

RECEIVED: September 22, 2020 Accepted: September 23, 2020 Published: October 26, 2020

Erratum: Symanzik improvement with dynamical charm: a 3+1 scheme for Wilson quarks

Patrick Fritzsch,^a Rainer Sommer,^{b,c} Felix Stollenwerk^c and Ulli Wolff^c

^a CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland

^bJohn von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, 15738 Zeuthen, Germany

^cInstitut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany

E-mail: patrick.fritzsch@cern.ch, rainer.sommer@desy.de, stollenwerk@physik.hu-berlin.de, uwolff@physik.hu-berlin.de

ERRATUM TO: JHEP06(2018)025

ArXiv ePrint: 1805.01661

We correct for typos and add a few missing details that can help to reproduce our calculations. The results of our original paper remain unchanged.

1. We add information to the 2^{nd} sentence following eq. (4.3):

The normalization factor \mathcal{N} , which implies $\Phi_1 = g_0^2 + \mathrm{O}(g_0^4)$ in perturbation theory, has been derived in [41] for the plaquette gauge action. For our setup with tree level improved Lüscher-Weisz gauge action we have to recompute this normalisation factor which amounts to replacing the lattice time-momentum gauge propagator in eq. (2.48) of ref. [41] with that of choice B provided in appendix B of ref. [43]. Otherwise, the numerical calculation proceeds along the lines of [41], leading to the values quoted in table 4, which have entered into our results.

T/a	\mathcal{N}
8	0.014804755
12	0.016141622
16	0.016638624
20	0.016688084
24	0.017004531

Table 4. Normalisation factors for the renormalised coupling Φ_1 in the SF with tree level improved Lüscher-Weisz gauge action, T = L and vanishing background field.

- 2. We add a sentence before eq. (5.3):
 - ... correlations and finally to $m'^{ij}(x_0)$. For the precise definition, the reader is advised to consult [25].
- 3. A minus sign was missing in eq. (5.4). The correct formula reads

$$c_{\mathcal{A}} = -\frac{r'^{ij}(y_0) - r^{ij}(y_0)}{s'^{ij}(y_0) - s^{ij}(y_0)} \quad \text{at } y_0 = \frac{3}{4}T$$
 (5.4)

4. We replace the caption of table 2 as follows:

Table 2. Results of the individual improvement condition runs along the LCP for various input values of c_{sw} . Beside g_0 , κ_l and κ_c , we quote the corresponding current quark masses $m^{ud}(x_0)$ at $x_0 = T^*/2$ with one-loop c_A , the improvement condition mass $M^{ud}(x_0, y_0)$ for $x_0 = \frac{1}{2}T^*$ and $y_0 = \frac{3}{4}T^*$, and the mass difference ΔM^{ud} from eq. (5.6). Errors from the relation $g_0^2 \leftrightarrow T^*/a$ are neglected.

Note the change from $x_0 = \frac{1}{4}T^*$ to $x_0 = \frac{1}{2}T^*$.

Acknowledgments

We thank A. Patella and J. Lücke to communicate some of the shortcommings addressed here, and A. Ramos for providing the normalisations quoted in table 4.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.