additive counterterm. Choosing the subtraction 
scheme

δK = − αs

2π
C F

[
2

ε
+ ln(πeγE )

]
= −δG, (18)

we get the soft and hard functions

K = − αs

2π
C F ln(b2μ2),

G = − αs

2π
C F ln

ξ2e2γE −1

4μ2
. (19)

Since K and G contain only single soft and ultraviolet logarithms, respectively, they can be treated by RG methods:

μ
d

dμ
K = −λK = −μ

d

dμ
G, (20)

in which the anomalous dimension of K , λK = μdδK/dμ, is given, up to two loops, by [29]

λK (αs) = αs

π
C F +

(αs

π

)2
C F

[
C A

(
67

36
− π2

12

)
− 5

18
n f

]
, (21)

with the number of quark flavors n f and the color factor C A = 3. As solving Eq. (20), we allow the scale μ to evolve to the infrared cutoff 
1/b in K and to P+ in G , and obtain the RG solution
2
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Table 1
Dependence on the shape parameter βBc of the quantities ABc→ J/ψ

0 (0) and BR(B+
c → J/ψπ+) in the 

PQCD approach at the LL and NLL accuracy.

Quantities ABc→ J/ψ
0 (0) BR(B+

c → J/ψπ+)

Shape parameter LL NLL LL NLL

βBc = 0.8 GeV 0.488 − i0.095 0.511 − i0.147 2.80 × 10−3 3.10 × 10−3

βBc = 0.9 GeV 0.434 − i0.070 0.460 − i0.114 2.10 × 10−3 2.39 × 10−3

βBc = 1.0 GeV 0.384 − i0.053 0.414 − i0.090 1.60 × 10−3 1.87 × 10−3

βBc = 1.1 GeV 0.341 − i0.039 0.373 − i0.071 1.23 × 10−3 1.46 × 10−3

βBc = 1.2 GeV 0.306 − i0.029 0.339 − i0.057 0.94 × 10−3 1.16 × 10−3

K (bμ,αs(μ)) + G(P+
2 /μ,αs(μ)) = K (1,αs(1/b)) + G(1,αs(P+

2 )) −
P+

2∫
1/b

dμ̄

μ̄
λK (αs(μ̄)),

= −αs(P+
2 )

2π
C F ln

e2γE −1

2
−

P+
2∫

1/b

dμ̄

μ̄
λK (αs(μ̄)). (22)

The relation ξ2 = 2P+2
2 n−/n+ = 2P+2

2 for n+ = n− specified in Eq. (3) has been inserted to get the initial condition G(1, αs(P+
2 )).

Substituting Eq. (22) into Eq. (15), we derive

� J/ψ = exp

⎡
⎢⎣−

(1−x)P+
2∫

1/b

dp̄

p̄

⎛
⎜⎝

p̄∫
1/b

dμ̄

μ̄
λK (αs(μ̄)) + αs(p̄)

2π
C F ln

e2γE −1

2

⎞
⎟⎠

⎤
⎥⎦

×exp

⎡
⎢⎣−

xP+
2∫

1/b

dp̄

p̄

⎛
⎜⎝

p̄∫
1/b

dμ̄

μ̄
λK (αs(μ̄)) + αs(p̄)

2π
C F ln

e2γE −1

2

⎞
⎟⎠

⎤
⎥⎦� J/�(x,b). (23)

We have set the lower bound of the variable p̄ to 1/b, and the upper bounds to (1 − x)P+
2 and xP+

2 for the integrals associated with 
Figs. 1(a) and 1(b), and Figs. 1(c) and 1(d), respectively, so that the initial condition � J/�(x, b) depends on x and b. As pointed out before, 
the kT resummation formula for the second set of important logarithms can be inferred from Eq. (23) by substituting mc for (1 − x)ξ and 
xξ , namely, mc/

√
2 for the upper bounds of p̄, and flipping the signs of the integrands. Combining the two resummation formulas, we get 

the final result

� J/ψ(x,b, ξ,mc) = exp

⎡
⎢⎣−

(1−x)P+
2∫

mc/
√

2

dp̄

p̄

⎛
⎜⎝

p̄∫
1/b

dμ̄

μ̄
λK (αs(μ̄)) + αs(p̄)

2π
C F ln

e2γE −1

2

⎞
⎟⎠

⎤
⎥⎦

×exp

⎡
⎢⎣−

xP+
2∫

mc/
√

2

dp̄

p̄

⎛
⎜⎝

p̄∫
1/b

dμ̄

μ̄
λK (αs(μ̄)) + αs(p̄)

2π
C F ln

e2γE−1

2

⎞
⎟⎠

⎤
⎥⎦� J/ψ(x,b), (24)

where the initial condition � J/ψ (x, b) depends on the intermediate scale mc only via the factorization scale, i.e., the argument of the 
strong coupling αs implicitly. Expanding Eq. (24) to O (αs) for a constant αs , we reproduce all the logarithms in Eqs. (10) and (11). The 
remaining constant pieces will go into the O (αs) hard decay kernel, when the one-loop J/ψ meson wave function and the one-loop decay 
amplitude are matched.

The above expression represents the complete NLL kT resummation for the J/ψ meson wave function, which involves the three 
scale mb , mc and kT . Compared to [11], we have included the so-called B term, i.e.., the second terms in the exponents in Eq. (24), 
and determined the order-unity coefficient associated with the lower bound of the variable p̄ to be 1/

√
2, both of which correspond to 

NLL effects. The inclusion of these NLL pieces requires a complete one-loop calculation of the J/ψ meson wave function in the impact 
parameter b space. The kT resummation formula for the spectator charm quark in the Bc meson then reads

�Bc (x,b, ξ,mc) = exp

⎡
⎢⎣−

xP−
1∫

mc/
√

2

dp̄

p̄

⎛
⎜⎝

p̄∫
1/b

dμ̄

μ̄
λK (αs(μ̄)) + αs(p̄)

2π
C F ln

e2γE−1

2

⎞
⎟⎠

⎤
⎥⎦�Bc (x,b,mc), (25)

according to the second line of Eq. (24), for which the relevant large longitudinal component of the spectator momentum is xP−
1 . Because 

the upper and lower bounds of the integration variable p̄ are both of O (mc), the resummation effect from Eq. (25) is less significant.
At last, we calculate the Bc → J/ψ transition form factor ABc→ J/ψ

0 (0) and the B+
c → J/ψπ+ branching ratio BR(B+

c → J/ψπ+) in 
the PQCD approach, taking into account the NLL kT resummation effect from Eqs. (24) and (25). The explicit expressions for the above 
quantities, together with the input parameters and the models of the meson wave functions, can be found in [11]. The initial scale of 
6
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the renormalization-group evolution for the meson wave functions, governed by the quark anomalous dimension [11], is modified from 
mc to mc/

√
2 for consistency. We adopt the one-loop running formula for the strong coupling αs . It has been checked that the two-

loop running causes only 1-2% reduction of the results from the one-loop running. The dependence of the quantities ABc→ J/ψ
0 (0) and 

BR(B+
c → J/ψπ+) on the shape parameter βBc of the Bc meson wave function in the range [0.8, 1.2] GeV is presented in Table 1, and 

compared with that derived with the LL resummation effect [11]. The potential imaginary part of ABc→ J/ψ
0 (0), which is supposed to be 

a real object [30], increases a bit under the NLL resummation, but remains power suppressed. It is found that ABc→ J/ψ
0 (0) is enhanced 

by the NLL resummation effect by 5-10%, as βBc varies from 0.8 GeV to 1.2 GeV, and thus BR(B+
c → J/ψπ+) increases by about 10-20% 

accordingly. It implies that the NLL resummation effect is not negligible, and crucial for the determination of the Bc meson wave function, 
when relevant data are available in the future. The values in Table 1 are consistent with those from other approaches in the literature, 
which have been summarized in [11].

4. Conclusion

In this letter we have improved the kT resummation for the Bc → J/ψ decays, which involve an additional intermediate charm scale 
compared with the B → π decays, to the NLL accuracy. We constructed the evolution equation for the TMD meson wave function by 
varying its associated gauge link, performed the kT resummation by solving the evolution equation, and fixed the NLL pieces through 
the matching to the one-loop calculation. Our work represents the first NLL kT resummation with the multiple scales mb , mc and kT

for Bc meson decays. It has been observed that the NLL resummation effect enhances the Bc → J/ψ transition form factor and the 
B+

c → J/ψπ+ branching ratio more than the LL resummation effect does. With more precise data from future experiments and the more 
accurate resummation formula obtained here, it is possible to determine the shape parameter of the Bc meson wave function, which can 
then be adopted to make reliable predictions for other decay modes. The above improved PQCD approach is also applicable to B and Bc

meson decays to charmonia. Based on this work, we are ready to extend the kT resummation with multiple scales to energetic charmed 
mesons, for which the current formalism is still preliminary.
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