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1 Introduction

Cosmic inflation is a successful paradigm for the description of the very early Universe.
While solving the flatness and horizon problems in Big Bang cosmology, its accelerated
expansion of the Universe provides an origin of anisotropies in the cosmic microwave back-
ground (CMB) and gives rise to primordial gravitational waves. Such quasi-de Sitter phase
is realized once we have a scalar field, the so-called inflaton, slowly rolling down its potential
during inflation. The combined bounds from the current observations in the (ns, r)-plane [1]
imply a concave potential for the inflaton.
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Inflation caused by the Standard Model Higgs stands out as an attractive candidate
model among many others because of its minimality. To have successful inflation, a non-
minimal coupling to gravity is introduced in refs. [2–4]:

Lξ = ξR |H|2 , (1.1)

where H is the Standard Model Higgs doublet and ξ is the nonminimal coupling of H to the
Ricci scalar R. This term modifies the Higgs quartic potential for a large field value of the
Higgs |H| &MP /ξ, in perfect agreement with the aforementioned observational bound [1].
To produce a curvature perturbation of the right magnitude, the Higgs quartic coupling
λ and the nonminimal coupling ξ should fulfill ξ2 ' 2 × 109λ, implying ξ � 1 unless λ is
extremely small.1

Classically, such a large value of ξ is just a choice of a parameter. However, quantum
corrections induce other operators associated with this large coupling via a renormalization
group (RG) flow. In particular, by computing scalar one-loop diagrams in the Jordan frame,
one finds an enhancement of the R2 term for ξ � 1 [7–12].

Lα = αR2,
dα

d lnµ = − N

1152π2 (6ξ + 1)2 , (1.2)

where N counts the number of real scalar fields, i.e., N = 4 for Higgs-inflation. This R2

term makes the scalar part of the metric dynamical, corresponding to the so-called scalaron,
whose mass is m2

s ∼M2
P /α [13–16]. Although one may choose α to be small at a particular

scale, this never holds for the entire range of energy scales due to the RG running, implying
its typical value is α ∼ ξ2 � 1.2 Note that the Renormalization Group Equation (RGE)
of the other operator appearing at the same loop level, Lα2 = α2(RµνRµν − R2/3), does
not depend on ξ.3 Therefore, this operator is less important than the R2 term and can be
neglected below the Planck scale in the limit ξ � 1.

Although physics should be independent under a frame transformation, all the above
observations related to the appearance of the light scalaron at ξ � 1 rely on the Jordan
frame analysis. In order to illustrate this point, let us move to, e.g., the Einstein frame. In
the Einstein frame, there is no large nonminimal coupling between the Higgs and the Ricci
scalar. It follows that there is no large enhancement of the R2 term as its RGE is now
given by eq. (1.2) with ξ = 0. The large nonminimal coupling in the Jordan frame (1.1)
instead appears in the kinetic term of the Higgs in the Einstein frame:

Lkin = 1(
1 + 2ξ |H|2 /M2

P

)2

[(
1 + 2ξ |H|2

M2
P

)
|∂H|2 + 3ξ2

M2
P

(
∂ |H|2

)2
]
. (1.3)

1See refs. [5, 6] for critical Higgs inflation that has a tiny λ via the running.
2Strictly speaking, the running coupling at a scale µ involves a numerical factor and a log term as

αµ ∼ 10−2ξ2 ln Λ/µ (for N = 4). Here Λ is the scale at which α vanishes (analogous to ΛQCD of QCD).
Throughout this paper, we omit this numerical factor in the estimation because it is translated into at most
an order one factor in the scalaron mass, ms ∼MP /α

1/2.
3The beta functions of α and α2 are computed in, e.g., refs. [12, 17–26], although the sign of the beta

function of α is wrong in some references. Eq. (1.2) agrees with, e.g., refs. [12, 17, 20–22, 25, 26].
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Notice that, since the Higgs field contains four degrees of freedom, one cannot canonically
normalize all the components at the same time.4 In this frame, the light scalaron should
stem from the property of this nontrivial kinetic term (1.3). Since physics is frame indepen-
dent, it is desirable to understand the emergence of the scalaron in a frame independent way.

Our main goal is thus to provide a frame independent understanding of Higgs inflation,
the scalaron and its emergence. To this end, we rewrite Higgs inflation as a nonlinear sigma
model (NLSM). A crucial point is that we include not only the Higgs field but also the
conformal mode of the metric in our definition of the NLSM. Here the conformal mode of
the metric ϕ is defined as

gµν = e2ϕg̃µν , (1.4)

with det[g̃µν ] = −1 and gµν the spacetime metric. The inclusion of the conformal mode
is essential since it provides us with a frame independent definition of the target space.
The large coupling ξ controls the interaction between the conformal mode and the Higgs in
the Jordan frame, while it controls the interaction among the Higgs fields in the Einstein
frame, and both are equally captured by the geometry of our target space which is invariant
under the frame transformation. Once written as the NLSM, one naturally expects a new
scalar degree of freedom, σ-meson, that linearizes the target space of Higgs inflation. We
see that this σ-meson is identified with the scalaron. It UV-completes Higgs inflation to be
a linear sigma model (LSM) with renormalizable interactions, consistent with the renor-
malizability of quadratic gravity [22, 31–34]. Since our target space is frame independent,
this identification of the scalaron as the σ-meson is frame independent.

We then study quantum corrections of Higgs inflation in the large-N limit. We show
that a new scalar degree of freedom shows up in the spectrum which can be identified as
the σ-meson and hence the scalaron, naturally becoming light for ξ � 1. We thus provide
a frame independent understanding of the emergence of the scalaron that was previously
studied in a specific frame in ref. [12]. Formulated as a NLSM, our large-N analysis is
clearly parallel to that of other models, such as the O(N) NLSM and the σ-meson [35, 36]
(see refs. [37, 38] on the application to the Standard Model Higgs), the CPN−1 model that
possesses the hidden local symmetry and the ρ-meson [39–45], and the Nambu-Jona-Lasinio
and Gross-Neveu models and the scalar mesons [46–48].

Before moving to our main discussion, here we comment on other UV-completions
of Higgs inflation that are discussed in refs. [49–52]. In particular, ref. [50] emphasized
the importance of linearizing the Higgs kinetic term in the Einstein frame prior to us. In
this work, an additional scalar degree of freedom is added to UV-complete Higgs inflation
which is called a σ-field in analogy with the LSM. There are two main differences between
this work and ours. First, the definition of the target space is different. In ref. [50], the
target space is defined solely by the kinetic terms of the scalar fields and hence it is frame
dependent as we will demonstrate below, while our definition of the target space is frame
independent. Second, that target space is not completely flat even with the additional

4One should not think that the kinetic term can be flattened by just looking at the radial part of Higgs
because there are NG bosons. In the gauged case, the longitudinal modes of the gauge bosons play the same
role as the NG bosons in the unitary gauge because of the NG boson equivalence theorem. See refs. [27–30].
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scalar as the kinetic terms still contain (Planck-suppressed) higher dimensional operators.
On the other hand, the scalaron makes the target space completely flat, without any higher-
dimensional operators in the scalar sector, and can be identified as the σ-meson in a more
strict sense. Practically, however, the latter point may be less important since our model
also loses renormalizability at the Planck scale at which the spin-2 graviton comes into play.

The organization of this paper is as follows. In section 2, we rewrite Higgs inflation as
a NLSM. We include not only the Higgs but also the conformal mode of the metric in our
definition of the target space, and show that our definition is indeed frame independent.
In section 3, we show that the σ-meson of Higgs inflation is nothing but the scalaron. In
section 4, we study quantum corrections of Higgs inflation in the large-N limit, and see that
they give rise to the σ-meson, or the scalaron. Finally, section 5 is devoted to summary
and discussion.

2 Higgs inflation as NLSM

In this section, we show that Higgs inflation can be interpreted as a NLSM. Our primary
goal of this section is to provide a frame independent definition of the target space. For this
purpose, we include not only the scalar fields but also the conformal mode of the metric in
the definition of the target space.

This section is composed of two parts. In section 2.1, we show that Higgs inflation can
be interpreted as a NLSM with its target space given by

6ξ + 1
2 φ2

i +
(
h+ Φ

2

)2
= Φ2

4 in (Φ, φi, h) ∈ R(1,N+1), (2.1)

where φi is a real scalar field (corresponding to each component of the Higgs doublet), Φ
is the conformal mode of the metric (which we will define below), and ξ is a nonminimal
coupling. The summation over the index i ranging from 1 to N is implied, with N = 4 for
Higgs inflation.5 In section 2.2, we show that our definition of the target space is indeed
frame independent.

We note here that we do not consider any quantum effects in this section. Thus “Higgs
inflation” in this section always indicates the theory without any counter terms. Quantum
corrections of Higgs inflation are studied in the large-N limit in section 4.

2.1 Target space of Higgs inflation

We start from the action for Higgs inflation in the Jordan frame:

S =
∫

d4x
√
−gJ

[
M2
P

2 RJ

(
1 + ξφ2

Ji

M2
P

)
+ 1

2g
µν
J ∂µφJi∂νφJi −

λ

4
(
φ2
Ji

)2
]
, (2.2)

where MP is the reduced Planck mass, gJµν is the spacetime metric with gJ its determi-
nant, RJ is the Ricci scalar, ξ is a nonminimal coupling, λ is the quartic coupling, and
i = 1, . . . , N with N = 4 for the Standard Model Higgs. The subscript J indicates that

5Note that the Higgs potential has a global symmetry under O(4) ' SU(2)L × SU(2)R, which leads to
the custodial symmetry.
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the quantities are defined in the Jordan frame. In the following, we extract the conformal
mode of the metric to define the target space of Higgs inflation frame independently.

Without loss of generality, the metric can be decomposed as

gJµν = e2ϕJ g̃µν , det [g̃µν ] = −1. (2.3)

The scalar mode ϕJ contains the determinant part of the metric, and we call it the confor-
mal mode of the metric. Note that the Weyl transformation solely transforms the conformal
mode ϕJ , and not the other part g̃µν , and hence we do not put the index J on g̃µν . We
will come back to this point in section 2.2. The Ricci scalar is then decomposed as

RJ = e−2ϕJ R̃+ 6e−3ϕJ �̃eϕJ , (2.4)

where R̃ and �̃ are defined by g̃µν . We redefine the scalar fields as

φJi = e−ϕJφi, (2.5)

and define

ΦJ =
√

6MP e
ϕJ , (2.6)

to which we also refer as the conformal mode. As a result, we can rewrite the action as

S =
∫

d4x

[
R̃

12
(
Φ2
J + 6ξφ2

i

)
− 1

2

(
1− (6ξ + 1) φ

2
i

Φ2
J

)
g̃µν∂µΦJ∂νΦJ

+1
2 g̃

µν∂µφi∂νφi − (6ξ + 1) φiΦJ
g̃µν∂µφi∂νΦJ −

λ

4
(
φ2
i

)2
]
. (2.7)

Thus, Higgs inflation is now written in the form of a NLSM composed of φi and ΦJ . It is,
however, useful to move to a field basis in which the definition of the target space is more
transparent. For this purpose, we redefine the conformal mode as

ΦJ = 1
2

[√
Φ2 − 2 (6ξ + 1)φ2

i + Φ
]
. (2.8)

The new field Φ satisfies

−6ξ + 1
2

φ2
i

ΦJ
= 1

2

[√
Φ2 − 2 (6ξ + 1)φ2

i − Φ
]
, (2.9)

and hence the action (2.7) is written in terms of Φ as

S =
∫

d4x

[
R̃

12
(
Φ2 − φ2

i − h(Φ, φ)2
)
− 1

2 g̃
µν∂µΦ∂νΦ + 1

2 g̃
µν∂µφi∂νφi

+ 1
2 g̃

µν∂µh(Φ, φ)∂νh(Φ, φ)− λ

4
(
φ2
i

)2
]
, (2.10)

where the scalar function h(Φ, φ) is given by

h(Φ, φ) = 1
2

[√
Φ2 − 2 (6ξ + 1)φ2

i − Φ
]
. (2.11)
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Here we again refer to this Φ as the conformal mode of the metric with a slight abuse of
terminology. Now it is clear that the target space of Higgs inflation is given by

6ξ + 1
2 φ2

i +
(
h+ Φ

2

)2
= Φ2

4 in (Φ, φi, h) ∈ R(1,N+1), (2.12)

which is an N + 1-dimensional hypersurface in R(1,N+1). The curvature of the target space
is controlled by the parameter 6ξ + 1. In particular, if the scalar fields are conformally
coupled to gravity, ξ = −1/6, the target space is flat and the action reduces to an LSM
as expected. An important feature of this target space is that the kinetic term of Φ has
the wrong sign, and hence Φ is a ghost-like mode. In fact, such a ghost exists even in pure
Einstein gravity (see, e.g., ref. [53]), which resembles the time-like component of the U(1)
gauge field in the Lorenz gauge. Although ghost-like, it is harmless thanks to a residual
gauge symmetry. See appendix B for more details on this point.

In section 2.2, we show that our definition of the target space is indeed frame indepen-
dent thanks to the inclusion of the conformal mode of the metric.

2.2 Frame independence of target space

In this subsection, we show that our definition of the target space is frame independent.
Before going to our main discussion, however, let us first emphasize that a naive definition
of the target space solely by the kinetic terms of the scalar fields is frame dependent. For
instance, the action for Higgs inflation in the Jordan frame is given by eq. (2.2), and hence
the kinetic terms of the scalar fields are completely flat in this frame. Once we move to,
e.g., the Einstein frame by

gJµν = Ω−2
E gEµν , Ω2

E = 1 + ξφ2
Ji

M2
P

, (2.13)

the action is given by

S=
∫

d4x
√
−gE

{
M2
P

2 RE+ 1
2Ω4

E

[(
1+ ξφ2

Jk

M2
P

)
δij+

6ξ2φJiφJj
M2
P

]
gµνE ∂µφJi∂νφJj−

λ
(
φ2
Ji

)2
4Ω4

E

}
.

(2.14)

The kinetic terms of the scalar fields are now more involved, and one cannot canonically
normalize all the scalar fields at the same time (unless there is only one real scalar field, or
N = 1). As a result, the kinetic terms of the scalar fields are curved in this frame, and hence
the definition of the target space based solely on the kinetic terms of the scalar fields is
frame dependent. Since physics such as the unitarity violation scale is frame independent,
it is desirable to define the target space in a frame independent way.

Now we show that our definition of the target space is frame independent. The frame
transformation, or the Weyl transformation, from a frame A to a frame B is given by

gAµν = Ω−2gBµν , (2.15)

– 6 –
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with some function Ω. With the metric decomposition (2.3), it can be written as a field
redefinition of the conformal mode,

Φ2
A = Ω−2Φ2

B, (2.16)

where

g•µν = e2ϕ• g̃µν , Φ• ≡
√

6MP e
ϕ• , (2.17)

with • = A,B. Thus, the frame transformation is a particular form of a coordinate
transformation of our target space since we include the conformal mode as a coordinate.
The frame independence of our target space immediately follows since the target space is
in general invariant under a coordinate transformation (see, e.g., ref. [54]). It means that
geometrical quantities such as the curvature of the target space are not affected by the frame
transformation. One can also see that the curvature of the target space in our definition
is directly translated to the cut-off scale of Higgs inflation by, e.g., computing scattering
amplitudes, implying that our definition of the target space is of physical importance.

Although the above argument already proves the frame independence of our target
space, it may be instructive to see what is going on in more detail with an example. For
this reason, we consider the frame transformation between the Jordan and Einstein frames
in the following. We explicitly write down a field redefinition among the conformal mode
and the scalar fields that corresponds to a frame transformation in this case.

The actions for Higgs inflation in the Jordan and Einstein frames are respectively given
by eqs. (2.2) and (2.14). By extracting the conformal modes, the action in the Jordan frame
is given by eq. (2.7), while that in the Einstein frame is given by

S =
∫

d4x

{
R̃

12Φ2
E −

1
2 g̃

µν∂µΦE∂νΦE (2.18)

+ Φ2
E

12M2
PΩ4

E

[(
1 + ξφ2

Jk

M2
P

)
δij + 6ξ2φJiφJj

M2
P

]
g̃µν∂µφJi∂νφJj −

λΦ4
E

144M4
PΩ4

E

(
φ2
Ji

)2
}
,

where

gEµν = e2ϕE g̃µν , ΦE =
√

6MP e
ϕE . (2.19)

We can move back and forth between these two actions by redefining the conformal mode
and the scalar fields as

Φ2
E = Φ2

J + 6ξφ2
i , φJi = e−ϕEΩEφi. (2.20)

Indeed, this redefinition implies that
Φ2
E

12M2
PΩ2

E

g̃µν∂µφJi∂νφJi

= 1
2 g̃

µν∂µφi∂νφi + φ2
i

2Φ2
J

g̃µν∂µΦJ∂νΦJ −
φi
ΦJ

g̃µν∂µφi∂νΦJ , (2.21)

− 1
2 g̃

µν∂µΦE∂νΦE + Φ2
E

8M4
PΩ4

E

g̃µν∂µφ
2
Ji∂νφ

2
Jj

= −1
2

(
1− 6ξφ2

i

Φ2
J

)
g̃µν∂µΦJ∂νΦJ −

6ξφi
ΦJ

g̃µν∂µφi∂νΦJ , (2.22)
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up to total derivative, and one can recover eq. (2.7) from eq. (2.19) by inserting these
expressions. This confirms that the frame transformation between the Jordan and the
Einstein frames corresponds to the redefinition of the conformal mode given in eq. (2.20).

It is also instructive to see to which frame the conformal mode Φ in eq. (2.10) corre-
sponds. Let us define a metric by

√
6MP e

ϕC ≡ Φ, gCµν ≡ eϕC g̃µν . (2.23)

By redefining the fields as

φi = eϕCφCi, (2.24)

we easily obtain the following action

S=
∫

d4x
√
−gC

[
RC
12
(
6M2

P−φ2
Ci−h2

C

)
+ 1

2g
µν
C ∂µφCi∂νφCi+

1
2g

µν
C ∂µhC∂νhC−

λ

4
(
φ2
Ci

)2
]
,

(2.25)

where the scalar function hC = hC(φC) is given by

hC = 1
2

[√
6M2

P − 2 (6ξ + 1)φ2
Ci −

√
6MP

]
. (2.26)

This expression describes Higgs inflation in the conformal frame. Of course eq. (2.25) can
be derived directly from eq. (2.2) by the Weyl transformation. This confirms that the
frame transformation from the Jordan frame to the conformal frame corresponds to the
field redefinition of the conformal mode (2.8).

3 Scalaron as σ-meson

In section 2, we have shown that Higgs inflation can be regarded as a NLSM on an N + 1-
dimensional hypersurface spanned by the Higgs φi and the conformal mode of the metric
Φ in R1,N+1. This structure can be seen easily in a particular basis as shown in eq. (2.10):

S=
∫

d4x

[
R̃

12
(
Φ2−φ2

i−h2
)
− 1

2 g̃
µν∂µΦ∂νΦ+ 1

2 g̃
µν∂µφi∂νφi+

1
2 g̃

µν∂µh∂νh−
λ

4
(
φ2
i

)2
]
,

(3.1)

where

h = 1
2

[√
Φ2 − 2 (6ξ + 1)φ2

i − Φ
]
. (3.2)

Because of its simple form, one can naturally linearize and hence UV-complete this NLSM
by promoting h to a fundamental field as

S =
∫

d4x

 R̃

12
(
Φ2 − φ2

i − σ2
)
− 1

2 g̃
µν∂µΦ∂νΦ (3.3)

+ 1
2 g̃

µν∂µφi∂νφi + 1
2 g̃

µν∂µσ∂νσ −
λ

4
(
φ2
i

)2
− 1

144α

[
Φ2

4 −
(
σ + Φ

2

)2
− 6ξ + 1

2 φ2
i

]2
 .
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One can see that it goes back to the original NLSM (3.1) in the limit α→ 0. We denote the
additional field by σ since it completely linearizes the target space and hence corresponds
to the σ-meson in the language of the NLSM. We emphasize that the notions of the flatness
of the target space and hence the σ-meson are frame independent since our definition of
the target space is frame independent.

The primary goal of this section is to show that this σ-meson is nothing but the scalaron
that arises due to the R2 term in the Jordan frame. We also comment on the unitarity
and renormalizability of the resultant LSM (3.4).

3.1 Scalaron as σ-meson

Since the scalaron is understood in the literature as the degree of freedom that originates
from the R2 term in the Jordan frame, we start from the following action,

S =
∫

d4x
√
−gJ

[
M2
P

2 RJ

(
1 + ξφ2

Ji

M2
P

)
+ αR2

J + 1
2g

µν
J ∂µφJi∂νφJi −

λ

4
(
φ2
Ji

)2
]
, (3.4)

and show that it coincides with the LSM (3.4) by appropriate field redefinitions. It shows
that the scalaron can be identified with the σ-meson that linearizes Higgs inflation.

As before, we extract the conformal mode of the metric as

gJµν = e2ϕJ g̃µν , det [g̃µν ] = −1, (3.5)

and redefine the fields as

φJi = e−ϕJφi, ΦJ =
√

6MP e
ϕJ . (3.6)

The action is then given by

S=
∫

d4x

[
R̃

12
(
Φ2
J+6ξφ2

i

)
− 1

2 g̃
µν∂µΦJ∂νΦJ (3.7)

+1
2 g̃

µν∂µφi∂νφi+
(6ξ+1

2 φ2
i +12αR̃

)
�̃ΦJ

ΦJ
+αR̃2+36α

(
�̃ΦJ

ΦJ

)2

−λ4
(
φ2
i

)2
 .

Since it contains the higher derivative term, (�̃ΦJ/ΦJ)2, it contains an additional degree
of freedom, corresponding to the scalaron. We extract it by adding an auxiliary field σJ as

S=
∫

d4x

 R̃

12
(
Φ2
J+6ξφ2

i

)
− 1

2 g̃
µν∂µΦJ∂νΦJ+ 1

2 g̃
µν∂µφi∂νφi (3.8)

+
(6ξ+1

2 φ2
i +12αR̃

)
�̃ΦJ

ΦJ
+αR̃2+36α

(�̃ΦJ

ΦJ

)2

−
(
�̃ΦJ

ΦJ
+ ΦJσJ

72α

)2
−λ4

(
φ2
i

)2
 .

It is obvious that it reduces to the original action by integrating out σJ . By further defining
the fields as

σJ = σ + 6ξ + 1
2

φ2
i

ΦJ
+ 12α R̃

ΦJ
, ΦJ = Φ + σ, (3.9)
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we arrive at our final result

S =
∫

d4x

 R̃

12
(
Φ2 − φ2

i − σ2
)
− 1

2 g̃
µν∂µΦ∂νΦ (3.10)

+ 1
2 g̃

µν∂µφi∂νφi + 1
2 g̃

µν∂µσ∂νσ −
λ

4
(
φ2
i

)2
− 1

144α

[
Φ2

4 −
(
σ + Φ

2

)2
− 6ξ + 1

2 φ2
i

]2
 ,

which coincides with eq. (3.4). Thus, we have shown that the scalaron is nothing but the
σ-meson that linearizes the target space of Higgs inflation.

It may be instructive to rewrite the action in the form before extracting the conformal
mode. Let us define a metric by

√
6MP e

ϕC ≡ Φ, gCµν ≡ eϕC g̃µν , (3.11)

and redefine the fields as

φi = eϕCφCi, σ = eϕCσC . (3.12)

We then obtain

S =
∫

d4x
√
−gC

R

12
(
6M2

P − φ2
i − σ2

)
+ 1

2g
µν∂µφCi∂νφCi (3.13)

+ 1
2g

µν∂µσC∂νσC −
λ

4
(
φ2
Ci

)2
− 1

144α

3M2
P

2 −
(
σC +

√
6MP

2

)2

− 6ξ + 1
2 φ2

Ci

2
 .

It describes the Higgs-scalaron system in the conformal frame. Thus the flatness of our
target space corresponds to the flatness of the kinetic terms of the scalar fields in the
conformal frame.

Here is one remark. Additional degrees of freedom that arise due to higher derivative
terms are often ghost-like, known as Ostrogradsky ghosts (see, e.g., ref. [55] and references
therein). In our case, however, σ has a kinetic term with the correct sign, and hence is
healthy. It is because Φ has a kinetic term with the wrong sign and is ghost-like. Thus, we
may phrase this phenomenon as “minus times minus gives plus”, or “the ghost of a ghost
is healthy”.

3.2 Unitarity and renormalizability

We have seen that, if we regard Higgs inflation as an NLSM (2.10), the scalaron is under-
stood as the σ-meson which UV-completes it to an LSM (3.4). A remarkable feature of
the LSM (3.4) is that it has a completely flat target space and its scalar potential involves
only terms that are quartic in the fields. It indicates that the Higgs-scalaron system can
be unitary and renormalizable up to a very high energy scale as far as it does not hit a
Landau pole. Indeed, an explicit computation shows that the LSM (3.4) with the inclusion
of the Higgs mass term and the cosmological constant is renormalizable even above the
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Planck scale as far as the scalar sector is concerned (by taking g̃µν = ηµν). It is consistent
with the analysis based on the scattering amplitude in ref. [12]. In reality, of course, the
renormalizability is lost by the presence of the spin-2 graviton. Still, the field basis given in
eq. (3.4) is useful for computing important quantities such as the quantum corrections and
the RG running of the potential up to the energy scale where the spin-2 graviton comes
into play (which corresponds to the Planck scale in the Einstein frame). See ref. [56] for
more details on this point.

We note that these properties correspond to the renormalizability of quadratic grav-
ity [22, 31–34]. As far as the scalar sector is concerned, the Higgs-scalaron system is
equivalent to quadratic gravity with scalar fields nonminimally coupled to gravity, since
the other operator in quadratic gravity, RµνRµν−R2/3, only affects the tensor sector, lead-
ing to the infamous spin-2 ghost. Hence, the unitarity and renormalizability of quadratic
gravity up to the Planck scale can also be understood as a property of eq. (3.4). Although
other field bases such as eq. (3.8) are equivalent to eq. (3.4), properties such as the uni-
tarity scale and renormalizabitily are more difficult to see in these other bases. The power
of eq. (3.4) comes from its appropriate field basis which makes the flatness of the target
space manifest.

4 Large-N analysis of Higgs inflation

In this section, we study quantum corrections to Higgs inflation in the large-N limit. Here
N is the number of the real scalar fields, and the SM Higgs corresponds to N = 4. In this
section, we focus on the conformal mode of the metric and drop the spin-2 sector of the
metric by assuming ξ � 1. In section 4.1, we explain why ξ � 1 allows us to ignore the
spin-2 sector. Then in section 4.2, we study quantum corrections to Higgs inflation in the
large-N limit. There we see that an additional degree of freedom emerges that linearizes
the target space completely and hence is identified as the scalaron. We end this section
with some remarks on the large-N analysis in section 4.3.

Let us again emphasize that the emergence of a new degree of freedom from quantum
corrections is not unique to our NLSM. See the introduction for concrete examples of other
models in which this happens. It is part of the virtue of mapping Higgs inflation to the
NLSM that we can see the similarity between the analysis in this paper (and refs. [12, 57,
58]) and the literature referred to in the introduction.

4.1 Mode decomposition

In this section, we assume that ξ � 1 and hence ignore the spin-2 sector of gravity. In order
to see why the limit ξ � 1 allows us to ignore the spin-2 sector, we study the interaction
between the metric and the matter fields in this subsection.

In order to study the interaction between g̃µν and the matter fields, we may expand
g̃µν around a flat spacetime metric as

g̃µν = ηµν + hµν , (4.1)
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where ηµν = diag(1,−1,−1,−1) is the flat spacetime metric. A small perturbation hµν can
be further decomposed as

hµν = h⊥µν + ∂µh
⊥
ν + ∂νh

⊥
µ +

(
∂µ∂ν −

1
4ηµν�

)
ψ. (4.2)

The modes h⊥µν and h⊥µ satisfy

h⊥µµ = ∂µh⊥µν = 0, ∂µh⊥µ = 0, (4.3)

where the contractions are taken by ηµν . Note that hµν is traceless, ηµνhµν = 0, since the
determinant of g̃µν is unity. Thus, before imposing any gauge fixing conditions, the metric
contains one tensor mode h⊥µν (five components), one vector mode h⊥µ (three components),
and two scalar modes ψ and ϕ,6 and has in total ten components. We can eliminate some
of these components by a general coordinate transformation. We may take the gauge fixing
condition (at first order in perturbations) as

∂µhµν = 0, (4.4)

which kills h⊥µ and ψ. Actually such a gauge fixing condition leaves a residual gauge sym-
metry, which makes ϕ and three out of five components in h⊥µν unphysical, resulting in
two physical degrees of freedom (corresponding to two polarizations of the tensor mode).
Nevertheless, the conformal mode is crucial for our discussion since, although not dynami-
cal, it still contributes to the scattering amplitude and hence the unitarity structure of the
theory.7 See appendix B for more details on the residual gauge symmetry.

We now consider the coupling between the remaining modes h⊥µν and ϕ, and the scalar
fields. The action of Higgs inflation in the Jordan frame is given by

S =
∫

d4x
√
−g

[
M2
P

2 R

(
1 + ξφ2

i

M2
P

)
+ 1

2g
µν∂µφi∂νφi −

λ

4
(
φ2
i

)2
]
. (4.5)

The stress energy tensor in flat spacetime is constructed from this action as

Tµν = 2√
−g

δSmatter
δgµν

∣∣∣∣∣
gµν=ηµν

= ∂µφi∂νφi − ηµν
(1

2η
αβ∂αφi∂βφi −

λ

4φ
4
i

)
+ ξ (∂µ∂ν − ηµν�)φ2

i . (4.6)

Since the metric couples to the stress energy tensor, it follows that the interaction between
h⊥µν and the Higgs is independent of ξ:

h⊥µνT
µν = h⊥µν∂

µφi∂
νφi, (4.7)

6Here the words “scalar/vector/tensor” are defined under the Lorentz transformation as in the standard
quantum field theory language. They should not be confused with the scalar/vector/tensor decomposition
in the context of the cosmological perturbation, since the latter is defined only under the spatial rotation,
not under the full Lorentz transformation.

7It is the same as a scattering of electrons; the coulomb potential is not dynamical, yet contributes to
the scattering.
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up to total derivatives, where we have used the transverse-tracelessness of h⊥µν . On the
other hand, the interaction between ϕ and the Higgs depends on ξ, as one can see, e.g.,
by taking the trace of the above stress energy tensor. It means that the coupling to h⊥µν
is suppressed by MP whereas that to ϕ is suppressed only by MP /ξ (after canonically
normalizing the modes). This is the reason why the R2 operator, originating from the
coupling to ϕ, appears at MP /ξ while RµνRµν − R2/3, originating from the coupling to
h⊥µν appears at MP . Thus we focus on the conformal mode of the metric ϕ with the
assumption ξ � 1 in this section. Here we have discussed the interaction in the Jordan
frame, but the fact that the interaction between the spin-2 sector and the matter fields is
suppressed by MP is of course independent of the frame choice.

4.2 Emergence of σ-meson as scalaron

As we have discussed in section 4.1, we drop the spin-2 sector in this subsection. This is
valid as long as ξ � 1 and the energy scale of our interest is below the Planck scale. By
taking

g̃µν = ηµν , (4.8)

in the action (2.7), we thus obtain

S =
∫

d4x

[
−1

2 (∂ΦJ)2 + 1
2 (∂φi)2 + 6ξ + 1

2

(
�ΦJ

ΦJ

)
φ2
i −

λ

4
(
φ2
i

)2
]
. (4.9)

The contraction of the Lorentz indices is always taken by ηµν in this subsection. We
study quantum effects of this model in the large-N limit. These quantum effects induce
divergences that have to be renormalized by counter terms. Our primary goal of this
subsection is to study what sort of divergences appear and what sort of counter terms are
required to renormalize them in Higgs inflation at the leading order in the large-N limit.
Here we keep the Higgs four-point interaction to clarify its effect in the large-N analysis.

Let us first focus on divergences involving the Higgs four-point interaction. Adopting
dimensional regularization, we have two divergent diagrams in the large-N limit

(4.10)

where the solid line indicates the operator �ΦJ/ΦJ and the dotted line the scalar fields φi.
The first diagram is renormalized by the Higgs four-point coupling, and the second one is
renormalized by the nonminimal coupling 6ξ+ 1. Hence, to cure the divergences involving
the Higgs four-point interaction, we do not need to introduce any additional operators,
since both of them are already present in eq. (4.9). It is straightforward to check that
they correctly reproduce the running of the Higgs four-point coupling and the nonminimal
coupling.

On the other hand, a new operator is required in order to renormalize the two-point
function of the operator �ΦJ/ΦJ , which is diagrammatically given by

(4.11)

– 13 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
1

and whose corresponding counter term is

Lc.t. = 36α
(
�ΦJ

ΦJ

)2
. (4.12)

Note that the divergences at the higher loop level, which are diagrammatically given by

+ + · · · (4.13)

are renormalized by the same term (4.12), and hence no other terms are required at the
leading order in the large-N limit. We obtain the RG running of α

dα
d lnµ = − N

1152π2 (6ξ + 1)2 , (4.14)

which coincides with the running of the R2 term eq. (1.2). The value of α at a specific
energy scale depends on the boundary condition which is a parameter choice of the the-
ory. Including quantum corrections at the leading order in the large-N limit, the classical
action (4.9) is now modified to

S =
∫

d4x

[
−1

2 (∂ΦJ)2 + 1
2 (∂φi)2 + 6ξ + 1

2

(
�ΦJ

ΦJ

)
φ2
i −

λ

4
(
φ2
i

)2
+ 36α

(
�ΦJ

ΦJ

)2
]
.

(4.15)

One can see that this expression coincides with the spin-0 sector of eq. (3.8) as expected.
Namely, the field basis ΦJ convenient for the large-N analysis corresponds to the Jordan
frame.

Since the counter term (4.12) is a higher derivative term, it implies the existence of an
additional degree of freedom. To extract it, we introduce an auxiliary field σJ

S =
∫

d4x

{
− 1

2 (∂ΦJ)2 + 1
2 (∂φi)2 + 6ξ + 1

2

(
�ΦJ

ΦJ

)
φ2
i −

λ

4
(
φ2
i

)2

+ 36α
[(
�ΦJ

ΦJ

)2
−
(
�ΦJ

ΦJ
+ ΦJσJ

72α

)2
]}

. (4.16)

After shifting the fields as σJ = σ+ (6ξ+ 1)φ2
i /2ΦJ and Φ = ΦJ −σ, we obtain the desired

result

S=
∫

d4x

−1
2 (∂Φ)2+ 1

2 (∂σ)2+ 1
2 (∂φi)2−λ4

(
φ2
i

)2
− 1

144α

[
Φ2

4 −
(
σ+ Φ

2

)2
− 6ξ+1

2 φ2
i

]2
 .

(4.17)

Thus, the quantum correction in the large-N limit, or the higher derivative term (4.12),
induces the σ-meson that linearizes the original NLSM (4.9). It corresponds to the spin-0
sector of the Higgs-scalaron system (3.4), and the additional degree of freedom corresponds
to the scalaron.
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4.3 Remarks on the large-N analysis

Here are some remarks on our large-N analysis.

Frame/gauge independence. Note that our large-N analysis is frame and gauge in-
dependent. As we have emphasized throughout this paper, the full result is guaranteed
to be independent of the frame choice, and hence the result at each order in the large-N
expansion is also independent of this choice as one may vary N arbitrarily. The gauge
independence of our results follows in the same way.

Cut-off scale in the large-N limit. In this paper, we have argued that the cut-off scale
of Higgs inflation with the R2 term is the Planck scale. Strictly speaking, the cut-off scale
is of order MP /

√
N if we take the large-N limit. This can be seen, e.g., from d-wave parts

of scattering amplitudes or the RG running of the RµνRµν term (see also refs. [59, 60]).
However, the typical scale of the R2 term also scales in the same way, and hence the fact
that the spin-2 sector can be ignored in the large-ξ limit is not affected. For this reason,
we have ignored this subtlety here.

Sub-leading terms in the large-N expansion. In this section, we have relied on
the large-ξ and the large-N limits. Although the large-ξ limit is expected to be good for
ξ = O(104), one may wonder how sub-leading terms in the large-N expansion affect our
understanding of Higgs inflation. In the following, we suggest that the LSM (4.17) provides
a clue to answering this question.

As we have shown, the LSM (4.17) describes the system to the leading order in the
large-N limit if we ignore the spin-2 sector of gravity, which is valid in the large-ξ limit.
Thus, sub-leading order terms in the large-N limit can be obtained by computing quan-
tum corrections of the LSM (4.17) below the Planck scale. A significant feature of the
LSM (4.17) is that it possesses a flat target space and renormalizable interactions, and
hence quantum corrections generate only a finite number of new operators. Indeed, we
can show that the LSM (4.17) with the Higgs mass term and the cosmological constant is
renormalized at the one-loop level in the standard coupling expansion without any other
new operators. Hence we expect that, other than generating the Higgs mass term and the
cosmological constant, sub-leading order terms do not affect our understanding of Higgs
inflation. In particular, we do not expect that operators such as Rn, with n > 2, to be
important below MP , since these higher-dimensional operators are not required to make
the LSM (4.17) renormalizable, i.e., these are irrelevant operators. In other words, we
expect that the large-ξ limit is sufficient for our understanding of Higgs inflation, although
we have relied on the large-N limit to make our analysis simpler in this section. Note that
the Rn terms with n > 2 suppressed by MP are not expected to affect the inflationary
prediction of the Higgs-R2 system for ξ ∼ O(104) and α ∼ ξ2 [61–63].

It is of course desirable to examine the above expectation by directly computing sub-
leading order terms in the large-N limit, which we leave for future work.

Large-N limit as a bottom up approach to UV theory. In this section, we have
seen that the σ-meson or the scalaron emerges and Higgs inflation is UV-completed to be
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the Higgs-scalaron system due to quantum corrections in the large-N limit. One might
be surprised at our result since the UV-completion of a given theory is not unique, and
one cannot determine which UV-completion is chosen solely from an IR theory in general.
Here the large-N limit does the trick. Although there are many UV-completions of a given
theory in general, the large-N limit naturally picks up one out of others. In this sense,
the large-N limit provides us an interesting bottom up approach to UV completion. In
particular, if one has a non-renormalizable theory whose UV completion is not known, the
large-N analysis will be a useful tool to find a possible UV completion. For instance, it
may be interesting to apply the large-N analysis to, e.g., the Higgs effective field theory
(EFT) [64–70], and try to extract a possible properties of the UV completion. Note that the
Higgs EFT can be formulated in terms of the target space curvature [71–74], or equivalently
regarded as a NLSM, and hence it is expected to be straightforward to apply the large-N
analysis to this theory.

5 Summary and discussion

5.1 Summary

Higgs inflation introduces a nonminimal coupling ξ between the Higgs H and the Ricci
scalar R as ξR |H|2. The CMB normalization requires ξ to be large, ξ � 1, unless the
Higgs quartic coupling is tiny at the inflationary scale. Consequences of this operator with
a large value of ξ have been studied in detail in the literature, including the tree-level
unitarity violation at the energy scale MP /ξ � MP [27–29, 75–77] and its implication
during and after inflation [78–81]. Once we turn on quantum corrections, however, for the
large value of ξ, other operators are inevitably induced due to the RG running. Among
them, the most important one is the R2 term, αR2, with its beta function given by eq. (1.2).
Due to this RG running, the natural mass scale of the scalaron that becomes dynamical
due to the R2 term is MP /

√
12α ∼ MP /ξ, i.e., it becomes dynamical much below MP .

Since the scalaron can lift the cut-off scale to MP [10, 82], this indicates that the tree-level
unitarity violation mentioned above can be cured by quantum corrections [12, 57, 58].

In this paper, we have shown that Higgs inflation, the scalaron and its emergence can be
understood in the language of the nonlinear sigma model (NLSM) in a frame independent
way. In section 2, we have demonstrated that Higgs inflation can be written as a NLSM
(see eq. (2.10)). Our definition of the target space is frame independent since we have
included not only the scalar fields but also the conformal mode (or the determinant part)
of the metric in our definition. Thus, the Higgs fields and the conformal mode of the
metric play the role of the pions. In the NLSM, we naturally expect an additional degree
of freedom, the σ-meson, that linearizes the NLSM. In section 3, we have shown that the
scalaron plays the role of the σ-meson, and including this degree of freedom completely
flattens the target space and hence unitarizes the theory. In section 4, with the help of the
large-N limit, we have shown that the light σ-meson, or the scalaron, indeed appears due to
quantum corrections. Now described as a NLSM, our analysis in section 4 is clearly parallel
to the large-N analysis of, e.g., the O(N) NLSM [35, 36], the CPN−1 model [39–43, 45],
the Nambu-Jona-Lasinio model [46, 47], and the Gross-Neveu model [48].
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µ
MP/ξ

R |H|2 , R2

� MP

RµνRµν

NLSM (2.10) LSM (3.4)

Figure 1. A schematic picture of the phase diagram of Higgs inflation with ξ � 1, obtained
with the help of the large-N limit. In the low energy region, µ < MP /ξ, it is described by the
NLSM (2.10) with the Higgs and the conformal mode of the metric being the pions. Once we go to
the higher energy region, MP /ξ < µ < MP , it is linearized as eq. (3.4) with the scalaron playing
the role of the σ-meson. In the even higher energy region µ > MP , other operators such as RµνRµν
come into play. One is probably required to fully take quantum gravity into account in this energy
region, which is beyond the scope of this paper.

The phase diagram of Higgs inflation obtained with the help of the large-N limit is
summarized in figure 1. Higgs inflation is the NLSM (2.10) below the energy scale MP /ξ,
and it becomes the linear sigma model (LSM) (3.4) with the scalaron as the σ-meson above
the scale MP /ξ.

5.2 Discussion

We conclude this paper with some remarks that are not addressed in detail in the main text.

Heavy scalaron during inflation, fine tuning and perturbativity. Throughout this
work, we have claimed that the natural mass scale of the scalaron is MP /

√
12α ∼ MP /ξ.

Since α runs (according to eq. (1.2) in the Jordan frame), its value depends on the boundary
condition, or equivalently the choice of the scale Λ at which α vanishes.8 In this sense,
we can think of Λ instead of α as a model parameter, in the same way that we can think
of ΛQCD instead of the gauge coupling g3 as a model parameter in QCD (this is called
“dimensional transmutation” [83]). Therefore, one might choose Λ such that the scalaron
remains heavy during inflation and the inflationary dynamics is described by Higgs inflation
without the R2 term. Although possible, there are three subtleties one has to keep in mind
in this scenario. First, Λ has to be tuned to be close to the inflationary scale for the
scalaron to be heavy during inflation. Hence this scenario requires tuning. Second, due to
the running of α, it is impossible to keep the scalaron heavy for all energy scales for ξ � 1.
Even if the scalaron is heavy during inflation, it becomes light after inflation and affects,
e.g., reheating. Finally, there is an issue related to perturbativity. As long as we rely
on the large-N limit, our analysis is valid for any value of α. If one computes quantities
in the standard coupling expansion in the Higgs-scalaron system, however, perturbativity
requires ξ2/4α . 4π, and hence the small value of α implies that the system is in a strong
coupling regime above MP /ξ.

8One should not confuse Λ with the renormalization scale. It is rather a model parameter as we explain
just below.
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Unitarity during preheating. A very important consequence of the emergence of the
σ-meson, or the scalaron, is that the unitarity cut-off scale of Higgs inflation can be lifted to
the Planck scale (depending on the UV boundary condition of α). This feature is essential
to follow the dynamics of Higgs inflation from inflation to reheating without ambiguity.
Although the energy scale of Higgs inflation at the classical level (i.e. without the R2 term)
lies below the cut-off scale and does not necessarily lead to a problem during inflation [78],
the story drastically changes after inflation, during (p)reheating. After inflation, the Higgs
field oscillates around the bottom of its potential. When the Higgs field crosses zero,
the strong curvature in the target space leads to violent production of longitudinal gauge
bosons (or equivalently NG bosons), with momenta that seemingly violate the unitarity
scale [79–81]. Moreover, a naive estimate of the reheating temperature yields a value in
the strong coupling regime. On the contrary, reheating with the R2 term was studied
in [84, 85], where it was shown that the presence of the scalaron generally weakens particle
production and unitarity is no longer violated by the produced particles.

RG flow of Higgs-scalaron system. Last but not least, we emphasize the power of
the LSM (4.17). Although it contains only the scalar fields, it is expected to correctly
reproduce quantum effects of the theory up to the Planck scale or a Landau pole. For
instance, we can compute the RGEs of the dimensionless parameters and the ratios of the
dimensionful parameters at the one-loop level within the LSM (4.17), and we can show
that they agree with the scalar part of the full computation within quadratic gravity in
refs. [20–22].9 Note that the LSM (4.17) greatly simplifies the computation since it does
not contain any tensor modes. In particular, we can see that the Higgs mass term and
the cosmological constant are radiatively generated even if they are absent at a specific
energy scale. This is because the scalaron introduces an additional mass scale, and it can
be understood as a specific form of the hierarchy problem. See ref. [56] for more details on
this point.
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A Conventions

Here we summarize our conventions. In this paper we work with the mostly-minus con-
vention for the spacetime metric. In particular, the flat spacetime metric is given by

ηµν = diag (+1,−1,−1,−1) . (A.1)
9Indeed, a scalar field model is discussed in [21] that correctly reproduces the running of ξ and α (or f0

in their language), which is similar to our LSM (4.17).
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We define the Christoffel symbol as

Γµνρ = 1
2g

µα (∂νgρα + ∂ρgνα − ∂αgνρ) , (A.2)

the Ricci tensor as

Rµν = ∂µΓααν − ∂αΓαµν + ΓαβνΓβαµ − ΓαµνΓβαβ , (A.3)

and the Ricci scalar as

R = gµνRµν . (A.4)

This fixes the sign convention for the Ricci scalar. In particular, the Ricci scalar transforms
under the Weyl transformation gµν → Ω−2gµν as

R→ Ω2
[
R+ 3

2g
µν∂µ ln Ω2∂ν ln Ω2 − 3� ln Ω2

]
. (A.5)

The conformal coupling corresponds to ξ = −1/6 with this convention.

B Gauge fixing and residual gauge symmetry

In this appendix, we discuss gauge fixing conditions and residual gauge symmetries. In
section 4, we have focused on the conformal mode of the metric Φ. Here we show a
gauge fixing condition that corresponds to this treatment; see eqs. (B.13). We also confirm
that the ghost-like field Φ is indeed harmless due to the residual gauge symmetry; see
eqs. (B.14), (B.19) and (B.20).

B.1 U(1) gauge theory

As a warm-up, we consider the U(1) gauge theory in this subsection. The discussion is
quite parallel to the gravity case, and hence it is useful to understand this simpler case first.
We consider the U(1) gauge field Aµ that transforms under a U(1) gauge transformation as

Aµ → Aµ + ∂µθ. (B.1)

We may impose the Lorenz gauge condition

∂µAµ = 0, (B.2)

to kill one degree of freedom. It still has a residual gauge symmetry. Indeed, one can
perform the transformation (B.1) without affecting eq. (B.2) provided θ satisfies

�θ = 0, (B.3)

that makes another degree of freedom unphysical. As a result, there are two physical modes
in Aµ that correspond to the two polarizations of the photon. Note that the Lagrangian
for Aµ is given after imposing eq. (B.2) by

L = −1
4FµνF

µν = −1
2η

µν∂ρAµ∂
ρAν , (B.4)
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and hence the time-like component A0 is ghost-like, as in the case of Φ in the main text.
It is harmless due to the residual gauge symmetry (B.3). The Gupta-Beuler condition
guarantees that all physical states are healthy [87, 88].

In order to take a closer look at the degrees of freedom in Aµ killed by eqs. (B.2)
and (B.3), we decompose Aµ as

Aµ = A⊥µ + ∂µA, (B.5)

where A⊥µ satisfies

∂µA⊥µ = 0. (B.6)

It is important to notice that there is an ambiguity in the decomposition (B.5); we can
shift A⊥µ and A as

A⊥µ → A⊥µ + ∂µB, A→ A−B, with �B = 0, (B.7)

without spoiling the transverse property of A⊥µ . Due to this ambiguity, it is enough to
require

�A = 0, (B.8)

to kill the degree of freedom corresponding to A. Indeed, the Lorenz gauge condition (B.2)
requires eq. (B.8), and hence kills A. The residual gauge symmetry (B.3) kills an additional
degree of freedom in A⊥µ that is ghost-like without affecting the condition (B.8).

B.2 Gravity

Now we consider gravity. We may expand the metric as

gµν = e2ϕ (ηµν + hµν) , (B.9)

and treat hµν as a perturbation as we have done in the main text. Note that we do not
treat the conformal mode as a perturbation. Under the general coordinate transformation,

xµ → xµ − ξµ, (B.10)

the modes transform at the first order in hµν and ξµ as

ϕ→ ϕ+ 1
4∂αξ

α + ξα∂αϕ, (B.11)

hµν → hµν + ∂µξν + ∂νξµ −
1
2ηµν∂αξ

α, (B.12)

where the indices are raised and lowered by the flat spacetime metric ηµν here and hereafter
in this subsection. We may impose a gauge fixing condition

∂µhµν = 0, (B.13)
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which is slightly different from the standard de Donder gauge. It kills four degrees of free-
dom, which leaves six degrees of freedom in hµν and ϕ. Among them, four are killed by a
residual gauge symmetry as in the U(1) case. Indeed, we can still perform the transforma-
tions (B.11) and (B.12) without affecting eq. (B.13) if ξµ satisfies

�ξµ + 1
2∂µ∂

νξν = 0. (B.14)

Thus, there are two physical modes that correspond to the two polarizations of the graviton.
We now take a closer look at the degrees of freedom killed by eqs. (B.13) and (B.14).

We decompose the traceless part of the metric as

hµν = h⊥µν + ∂µh
⊥
ν + ∂νh

⊥
µ +

(
∂µ∂ν −

1
4ηµν�

)
ψ, (B.15)

where h⊥µν and h⊥µ satisfy

h⊥µµ = ∂µh⊥µν = 0, ∂µh⊥µ = 0. (B.16)

As in the U(1) case, there are ambiguities in this decomposition. Indeed, ψ can be absorbed
into h⊥µν and h⊥µ if it satisfies(

∂µ∂ν −
1
4ηµν�

)
ψ = f⊥µν + ∂µf

⊥
ν + ∂νf

⊥
µ , (B.17)

where f⊥µν and f⊥µ satisfy the same properties as h⊥µν and h⊥µ , respectively. By acting with
∂µ∂ν , we see that it is enough to require

�2ψ = 0, (B.18)

to kill the degree of freedom associated with ψ. The gauge fixing condition (B.13) reduces
to this condition after acting with ∂µ, and hence kills ψ. Thus, it is indeed eq. (B.13) that
we have imposed in the main text since we have focused only on ϕ and eliminated ψ there.
It is also easy to see that the residual gauge symmetry makes the conformal mode ϕ (or
equivalently Φ) unphysical. If we write ξµ = ξ⊥µ + ∂µξ with ∂µξ⊥µ = 0, the gauge fixing
condition (B.18) is intact as long as ξ satisfies

�2ξ = 0. (B.19)

Since ϕ transforms as

ϕ→ ϕ+ 1
4�ξ + ηµν∂µξ∂νϕ, (B.20)

it becomes unphysical due to this residual gauge symmetry. Note that eq. (B.19) is indeed
one of the residual gauge symmetries of (B.14), since the latter is equivalent to

�ξ⊥µ + 3
2∂µ�ξ = 0, (B.21)

and hence we obtain eq. (B.19) by acting with ∂µ.
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Before closing this appendix, we mention another residual gauge symmetry in the
vector-tensor sector for completeness. First of all, there is another ambiguity in the de-
composition (B.15); h⊥µ can be absorbed into h⊥µν if it satisfies

∂µh
⊥
ν + ∂νh

⊥
µ = f⊥µν , (B.22)

where f⊥µν satisfies the same properties as h⊥µν . As a result, it is enough to require

�h⊥µ = 0, (B.23)

to kill the degree of freedom associated with h⊥µ , which can be derived from eq. (B.13).
The transformation (B.12) keeps eq. (B.23) intact as long as ξµ = ξ⊥µ and ξ⊥µ satisfies

�ξ⊥µ = 0. (B.24)

It is the residual gauge symmetry that kills unphysical modes in h⊥µν . In the case of a
non-Abelian theory including gravity, the Kugo-Ojima condition [89] guarantees that the
physical states contain no ghosts.

C Large-N analysis of generalized model

In this section, we generalize the large-N analysis in section 4.2. Let us start with

S =
∫

d4x

{
−1

2 (∂Φ)2 + 1
2 (∂φi)2 + 1

2

[
∂

(√
a2Φ2 − bφ2

i − cΦ
)]2

}
, (C.1)

which is a slight generalization of the spin-0 sector of eq. (2.10). Its target space is

bφ2
i + (h+ cΦ)2 = a2Φ2 in (Φ, φi, h) ∈ R(1,N+1), (C.2)

which is an N + 1-dimensional hypersurface in R(1,N+1). Higgs inflation corresponds to
a = c = 1/2 and b = (6ξ + 1)/2. We can show that this choice of parameters is special as
it allows us to have successful inflation as discussed in appendix D.10 In this appendix, the
contraction of the Lorentz indices is always taken by ηµν unless otherwise specified.

In order to perform the large-N analysis, the field basis in eq. (C.1) is not convenient
because it involves a square root. We thus perform a field redefinition so that the large-N
analysis becomes more transparent:

ΦJ =
√
a2Φ− bφ2

i + aΦ, (C.3)

which implies

1
2

(
ΦJ −

bφ2
i

ΦJ

)
=
√
a2Φ2 − bφ2

i ,
1
2

(
ΦJ + bφ2

i

ΦJ

)
= aΦ. (C.4)

10As we see in appendix D, there are redundancies in the parameters a, b, and c from transformation of
fields (coordinate transformation of the target space). Here we mean “special” up to these redundancies.
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We put the subscript J since it indeed corresponds to ΦJ in the main text in the case of
Higgs inflation. By using ΦJ , one may write down eq. (C.1) as follows:

S =
∫

d4x

1
2 (∂φi)2− 1

8a2

[
∂

(
ΦJ + bφ2

i

ΦJ

)]2

+ 1
8

[
∂

((
1− c

a

)
ΦJ−

(
1+ c

a

)
bφ2

i

ΦJ

)]2
 ,
(C.5)

which now contains only a finite number of φ2
i -interactions.11 It contains two types of

interactions (
�ΦJ

ΦJ

)
φ2
i ,

[
∂

(
φ2
i

ΦJ

)]2

. (C.6)

We can find divergences and counter terms by taking both of these interactions into account
in the large-N limit. Instead, here we introduce two vector auxiliary fields, ρµ and Aµ,
to reduce the number of relevant interactions further. With these fields, we rewrite the
action (C.5) as

S =
∫

d4x

{
1
2 (∂φi)2 + b

2ρ
µ∂µ

(
φ2
i

ΦJ

)
+ 1

2∂µΦJ (ρµ − 2Aµ)

+ 1
2

[
a2
(
ρµ −

(
1 + c

a

)
Aµ

)2
−AµAµ

]}
. (C.7)

The interaction of φi is now contained entirely in the term

Lint = b

2ρ
µ∂µ

(
φ2
i

ΦJ

)
= − bφ

2
i

2ΦJ
∂µρ

µ + (total derivative) , (C.8)

and hence the computation below is greatly simplified. We emphasize here that it is merely
for convenience, and the final result should not change even if we do not introduce the vector
auxiliary fields.

We now study quantum corrections to the action (C.7). The new divergence only
appears in the two-point function of the operator ∂µρµ/ΦJ in the large-N limit, which at
the one-loop level is diagrammatically given by

(C.9)

where the wavy line indicates the operator ∂µρµ/ΦJ and the dotted line denotes the scalar
fields φi. We have to introduce the following operator as a counter term:

Lc.t. = 9α
(
∂µρ

µ

ΦJ

)2
. (C.10)

11It does not matter that Φ̃ appears in the denominator since we have to care only about φi in the large-N
limit.
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Note that the leading order terms at the higher loop level, which are diagrammatically
given by,

+ + · · · (C.11)

are also renormalized by the same term (C.10) as in section 4. After the renormalization,
the coupling α runs according to the beta function as

dα
d lnµ = − N

288π2 b
2, (C.12)

in the large-N limit.
By including the term generated by the quantum correction (C.10), the action is now

given by

S =
∫

d4x

{
1
2 (∂φi)2 + b

2ρ
µ∂µ

(
φ2
i

ΦJ

)
+ 9α

(
∂µρ

µ

ΦJ

)2

+ 1
2∂µΦJ (ρµ − 2Aµ) + 1

2

[
a2
(
ρµ −

(
1 + c

a

)
Aµ

)2
−AµAµ

]}
. (C.13)

Now ρµ obtained a kinetic term due to quantum corrections, which implies the appearance
of a new degree of freedom. In order to extract it in a simpler form, we introduce a scalar
auxiliary field σJ as

S =
∫

d4x

{
1
2 (∂φi)2 + b

2ρ
µ∂µ

(
φ2
i

ΦJ

)
+ 9α

[(
∂µρ

µ

ΦJ

)2
−
(
∂µρ

µ

ΦJ
+ 1

36α
(
ΦJσJ − bφ2

i

))2 ]

+ 1
2∂µΦJ (ρµ − 2Aµ) + 1

2

[
a2
(
ρµ −

(
1 + c

a

)
Aµ

)2
−AµAµ

]}
. (C.14)

Performing integration by parts and shifting ρµ as ρµ → ρµ + (1 + c/a)Aµ, we obtain

S =
∫

d4x

{
1
2 (∂φi)2 + 1

2A
µ∂µ

[(
1 + c

a

)
σJ −

(
1− c

a

)
ΦJ

]
− 1

144α
(
ΦJσJ − bφ2

i

)2

+ 1
2ρ

µ∂µ (ΦJ + σJ) + 1
2
(
a2ρµρ

µ −AµAµ
)}

. (C.15)

At this stage, the derivatives are not acting on ρµ and Aµ any more, and hence we can
integrate them out without introducing non-local terms. By further redefining the fields as

Φ ≡ 1
2a (ΦJ + σJ) , σ ≡ 1

2

[(
1− c

a

)
ΦJ −

(
1 + c

a

)
σJ

]
, (C.16)

we finally obtain

S=
∫

d4x

{
−1

2 (∂Φ)2+ 1
2 (∂φi)2+ 1

2 (∂σ)2− 1
144α

[
a2Φ2−(σ+cΦ)2−bφ2

i

]2}
. (C.17)
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Thus, the additional degree of freedom is indeed the σ-meson that UV-completes the orig-
inal NLSM as a LSM for the general case with arbitrary a, b and c.

The corresponding action in the conformal frame is obtained by identifying
Φ =

√
6MP e

ϕ and recalling gµν = e2ϕηµν :

S =
∫

d4x
√
−g
{
R

12
(
6M2

P − σ2
C − φ2

Ci

)
+ 1

2g
µν∂µσC∂νσC + 1

2g
µν∂µφCi∂νφCi

− 1
144α

[
6a2M2

P −
(
σC + c

√
6MP

)2
− bφ2

Ci

]2
}
, (C.18)

where the scalar fields are also rescaled as σC = e−ϕσ and φCi = e−ϕφi. We can verify
that the running of the mass term within the UV theory (C.17) and the RG running of
α (C.12) computed within the IR theory agrees with each other in the large-N limit.

D O(1, 1) transformation and flat potential

In this appendix, starting from the generalized model introduced in appendix C, we discuss
the condition to have a flat potential suitable for inflation. Our starting point is

S =
∫

d4x

[
−1

2 (∂Φ)2 + 1
2 (∂φi)2 + 1

2 (∂σ)2 − V (Φ, σ, φ2
i )
]
, (D.1)

where

V (Φ, σ, φ2
i ) ≡

λ

4
(
φ2
i

)2
+ 1

144α
[
a2Φ2 − (σ + cΦ)2 − bφ2

i

]2
. (D.2)

Note that we can take a, c ≥ 0 without loss of generality. Higgs inflation with the σ-meson
or the scalaron corresponds to a particular set of parameters a = c = 1/2 and b = (6ξ+1)/2.
The main purpose of this appendix is to clarify why this choice of parameters yields a flat
potential suitable for inflation and how special this choice is.

D.1 Flat potential

We first clarify the condition to have a potential which approaches asymptotically to a
constant value in the Einstein frame. One may go to the Einstein frame by identifying:
Φ2 − σ2 − φ2

i = 6M2
P e

2ϕ. In the following discussion, gravity is irrelevant and hence we
may take ϕ = 0:

Φ2 − σ2 − φ2
i = 6M2

P . (D.3)

Let (Φθ, σθ, φi,θ) be a one-dimensional trajectory, i.e., R → R1,N+1; θ 7→ (Φθ, σθ, φi,θ),
fulfilling eq. (D.3). We have a flat direction in the potential in the Einstein frame if we
find a trajectory θ on which the potential V (Φθ, σθ, φ

2
i,θ) approaches asymptotically to a

constant or does not change at all.
Since the potential should be finite along this trajectory, φ2

i,θ is bounded from above
because of the λ(φ2

i )2 term. A trivial example fulfilling these requirements is the NG boson
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directions of the Higgs. There φ2
i,θ, σθ, and Φθ are fixed to be constants. What we are

interested in here is a less trivial trajectory. Namely, Φθ and σθ can be taken to infinity
because of a non-trivial cancellation among them in the second term in eq. (D.2), while
φ2
i,θ is bounded from above. In order to have this trajectory, one should find a trajectory

of V → const. for Φθ, σθ →∞ even under

Φ2
θ − σ2

θ = Λ2, φ2
i,θ = Λ2 − 6M2

P > 0, (D.4)

with Λ being a constant. In the following, we discuss the impact of this condition on a, b,
and c.

The trajectory fulfilling eq. (D.4) can be expressed by a single parameter θ as

Φ = Λ cosh θ, σ = Λ sinh θ. (D.5)

Inserting this expression into the potential, one obtains the following form for the second
term in eq. (D.2):

1
144α

{
Λ2 [sinh θ + (a+ c) cosh θ] [sinh θ − (a− c) cosh θ] + b(Λ2 − 6M2

P )
}2
. (D.6)

In order for the potential to approach asymptotically to a constant value for θ → ±∞, the
following condition should be fulfilled:

a+ c = 1 ∨ a− c = 1 ∨ a− c = −1 ∨ a+ c = −1. (D.7)

As mentioned earlier, we can take a, c ≥ 0 without loss of generality, and hence we focus
on the first three branches in the following. In the second and third branches, our vacuum
in the current Universe φ2

i = 0 (which is also a potential minimum) is located at |θ| = ∞
for a, c ≥ 0, i.e., a run-away potential. Similarly, one readily finds a run-away potential for
the first branch at a = 0. For the first branch with a = 1 and c = 0, on the other hand,
one ends up with an exactly massless mode which is completely decoupled from the Higgs
field φi. These cases might not be interesting in the context of Higgs inflation.

Therefore we arrive at the case with

a+ c = 1, a > 0, c > 0. (D.8)

As we show below, this case is equivalent to Higgs inflation, a = c = 1/2 and b = (6ξ+1)/2,
after appropriately redefining the parameters.

Here we comment on the physical meaning of eq. (D.8). In this case, the potential
becomes flat in the large θ direction and the O(1, 1) symmetry between Φ and σ gets
restored. In the Jordan frame language, it corresponds to classical scale invariance. During
inflation, the R2 term and the nonminimal coupling become more important than the
Einstein-Hilbert term. This means that the Planck scale can be ignored and hence the
theory has classical scale invariance.
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D.2 Redundancy in parameters and O(1, 1) transformation

In this section, we point out redundancies in the parameters a, b, and c. To this end, the
following O(1, 1) transformation plays a central role:(

Φ′

σ′

)
=
(

cosh θ − sinh θ
− sinh θ cosh θ

)(
Φ
σ

)
. (D.9)

One can see that, while this transformation does not alter the kinetic term of eq. (D.1),
the potential does change, implying redundancies in the parameters.

The rest of this section is devoted to show that any set of parameters satisfying eq. (D.8)
is equivalent to a = c = 1/2 and b = (6ξ + 1)/2 because of this redundancy related to the
O(1, 1) transformation. The second term in the potential (D.2) transforms as follows:

1
144α

{
(Φ + σ) [(2a− 1)Φ− σ]− bφ2

i

}2

= 1
144α

{(
Φ′ + σ′

) [(
a+ (a− 1)e2θ

)
Φ′ −

(
a− (a− 1)e2θ

)
σ′
]
− bφ2

i

}2
. (D.10)

We can take a particular θ0 such that a = (1− a)e2θ0 for 0 < a < 1 which is automatic in
eq. (D.8). Then the second term of the potential becomes

1
144α

[
2aσ′

(
Φ′ + σ′

)
− bφ2

i

]2
. (D.11)

One can see that the potential takes exactly the same form as a = c = 1/2 and b = (6ξ+1)/2
after the following redefinition:

b→ a(6ξ + 1), α→ 4a2α. (D.12)

Now it is clear that the potential has a minimum at σ′ = φi = 0 while it asymptotically
approaches a constant value for σ′,Φ′ →∞ and φ2

i → const. under Φ′2 − σ′2 − φ2
i = 6M2

P ,
which is suitable for inflation.
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