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Spectral functions from the real-time functional renormalization group
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We employ the functional renormalization group approach formulated on the Schwinger-Keldysh
contour to calculate real-time correlation functions in scalar field theories. We provide a detailed
description of the formalism, discuss suitable truncation schemes for real-time calculations, as well as the
numerical procedure to self-consistently solve the flow equations for the spectral function. Subsequently,
we discuss the relations to other perturbative and nonperturbative approaches to calculate spectral functions
and present a detailed comparison and benchmark in d = 0 4 1 dimensions.
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I. INTRODUCTION

Spectral functions of quarks, gluons, and the gauge
invariant states of QCD are important ingredients in the
theoretical description of heavy ion collisions performed at
RHIC and LHC. The spectral function encodes important
information about the real-time dynamics of the system, as
well as thermal and in-medium modifications of quarks,
gluons, and hadrons. Thus, the knowledge of spectral
functions of the various strongly interacting particles is
highly desirable when trying to investigate, e.g., dilepton
production, transport coefficients, or the melting of quar-
konium states in the quark-gluon plasma.

Unfortunately, extracting real-time information of
strongly coupled systems is a difficult problem. The non-
perturbative nature of QCD at energies below and around
the phase transition prohibits the use of perturbative
methods. Recently, there has been progress concerning
the spectral functions of quarkonia and some transport
coefficients coming from Euclidean lattice simulations
[1-5]. However, the analytic continuation of the numerical
data to Minkoswki space and other problems make these
investigations quite challenging and so far, there are no
lattice results for spectral functions of lighter hadrons.

So far, our knowledge about spectral properties of
thermal QCD matter comes primarily from calculations
in low energy effective theories of QCD, based on a variety
of different techniques including (resummed) perturbative
calculations [6-8] as well as nonperturbative functional
approaches [9-14]. Recently, there has been great success
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in applying the analytically continued functional renorm-
alization group (FRG) [15,16] to low energy effective
models of QCD [17-25]. While many of the results from
analytically continued FRG calculations have been impres-
sive, it still is desirable to pursue nonperturbative functional
calculations directly in Minkowski space. In this paper, we
adopt a real-time FRG approach on the Schwinger-Keldysh
(SK) contour [26-36] to extract spectral functions in the
O(N) model without the need for analytical continuation.
By performing a careful perturbative analysis we show
that—in the absence of spontaneous symmetry breaking—
local potential approximations, where higher-order vertex
functions are taken to be momentum independent, are not
able to generate a broadening of the spectral function. We
therefore develop a truncation, based on a vertex expansion
that includes momentum-dependent four-point functions,
which is able to capture the broadening of the spectral
function as the propagators in this truncation are two-loop
complete. One important feature of our method is that it is
applicable for both quantum and classical-statistical field
theories, such that we can compare and evaluate our results
from the real-time FRG approach against nonperturbative
classical-statistical real-time lattice simulations [37—40].
This paper is organized as follows. We start in Sec. II
with an introduction to dissipative classical and quantum
field theories on the SK contour and the formulation of the
real-time FRG approach. After defining a d + 1 dimen-
sional regulator scheme that respects time-ordering on
the SK contour, we introduce a diagrammatic notation
simplifying the derivation of flow equations for n-point
functions. In Sec. III, we compare the RG flow to
perturbative results, indicating the need for truncation
schemes that go beyond the frequently used local potential
approximation. Suitable truncation schemes are then
developed in Sec. IV, and we explain our numerical
implementation of the resulting flow equation in Sec. V.
After presenting detailed comparisons and benchmarks in
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d =0+ 1 dimension in Sec. VI, we conclude our findings in Sec. VII. Several appendices contain additional details
intended for the nonexpert reader.

II. REAL-TIME FRG ON THE SCHWINGER-KELDYSH CONTOUR

A. Schwinger Keldysh formulation of quantum and classical-statistical field theories

We consider a N-component scalar quantum field theory in d spatial dimensions, whose real-time correlation functions in
thermal equilibrium can be obtained from the generating functional [28,41]

20,31~ [ Dobp exp{isc[q),(m + [0 +Ja<x>¢a<x)}}, (1)

where S¢[@, @] is the contour action on the Schwinger-Keldysh contour. Denoting the thermal distribution function of a
bosonic quantum system as

i8h(0) = {ms(0) + ) = Seom(*57). o)

where ngg(w) = e,,,}+_1 is the Bose-Einstein distribution, the contour action S¢[p, @] for a dissipative quantum system
coupled to an external heat bath at inverse temperature § = ,{BLT and with the rest frame w# = (1,0, 0, 0) is explicitly given by

0.0 =2 (0. a(3)) ’ OO ()
SC¢v¢:_/ Pa(X), Pulx ( y . ><~ )
2 Jx —0,0" = Lut0, — m? 28w Oynegs(—in ) Pa(x)
A o
“on /. Pa()0a()@p () (¥) =7 : Pa(X)Pa () Py (x) @y (x), (3)
where [ = [*, dx° Ik d’x such that the real-time axis extends from x” = —co to x” = 40 describing a time translation

invariant system in thermal equilibrium [42]. While the contour action in Eq. (3) describes a dissipative quantum system
with Model A type dynamics [43], the case of a nondissipative quantum system with conservative Model C/G type
dynamicsl is obtained in the limit y — 0T, where the coupling to the external heat bath ultimately vanishes, but as usual in
the ie prescription is required at intermediate steps of the calculation to ensure the correct time ordering of the propagators
and convergence of the functional integral. Specifically, in the absence of interactions (1 = 0), the free propagators of the
theory in momentum space

iFab Gab (x . (P, (x A L
Geb (p) = ( & b(p) 0 (P)) N l./ (<(ﬂ (en())e - (al )qi)b(y)h)eﬂp(x_y> @
Gy’ (p) iFg"(p) =y \A@a ()P () (Pa(x)Pp(¥))c
are explicitly given by
2iLwngg(w) -1
. a 3 eff " a ”
i (0.p) = =5 Gy (@.p) = g
(a) _Ep) +/,v_2w r p
p -1 -
G (,p) = 5, iFo(w,p) =0, (5)

wz—E%,—{—i/Z}a)

with E, = /P> + m? such that in the limit y — 0%, the above expressions reduce to the familiar expressions for the

retarded/advanced (G®/4) and symmetric (iF) two-point functions, whose operator definitions and basic properties are
recalled in Appendix A.

lSingle component scalar theories (N = 1) classify as Model C, whereas multicomponent scalar theories (N > 2) feature an
additional conserved current, e.g., for N = 4, one has j, (x) = €Y. (x)0"p,(x), and therefore classify as Model G [44].
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Expressing the contour action in Fourier space

o _ 0 pup" +ifutpy—mN g, (p)
Sclo. ¢l =5 | (@al=p). @ul=P)) ., 2 nf o . i
P pup* —ifup,—m*  2iku pne(up,) )\ Pa(p)
A -
—en | @D IS(p + ket a4+ Da(p)pa(@)es(k)gn (1)
pakl
an? (d+1) = 7 7
~ AN k1(2ﬂ) 8(p+k+q+Dpa(p)Pa(a)Ps(k)es (1), (6)
Pa
|
where we denote [ = [42[ % such that ¢(x)=  givenby
eTPX it becomes evident that the contour
[, #(p) p®(@,p) = (GE,(w,p) = G}, (@, p)). )

action in Eq. (3) is invariant under the symmetry trans-
formation [42]

h
Typulanp) = con( ") g, -onp)
h [
+ Esinh <$) @q(—w,p),
2 hfw 3
= ESIUh<T)§0a( ®.p)

+COSh<h§ )wa( C(),p),

Tﬂ@a(“)’ p)

(7)

in the sense that S¢[7 40,7 5]
discussed in [42] guarantees the validity of the
fluctuation-dissipation relations for n-point correla-
tion functions. Specifically, for two-point correlation func-
tions, the fluctuation-dissipation relation takes the form

(8)

which along with the symmetry property of retarded/
advanced propagators GR(p) = GAP%(—p) implies
that in thermal equilibrium there is only one independent
two-point correlation function. When presenting explicit
numerical results, we will therefore focus our attention

= Sc[p, @], which as

iF gy (0,p) = neg(0)(GRy (0, p) — Gy (@, p)),

Besides N-component scalar quantum field theory in d
spatial dimensions, we will also be interested in the
corresponding classical-statistical field theories, whose
dynamics can be formulated in terms of -classical
Langevin type field equations of motion,

8,0 +ﬂu”6 +m? +%((Pb( J0p(X)) | @a(x) = n4(x),

(10)

where 7, (x) represents a stochastic Gaussian white noise,
with autocorrelation functions

(nq(x)) =0,
(2 () (y)) = ﬁ; (x0 =y (x —y)5®.  (11)

By performing the usual Martin-Siggia-Rose-Janssen-
de Dominicis path-integral re-formulation [45,46], the
problem of calculating real-time observables in classical-
statistical field theory can be formulated in an analogous
fashion as a path integral in Eq. (1), where instead of Eq. (3)
the classical contour action S¢[g, #] is now given by (see

on the investigation of the spectral function p®(w,p), e.g., [28,41])
|
. ~]_1/( o g (x))< 0 ~0,0" + Lu'd), —m2><(ﬂa(X))
) x Palt) Pa —3M3”—/%u”3ﬂ—m2 2yu”8ﬂn§}f( iu0,) o (%)
A
o fpa( )@a(x) @ (X) gy (x). (12)
where
1
ngy(w) = o (13)
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is the Rayleigh-Jeans distribution. By explicit comparison
with Eq. (3), one finds that the classical contour action
S%(p. @] only contains the leading O(#°) contributions,
which as discussed extensively in the literature [41,47-50]
amounts to a change of the statistical factor between
Egs. (3) and (12), as well as the absence of the “quantum”
@ p § @ interaction term in the classical-statistical field
theory. We also note for completeness that the classical-
statistical theory in Eq. (12) is invariant under the symmetry
transformation [42]

T}:}l(pa(wv p) = (,0,1(—60, p)’
T§Pa(w.p) = fog,(~0,p) + §u(~w,p), (14)

which again guarantees the validity of the classical fluc-
tuation-dissipation (Kubo-Martin-Schwinger) relations for
n-point correlation functions.

Due to the fact that the quantum and classical-stat-
istical theories only differ by the presence/absence of the
quantum vertex and the change of statistical factors, the
real-time functional renormalization group framework
allows for an efficient simultaneous discussion of both
classical-statistical and quantum field theories. Since in
contrast to the quantum field theory, the classical-
statistical field theory can be simulated in real time from
first principles by performing real-time lattice simula-
tions [37-40], the functional renormalization group
results obtained in the classical-statistical regime can
therefore be directly compared to exact numerical cal-
culations, thus allowing for an important test of the
methodology and benchmark of the quality of the under-
lying approximations.

B. Effective action and flow equation

Starting from the generating functional Z[J,J] for
quantum and classical-statistical field theories, the gener-
ating functional for connected correlation functions W[J, J|
is given by

W[J,J] = —ilog Z[J, ]| (15)

such that connected one- and two-point correlation func-
tions are determined by

SW[J,J]

éja(x) = ¢a(x)7 5Ja(x) = ﬁ;ﬁa (x) (16)
and
Sw[I
IS GR (%, ),
SwW[J)
5T 050,00 G (2. y), (17)

FWIJ,J]

m - iFk,ab(x’ y)’
FW[J,J] Y
m = iFap(x, ), (18)

The one-particle irreducible effective action is obtained by
a Legendre transformation of Eq. (15) with respect to the
sources J and J, for fixed values of the field expectation
values ¢,, ¢, i.e.,

Il §) = Wi 7] - / (a0 ba(®) + Lo ()Pa)}. (19)

Even though the effective action contains the full informa-
tion content about the dynamics of the theory, it is
notoriously hard to compute due to the functional integra-
tions in the generating functional. The basic idea of the
functional renormalization group approach is therefore to
construct the effective action step-by-step, by solving a set of
functional differential flow equations which successively
integrate out fluctuations at different scales. In order to
construct the functional flow equations, we follow standard
procedure [51] and introduce a regulator term depending on
the flow scale &, so that we replace the original action S[¢, @]
in the generating functional by a scale-dependent action

Sklo. @] = Slo. @] + AiSlo. ¢l. (20)

which includes a generic regulator term of the form

Al dl =5 [ (20 2u0)
y (Rf.ab(x,y) Ry ap (% y)) <(/’b<y))'

Rf.ab(x’ y) Rgab(x’y>

(21)

Based on these modifications, the effective action I'y[¢, @]
now depends on the scale k and is explicitly given by

Tyl ¢ = WilJ. T] - AS[g. @)

- / Ta()al) + TP}, (22)

Based on a suitable choice of regulator functions Rfi ab (X Y)s
such that in the limit k — A, the regulator suppresses all
fluctuations, whereas in the limit £ — O all the regulators
vanish identically,

imRY , (x.) = 0. (23)

and all fluctuations are included, the renormalization group
flow interpolates between the classical action S[¢, ¢] at some
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ultraviolet (UV) cutoff scale kK — A and the full effective
action in the infrared, i.e.,
We also note that on the Schwinger-Keldysh contour, the
various regulators have to satisfy additional constraints to
comply with the symmetries of the action of an equilibrium
system, as will be discussed in more detail below.

By taking a renormalization group scale (k) derivative of
the effective action I'y[¢, ¢] in Eq. (22), we obtain the flow
equation for the effective action

8kl—‘k [(,b, ¢] akVVk J J] akAk [¢ ¢]

- (1@ + @,

which upon performing a straightforward set of manipu-
lations can be expressed as

Ja(x))¢a(2)},
(25)

L[ g REany) Rla(xy)

akrk[(ﬁ,d)]_zlyT <Rkab( .Y) le,ab<x7y)>
. <<fp,,< $)04(2)). <¢b<y>¢a<x>>c>
<(Z)h(y)(pa(x)>c <§~0b(y)¢a(x)>c 7

(26)
|

G = ~{(rf* + RY) -

= —{C +RY) - (T
iF, = —{(T? + RF) — (
iF, = {7 + RF) — (T}

Similarly, by taking functional derivatives of the propa-
gators in Eq. (29), one obtains the flow equations for
n-point correlation functions, which in the end have to be
evaluated at the minimum of the effective action. Since
¢ =0 and I = 0 vanish due to discrete symmetries of
the effective action, the propagators evaluated at the
minimum of the effective action then simplify to®

Gf=—(¢" +RN™. Gl =~ +RH™. (30)

iF, = GRII? + ROYGY,  iF,=0.  (31)

*Note that also the regulator needs to be chosen in accordance
with the symmetry requirements, and we further chose RY = 0, as
any other choice would violate causality.

(97 + REY(TY? + R
¢¢+RF)(
7+ RY)( (
+RR( 4)¢+RF) 1( ('¢+RA

where all two-point functions in the last line are understood
to be connected, and R = Ok R, denotes the k derivative of
the respective regulator function. By use of the relations in
Eq. (17), we then arrive at the most general form for the
flow equation [28]

O3 = =5 [ (R(x:)GEs0:3)
xy

+ R4y (2. 9) Gy (3, %)
+ R{,ab(x’ Y)iF i pa(y.x)
+R£.ab(x’ y)iFk,bu(y’x)]' (27)

C. Propagators and two-point functions

The flow equation for the effective action (27) is given in
terms of scale-dependent propagators, which are related to
the derivatives of the effective action. Denoting the second
functional derivatives of the effective action as

do AV X
Fiap(x7) = 3o (x)5¢py(y)
T
Ta(x )‘Ja&[ﬁﬁyr (28)

the expressions for the various propagators are then given
by [27]

) 1(F¢¢+Ri~‘) -1,
¢¢+RR) 1(r¢¢+RF)
F¢¢+RF) 1 F¢¢+RR)

)

L (29)

|
Using the fluctuation-dissipation relation in Eq. (36) for
scale-dependent propagators implies the following rela-
tions between the different two-point functions appearing
in the effective action:

I77(p) = nee(po) TP (p) =TV (p)),  (32)

which needs to be satisfied at any scale k.

D. Regulator functions

Even though the detailed choice of regulators is irrel-
evant if the functional differential flow equation is solved
exactly, in practice the hierarchy of flow equations for
n-point correlation functions has to be truncated at a finite
order making the solution sensitive to the regulator choice.
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Since finding suitable regulators for real-time calculations
turns out to be a rather subtle issue, we will now comment
in more detail on the general conditions for the regulator
functions in the real-time FRG framework and specify
explicit choices below.

Clearly, the most essential property of the regulator
is that it suppresses the effect of fluctuations in the
real-time path integral. Expressing the regulator matrix
Ry a(®,p) = R (w,p)d,, for a space-time translation
invariant system in Fourier space as

Rl (w.p) R}(w.p) )

33
R{(w,p) R{(@,p) )

Ri(w.p) = (

can, e.g., be achieved if the imaginary part of the bilinear
form

ASi[o. @]

:%A<¢;(w,p>,¢z<w,p)>

X Ry up @, D) (i”b(‘”’ p))

Pp(@,p) 34)

is positive semidefinite, such that the associated term in
the path integral ¢’25«#?! gives rise to an exponential
suppression of fluctuations below the renormalization
group scale.

Besides its regulating properties, it is also desirable that
the introduction of the regulator does not explicitly break
the symmetries of the system. Specifically, in our context of
real-time dynamics in equilibrium systems, this boils down
to the invariance of the regulator term AS;[@, | under the
symmetry transformation in Eq. (7) for quantum and
Eq. (14) for classical system, which can be satisfied with

Rf,ab(a)’ p) = Neff ((0) [Rf.ab (w’ p) - RII?,ab ((1), p)]’
RF =0. (35)
Vice versa, if the regulator functions R, (@, p) are chosen to
comply with the above symmetry condition, this also
guarantees the validity of the fluctuation-dissipation rela-
tion for the scale (k)-dependent n-point correlation func-
tions, such that, e.g., the fluctuation-dissipation relation
|

0
—/.lk(a), p) - ia)]/k(a), p)

riwp) =

We emphasize that in the above expression u;(w, p) and
vi(@, p) are real-valued even functions of the frequency ,
such that in addition to the real part o y(w,p) which
corresponds to an effective mass term, the regulator also

iF(.p) = ner() (G (0. p) = Gi(w.p))  (36)

will automatically be satisfied at all scales.

Specifically, for the real-time FRG approach, it is also
highly desirable that the introduction of the regulator R,
respects the time ordering properties of the retarded/
advanced and symmetric propagators in coordinate space,
such that, e.g., the scale-dependent propagator Gf(x,y)
remains retarded, i.e., vanishes for spacelike separations
(x —y)? < 0, throughout the entire renormalization group
evolution. Vice versa, in momentum space, this condition
dictates, that the regulator term does not introduce spurious
complex poles of the advanced/retarded propagators, which
would result in a violation of causality. Note that there is no
analogue of such a causality constraint for Euclidean FRG
calculation, indicating the additional difficulties that appear
in real-time QFT calculations.

Clearly, the simplest possible way to comply with
causality is to employ a frequency-independent (purely
spatial) regulator acting as an effective mass term, such that
following [52]

ReR{ (o, p) = ReR{ (w.p) = r(p)

ImRE (w,p) = ImRY (w, p) =0, (37)

whereas the symmetric regulator functions Rf and R
vanish identically in this scheme. One particular choice of
the regulator function, which has been frequently employed
in the literature [53], is

ri(p) = (k* — p*)0(k* — p). (38)

However, a purely spatial regulator scheme has the obvious
disadvantage that it cannot be applied in O + 1 dimensions,
and moreover it is also not particularly suitable for higher
dimensional lattice models which feature a discrete set of
spatial momenta. We will therefore explore a different
possibility, where inspired by the free inverse propagator
the regulator takes the form [31]

_ﬂk(w’ p) + la)yk (CO, p)

2iwy (@, p)nes (@) (9)

)rk(va)-

I
features a nonvanishing imaginary part « @y (@, p), which
for y(w, p) > 0 corresponds to an effective damping rate.
Specifically, for our 0 + 1 dimensional case study, we will
choose
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=7 kk—|w

pm?

such that both y; (@) and y;(w) diverges as k? in the limit
k — A. Since the regulator diverges for sufficiently large £,
all fluctuations are suppressed when the renormalization
group scale k approaches the UV cutoff scale A such that
the effective action I'y_, [, @] = Sc[¢. @] is given by the
bare action. In analogy to Euclidean FRG calculations [51],
this can be easily demonstrated via a saddle point approxi-
mation of the path integral and we provide a short
discussion in Appendix B for completeness. Generally,
in higher dimensions, a suitable regulator could depend
separately on the two independent invariants p> = @> — p?
and u,p" = w. Even though a purely spatial regulator of
the form Eq. (37) is commonly used in the condensed
matter literature, we believe that a generalized regulator
function as in Eq. (39) could be beneficial, and we intend to
investigate this further when considering higher dimen-
sional systems in the future.

(@) = k* — w?, 7i(@) ), (40)

E. Diagrammatics

While Eq. (27) provides the flow equation for the effective
action, it is more convenient in practice to work directly with
the flow equations for n-point correlation functions, which
are obtained from Eq. (27) by functional differentiation with
respect to ¢ and ¢. Even though the differentiations can be
carried out analytically, it is significantly more straightfor-
ward to employ graphical rules to perform the functional
differentiations. We follow previous works in this context
and start with the following diagrammatic representations of
the propagators and regulators:

Gi(z,y) = =——,

Gi(z,y) = z——1y,
iFp(z,y)= =« Y,

. (41)
Ri(z,y) = x—x—y,
Ri(z,y)= x—x—1y,

Ri(z,y) = o—>—y

With these, the diagrammatic representation of the flow
equation (27) takes the compact form

o, -~ C) | @)

where—as a novelty of our notation—a green line is
shorthand notation for either blue or red and the flow
equation is a sum of all allowed color permutations.

Notably the introduction of this compact matrix notation
is particularly useful when deriving flow equations for
higher n-point functions. Since the functional differentiation
of the various propagators gives rise to all possible insertions
of intermediate propagators, e.g.,

P
5x4(2)

Gf(x.y) = GR(x. a)T{*(a, 2.b)G{ (. y)

+ GR(x, )T (a, 2, b)iF (b, y)
+iF(x )T (a,2.0)iF (b.y)
+iF(x. )T (a,2,b)GR(b.y), (43)

the shorthand notation

y )
e Gila,y) = * (44)
z
allows for an efficient bookkeeping with a drastically
reduced number of the diagrams. Based on the diagrammatic
shorthand notation, the flow equation of a generic two-point
function can be compactly expressed as

- 1
armen=— () w
T, a,Q x,a,Q

where also the black lines on the external legs can be either
blue or red, depending on the particular two-point function
under consideration. The indices a, & stand for either ¢ or ¢
depending on the external legs, a, a denote O(N) indices.

II. EXPLICIT COMPARISON TO
PERTURBATION THEORY

Before we proceed with our discussion of the real-time
FRG approach, it proves insightful to analyze which set of
perturbative contributions are included in the real-time
functional renormalization group calculation. Generally,
our strategy for this purpose will be to expand the effective
action into terms proportional to powers of A",

Tilg. @) = Sg. @] + D _A"T[g. g, (40)

and then write down separate flow equations for all terms

AMT[p,$] x A" to bring them into the form of a total
differential such that the integration with respect to the
scale parameter k becomes trivial.

A. One-loop contributions to propagators and vertices

Starting from the FRG flow equation for the effective
action in Eq. (27), it is evident that to one-loop order only
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bare propagators and vertices can appear on the rhs of the flow equation. Explicit evaluation of the (scale dependent) bare
propagators yields the following expressions:

—1 —1
GR(O) xX) = —— (xX), GA(O) xX) = —— (xX),
o (x%) S¢¢+R§( ) o (XX) S¢¢+R£( )
iF\ (xx) = / 7 GFO (xv) (5P (v3) + RE (v9))G{ O (B 3). (47)

Since the scale (k) dependence only enters through the regulator itself, one finds the following explicit relations for the scale
derivatives of the propagators:

N1
=1

0,GF (xx) = / GO (xv)RE (v2)GFO(

VU

0.6, (%) = | 61 x)k(u9)G, " 03),

v

):

OiFY (xx) = / [GRO x0)RE(v3)iF\" (5 %) + iF\" (x0)RE (v9) G (5 %) + GFO (x)RE (02)GE O (m%)],  (48)
which can be used to integrate the flow equations with respect to k as described below. Similarly, at one-loop level, all
vertices appearing on the rhs of the flow equation are simply given in terms of the bare vertices and take the following
explicit form:

Sf[(,ﬁlf,/)?(xyy )_C) - /Icl[(sabéai) + 5(1[151;13 + 5al351'1b]5(x - y>5<x - y)é(x - )_C)’ (49)
St (39 %) = Aqul8uvda + Buabyp + Bapdap](x = y)8(% = )8 (x = ), (50)
where we denote 1., = — 4 and A, = — 3y in the following.

Specifically, for the two-point functions, the relevant flow equations then evaluate to

O 5) = = Sae = DN + Dy [ = wolx =)
< [GRO (up)RE(v2)iF " (v 1) + iF\O (uv)RE (v3) GO (v 1) + GRO (wo)RE(v9)G{ O (5 w)),  (51)

9, AT (x3) = — %5(x —%)(N +2)2,, / S8(x — u)d(x — it)

unvy

x [GRO ()RR (v3)GRO (3 1) + GO (wv) R (v2)GL O (B 1)) (52)

O (x7) = =383 =)V + DAy | o= o=
< [G{” ) RE (o) G (0 1) + G (wn) R (v9) G (0 ), (53)
where the “flavor” factor (N + 2) comes from the following contraction of O(N) indices:

By comparison with Eq. (48), one recognizes the rhs as total k-derivatives and the flow equations can be integrated with
respect to the scale parameter k yielding’

*Note that at k = kyy the action is given by the bare equation. Hence, the corresponding boundary terms on the lhs vanish. Similarly,
on the rhs, the resulting propagators are suppressed for sufficiently large choice of the cutoff scale kyy, again giving rise to vanishing
boundary terms.
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AT (x5) = _%6()( —X)(N + 2)4iF\” (x%),
ALY () = =280r = )V +2)2,[G{ " (x5) + G0 (x%)] = 0.
AT (x3) = —%5()( —®)(N + 2)44[GXO (xx) + 61 (xx)] = 0, (55)

irrespective of the details of the regulator, as long as the latter ensures the suppression of UV boundary terms and does not
introduce violations of causality such that the terms in the last two lines vanish.

Based on the expressions in Eq. (55), one immediately realizes that the only contribution at the one-loop level is a
manifestly real and local correction, which physically amounts to the familiar one-loop mass shift A(”m% =

__1
Van

modifications of the spectral shape only occur starting at the two-loop level, and it is therefore important to understand how
these are generated within the real-time FRG approach.

Beside the one-loop correction to the two-point function, we will also need the one-loop corrections to the four-point
functions, which enters the perturbative calculation of the spectral function at the two-loop level. Evidently, the one-loop
corrections to the four-point functions can be obtained in an analogous fashion from the flow equation of the four-point
function

_ i Y, b0 7,08  y,b8 Z,aa  F,aa v, b3
8kA(1)F:£_f_la<xygf> = —5 { >©< 77—}— > < ) <

Js A(')Ff‘z(x)"c). Hence, one concludes that in the absence of spontaneous symmetry breaking, any nontrivial

T, aq y,bp T, aq 7,00
(56)
z,aa y,08 5,68 z,aa  y,0p y, b3
UK O XOK Y
T, aq y, b0 T,aq y, b0 T, aq T, ad

Based on the apparent symmetries of the corresponding diagrams, we can decompose the one-loop corrections to the four-
point functions according to

AT (355%) = [(N +8)8,6,5 + 28030 + 28,50)5(x — »)5(E - ) AT (x7)

+ (2805825 + 28,385 + (N +4)8,50218(x — 3)8(% — y) AOTH% (%), (57)

where the O(N) index structure of the expression is obtained by evaluating the index contraction of bare propagators and
vertices according to

(5ab56f + 50/'517@ + 5a85bf)6eééff(5a Bééf + 551]_‘51_75 + 5& ééﬁj_‘) = (N + 4)5111752165 + 25at§5b5 + 26al_7613b'

One is then left with the calculation of the one-loop vertex functions A(I)FZ)(/’ ’{/’JJ(x)’c) of the classical (¢ppgh) vertex,
AMT?9?(x3) of the quantum (¢ ¢ P) vertex, as well as the two vertex functions AVT???? (xx) and ADT???? (x5) of

the anomalous (¢p¢p¢h ¢) vertex. By combining the individual terms in an appropriate fashion, we can compactly express the
result in the form

QAT (x52) = =2 2 (04iF ) () G, (x5) + iy () (0,6, (x9))

+ (O (00) G () + 1 (1) (0,6 ()], (58)

096004-9



S. HUELSMANN, S. SCHLICHTING, and P. SCIOR PHYS. REV. D 102, 096004 (2020)

OANTEH(2%) = =212, [ (04iF (5061 ) + i (50,61 )

+ (0iFY (10)GE O (7x) + iF Y (30) (9,6 (7). (59)
OANTIP? (xz) = — —42 N0 (x2))iF) (xx) + iF) (x%) (04 F) (x))]

~ Sl 0,61 (06 ) + 61 (00) (0,61 (5)

+ (0650 (x2)) 6RO (xx) + GE (3) (9,6 () ). (60)
QAT (13) = =2 201 (0461 () GE (1) + 61 (1) (DG (35)

+ (0,61 (20)GE (3x) + G (20) (0, G (ax)). (61)

Since the rhs represents a total derivative with respect to the scale k, the above flow equations can be integrated yielding the
following results for the (scale dependent) one-loop vertex functions:

AT (33) = — % 22iF" (xx) GO (xx), (62)
ADTPP (15) — —%zclzquziﬂko) ()G (x), (63)
AT () = L2 (30))” = S ad (G20 () + (610 (1)) (64)
AT (yx) = —%zc,/lquzG;“O) (xx)GR O (xx) =0, (65)
where we exploited the symmetries
G xx) = G V(x),  iFY (ax) = iF (3x) (66)

to further compactify the expressions. We note in passing that for the quantum theory, the (tree-level) symmetry relation
Aci = 444, between the local classical and quantum vertices also holds for the nonlocal vertex functions at the one-loop

level, i.e., A(”FZ‘/"M(xfc) = 4A(1)Ff(’7”’7”7’ (xx). Nevertheless, there is also a nonlocal A“)FZ"]”M (xX) vertex generated at one-
loop level in both classical and quantum theories.

B. Two-loop contributions to propagators

Since the flow equation for the propagators is of one-loop form, we can obtain the two-loop contribution in a
similar fashion, by using one propagator or respectively one vertex at one-loop order and use bare versions for all other

quantities, i.e.,
AT, — _%{ Q + Q + Q } (67)

a b a b a b

where the black dot denotes the perturbative one-loop vertex and double lines denote the perturbative one-loop propagators
given by

A(I)Gf — GR(O) (I)F&QsGR(O) A(I)GA — GQ(O)A“)FZ&GQ(O),

AWiF, = GROAOTIiE) 4 ipO AT GO (68)
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By inserting the corresponding expressions into the
above flow equation, one finds that the contributions

to 9,AXT??(xx) fall in two topologically different
categories, given by ‘“double bubble” and “sunset”
diagrams, respectively. These diagrams are shown in
Fig. 1. By performing a straightforward but cumbersome
set of manipulations, the contributions from diagrams
with a one-loop propagator can be expressed as

|

oo M0 8 e

FIG. 1. The four different kinds of diagrams contributing to the
flow equation 9, "% at two-loop order. Diagrams (a) and (b) come
from diagrams with a one-loop propagator, diagrams (c), and
(d) come from diagrams with a one-loop vertex.

AT (x9) e = = 56(x = D)V + 2desbus __{ak[c,’f”)<xw>A<1>ri"”<ww>iF<0><»-wc>
+iF<0>(xw)A<1>r¢‘?5( )G (x)] — GRO (xw) (9 AT (wi) )i FOx (x)
—iFY) (o) (90T (w ->>Gz*<°><»-vx>}. (69)

By combining this contribution with a corresponding set of double-bubble diagrams with a one-loop vertex, which upon
further manipulations and dropping off vanishing terms can be compactly expressed in the form

double bubble i _ _ b
D AT ()L =560 %) (N +2) b / (GRO ew)iF " (iiwx) + iF (xw) GO (w3%)) 0, AT (wiv),
(70)
one finds that the sum of two contributions yields a total derivative with respect to k, such that
AQTIP ()| o0l Puole — %5(x —X)(N + 2) A8, / 1G{O (ow) AT (win)iFO) (i)
+iFO (ow) AT (i) GO (), (71)
yielding
N N 2
AT ) — (1) o= + 2030 | [GE i )i )
+ iFO (xw)iFO (wx) G2 (). (72)

Similar to the one-loop correction A(I)Ff¢(x)?), this term is manifestly real and local providing the two-loop correction to
the mass shift. However, there is also the contribution from the sunset diagrams which can be compactly expressed as

A(Z) Ff& (x)_c) | sunset __

Clearly, this contribution to the effective action is nonlocal
and possesses a nonvanishing imaginary part, which
describes the collisional broadening of the spectral func-
tion. We further emphasize that in the real-time FRG
framework the sunset contribution arises entirely due to
the one-loop vertex correction, indicating the importance of
including nonlocal vertex structures into the truncation of
the real-time FRG flow equations. By including these
nonlocal vertex structures, as in Eq. (57), one is then able
to derive the two-loop perturbative contributions to the
damping rate [54], as discussed in Appendix C.

3 1
~5 (N +2)5,4 {zg,m,@ (0)iF} (D) G (3F) + dadgu 5 (G} (1)) } (73)

IV. NONTRIVIAL TRUNCATIONS FOR
REAL-TIME CALCULATIONS

Based on our perturbative analysis of the flow equations
in the preceding section, we conclude that a two-loop
complete truncation scheme for the two-point function is
necessary to describe the collisional broadening of the
spectral function in the symmetric phase. We have also
observed that a two-loop complete truncation scheme for
the two-point function necessarily has to include a nonlocal
four field interaction (e.g., generated at the one-loop level),

096004-11



S. HUELSMANN, S. SCHLICHTING, and P. SCIOR PHYS. REV. D 102, 096004 (2020)

indicating the local potential approximation that is com- Now, in order to devise a more suitable truncation
monly used in Euclidean FRG calculations is insufficient ~ scheme, we first note that we can generally express the
for the purpose of real-time calculations. scale-dependent effective action in a vertex expansion as

i-> (1) S () Jre ) (1To) (1T g 74

Since in the symmetric phase only the n—even terms contribute, a two-loop complete expansion can be achieved by
truncating the vertex expansion at the level of the four-point function (Q = 4) keeping only two- and four-point functions.
Hence, the simplest possible two-loop complete expansion scheme is given by

~ 1 ~ 0 F(M;a( X)\ [ $a(®) 1 ) N NG
nl = [ (0 m(@)(ﬁw(ﬂ) F;qﬁ(m)( ) L TR 5 0507t

1 ~ 55 ~ ~
+ 500 / DO TNBEBE +3; | 2B O I DBE@. 05)
where the above truncation only takes vertices into account that can be generated at one-loop level, i.e., the (pdpd),
(PP ), and (¢poh, ¢ P) vertices vanish. A similar truncation scheme to extract O(N) spectral functions employing Dyson-
Schwinger equations was used in [55]. With regards to the nonvanishing vertex functions, we employ a generalization of the
one-loop result in Eq. (57) as our ansatz

¢ - = dia 3 - F - — -
TP (9 %) = [0 L (00)800605 + 100 L (8B + 020y (4F)8,562}8(x = ¥)8( - 5)
+ (004 s (VX) 8055 + ”g}afg\ 1 (VE)84a6p5 + 001! 4 1 (VE)8,5645]6(x = X)8(y = 7)
+ [0 1 (5 X)Bap Bz + V0 1 (F X)Baabpp + ”c}di 1 (3 %)8,50a5|0(x — §)8(X = y), (76)
ddd - = di - - -
Ffﬁiga (ny X) = [Uanao%n k( )5ab5 bt vanom k(xx>5aa(sbb + Uanom k(xx)(sal;éﬁb]é(x - y>5(x - y)
o - dia; o - _ _
+ [Uarflf)m,k(yx)‘sabéal_; + Uanogm k(yx)éa?z(sbl; + Uanom,k(yx)(sal;‘sﬁb]a(x - x)é(y - y)v (77)
Ff‘ifb‘i (xyyx) = [vgfiﬁk(xic)éabéal; + UZgR,k(XJ_C)CSaa(SbB + Ugif,Rﬁk(x)‘c)éagéab]é(x —y)8(x —y)
- [030 k(80885 + Vit (V)8 + V51 & (F)8,5621(x = X)3(y = 3)
+ [0 k(9 E)8ap055 + 0o g 1 (F%)8aabpp + Ugl;gR 1 (9 %)8,50a0]0(x — §)3(xX — ), (78)
X _ _ -
with scale-dependent vertex functlons vy 4 (xX). While at 5 ok (P) = neir(po) (0% n(p) = 754, (p)). (81)

the one-loop level, the diagonal ”y ¥ (xx) and off-diagonal
v‘;fi(xx) vertex functions are s1mply related by a factor of
(N +4)/2, this is not the case beyond one loop and we
generally have to distinguish between diagonal and off-

diagonal vertex functions. Based on the symmetries of the

A. Explicit form of flow equations
for two-point functions

effective action for an equilibrium system, the above vertex Based on the truncation of the effective action in
functions satisfy the following symmetry relations: Eq. (75), the two-point equations obey the flow equation
X o (x%) = 0%, (Xx), 79 7 —1
ct.rk(XX) et k(Xx) (79) 6kri¢(x.i:) _ - : (82)
o] -
’Ufz(u,R,k(xx) =2 Ve ri (%), (80) ,
53 —1
o AP (@) = — Q . ®
as well as the fluctuation-dissipation relation 2
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which upon inserting the explicit expressions for the nonlocal vertex functions in Egs. (76)—(78) gives rise to the following
structure of the flow equations:

) . (84)
s -3 ( Sl 20+ ),)

. . (85)
O (27) :72 ( xQer:c/g\erx x> '

featuring a two-loop structure of sunset diagrams in the first and second columns and double bubble diagrams in the third
column. By introducing the following shorthand notation for the one-loop integrals:

&I

B (xx) = / Gf(x2)R{ (22)iF (2 %) + iF (x2)R} (22) G (2 X) + Gf (x2) R{ (22) G} (2 %), (86)
44
the flow equations for the two-point functions then take the form
by Tl - dia o diag o _
8kl“f¢(xx) =5 {5(”)/ [chlj,k(y) + 2Uc£fA.k(y)]BF(O) + [2Ucl,§,k(xx) +2(N + 1)¢ ng 3 (X%)|Bp(xX)
y

+ 2050 L (x%) + 2(N + 1) (xF)]Ba(x) | (87)

anom,k

O (%) = S { (20008, L (6F) + 2(N + )05t ()] Bp () + (20§ (xF) + 2N + 1)o51  (68)] B (%)
T[22 (x) + 2(N + 12l (x3)]B, (1)}, (88)

where we dropped acausal contributions proportional to BX/4(0) = 0 (for causal regulators).

B. Vertex flow

Evidently, to close the system of equations, we still need expressions for the vertex functions. In the following, we will
compare two different truncations.

1. One-loop vertex functions

We start by using the one-loop expressions of the vertex functions with self-consistently determined propagators.
Explicitly, for the four-point functions, Egs. (76)—(78), the perturbative one-loop expressions determined at each step of the
renormalization group evolution take the form

v 4 (6%) = AsB(xX) = (N + 4)i23)iF ((x0) G (x%).
(c)ng ((X%) = —2i22,iF (x%) G} (x3),
di . i , }
o (33) = (N ) (=GP = Al (GEC8)? + (GRCs0)Y )

e (07) = 2( = SRR = L Ad o (GEOR)P + (GO0 )

ygi;{%e L(XT) = 2gu8(xF) = (N + 4)idehguiFi(x%) G (x3),
VOl f(XE) = =201 g, iFy (x%) G (x%), (89)
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such that diagonal and off-diagonal vertex functions differ only by their corresponding flavor factors.

2. Vertex flow equation

While Eq. (89) represents the simplest possible two-loop complete truncation, there are many possible ways to improve
upon this truncation; for instance, the four-point couplings v{'(xX), v4"™(x%), and v{“(xX) could be determined self-
consistently by projecting the corresponding flow equations for the four-point functions and solving the coupled set of two-
and four-point functions simultaneously. Clearly, the main advantage of this procedure is the automatic renormalization of
the coupling that comes with solving the flow equations for the four-point functions. While this amounts to a selective
resummation of higher order contributions, it is also clear that this does not improve the perturbative completeness of the
calculation, unless more complicated nonlocal structures and higher order vertices are to be included as well.

Since within our truncation, the classical, quantum, and anomalous four-point functions are not independent [see
Egs. (79)—(81)], we will only solve the flow equation for the classical vertex function and reconstruct the other two
vertices from the classical vertex function. Note that within any reasonable truncation scheme, the fluctuation-
dissipation relation for the two-point functions needs to be satisfied. This is demonstrated in Appendix D. Based on our
discussion in Sec. II, the flow equation for the classical vertex takes the form

3 ; v, b ,b y,b z,a z,a v, b
POPP S\

8’€Fk,abéa(‘ryy$) -9 + Tt )

T, a z,a T, a J,b T, a g,b

(90)
z,a 7,b 7,b z,a  g,b Y, b
+ + + :
T, a y,b z,a y,b T, a z,a

where the black dots correspond to insertions of the full four-point vertex functions. Solving the flow equation for the
full four-point function with all its space-time arguments is prohibitively expensive. Hence, our strategy will be to
project the flow equation onto the vertex functions v(xX) and solve the corresponding flow equations. We will now
switch to momentum space as the projection to the vertex functions is simpler here. The classical four-point function in
momentum space takes the form

b . @) (p+a+a+D\[ g (PTa-P—7 ¢ (P+a—-DP—7
e (vlaap) = 25— N et P (e AT

\%4 2 2 2
+ 00k (quﬂ) 84b8ap + VR i (W) Sup0ap + ”gfzg,k (@) 84alpp
+ Uglf:fR,k (L;q—é) O450ap + ”(JTR,k (%) 0ur0zp
+ 00k 4 (@) BaaOph + Vel mk (%) SabOab } (91)

and we will use the following relation to project the flow equation onto the diagonal and off-diagonal vertex functions:
3(”2?1%*(19) + zv(c)lf,fR,k(O))éabéal_) + S(Ugf.fk,k(l’) + ”gflg.k(o) + U(c){.fR,k(O))(éaZzébB + 8450ap)

1t (_P P _P _P oo (_P _P P _P Dbbd p_pP P _P
Fk,ah5a<_§’+§’_§’_5>+Fk,aab5(_5’_§’+§’_§>+Fk.a5ab<_§’_§’+5’_§>' (92)

By performing the projection of the flow equation according to Eq. (92), the flow-equation for the projected vertex
function then takes the following diagrammatic form®:

“Since for p = 0, the lhs of Eq. (92) involves diagonal and off-diagonal vertex functions in exactly the same way, there is a hidden

ambiguity of how to treat momentum-independent contributions to the vertex function. However, as the vertex functions in Eq. (91)
always appear in the combination vg}fl,% + ”ffR + U?-f,fR’ any momentum-independent contribution can be arbitrarily distributed between
diagonal and off-diagonal vertex functions, and in practice, we split the momentum-independent contribution and absorb parts in both

the diagonal and off-diagonal parts of the vertex function.
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Ok [ <Ujli,a1§,k<p) + 203" (0 )) Sandas + (V3! rk(P) + v‘cif,aﬁ,k(o) + Uglf,fR,k(O)) (Gaadpp + 5a55ab)]

——i{ + o+ }
+p/27a *p/Q,ZL +p/27a 7p/27b +p/27a +p/27b
where it is important to state that Eq. (92) is fully symmetrized, such that all six permutations of the outer indices on the
right-hand side of the flow equation enter in exactly the same way. Clearly, this flow equation has a rather complicated
structure, as there are three different vertex-propagator combinations for each diagram drawn, and additionally, every
vertex comes with its substructure; see Eq. (91).

Generally, the flow equation for the vertex functions in Eq. (93) contains 81 terms and can be found in Appendix E. Since
the resulting expression is rather lengthy, we only state the explicit form for the single component N = 1 theory,

(0" (p) +20¢"%(0))

= =i [ {001+ o500+ o5 )GE (54 1)BE (5= 1) ¥ )+ o) + o)

(st i)t (5 ) )
o) a2
)4 o5+ o0 (5 1) BE (5= 1) 05 4 o)+ o)
(it (5] o3 )
+<”1R(0)+U;ZR<2+1> CZR< ))szl (vgl*k(%p—z>+;”?<’2’ z>+le(0))
)
)t

(93)

(1R}

+ (R (p) 4 vER (1) + iR (=1 < +1 B’,f( ) v (1) 4 viro™(1))

() v )t c=(5) ee(Z4)
+< R (0) 4 ;’R< +l> "R<’2’ 1>>G§(1)B( 1)<v;n°m<_2p+1>+vz“°m(§+l))}, (94)

where there is no distinction between diagonal and off-diagonal index structures for the single component theory. When
performing calculations with self-consistently determined vertex functions, we will employ the one-loop vertex functions in
Eq. (89) evaluated at the UV scale as initial condition for the flow equation (94).

Besides N = 1, another relatively simple case is the limit N — oo, where one can employ a 1/N expansion. Since the
leading-order (LO) contributions to a vertex always come from the diagonal vertex functions (9% ~ 1/N), one can simply
drop all terms containing off-diagonal vertex functions (v° ~ 1/N?) to leading order in the 1/N expansion of the flow
equation [see e.g., Eq. (57)]. Evaluating the remaining terms, one finds that, due to the contraction of O(N) indices in the
one-loop diagrams in Eq. (93), the subset of diagrams where the flavor index flow is identical to the momentum flow will be
enhanced by a factor of N relative to all other diagrams. By collecting the leading O(1/N) contributions, the flow
equation (93) then takes the following form in the large N limit:

dia dia;
(v 5k (P)Bapbap + Ucll%,k(o) (8aadpp + 0450ap)]

oo [ o (3-) e oz

T (a4 23015 0) [ [ B+ BRa)z'F(—z)} ?f‘gw)}- (95)
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By separating the different index structures, one obtains the
final result

0o (p) = —iNve(p) [ / GR< +Z>BF<§—I)
+BR<§+1):’F<§—z>}v§?g(p),

such that in contrast to Eq. (94), the flow of the vertex
function in the large N limit is local in momentum space, in
the sense that all vertex functions in Eq. (96) are evaluated
at the same momentum. We further note that for special
choices of the regulator function one can show that the
right-hand side of the flow equation simplifies to a total
differential [26,27,56,57]

0 ()

which can be solved directly by separation of variables
o ”dlag< )

kIR
dk ——<+——~
A}v (v%(p))?

kig p

= —IN dk@k/GRk< +l>le<§_l>’ (97)
kuyy

1 1 ) )4 (P

lN/GR<§+l>lF<§ l>, (98)

T o5 (p)
eventually yielding the familiar result of the two-particle
irreducible (2PI) 1/N expansion to next-to-leading order
(NLO) [27,58]

)“cl
1+ iNA, fl GR(g +

vl (p) = (99)

DiF(E—1)

which corresponds to an infinite resummation of one-loop
bubble chains. Based on this analysis, we therefore con-
clude that the above truncation of the real-time FRG flow
equations not only encompasses the correct two-loop
perturbative behavior of the spectral function for generic
N, but also includes all contributions up to next-to-leading
order of the 2PI 1/N expansion in the large N limit. We
further note that the interplay of the 2PI approach and the
FRG in Euclidean time has been explored in the literature,
e.g., the use of 2PI truncations in FRG calculations [59] or
the use of the FRG to perform the complicated renormal-
ization of 2PI calculations [60,61], and we expect the
interplay of the approaches to be similarly useful for real-
time calculations.

V. NUMERICAL IMPLEMENTATION

Due to the nested one-loop structure of the real-time
FRG flow equations, it is beneficial to employ (pseudo-)
spectral methods to solve the functional differential equa-
tions numerically. We have explored two different
schemes, with the first one based on a straightforward
lattice discretization of frequencies, where for an arbitrary
function G(w), we store the information at a discrete set of
frequencies w;,

2ri

Glw) =G, o=
14t

1

i=0,...N—1. (100)

Similarly, the corresponding function G(¢) in coordinate
space is obtained at a discrete set of points z;,

i<N/2

i>NJ2, (101)

(At
Gr) =G, 1= {
(i—N)At

by a fast Fourier transform (FFT) G N 7 Z G ) g,
Clearly, the advantage of this method is that the r1ght -hand
sides of the flow equations are simple products and sums in
position space, whereas in momentum space we would
need to compute convolution integrals. Similarly, also the
tadpole term can be computed efficiently using the FFT
method by employing

[ 0, 0) + 26,0018 0)

0) + 2”2?/4 «(p = 0)|Bp(x =0).
(102)

~di
[N cllai k (p

While the evaluation of the right-hand sides of the flow
equation for the two-point functions then becomes straight-
forward, the situation is different for the flow equation for
the four-point function, where the integral on the right-hand
side of the flow equation for the vertex function (94) cannot
be solved by using FFT, and we instead use the lattice sum
to approximate the integral. Subsequently, the FRG flow
equations themselves are solved numerically using a fourth
order Runge-Kutta scheme.

Second, we have also explored the possibility of numeri-
cally solving the FRG flow equations based on an expan-
sion in Hermite functions, whereby the propagators G(r)
and G(w) in the time and frequency domain are expanded
according to

=
t
= ng ‘Pk(t/at)’
k=0

N-1
G@) = 9" Wi(w/a,),
k=0

(103)

with the spacing a, = 1/a, adjusted to properly resolve
the propagators at all relevant scales. Numerically, we keep
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track of the expansion coefficients g,(:> and giw), as well as

the values of the propagators at times ¢ = x;a, and
frequencies w = x;a,, where x; are the Gauss-Hermite
points, for which G(¢) and G(w) are simply given by

(104)

which then allow for efficient calculations of basic products
and sums of the various functions. By use of the ortho-
normality relation [ dxW¥;(x)¥;(x) = &; for Hermite

functions, the expansion coefficients g,(ct) and g,({‘") can be

obtained from the integrals ggf) = [dt/a,G(t)¥(t/a,) and
g,({'"> = [dw/a,G(w)¥(w/a,), where in practice we
employ Gauss-Hermite quadrature, such that

N-1
g =Y Wilx)Glxia)w,
i=0
N-1
g =Y Wilx)Glxia,)w; (105)
i=0
where w; = W are the corresponding quadrature
N-1\Ai
weights. Based on the following relations between the
expansion coefficients g,({l) and g,((w):
aw . [0} w .
V=i g = av2a(+kg, (106)

it is then straightforward to perform Fourier transforma-
tions, in order to efficiently calculate the right-hand side of
the flow equations for the two-point functions. Similarly, to
the FFT method, we employ a Gauss-Hermite quadrature
when evaluating the integrals on the right-hand side of the
flow equation for the four-point function, and for simplicity
we resort to a forward Euler scheme when solving the FRG
flow equations.

VI. BENCHMARKS AND CASE STUDIES

We will benchmark the method at the example of the
anharmonic oscillator, which corresponds to the scalar field
theory in d = 0 dimensions. Generally, the results for such
an anharmonic oscillator depend on the three dimensionless
combinations of parameters

A A y

m*’ pm*’ pm’
as well as on the number of field components N, which
we will set to N = 1. However, it is well known that in the

(107)

classical-statistical theory, the coupling constant and
temperature dependence are related, such that upon
performing a rescaling of the classical field equations
of motion with

A

the dependence on ”ﬁ? can be eliminated from the classical-

statistical field theory. Of course, this is not the case in the
corresponding quantum theory, such that for fixed values of
the (dimensionless) thermal interaction strength ﬁi”ﬁ the
dimensionless parameter A/m> effectively describes the
quantum interaction strength, with 1/m? = 0 corresponding
to the classical-statistical limit.

Before we present a series of results of real-time FRG
calculations for classical and quantum systems, some sanity
checks are in order to instill confidence in our numerics.
Evidently, a first important check is to compare the results
obtained by different numerical methods, as shown in Fig. 2,
where we compare results for the spectral functions com-
puted using the discrete Fourier grid and Gauss-Hermite
representation methods described in Sec. V. Excellent agree-
ment between the two approaches is observed when suffi-
ciently many discretization points are taken into account,
indicating the common convergence to the correct result.
Despite significant differences in the underlying implemen-
tation, we also find that within our implementation both
approaches have comparable execution times on the order of
40s for calculations with one-loop vertices and 20m for
calculations with self-consistent vertices, when employing
the same number of N = 1024 discretization points.
However, we note that the convergence of the results
generally appears to be somewhat better for the discrete
Fourier grid.

Besides the convergence of the discrete representation of
functions, another important sanity check for any FRG
calculation is the comparison of results using different
regulator schemes as the physical results in the infrared
should be independent of the regulator choice. Figure 3
shows a comparison of spectral functions calculated with
the one-loop form for the vertex functions. Our first
regulator choice is masslike with a sharp regulator function,
i.e., choosing y;, =0 and r, being the optimized Litim
regulator in Eq. (39). Our second regulator scheme is using
the d + 1 dimensional regulator obeying causality, i.e.,
choosing y; and y; according to Eq. (40) and a smooth
double exponential cutoff

w2
ri(@) = (k* —w?) exp {— P] . (109)

>Calculations were performed on a single node equipped
with an Intel Xeon Silver 4110, the UV cutoff was chosen to
be A = 10 and the step size dk = 0.05.
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FIG. 2. Comparison of spectral functions obtained by the two
different numerical methods with different discretizations. Sim-
ulations were done with parameters m = 1.0, # =2.0, ﬂim =05
in the classical limit.

The spectral function from both regulator schemes match
almost perfectly, giving us good confidence in our methods.

A. Benchmarks in the classical-statistical limit

We begin with the study of classical-statistical dissipa-
tive systems, which in accordance with our discussion in
Sec. II can be compared against exact numerical results
from classical-statistical simulations [37-40]. With regards
to the classical-statistical simulations, we follow the meth-
odology of previous works [39,40] and simulate the time
evolution of an ensemble of Ny = 128 independent
realizations by solving the discretized classical evolution
equations using an Euler-Maruyama scheme with step
width mAr=0.01. We then -calculate the classical-
statistical equilibrium spectral function from the unequal
time correlation function

ps(t, 1) =S (D) (1) = 2()P(1))ctasssur > (110)

NSNS

where (.)asss. denotes the average over the classical-
statistical ensemble. Subsequently, we perform a discrete
sine transformation to obtain the classical-statistical spec-
tral function p.,(w) in frequency space, which can then be
compared directly with the classical-statistical real-time
FRG calculations.

We provide an example of such a comparison in Fig. 4,
where results for the spectral functions from classical-
statistical simulations are compared to one- and two-loop
perturbation theory [cf. Egs. (55), (72), and (73)], as well as
to FRG calculations with the one-loop vertex and fully
self-consistent FRG calculations with a flowing vertex
function. We see that for the particular choice of parameters
A/pm* =2 and y/pm = 1/2 in Fig. 4 the system cannot be
sufficiently described by perturbation theory; while the one-

10 T T

_— mass like, smooth
E— causal , sharp

[s¢)

E 1

6

Q

=

0

5 od

c

2

[

IS

2 oot

7]

0.001 : . . .
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Frequency: o/m
FIG. 3. Comparison of spectral functions using different

regulator schemes. Simulations were done with parameters

— A Y _— A
m= l.O,W—Z.O,ﬂLm—O.Z,F—Z.O.

loop result overestimates the thermal mass shift, the two-
loop results overcorrect this behavior, further indicating a
poor convergence pattern. Conversely, the real-time FRG
calculations are able to reproduce the classical-statistical
results, such that even with the one-loop vertex ansatz the
position and width of the peak are rather well described. By
including the self-consistent determination of the vertex
functions, the spectral function only exhibits minor changes
with a slight shift and narrowing of the broad resonance
peak. Nevertheless, it is encouraging to observe that the
inclusion of the self-consistent vertex flow does improve the
agreement with the exact result from classical-statistical
simulations.

Next, in order to further quantify the performance of
different approaches, we have extracted the masses m¢ and
widths y.; of the main peak of the spectral function by
performing a fit to a Breit-Wigner ansatz. Our results are
compactly summarized in Fig. 5, where we compare the
results of the different approaches as a function of the
(thermal) coupling strength A/Bm*. Evidently, for small
couplings, we find a good agreement between all methods,
while for larger couplings perturbation theory becomes
unreliable as the LO result seems to overestimate the mass
shift and does not capture the broadening of the peak, while
the NLO result underestimates the mass shift and over-
estimates the broadening. Conversely, the one-loop FRG
results and the data from fully self-consistent FRG simu-
lations are comparable to each other and in general in good
agreement with the classical-statistical results up to the
largest investigated coupling in Fig. 5.

Eventually, for even larger values of the coupling
constant, the spectral functions from the FRG calculations
also deviate substantially from the -classical-statistical
results as can be seen from Fig. 6, where we present the
results for 1/pm* = 4. Strongly coupled classical-statistical
calculations in Fig. 6 still produce a rather narrow
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FIG. 4. Comparison of spectral functions obtained by classical-
statistical simulations, perturbation theory, and FRG calculations

with parameters m = 1.0, -A; = 2.0, I# =0.5.

’ ﬂm-'l

quasiparticle peak, whereas the FRG calculation with the
one-loop vertex overestimates the broadening resulting in
large infrared contributions for the spectral function. The
spectral function from the FRG calculation with the
self-consistently determined vertex matches the spectral
function best; however, the data show some spurious
oscillations in the spectral function. Eventually for 1 = 4,
the FRG calculations fail to produce stable and sensible
results for the spectral functions. We note that the point
where the FRG with the one-loop vertex becomes unreli-
able can be readily estimated by looking at Eq. (89). Since
this is a perturbative expression for some given coupling 4,
the corrections of the bare vertex become of the same
order of the bare vertex itself and—similar to perturbation
theory—our results become unreliable. Even though one
could expect that the inclusion of self-consistent vertices

— rﬁe,f/m, 1-Loop PT
— mgy/m, 2-Loop PT
1.8 | Meg/m, Fﬁé: 1-Loop vert. R
mgq/M, FRG: self cons. vert.
mgg/m, class. stat.
16 F ——o Yot/ (B m), 1-Loop PT .
e Yeff/(B M), 2-Loop PT
—_—— el (B m),fI:RG: 1-Loop vert.
141 —yeﬁ/?ﬁ m), FRG: self cons. vert.
— Yeff/(B M), class. stat.
12
1 -
08
0.6
04 . . . . . . .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Bare Coupling: k/[sm4

FIG. 5. Effective masses and damping rates extracted from fits
to a Breit-Wigner function. Simulations were performed with
m = 1.0 and y/pm = 0.5 in the classical limit. All values have a
fit error of less than one percent and the fits gave a y2, < 1.

improves the behavior in the regime of large coupling
strength, we find that for large couplings the calculations
with self-consistent vertices become numerically unstable
and we have not succeeded in obtaining physical results for
the spectral function for significantly larger coupling
strengths than in Fig. 6.

So far, we have investigated the spectral functions for a
strongly dissipative anharmonic oscillator (y/fm = 0.5),
and we will now study the effect of reducing the dissipative
coupling to the heat bath. Before we proceed, we briefly
note that the effect of the dissipative coupling y/fm is
somewhat peculiar in O+ 1d as, in contrast to higher
dimensional theories, we expect to recover a discrete
spectrum in the limit of a closed system y/fm — 0, and
the behavior could be qualitatively different in higher
dimensions. Figure 7 shows a comparison of spectral
functions obtained by classical-statistical simulations and
FRG calculations with one-loop vertices in the classical
limit. We observe that the deviations from the classical-
statistical results are increasing when we decrease the
dissipative coupling y/fm, as may be expected due to
the fact that the longer-lived excitations can interact with
each other over a larger time scale. While for y/fm = 0.2,
the FRG calculation with one-loop vertex functions still
provides a rather accurate description of the classical-
statistical result, the agreement becomes gradually worse
with decreasing y/fm. Especially for very small values of
the dissipative coupling y/fm < 0.05, the quasiparticle
peak of the spectral function splits into a double peak,
which is clearly not observed in the classical-statistical
data. Similarly, also the strength of the 1 <> 3 resonance
peak around located @ ~ 3m generally tends to be over-
estimated by the FRG calculations.

We note that the FRG calculations with scale-dependent
vertex functions also become unstable for small dissipative
coupling y/pm than shown in Fig. 7. In order to further

10

— cl. stat.
—— FRG: self cons. vertex
FRG: 1-Loop vertex
® 7N 1-Loop PT
S N |
g
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c
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©
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(45}

0.001 . . . .
0 1 2 3 4 5

Frequency: o/m

FIG. 6. Comparison of spectral functions obtained by classical-
statistical simulations, perturbation theory, and FRG calculations

with parameters m = 1.0, /)ﬁ = 4.0, /# =0.5.

096004-19



S. HUELSMANN, S. SCHLICHTING, and P. SCIOR

PHYS. REV. D 102, 096004 (2020)

100

T T
= y/(Bm)=0.025 cl. stat.
== vy/(pm)=0.05 cl. stat.

y/(Bm)=0.1 cl. stat. |

o
o

——  y/(Pm)=0.4 FRG 1

™ 10k )
€ y/(Bm)=0.2 cl. stat.
=z mm= /(Bm)=0.4 cl. stat.
a L ——  ¥/(Bm)=0.025 FRG |
g ——  y/(Pm)=0.05 FRG
5 y/(Bm)=0.1 FRG
C =l

S y/(pm)=0.2 FRG
I

I3]
[0
o

)

o
o
=2

0 1 2 3 4 5
Frequency: o/m

0.001

FIG.7. Comparison of spectral functions obtained by classical-
statistical simulations and FRG calculations using the one-loop
vertex with parameters m = 1.0, -7 = 1.0 for different damping

E /j,
rates in the classical limit.

investigate the instability of the self-consistent FRG
method at large couplings (i.e., small dissipative cou-
plings), we can now look at the momentum dependence
of the classical, retarded vertex function v, . Figure 8
shows a comparison of the self-consistently determined
data for v, with the perturbative one-loop result for the
same parameters as in Fig. 4. We recognize that for small
frequencies the self-consistent vertex function behaves as
expected, as both real and imaginary parts of the vertex
functions are suppressed compared to the perturbative
result. However, for larger frequencies, we find large
enhancements of the self-consistently determined vertex
function over the perturbative result. Due to the rather
complicated structure of the flow equation for the four-
point function, we are currently not sure about the exact
origins of these spurious enhancements, which may be

14 — :
——  FRG self cons. vertex: Re (Vg g§2o+2vy o)
12— 1-Loop PT: Re (vg/p"®%+2v, Y ]

08| 1
06| 1
04| 1

0.2 E
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0.4 . . . . . . . . .
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Frequency: o/m

FIG. 8.
parameters m = 1.0
imaginary parts.

=05, -

=2 0’ pm

7/}4

connected to the particular situation in O + 1 dimension and
we hope that our procedure will work out better in higher
dimensions. Besides additional studies of this behavior, it
would also be useful to extract the corresponding vertex
functions directly from classical-statistical simulations,
which is clearly beyond the scope of this work but could
potentially be achieved along the lines of [62].

B. Spectral functions in the quantum theory

Now that we have benchmarked and assessed the range of
applicability of the method at the hand of the classical-
statistical theory, we can continue to investigate spectral
functions in the corresponding quantum theory. A compact
summary of our results is provided in Fig. 9, where we show
a comparison of spectral functions from the FRG with the
one-loop vertex with results from classical-statistical simu-
lations and perturbative calculations for different values of
the thermal and quantum coupling strength. We see that for
small coupling all methods agree very well. When we
increase the coupling, we see a second peak emerging at
roughly 3m due to the 1 <> 3 processes in the one-loop
correction to the four-point function. As there is no vertex
correction at the perturbative one-loop level also, the one-
loop spectral function fails to capture this feature. When we
increase the coupling either by increasing the dimensionless
combination of coupling and temperature or by driving the
system more toward a strongly coupled quantum system we
see that perturbation theory becomes unreliable rather
quickly as there are large differences between the LO and
NLO results. Specifically, for large couplings, the perturba-
tive spectral functions at the two-loop level show additional
spurious peaks or may even become negative. Conversely,
the FRG results remain much more well behaved throughout
the observed parameter range, except perhaps for the largest
combination of couplings shown in the bottom right panel.

0.8

FRG self cons. vertex: Im (v, g229+2v

os | 1-Loop PT: Im (v¢'g

04 E

02 E

0, m
-0.2 | \/ e

-0.4 b

vertexfunction: Im chF{(w)/m3

0.6 . . . . . . . . .
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Comparison of the perturbative venex function at one-loop level and the self-consistently determined vertex function for
3 = 2.0 in the classical limit. Left: comparison of the real parts. Right: comparison of the
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FIG. 9. Comparison of spectral functions obtained by FRG calculations compared to other methods at various values of the
dimensionless couplings. The damping rate for all plot is y/fm = 0.1.

VII. CONCLUSIONS AND OUTLOOK

We have presented an overview over on how to employ
the functional renormalization group approach on the
Schwinger-Keldysh contour to extract real-time spectral
functions for scalar theories. We introduced a d+ 1
dimensional regulator that is compatible with the time
ordering properties of the propagators opening the pos-
sibility of having a fully Lorentz symmetric regulator
scheme. By introducing a novel diagrammatic representa-
tion of the n-point functions, we were able to reduce the
number of involved diagrams and simplify the derivation of
flow equations significantly. We performed a careful
perturbative analysis of the FRG flow equations, which
revealed that local potential approximations of the effective
action, which are commonly used in Euclidean FRG
calculations, are insufficient for describing real-time
dynamics as, e.g., such truncations will never lead to a
broadening of the spectral function in the symmetric phase.

Based on our perturbative analysis, we developed a differ-
ent truncation scheme for real-time FRG calculations based
on a vertex expansion. By taking into account nonlocal
contributions to the four-point function, all propagators in
this scheme are two-loop complete and the FRG flow
induces a finite decay width of the spectral functions.

Based on this expansion, we derived the relevant flow
equations for the two-point functions. By employing a
generalization of the perturbative one-loop expression for
the four-point functions, we also derived the flow equations
for the vertex functions, taking into account generalized
fluctuation-dissipation relations and neglecting contribu-
tions involving higher n-point functions, which enable us to
solve the truncated system self-consistently. We developed
to different numerical procedures to solve the RG flow
equations employing (pseudo-)spectral methods, based on
a straightforward lattice discretization using FFT and an
expansion in terms of Hermite functions.
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We benchmarked our methods at the 0 4+ 1d example of
the anharmonic oscillator where we compared results from
perturbation theory, our FRG calculations with both trun-
cation schemes, and results from classical-statistical sim-
ulations. Since the real-time FRG framework can be
formulated in essentially the same way for classical and
quantum theories, the comparison to exact results from
classical-statistical simulations proved to be an important
benchmark to assess the range of applicability and perfor-
mance of the method. Overall, we find that the real-time
FRG is able to reproduce the classical-statistical results
much better than the perturbative calculations. Still, we
find that in larger couplings also the FRG fails to reproduce
the correct results. In case of the one-loop vertex truncta-
tion, this is connected to the perturbative origin of the
vertex. In case of the fully self-consistent FRG calculations,
we found a spurious enhancement of the vertex functions at
large momenta leading to a breakdown of the method for
large couplings. The origin of this enhancement is still
unclear but could particularly be a problem of the 0+ 1
dimensional theory. Another possible cause is the omission
of six-point functions in our truncation. Similar to the
requirement of a scheme with two-loop complete propa-
gators to reproduce the broadening of the spectral func-
tions, we might also need a truncation with two-loop
complete four-point functions to be able to correctly
renormalize the vertices.

While the formalism described in this work has been
derived for N component scalar field theories in d + 1
dimensions, so far our numerical investigations have been
limited to the 0 + 1 dimensional theory. Clearly, the next
important step would be to generalize our numerical
investigations to higher dimensional systems, especially
in 3 4 1d. Evidently, the comparison of real-time FRG
calculations in the classical limit to classical-statistical
simulations proved extremely insightful and should also
be pursued for studies in higher dimensions. We also expect
that in higher dimensions it should be possible to take the
limit of vanishing dissipative coupling y/fm — 0, which
would further allow to compare real-time FRG calculations
in the quantum theory to results from lattice Monte-Carlo
simulations and/or analytically continued FRG calculations
in Euclidean space-time. Eventually, we want to generalize
our framework to include fermions opening the possibility
of applying our framework to low energy effective theories
of QCD like, e.g., the quark-meson model.

ACKNOWLEDGMENTS

We thank L. von Smekal, D. Schweitzer, F. Rennecke,
M. Spier, and J. Pawlowski for insightful discussions
throughout this project. This work was supported
by the Deutsche Forschungsgemeinschaft (DFG, German
Research  Foundation)—Project No. 315477589—
TRR 211.

APPENDIX A: CONVENTIONS FOR
REAL-TIME PROPAGATORS

Below we summarize our conventions and also note
some useful relations among the various real-time propa-
gators. Based on the operator definitions, one has

F(xx) = %({&;@),&;(3)}), p(xx) = i{[B(x). p(F)]),
(A1)
along with
GR(xX) = +0(x — Xo)p(xX),
G (xx) = =0(Xy — xo)p(x%). (A2)

We also note for convenience the following relations
between real and imaginary parts of the various correlation
functions®:

p(p) = 2ilmG~(p) = G*(p) - G*(p).

F(p) = —ine(p)p(p). (A3)

where in the quantum case we have nl; = ngg + 1/2 with

nge(p) = 1/(efP + 1) being the Bose-Einstein distribu-
tion, such that

ndi(p) = (nge(p) +1/2) = =(nge(=p) +1/2)
1

— 3 coth(po/2). (A4)
In the classical case, we find
el (p) = - (A5)
Ppo

to be the Rayleigh-Jeans distribution. Our convention for
the Fourier transformation reads

=[] e

We further note the following symmetry relations:

(A6)

Gr(p) =Ga(-p),
(A7)

p(p)=-p(=p),

®Note that unlike other authors we do not introduce an
additional factor of —i in the Fourier transform of the spectral
function. Hence, the corresponding factor of —i appears explicitly
in the relation between the statistical function and the spectral
function.
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as well as the various relations for the real and imaginary =~ where we used the relations 6(x) = 5= L foo ﬂ elox
parts, along with —L-=P.V.1 4 izr§(w ), such that the above
identities follow directly from the respective time orderings.
Re(p(p)) =0,
Im(p(p)) = +2ImG* (p) = -2ImG* (p),
APPENDIX B: EVALUATION OF THE
Re(F(p)) = +2ne(po)ImG (p) = —2n5i(po)ImG* (p) REAL-TIME EFFECTIVE ACTION
Im(F(p)) =0, (A8) IN THE LIMIT k — A
1 ith Starting from the definition of the effective action in
along wi Eq. (22), it is convenient to perform a field shift p — ¢ + ¢
41 in the functional integration to separate off the contribution
ImGX (p) = 57 r(p), from the classical action. By exploiting the equations of

- (@, 7) motion to reexpress the appearance of the sources J,J in
ReGR(p) = P.V.—, / da)p @.p , (A9) terms of derivatives of the effective action, Eq. (22) can
27 Jos @ =Py then be recast into a functional integro-differential equation

for the effective action

-1

ImG*(p) = =-p(p) ~ . i
Ui[¢. ] = S[gp. ] — ilog AZ[¢. ¢]. (B1)
ReGA(p) = P.V. —/ . (A10) i
“ o + Po with AZ;[¢, ] given by the functional
|
AZy[p. §] = WIS d-TIefr e / [DpD@) 1@ 7| (B2)
Jj=J=0

where [ [DpD@]; denotes the regulated path integral

/ DeDG], — / DgDieSilod, (B3)

which for a Gaussian regulator can be evaluated explicitly. Expressing the functional integrations in Fourier space, one finds
(up to irrelevant prefactors)

/ [DpD@), = H / ® do / ® ) e re@)ong @)@V -in (@) 3
- - w=0

/ dReg, (o / dImg, (@) / * dRedy () / * dIm@, (w)
>0 - —o0

D L L T = (B4)
Evaluating the functional integral explicitly according to
/ DpDA], 20497 = [ 2 SHRA H (BS)
L) ook ( w) + @*yi (@)
e}#’%(i(—w)ﬂw)—j(fu)}'(—w)+23(—w)7(w)’lcrr(w)>e‘#%(](—wmw)—j(w)}(—w)), (B6)

one finds that in the limit k — A, the relevant factors characterizing the variations with respect to the sources j, j are
inversely proportional to regulators, such that

oy (o) 0. fim ﬂk(wz

T R e e (57

096004-23



S. HUELSMANN, S. SCHLICHTING, and P. SCIOR

PHYS. REV. D 102, 096004 (2020)

and the functional becomes independent of the sources j, j
in the vicinity of j = j = 0 where derivatives are to be
evaluated. One concludes, that in the limit k —> A the
effective action in Eq. (B1) does not receive any additional
contributions from the path integral in Eq. (B2) and thus
reduces to

limIy (. §] = Scl. ¢). (B8)

APPENDIX C: PERTURBATIVE CONTRIBUTION
TO THE DAMPING RATE

Here we will evaluate the perturbative contribution to
the damping rate, which is also useful to understand the
differences between classical and quantum statistical
processes and in establishing the comparison to the
literature that is largely based on analytic continuations
of Euclidean calculations. Based on Eq. (73), the per-
turbative contribution is obtained by evaluating the rhs
with free propagators, which take the following form in
momentum space:

-1
GE(p) = ,
o(p) w* — EX + iy /o

-1
Gi(p) = .
0(p) w® — E% —iy/pw

(C1)

Spectral function and statistical function are then given
by

a)znef w
Fo(p) = (wz(i/géy + (fJE/ﬁ)w)z’

(C3)

allowing us to proceed directly with the evaluation of
diagrams. By expressing all retarded/advanced propaga-
tors in terms, the spectral function using Eq. (A2), the
retarded self-energy, is defined as

G*(xx) = G{ (xX) + G§ (xy)Z*(yy)G*(yX).  (C4)
R (xx) = Z8 (xx) + Z, (xX), (C5)
which can be expressed in the form
R (xx) = - % (N +2)22,0(xx)iF (xx)iF (xx)p(xx), (C6)
-3
8, ) = 20D 008)0(e5)p x)p 1)
(C7)

Since spectral and statistical correlation functions are
purely real in coordinate space, and have well defined
real and imaginary parts in momentum space, the real
and imaginary parts of the can be readily evaluated, by
use of relations as in (A9), which follow directly from the

R A 2i(y/p)w properties of the Heaviside step function. Since likewise
po(p) = Go(p) = Go(p) = (@ — B2 + (y/pw)?’ the real part can be reconstructed from Kramers-Kronig
! type relations, we will focus on the imaginary part, which
(C2) can be directly evaluated as
|
3 dk [ d™'q iF(k)iF(q)p(p —k = q)
ImxzX =-=(N+2)2 , C8
m cl(p) 2( + ) cl/ (2”)d+1 / (2”)d+1 2i ( )
—3(N +2) d™'k [ d™'q p(k)p(g)p(p =k - q)
Im=R,(p) = —=2——"1,4 / / . C9
m qu(p) 3 clqu (27r)d+l (27[)d+1 2i ( )
Specifically, in the limit y — O of nondissipative systems, the energy integrations can be performed using
y—0 .. . 5(60 —-s E )
po(p) = 2risign(w)s(w* — E2) = 271’12}?], Tpp, (C10)
-0 8(w—s,E,)
Fo(p) = 2m6(w” ~ E%)”eff(|w|) = Zﬂ;”eff(|w|)Tppv (C11)

P
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and the result can be compactly expressed in the form

8, Meit (Ex)nege (E
Imzf (p) = N+2 / > f;EkkE Eff( 2 (C12)

SkSqSr
Xné(po—skEk—s E,-s,E.),

N + 2) SqSKSy
Ingu(p) = cll / SEkE E, 6([70 - skEk - quq - err)9 (C13)

whczre the summation over s; = £ collects the positive and negative frequency contributions and we denote L=
f (g”’)‘ (Z ‘)ﬂ, as well as r = p — k — ¢ to lighten the notation. By further symmetrizing the integrand of Ich (p), the
expressions can be recast in the form

—: 5(p° — syEy — s,E, — s,E,)
1 ZR /12 E 99 r—r Cl4
m (p) 3 Cl/aa 8EquEr ( )

k SkSqSy

[, neff(Ek)”eff(E ) + Sqheir(Ex)neir (Er) + St (Mege (Eg ) ness (E,)]s

N+2 8(p° — sy Ey — s,E, — s,E,)
1mzE, (p) = LM/ 120 5B ¢ s (c15)
4 a b 8EE,E, kg

SkSqSy

where the prefactors of the two terms are equal except for the different appearances of the coupling constants 4.; and 4,,,. We
will now concentrate on a quantum theory where we can set n.i(E) = n(E) + 1/2—with the Bose-Einstein distribution
n(E)—and exploit the relation 1, = 1.,/4 between the classical and quantum (tree level) vertices, it is straightforward to
show that the above terms can be combined in the following way:

# +s, (n(Ek) i %) (n(Eq) T %) + 3, (n(Ek) - %) (n(Er) +%) + 5i (n(Eq) + %) (n(Er) + %)

= [+ 5] e + 257 o) + 15 = |+ 5% [t + 257 ot + 157

(C16)

which contains the usual quantum statistical factors for in/outgoing particles in a scattering process. Collecting
everything, the imaginary part of the retarded self-energy ImX®(p) = ImZ¥ (p) + ImXZf,(p) can then be compactly
expressed as

ﬂ(N+2) ddk p —SkEk—SE _err) 1+Sk 1+s
ImZR(p) = - 3 lgl/ / d Z{ SEququrq n(Ek) + ) n(Eq) + 2 4

SkSqS

x {n(E,) +1 ;S} - [n(Ek) +1 _25’1 {n(Eq) 4! ;sq] [n(E,) 4+l ;s} } (C17)

in agreement with the standard result in Ref. [54]. Vice versa, in the classical-statistical theory, the contribution proportional
to A,, vanishes identically, and the occupancy factors n(E,) + 1/2 are to be replaced by the Rayleigh-Jeans distribution
Cl( ») = 1/pE,, such that

-3 (N +2) 5(p° — s Ey — s,E, — 5,.E,)
TR (LIS P Y
m cl(p) 3 cl (_j_, 8EquEr

k SkSgSy

X [snc(Ex)ne(Eg) + sqnc(E)ng(E,) + sing(Eg)ng(E,)], (C18)
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now yielding the classical-statistical factors for in/outgoing
particles in a scattering process. We have thus verified
explicitly that with a suitable truncation which properly
accounts for the nonlocal vertex structure generated at the
one-loop level, the real-time FRG approach correctly
captures the collisional broadening of the spectral function
at the two-loop level.

Since for BE, <1 the statistical factors n(E,)+
l+\],

~ 1/PE, agree approximately, the classical-statistical
theory is expected to accurately capture the relevant
contributions of excitations with energies much smaller
than the temperature. However, one crucial difference is
that the classical-statistical theory only allows for inter-
actions between physically occupied excitations of the
system. Due to the statistical factors, the classical-
statistical result behaves as ImXZX (p) ~ T3, such that in
the limit 7 — O where classically no states are physically
occupied, all contributions to the self-energy vanish
identically, which is of course not the case in the
corresponding quantum theory.

APPENDIX D: FLUCTUATION-DISSIPATION
RELATION

Below we demonstrate explicitly that the flow equations
of the two-point functions satisfy the relation

o) T (p) = =5 [ (L0 - a) -

- UgffA k(P Q))] eff(('IO)

orI(p) = =3 [ e -

,(q) + 2[vans(p — q) +

O (p) = ner(po) (0T (p) = 0T (p)). (D)

A quick calculation with the one-loop forms for the vertices
show that at one-loop level we have

Van(P) = "eff(Po)<Uc1,R.k<P) - Ucl,A,k(P))- (D2)
And thus also
[99(p) = nege(po) (I (p) =T (p)).  (D3)

Now, in the case of the O(N) model beyond one loop, we
have to introduce diagonal and off-diagonal vertex func-
tions. Here we will make an assumption for the structure of
the diagonal as well as the off-diagonal parts of the vertex
function, namely,

ﬂffu.R (xX)B(xX) = ﬂifu,A (xx)Bg(xx) = 0. (D4)

This equation Just tells us that v, g/4 i8S an retarded/
advanced function’; thus, this assumption should better be

true. Let us go to momentum space and write down the flow
equations for the quantities in Eq. (D3),

clAk(p q))+(N+1)(v S;ka(p q)

(N+1)vsi(p—q)]B,(q)}

q) + (N + 1)oS(p — q)]nes(90)B,(q)

+2[(vgni (P — q) — V& (P — @) + (N + D) (05 e (p — ) = 03T, (p — 9))]B, () }.

where we have used the assumption from Eq. (D4). We have further used that there is a fluctuation-dissipation relation for

the B’s,

Bp(p) = new(p)B,(p)-

By compactifying

dl
Verr/a(P) = V'rsa(P) + (N + 1)vdfe 4 (p),

the flow equations now read

) =5 |
|

0T (p)

3kFM(P) =75

with  B,(p)

[2van(p - Q)neff(QO) + Z(Uqu,R(p - q) -

= Br(p) — Ba(p). (Ds)

diag

Van(P) = van®(p) + (N + 1) (p).

2[(verrik(P = @) = verax(P = @) 1es(90) + 20an(p — q)1B,(q),

Uqu,A (p - Q))}Bp(Q)

T o - . . . . _ .
This is not correct in a strict sense as v,, g/4 is not necessarily zero for x — ¥ = 0 but its good enough for our purposes.
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Now, let us check if the fluctuation-dissipation relation does hold,

O (p) = nege(po) 0 (T (p) = T (p)),

/ Wan (P — @)1ei(d0) + (Vg (P — @) — vgun (P — @)1, (@)

= / neff(po)[(UCI,R,k(p - 61) - vcl.A,k(p - C]))”eff(%) + Uan(P - Q)]Bp(fl)v

= Van(P = @Neti(q0) + (Vqur(P = q) = Vgua(p — q))
= gt (P0) [(Verr i (P = @) = Verak(P — @))1est(q0) + van(p — q)] = 0.

In case of a quantum theory, the relation between classical and quantum vertices is given by

Vel R/A (p) = 4vqu.R/A (p) (D6)

for all k. So, we find

(Ucl,R.k(P -q) - Ucl,A.k(P -q)) <i - ”eff(CIO)neff(Po)> + Van(P = @) (e (q0) = ner(po)) = 0,

"eff((]o)”eff(Po) —41‘;

Van(P = q) = (Ve a(P = @) = Verax(P — q)) : (D7)
o Lk bk Netr(9o) — Netr (Po)
By using the addition theorem for the coth or, respectively, the effective occupation numbers, we arrive at
Van(P = @) = netr(Po = 40) (Verr i (P — @) — Veran(p — 9))- (D8)

In the case of a classical theory, we have v,, g/4(p) = 0, i.e., we can just drop the —1/4 in Eq. (D7). By plugging in the
Rayleigh-Jeans distribution, we again find Eq. (D8). Going through the calculation in reverse order proves that the existence
of a generalized fluctuation-dissipation relation for the vertex functions beyond one loop leads to a fluctuation-dissipation
relation for the two-point functions. The only assumption that goes into the proof in Eq. (D4) is a generalization of the one-
loop result and if violated will lead to a violation of causality in the two-point functions.

Another subtlety is the use of Eq. (D5). A quick calculation shows that Eq. (D5) holds if the propagators fulfill the
fluctuation-dissipation relation, but obviously this is only true at all k if the differential equation (D1) holds at all k. Which is
what we wanted to show. However, at the UV-cutoff k = A, the propagators and therefore the B’s fulfill the fluctuation-
dissipation relation and so does the differential equation (D1). But that means, the B’s at k — dk obey Eq. (D5) and
eventually the B’s fulfill the fluctuation-dissipation relation for all k.

APPENDIX E: VERTEX FLOW EQUATION FOR ARBITRARY N

In the flow equation for the vertex function for arbitrary N in Eq. (93), there are in total nine contributing diagrams on the
right-hand side,
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Ok [ (Ugli,aé,k( + 2Ucz Rk > dabdap + (Vg Rk(p) + Uf?zi,azg,k(o) + ngf,fR,k(O)) (Gaadpp + 5a55ab)]
+p/20p/2 b pﬂﬁpﬂ b pﬂ@zl/? a
{ +p/2,a —p/2,a +p/2 a —p/2,b +p/2 a +p/2,b
fp/2 ﬁpﬂ b -p/2a gpﬂ b -p/2a gp/ 2,b
+p/2 a —p/2,b +p/2 a —p/2,b +p/2 a —p/2,b
—10/2010/2 a —10/2010/2 a —10/2010/2 a
+p/2,a +p/2,b 4p/2,a +p/2,b  4p/2,a +p/2,b }

where a line with a box stands for the according B’s introduced in Eq. (86), and the arrows indicate the direction of
momentum flow with all external momenta taken as incoming. Denoting the different O(N) index structures as § = 8,,6; .
1= 8,a0,5, and it = 8,30, the contributions of the individual diagrams are then given by

+p/2,b —p/2,b

~ [ Brtor2 = nGrior2+

+p/2,a -p/2,a

${ ) + Vel (1) + vila(=D] | NI (0) + vElT (1) + (D)
o [T(P) + 0550 + ol (D] + [0TR(p) + Tell) + 05 (D]
el (p) + 00 + (D] + (oGl (p) + vie(D) + o (D]
X [0555(0) + vl + 0B (D]}
+{ [0ET(p) + VD) + vR(—DIR(p) + IE () + V(D)
+ [oSfTa(p) + vilR(0) + S E (DI E () + i) + o5 O]}
i [02T(p) + vEE D) + V(D] 0GR (P) + vEf (1) + v ()]
) ) )

(
+ [v80Ta(p) + vilR(0) + S E (=D E A () + 030 + R (D]} }
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—-p/2,a +p/2,b
Br(—1)Gg(l
+p/2.a —p/2,b /l (=Gl
{[ VetR(0) + 0 (p/2 = 1) + v (/2 + DI R(0) + vgE (L = p/2) + viip(l +p/2)]
+ [0gR(0) + v E (/2 — 1) + 0 r(p/2 + D[V R(0) + vr(l — p/2) + vg (1 + p/2)]}

H{ [U5(0) + /2 = 1) + vilalp/2 + D] NToGH(0) + villall — p/2) + il + p/2)]
+ [0Tp(0) + U — p/2) + 0T+ p/2)] + (06 (0) + oSl — p/2) + vIE (L + p/2)]
| [0EfT(0) + 038 (p/2 = 1)+ v3lel(p/2 + D] + [035(0) + Vil (p/2 = 1) + 055 (p/2 + 1)
X [03(0) + 03Tall — p/2) + 03l + p/2)]
i [097(0) + 0EfTa(p/2 — 1) + v (p/2 + D][03R(0) + 0Tall — p/2) + v+ p/2)]
g

o+ [1(0) + 0 (0/2 — 1) + vil(p/2 + DG (0) + v R — p/2) +vifTall + p/2)] } }

—p/2,b —p/2,a
XK = [
3 (08 (0) + 0T (p/2 = 1) + o5 /2 + DI[oER(0) + vElalp/2 + 1) + 55 (p/2 — )]
+ [0250(0) + V(P2 — 1)+ SF(p/2 + DI[E(0) + v (/2 + 1) + viin(p/2 = D)}
] 0) + /2~ 1)+ 0l elp/2 + D) 0Ta(0) + 03alp/2 + 1) + o8 (/2 ~ 1)
+ [0250(0) + vElp/2 — 1) + 08 (/2 + DI[UE0) + 05 (/2 + 1) + 0iin(p/2 ~ 1)}
] [U3E(0) + e8p/2 = 1) + vEfelp/2 + D) NTOSEO) + 0 (p/2 + 1) + vilelp/2 — 1)
+ [050(0) + 0 (/2 4+ 1)+ 0 (/2 = 1] + [oEa(0) + vEfelp/2 + 1) + 55 (02 — )]
S0 (0) + 0358 (p/2 = 1)+ vEllp/2 + D)+ [oE(0) + eSfap/2 = 1) + v (p/2 + )]

+
o off dlag
X (03 (0) + vila(p/2 + ) + vi(p/2 = 0]} }

096004-29



S. HUELSMANN, S. SCHLICHTING, and P. SCIOR PHYS. REV. D 102, 096004 (2020)

-p/2,a +p/2,b
)C}( = [Baterz-niF/2 4 0]
+p/2,a —p/2,b l

~

5{ 0358 ) + 0BT () + 0BT (—D)] | NG (p) + via(=1) + 0elip(~D)

+ [WR(p) + v (=) + v (D)) + R (P) + voR (=) + v (=)

| [elr(0) + v K () + ol (=0)] + [0 (p) + 02k (1) + vy E (D]

diag

X [055% (p) + vila(=0) + vTa(—D)] }
+{ e (p) + o5 (0 + VT~ R(p) + VS (—1) + vSfTp(—D)
o [0p) + 0Tell) + 05 (D] [2T(p) + 03l (=) + o3 (-D)]}
i [05T(p) + VW) + vl R (—~D][03 () + v3fln(—D) + v (D]
) (1) )

+ [vE0Ta(p) + V(1) + S E (D E () + 03 (—0) + vila(-0)] | }

l) +

—p/2,a +p/2,b
XK = o
3 (S0 0) + e8fp/2 — 1)+ oS p/2 + D)o 0) + 0% (p/2 — 1) + oSfi(—p/2 — 1)
+ [057(0) + 0358 (p/2 = 1) + 03 (p/2 + DI [WF(0) + v R (p/2 — 1) + 055 (—p/2 — l)]}
{[ 2R 0) +v5R(p/2 = 1) + v r(p/2 + D] N[vGE(0) + v3'a(p/2 = 1) + v3 r(—p/2 = 1)]
+ [0 R(0) + v B (p/2 = 1) + v R(=p/2 = D] + WIR(0) + v r(p/2 — 1) + v 8 (—p/2 = )]

+ R (0) + v (/2 = 1) + vlp(0/2 + D] + [00R(0) + 0 (p/2 = 1) + v (p/2 + 1)

diag

X [055(0) + 0help/2 = 1) + vffp(~p/2 1)) |
it [vSfTp(0) + vEla(p/2 — ) + v (0/2 + D] ETR(0) + 0fia(p/2 — 1) + V3 (—p/2 = )
(

o+ [050(0) + VR (/2 — 1) + vila(p/2 + DIER(0) + 0358 (p/2 = 1) +vfia(—p/2 = D]} }
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~p/2 ~p/2a
/)C}(/ - [ But-vira
3 (08 (0) + oTa(p/2 — 1) + o5/ 2+ D)IoEel0) + vifel—p/2 — ) + o5 (p/2 ~ 1)
o [091(0) + 038 (p/2 — 1) + 0Telp/2 + ]G (0) + o (—p/2 = ) + vila(p/2 — 1)] |
HE{ [oS0Tp(0) + v (/2 = 1) + vila(p/2 + D]ER(0) + vifel(—p/2 = 1) + 055 (p/2 — 1)
+ [1(0) + e/ — 1) + v E (p/2 + DI G (0) + o3 (—p/2 = ) + vil(p/2 — 1)) |
i [VF50) + vfTalp/2 = ) + vl (p/2 + 1)) N[IE0) + vSfTa(—p/2 = 1) + vila(p/2 = 1)
+ [05R(0) + vaR (=p/2 = 1) + vl(p/2 = D] + [05R(0) + v2lm(—p/2 = 1) + vy % (p/2 — )]
+ | [0 (0) + v % (P/2 = 1) + vl (p/2 + 1)) + [vETR(0) + vl (p/2 = 1) + v (p/2 + 1)

X (06T (0) + oEfTa(—p/2 — 1) + v E(p/2 = ] } }

—p/2,b —p/2,a
)C)( — [ Balv/2 - 0Galp/2+ 1
+p/2,a +p/2,b l

${ [5) + vaTel0) + welia(—=D] | N2035(0) + 2(038(0) + vie(1))
| [EfTa(p) + o) + V(D] + (0B (p) + viR(D) + 05 (-1)]
x 20(1)}
H{ [0f5(p) + 05D + o (~ D) (1) + 03(0))
+ [v80Ta(p) + vilR(0) + S E(=DI () + vl (1) |
it [l (p) + V() + R (—D] () + (1)
)

+ () + D) + oS-I + ol ) |}
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-p/2,a +p/2,b
+p/2ﬁp/275 - /ZBR(_Z)GR(Z){

${ [oEfr(0) + v3elp/2 = 1) + v (p/2 + D[S0 — p/2) + 0351 + p/2)]

+ [065(0) + 038 (p/2 — 1) + e/ + D2AWENE — p/2) + vie(l + p/2)]}
HE{[U8(0) + 08fa(p/2 — 1) + 0help/2 + D] N[ = p/2) + 051+ p/2)]
(1= p/2) + vgn(l +p/2)] + [ (l = p/2) +v5¢(1 + p/2)]

[0 0) + 0 (02 — 1) + (/2 + D2 + [0 0) + 0ia(p/2 = 1) + o (/2 + )]

X (0G0 — p/2) + w31 + p/2)] |
it [oEf(0) + eTa(p/2 — 1) + 05 (p/2 + DI — p/2) +v8e5(L + p/2)]

+ [05(0) + 0358 (/2 — 1)+ 03elp/2 + DI[eiee(l — p/2) + 050+ p/2)]} }

-p/2,b -p/2,a
W&pm,b - /z BR(_Z)GR(D{
${[oSfn(0) + vl (p/2 — 1) + v E(p/2 + DI (p/2 + 1) + oS8 (p/2 - D)
+ G (0) + U5 E(p/2 = 1) + vl (p/2 + D][ds(p/2 + 1) + vii(p/2 — D]}
] el (0) + v (p/2 = 1)+ 03la(p/2 + D[S (p/2 4+ 1) + vl (p/2 — D)
+ [0 0) + vEfp(p/2 = 1) + oS E (p/2 + D] (/2 + 1) + i (p/2 - D]}
i { [0) + 0ifap/2 = 1) + fip(p/2 + D] NI (p/2 4+ 1) + 0(p/2 — 1)
+ [0 (p/2 + 1) + vgn(p/2 = D] + [05n(p/2 + 1) + vg®(p/2 — 1)]
[ [0E(0) + U (/2 = 1) + vEll(p/2 4+ D] + [5(0) + vilalp/2 — 1) + Vi (p/2 + 1)

< [ (p/2+ 1)+ vi(p/2 = D))} |

+ Udlag
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