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We employ the functional renormalization group approach formulated on the Schwinger-Keldysh
contour to calculate real-time correlation functions in scalar field theories. We provide a detailed
description of the formalism, discuss suitable truncation schemes for real-time calculations, as well as the
numerical procedure to self-consistently solve the flow equations for the spectral function. Subsequently,
we discuss the relations to other perturbative and nonperturbative approaches to calculate spectral functions
and present a detailed comparison and benchmark in d ¼ 0þ 1 dimensions.
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I. INTRODUCTION

Spectral functions of quarks, gluons, and the gauge
invariant states of QCD are important ingredients in the
theoretical description of heavy ion collisions performed at
RHIC and LHC. The spectral function encodes important
information about the real-time dynamics of the system, as
well as thermal and in-medium modifications of quarks,
gluons, and hadrons. Thus, the knowledge of spectral
functions of the various strongly interacting particles is
highly desirable when trying to investigate, e.g., dilepton
production, transport coefficients, or the melting of quar-
konium states in the quark-gluon plasma.
Unfortunately, extracting real-time information of

strongly coupled systems is a difficult problem. The non-
perturbative nature of QCD at energies below and around
the phase transition prohibits the use of perturbative
methods. Recently, there has been progress concerning
the spectral functions of quarkonia and some transport
coefficients coming from Euclidean lattice simulations
[1–5]. However, the analytic continuation of the numerical
data to Minkoswki space and other problems make these
investigations quite challenging and so far, there are no
lattice results for spectral functions of lighter hadrons.
So far, our knowledge about spectral properties of

thermal QCD matter comes primarily from calculations
in low energy effective theories of QCD, based on a variety
of different techniques including (resummed) perturbative
calculations [6–8] as well as nonperturbative functional
approaches [9–14]. Recently, there has been great success

in applying the analytically continued functional renorm-
alization group (FRG) [15,16] to low energy effective
models of QCD [17–25]. While many of the results from
analytically continued FRG calculations have been impres-
sive, it still is desirable to pursue nonperturbative functional
calculations directly in Minkowski space. In this paper, we
adopt a real-time FRG approach on the Schwinger-Keldysh
(SK) contour [26–36] to extract spectral functions in the
OðNÞ model without the need for analytical continuation.
By performing a careful perturbative analysis we show
that—in the absence of spontaneous symmetry breaking—
local potential approximations, where higher-order vertex
functions are taken to be momentum independent, are not
able to generate a broadening of the spectral function. We
therefore develop a truncation, based on a vertex expansion
that includes momentum-dependent four-point functions,
which is able to capture the broadening of the spectral
function as the propagators in this truncation are two-loop
complete. One important feature of our method is that it is
applicable for both quantum and classical-statistical field
theories, such that we can compare and evaluate our results
from the real-time FRG approach against nonperturbative
classical-statistical real-time lattice simulations [37–40].
This paper is organized as follows. We start in Sec. II

with an introduction to dissipative classical and quantum
field theories on the SK contour and the formulation of the
real-time FRG approach. After defining a dþ 1 dimen-
sional regulator scheme that respects time-ordering on
the SK contour, we introduce a diagrammatic notation
simplifying the derivation of flow equations for n-point
functions. In Sec. III, we compare the RG flow to
perturbative results, indicating the need for truncation
schemes that go beyond the frequently used local potential
approximation. Suitable truncation schemes are then
developed in Sec. IV, and we explain our numerical
implementation of the resulting flow equation in Sec. V.
After presenting detailed comparisons and benchmarks in
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d ¼ 0þ 1 dimension in Sec. VI, we conclude our findings in Sec. VII. Several appendices contain additional details
intended for the nonexpert reader.

II. REAL-TIME FRG ON THE SCHWINGER-KELDYSH CONTOUR

A. Schwinger Keldysh formulation of quantum and classical-statistical field theories

We consider aN-component scalar quantum field theory in d spatial dimensions, whose real-time correlation functions in
thermal equilibrium can be obtained from the generating functional [28,41]

Z½J; J̃� ¼
Z

DφDφ̃ exp

�
iSC½φ; φ̃� þ

Z
x
fJ̃aðxÞφaðxÞ þ JaðxÞφ̃aðxÞg

�
; ð1Þ

where SC½φ; φ̃� is the contour action on the Schwinger-Keldysh contour. Denoting the thermal distribution function of a
bosonic quantum system as

nqueffðωÞ ¼ ℏ

�
nBEðωÞ þ

1

2

�
¼ ℏ

2
coth

�
ℏβω
2

�
; ð2Þ

where nBEðωÞ ¼ 1
eℏβω−1 is the Bose-Einstein distribution, the contour action SC½φ; φ̃� for a dissipative quantum system

coupled to an external heat bath at inverse temperature β ¼ 1
kBT

and with the rest frame uμ ¼ ð1; 0; 0; 0Þ is explicitly given by

SC½φ; φ̃� ¼
1

2

Z
x
ðφaðxÞ; φ̃aðxÞ Þ

� 0 −∂μ∂μ þ γ
β u

μ∂μ −m2

−∂μ∂μ − γ
β u

μ∂μ −m2 2 γ
β u

μ∂μneffð−iuμ∂μÞ

��
φaðxÞ
φ̃aðxÞ

�

−
λ

6N

Z
x
φ̃aðxÞφaðxÞφbðxÞφbðxÞ −

λℏ2

24N

Z
x
φ̃aðxÞφ̃aðxÞφ̃bðxÞφbðxÞ; ð3Þ

where
R
x ¼

R
∞
−∞ dx0

R
ddx such that the real-time axis extends from x0 ¼ −∞ to x0 ¼ þ∞ describing a time translation

invariant system in thermal equilibrium [42]. While the contour action in Eq. (3) describes a dissipative quantum system
with Model A type dynamics [43], the case of a nondissipative quantum system with conservative Model C/G type
dynamics1 is obtained in the limit γ → 0þ, where the coupling to the external heat bath ultimately vanishes, but as usual in
the iϵ prescription is required at intermediate steps of the calculation to ensure the correct time ordering of the propagators
and convergence of the functional integral. Specifically, in the absence of interactions (λ ¼ 0), the free propagators of the
theory in momentum space

Gab
0 ðpÞ ¼

�
iFab

0 ðpÞ GA;ab
0 ðpÞ

GR;ab
0 ðpÞ iF̃ab

0 ðpÞ

�
¼ i
Z
x−y

� hφaðxÞφbðyÞic hφ̃aðxÞφbðyÞic
hφaðxÞφ̃bðyÞic hφ̃aðxÞφ̃bðyÞic

�
eþipðx−yÞ ð4Þ

are explicitly given by

iFab
0 ðω;pÞ ¼

2i γβ ω neffðwÞ
ðω2 − E2

pÞ2 þ γ2

β2
ω2

δab; GA;ab
0 ðω;pÞ ¼ −1

ω2 − E2
p − i γβ ω

δab;

GR;ab
0 ðω;pÞ ¼ −1

ω2 − E2
p þ i γβ ω

δab; iF̃0;abðω;pÞ ¼ 0; ð5Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
such that in the limit γ → 0þ, the above expressions reduce to the familiar expressions for the

retarded/advanced ðGR=AÞ and symmetric ðiFÞ two-point functions, whose operator definitions and basic properties are
recalled in Appendix A.

1Single component scalar theories (N ¼ 1) classify as Model C, whereas multicomponent scalar theories (N ≥ 2) feature an
additional conserved current, e.g., for N ¼ 4, one has jμabðxÞ ¼ ϵabcdφcðxÞ∂μφdðxÞ, and therefore classify as Model G [44].
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Expressing the contour action in Fourier space

SC½φ; φ̃� ¼
1

2

Z
p
ðφað−pÞ; φ̃að−pÞ Þ

� 0 pμpμ þ i γβ u
μpμ −m2

pμpμ − i γβ u
μpμ −m2 2i γβ u

μpμneffðuμpμÞ

��
φaðpÞ
φ̃aðpÞ

�

−
λ

6N

Z
pqkl

ð2πÞðdþ1Þδðpþ kþ qþ lÞφ̃aðpÞφaðqÞφbðkÞφbðlÞ

−
λℏ2

24N

Z
pqkl

ð2πÞðdþ1Þδðpþ kþ qþ lÞφ̃aðpÞφ̃aðqÞφ̃bðkÞφbðlÞ; ð6Þ

where we denote
R
p ¼ R dω

2π

R ddp
ð2πÞd such that φðxÞ ¼R

p φðpÞeþipx, it becomes evident that the contour
action in Eq. (3) is invariant under the symmetry trans-
formation [42]

T βφaðω;pÞ ¼ cosh

�
ℏβω
2

�
φað−ω;pÞ

þ ℏ
2
sinh

�
ℏβω
2

�
φ̃að−ω;pÞ;

T βφ̃aðω;pÞ ¼
2

ℏ
sinh

�
ℏβω
2

�
φað−ω;pÞ

þ cosh

�
ℏβω
2

�
φ̃að−ω;pÞ; ð7Þ

in the sense that SC½T βφ; T βφ̃� ¼ SC½φ; φ̃�, which as
discussed in [42] guarantees the validity of the
fluctuation-dissipation relations for n-point correla-
tion functions. Specifically, for two-point correlation func-
tions, the fluctuation-dissipation relation takes the form

iFabðω;pÞ ¼ neffðωÞðGR
abðω;pÞ −GA

abðω;pÞÞ; ð8Þ

which along with the symmetry property of retarded/
advanced propagators GR;abðpÞ ¼ GA;bað−pÞ implies
that in thermal equilibrium there is only one independent
two-point correlation function. When presenting explicit
numerical results, we will therefore focus our attention
on the investigation of the spectral function ρabðω;pÞ,

given by

ρabðω;pÞ ¼ ðGR
abðω;pÞ − GA

abðω;pÞÞ: ð9Þ

Besides N-component scalar quantum field theory in d
spatial dimensions, we will also be interested in the
corresponding classical-statistical field theories, whose
dynamics can be formulated in terms of classical
Langevin type field equations of motion,

�
∂μ∂μ þ γ

β
uμ∂μ þm2 þ λ

6N
ðφbðxÞφbðxÞÞ

�
φaðxÞ ¼ ηaðxÞ;

ð10Þ

where ηaðxÞ represents a stochastic Gaussian white noise,
with autocorrelation functions

hηaðxÞi ¼ 0;

hηaðxÞηbðyÞi ¼
ffiffiffiffiffi
2γ

β2

s
δðx0 − y0ÞδðdÞðx − yÞδab: ð11Þ

By performing the usual Martin-Siggia-Rose-Janssen-
de Dominicis path-integral re-formulation [45,46], the
problem of calculating real-time observables in classical-
statistical field theory can be formulated in an analogous
fashion as a path integral in Eq. (1), where instead of Eq. (3)
the classical contour action SclC ½φ; φ̃� is now given by (see
e.g., [28,41])

SclC ½φ; φ̃� ¼
1

2

Z
x
ðφaðxÞ; φ̃aðxÞ Þ

� 0 −∂μ∂μ þ γ
β u

μ∂μ −m2

−∂μ∂μ − γ
β u

μ∂μ −m2 2 γ
β u

μ∂μncleffð−iuμ∂μÞ

��
φaðxÞ
φ̃aðxÞ

�

−
λ

6N

Z
x
φ̃aðxÞφaðxÞφbðxÞφbðxÞ; ð12Þ

where

ncleffðωÞ ¼
1

βω
ð13Þ
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is the Rayleigh-Jeans distribution. By explicit comparison
with Eq. (3), one finds that the classical contour action
SclC ½φ; φ̃� only contains the leading Oðℏ0Þ contributions,
which as discussed extensively in the literature [41,47–50]
amounts to a change of the statistical factor between
Eqs. (3) and (12), as well as the absence of the “quantum”
φ̃ φ̃ φ̃ φ interaction term in the classical-statistical field
theory. We also note for completeness that the classical-
statistical theory in Eq. (12) is invariant under the symmetry
transformation [42]

T cl
β φaðω;pÞ ¼ φað−ω;pÞ;

T cl
β φ̃aðω;pÞ ¼ βωφað−ω;pÞ þ φ̃að−ω;pÞ; ð14Þ

which again guarantees the validity of the classical fluc-
tuation-dissipation (Kubo-Martin-Schwinger) relations for
n-point correlation functions.
Due to the fact that the quantum and classical-stat-

istical theories only differ by the presence/absence of the
quantum vertex and the change of statistical factors, the
real-time functional renormalization group framework
allows for an efficient simultaneous discussion of both
classical-statistical and quantum field theories. Since in
contrast to the quantum field theory, the classical-
statistical field theory can be simulated in real time from
first principles by performing real-time lattice simula-
tions [37–40], the functional renormalization group
results obtained in the classical-statistical regime can
therefore be directly compared to exact numerical cal-
culations, thus allowing for an important test of the
methodology and benchmark of the quality of the under-
lying approximations.

B. Effective action and flow equation

Starting from the generating functional Z½J; J̃� for
quantum and classical-statistical field theories, the gener-
ating functional for connected correlation functionsW½J; J̃�
is given by

W½J; J̃� ¼ −i logZ½J; J̃� ð15Þ

such that connected one- and two-point correlation func-
tions are determined by

δW½J; J̃�
δJ̃aðxÞ

¼ ϕaðxÞ;
δW½J; J̃�
δJaðxÞ

¼ ϕ̃aðxÞ ð16Þ

and

δ2W½J; J̃�
δJ̃aðxÞδJbðyÞ

¼ GR
k;abðx; yÞ;

δ2W½J; J̃�
δJaðxÞδJ̃bðyÞ

¼ GA
k;abðx; yÞ; ð17Þ

δ2W½J; J̃�
δJ̃aðxÞδJ̃bðyÞ

¼ iFk;abðx; yÞ;

δ2W½J; J�
δJaðxÞδJ̃bðyÞ

¼ iF̃k;abðx; yÞ; ð18Þ

The one-particle irreducible effective action is obtained by
a Legendre transformation of Eq. (15) with respect to the
sources J and J̃, for fixed values of the field expectation
values ϕa, ϕ̃a, i.e.,

Γ½ϕ; ϕ̃� ¼ W½J; J̃� −
Z
x
fJ̃aðxÞϕaðxÞ þ JaðxÞϕ̃aðxÞg: ð19Þ

Even though the effective action contains the full informa-
tion content about the dynamics of the theory, it is
notoriously hard to compute due to the functional integra-
tions in the generating functional. The basic idea of the
functional renormalization group approach is therefore to
construct the effective action step-by-step, by solving a set of
functional differential flow equations which successively
integrate out fluctuations at different scales. In order to
construct the functional flow equations, we follow standard
procedure [51] and introduce a regulator term depending on
the flow scale k, so that we replace the original action S½φ; φ̃�
in the generating functional by a scale-dependent action

Sk½φ; φ̃� ¼ S½φ; φ̃� þ ΔkS½φ; φ̃�; ð20Þ

which includes a generic regulator term of the form

ΔkS½φ; φ̃� ¼
1

2

Z
xy
ðφaðxÞ; φ̃aðxÞ Þ

×

�
RF̃
k;abðx; yÞ RA

k;abðx; yÞ
RR
k;abðx; yÞ RF

k;abðx; yÞ

��
φbðyÞ
φ̃bðyÞ

�
:

ð21Þ

Based on these modifications, the effective action Γk½ϕ; ϕ̃�
now depends on the scale k and is explicitly given by

Γk½ϕ; ϕ̃� ¼ Wk½J; J̃� − ΔkS½ϕ; ϕ̃�

−
Z
x
fJ̃aðxÞϕaðxÞ þ JaðxÞϕ̃aðxÞg: ð22Þ

Based on a suitable choice of regulator functions RX
k;abðx; yÞ,

such that in the limit k → Λ, the regulator suppresses all
fluctuations, whereas in the limit k → 0 all the regulators
vanish identically,

lim
k→0

RX
k;abðx; yÞ ¼ 0; ð23Þ

and all fluctuations are included, the renormalization group
flow interpolates between the classical action S½ϕ; ϕ̃� at some
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ultraviolet (UV) cutoff scale k → Λ and the full effective
action in the infrared, i.e.,

lim
k→Λ

Γk½ϕ; ϕ̃� ¼ S½ϕ; ϕ̃�; lim
k→0

Γk½ϕ; ϕ̃� ¼ Γ½ϕ; ϕ̃�: ð24Þ

We also note that on the Schwinger-Keldysh contour, the
various regulators have to satisfy additional constraints to
comply with the symmetries of the action of an equilibrium
system, as will be discussed in more detail below.
By taking a renormalization group scale (k) derivative of

the effective action Γk½ϕ; ϕ̃� in Eq. (22), we obtain the flow
equation for the effective action

∂kΓk½ϕ; ϕ̃� ¼ ∂kWk½J; J̃� − ∂kΔkS½ϕ; ϕ̃�

−
Z
x
fð∂kJ̃aðxÞÞϕaðxÞ þ ð∂kJaðxÞÞϕ̃aðxÞg;

ð25Þ

which upon performing a straightforward set of manipu-
lations can be expressed as

∂kΓk½ϕ; ϕ̃� ¼
1

2

Z
xy
Tr

� _RF̃
k;abðx; yÞ _RA

k;abðx; yÞ
_RR
k;abðx; yÞ _RF

k;abðx; yÞ

�

×

� hφbðyÞφaðxÞic hφbðyÞφ̃aðxÞic
hφ̃bðyÞφaðxÞic hφ̃bðyÞφ̃aðxÞic

�
;

ð26Þ

where all two-point functions in the last line are understood
to be connected, and _R ¼ ∂kRk denotes the k derivative of
the respective regulator function. By use of the relations in
Eq. (17), we then arrive at the most general form for the
flow equation [28]

∂kΓk½ϕ; ϕ̃� ¼ −
i
2

Z
xy
½ _RR

k;abðx; yÞGR
k;baðy; xÞ

þ _RA
k;abðx; yÞGA

k;baðy; xÞ
þ _RF

k;abðx; yÞiF̃k;baðy; xÞ
þ _RF̃

k;abðx; yÞiFk;baðy; xÞ�: ð27Þ

C. Propagators and two-point functions

The flow equation for the effective action (27) is given in
terms of scale-dependent propagators, which are related to
the derivatives of the effective action. Denoting the second
functional derivatives of the effective action as

Γϕ̃ϕ
k;abðx; yÞ ¼

δ2Γk½ϕ; ϕ̃�
δϕ̃aðxÞδϕbðyÞ

;

Γϕϕ
k;abðx; yÞ ¼

δ2Γk½ϕ; ϕ̃�
δϕaðxÞδϕbðyÞ

; ð28Þ

the expressions for the various propagators are then given
by [27]

GR
k ¼ −fðΓϕ̃ϕ

k þ RR
k Þ − ðΓϕ̃ ϕ̃

k þ RF
k ÞðΓϕϕ̃

k þ RA
k Þ−1ðΓϕϕ

k þ RF̃
k Þg−1;

GA
k ¼ −fðΓϕϕ̃

k þ RA
k Þ − ðΓϕϕ

k þ RF̃
k ÞðΓϕ̃ϕ

k þ RR
k Þ−1ðΓϕ̃ ϕ̃

k þ RF
k Þg−1;

iFk ¼ −fðΓϕϕ
k þ RF̃

k Þ − ðΓϕϕ̃
k þ RA

k ÞðΓϕ̃ ϕ̃
k þ RF

k Þ−1ðΓϕ̃ϕ
k þ RR

k Þg−1;
iF̃k ¼ −fðΓϕ̃ ϕ̃

k þ RF
k Þ − ðΓϕ̃ϕ

k þ RR
k ÞðΓϕϕ

k þ RF̃
k Þ−1ðΓϕϕ̃

k þ RA
k Þg−1: ð29Þ

Similarly, by taking functional derivatives of the propa-
gators in Eq. (29), one obtains the flow equations for
n-point correlation functions, which in the end have to be
evaluated at the minimum of the effective action. Since
ϕ̃ ¼ 0 and Γϕϕ ¼ 0 vanish due to discrete symmetries of
the effective action, the propagators evaluated at the
minimum of the effective action then simplify to2

GR
k ¼ −ðΓϕ̃ϕ

k þ RR
k Þ−1; GA

k ¼ −ðΓϕϕ̃
k þ RA

k Þ−1; ð30Þ

iFk ¼ GR
k ðΓϕ̃ ϕ̃

k þ RF
k ÞGA

k ; iF̃k ¼ 0: ð31Þ

Using the fluctuation-dissipation relation in Eq. (36) for
scale-dependent propagators implies the following rela-
tions between the different two-point functions appearing
in the effective action:

Γϕ̃ ϕ̃
k ðpÞ ¼ neffðp0ÞðΓϕ̃ϕ

k ðpÞ − Γϕϕ̃
k ðpÞÞ; ð32Þ

which needs to be satisfied at any scale k.

D. Regulator functions

Even though the detailed choice of regulators is irrel-
evant if the functional differential flow equation is solved
exactly, in practice the hierarchy of flow equations for
n-point correlation functions has to be truncated at a finite
order making the solution sensitive to the regulator choice.

2Note that also the regulator needs to be chosen in accordance
with the symmetry requirements, and we further chose RF̃

k ¼ 0, as
any other choice would violate causality.
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Since finding suitable regulators for real-time calculations
turns out to be a rather subtle issue, we will now comment
in more detail on the general conditions for the regulator
functions in the real-time FRG framework and specify
explicit choices below.
Clearly, the most essential property of the regulator

is that it suppresses the effect of fluctuations in the
real-time path integral. Expressing the regulator matrix
Rk;abðω;pÞ ¼ Rkðω;pÞδab for a space-time translation
invariant system in Fourier space as

Rkðω;pÞ ¼
�
RF̃
k ðω;pÞ RA

k ðω;pÞ
RR
k ðω;pÞ RF

k ðω;pÞ

�
ð33Þ

can, e.g., be achieved if the imaginary part of the bilinear
form

ΔSk½φ; φ̃� ¼
1

2

Z
p
ðφ�

aðω;pÞ; φ̃�
aðω;pÞÞ

× Rk;abðω;pÞ
�
φbðω;pÞ
φ̃bðω;pÞ

�
ð34Þ

is positive semidefinite, such that the associated term in
the path integral eiΔSk½φ;φ̃� gives rise to an exponential
suppression of fluctuations below the renormalization
group scale.
Besides its regulating properties, it is also desirable that

the introduction of the regulator does not explicitly break
the symmetries of the system. Specifically, in our context of
real-time dynamics in equilibrium systems, this boils down
to the invariance of the regulator term ΔSk½φ; φ̃� under the
symmetry transformation in Eq. (7) for quantum and
Eq. (14) for classical system, which can be satisfied with

RF
k;abðω;pÞ ¼ neffðωÞ½RR

k;abðω;pÞ − RA
k;abðω;pÞ�;

RF̃
k ¼ 0: ð35Þ

Vice versa, if the regulator functions Rkðω;pÞ are chosen to
comply with the above symmetry condition, this also
guarantees the validity of the fluctuation-dissipation rela-
tion for the scale (k)-dependent n-point correlation func-
tions, such that, e.g., the fluctuation-dissipation relation

iFkðω;pÞ ¼ neffðωÞðGR
k ðω;pÞ −GA

k ðω;pÞÞ ð36Þ

will automatically be satisfied at all scales.
Specifically, for the real-time FRG approach, it is also

highly desirable that the introduction of the regulator Rk
respects the time ordering properties of the retarded/
advanced and symmetric propagators in coordinate space,
such that, e.g., the scale-dependent propagator GR

k ðx; yÞ
remains retarded, i.e., vanishes for spacelike separations
ðx − yÞ2 < 0, throughout the entire renormalization group
evolution. Vice versa, in momentum space, this condition
dictates, that the regulator term does not introduce spurious
complex poles of the advanced/retarded propagators, which
would result in a violation of causality. Note that there is no
analogue of such a causality constraint for Euclidean FRG
calculation, indicating the additional difficulties that appear
in real-time QFT calculations.
Clearly, the simplest possible way to comply with

causality is to employ a frequency-independent (purely
spatial) regulator acting as an effective mass term, such that
following [52]

ReRR
k ðω;pÞ ¼ ReRA

k ðω;pÞ ¼ rkðpÞ
ImRR

k ðω;pÞ ¼ ImRA
k ðω;pÞ ¼ 0; ð37Þ

whereas the symmetric regulator functions RF
k and RF̃

k
vanish identically in this scheme. One particular choice of
the regulator function, which has been frequently employed
in the literature [53], is

rkðpÞ ¼ ðk2 − p2Þθðk2 − p2Þ: ð38Þ

However, a purely spatial regulator scheme has the obvious
disadvantage that it cannot be applied in 0þ 1 dimensions,
and moreover it is also not particularly suitable for higher
dimensional lattice models which feature a discrete set of
spatial momenta. We will therefore explore a different
possibility, where inspired by the free inverse propagator
the regulator takes the form [31]

Rkðω;pÞ ¼
�

0 −μkðω;pÞ þ iωγkðω;pÞ
−μkðω;pÞ − iωγkðω;pÞ 2iωγkðω;pÞneffðωÞ

�
rkðω;pÞ: ð39Þ

We emphasize that in the above expression μkðω;pÞ and
γkðω;pÞ are real-valued even functions of the frequency ω,
such that in addition to the real part ∝ μkðω;pÞ which
corresponds to an effective mass term, the regulator also

features a nonvanishing imaginary part ∝ ωγkðω;pÞ, which
for γkðω;pÞ > 0 corresponds to an effective damping rate.
Specifically, for our 0þ 1 dimensional case study, we will
choose
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μkðωÞ ¼ k2 − ω2; γkðωÞ ¼
γ

βm2
kðk − jωjÞ; ð40Þ

such that both μkðωÞ and γkðωÞ diverges as k2 in the limit
k → Λ. Since the regulator diverges for sufficiently large k,
all fluctuations are suppressed when the renormalization
group scale k approaches the UV cutoff scale Λ such that
the effective action Γk¼Λ½ϕ; ϕ̃� ¼ SC½ϕ; ϕ̃� is given by the
bare action. In analogy to Euclidean FRG calculations [51],
this can be easily demonstrated via a saddle point approxi-
mation of the path integral and we provide a short
discussion in Appendix B for completeness. Generally,
in higher dimensions, a suitable regulator could depend
separately on the two independent invariants p2 ¼ ω2 − p2

and uμpμ ¼ ω. Even though a purely spatial regulator of
the form Eq. (37) is commonly used in the condensed
matter literature, we believe that a generalized regulator
function as in Eq. (39) could be beneficial, and we intend to
investigate this further when considering higher dimen-
sional systems in the future.

E. Diagrammatics

While Eq. (27) provides the flow equation for the effective
action, it is more convenient in practice to work directly with
the flow equations for n-point correlation functions, which
are obtained from Eq. (27) by functional differentiation with
respect to ϕ and ϕ̃. Even though the differentiations can be
carried out analytically, it is significantly more straightfor-
ward to employ graphical rules to perform the functional
differentiations. We follow previous works in this context
and start with the following diagrammatic representations of
the propagators and regulators:

ð41Þ

With these, the diagrammatic representation of the flow
equation (27) takes the compact form

ð42Þ

where—as a novelty of our notation—a green line is
shorthand notation for either blue or red and the flow
equation is a sum of all allowed color permutations.

Notably the introduction of this compact matrix notation
is particularly useful when deriving flow equations for
higher n-point functions. Since the functional differentiation
of the various propagators gives rise to all possible insertions
of intermediate propagators, e.g.,

δ

δχaðzÞ
GR

k ðx; yÞ ¼ GR
k ðx; aÞΓϕ̃χϕ

k ða; z; bÞGR
k ðb; yÞ

þ GR
k ðx; aÞΓϕ̃χϕ̃

k ða; z; bÞiF̃kðb; yÞ
þ iFkðx; aÞΓϕχϕ̃

k ða; z; bÞiF̃kðb; yÞ
þ iFkðx; aÞΓϕχϕ

k ða; z; bÞGR
k ðb; yÞ; ð43Þ

the shorthand notation

ð44Þ

allows for an efficient bookkeeping with a drastically
reduced number of the diagrams. Based on the diagrammatic
shorthand notation, the flow equation of a generic two-point
function can be compactly expressed as

ð45Þ

where also the black lines on the external legs can be either
blue or red, depending on the particular two-point function
under consideration. The indices α, ᾱ stand for either ϕ or ϕ̃
depending on the external legs, a, ā denote OðNÞ indices.

III. EXPLICIT COMPARISON TO
PERTURBATION THEORY

Before we proceed with our discussion of the real-time
FRG approach, it proves insightful to analyze which set of
perturbative contributions are included in the real-time
functional renormalization group calculation. Generally,
our strategy for this purpose will be to expand the effective
action into terms proportional to powers of λn,

Γk½ϕ; ϕ̃� ¼ S½ϕ; ϕ̃� þ
X
n

ΔðnÞΓk½ϕ; ϕ̃�; ð46Þ

and then write down separate flow equations for all terms
ΔðnÞΓ½ϕ; ϕ̃� ∝ λn to bring them into the form of a total
differential such that the integration with respect to the
scale parameter k becomes trivial.

A. One-loop contributions to propagators and vertices

Starting from the FRG flow equation for the effective
action in Eq. (27), it is evident that to one-loop order only
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bare propagators and vertices can appear on the rhs of the flow equation. Explicit evaluation of the (scale dependent) bare
propagators yields the following expressions:

GRð0Þ
k ðxx̄Þ ¼ −1

Sϕ̃ϕ þ RR
k

ðxx̄Þ; GAð0Þ
k ðxx̄Þ ¼ −1

Sϕϕ̃ þ RA
k

ðxx̄Þ;

iFð0Þ
k ðxx̄Þ ¼

Z
vv̄
GRð0Þ

k ðxvÞðSϕ̃ ϕ̃ðvv̄Þ þ RF
k ðvv̄ÞÞGAð0Þ

k ðv̄ x̄Þ: ð47Þ

Since the scale (k) dependence only enters through the regulator itself, one finds the following explicit relations for the scale
derivatives of the propagators:

∂kG
Rð0Þ
k ðxx̄Þ ¼

Z
vv̄
GRð0Þ

k ðxvÞ _RR
k ðvv̄ÞGRð0Þ

k ðv̄ x̄Þ;

∂kG
Að0Þ
k ðxx̄Þ ¼

Z
vv̄
GAð0Þ

k ðxvÞ _RA
k ðvv̄ÞGAð0Þ

k ðv̄ x̄Þ;

∂kiF
ð0Þ
k ðxx̄Þ ¼

Z
vv̄
½GRð0Þ

k ðxvÞ _RR
k ðvv̄ÞiFð0Þ

k ðv̄ x̄Þ þ iFð0Þ
k ðxvÞ _RA

k ðvv̄ÞGAð0Þ
k ðv̄ x̄Þ þ GRð0Þ

k ðxvÞ _RF
k ðvv̄ÞGAð0Þ

k ðv̄ x̄Þ�; ð48Þ

which can be used to integrate the flow equations with respect to k as described below. Similarly, at one-loop level, all
vertices appearing on the rhs of the flow equation are simply given in terms of the bare vertices and take the following
explicit form:

Sϕϕϕϕ̃
abb̄ ā

ðxyȳ x̄Þ ¼ λcl½δabδā b̄ þ δaāδbb̄ þ δab̄δāb�δðx − yÞδðx̄ − ȳÞδðx − x̄Þ; ð49Þ

Sϕϕ̃ ϕ̃ ϕ̃
abb̄ ā

ðxyȳ x̄Þ ¼ λqu½δabδā b̄ þ δaāδbb̄ þ δab̄δāb�δðx − yÞδðx̄ − ȳÞδðx − x̄Þ; ð50Þ

where we denote λcl ¼ − λ
3N and λqu ¼ − λ

12N in the following.
Specifically, for the two-point functions, the relevant flow equations then evaluate to

∂kΔð1ÞΓϕϕ̃
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2Þλcl

Z
uūvv̄

δðx − uÞδðx − ūÞ

× ½GRð0Þ
k ðuvÞ _RR

k ðvv̄ÞiFð0Þ
k ðv̄ ūÞ þ iFð0Þ

k ðuvÞ _RA
k ðvv̄ÞGAð0Þ

k ðv̄ ūÞ þ GRð0Þ
k ðuvÞ _RF

k ðvv̄ÞGAð0Þ
k ðv̄ ūÞ�; ð51Þ

∂kΔð1ÞΓϕ̃ ϕ̃
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2Þλqu

Z
uūvv̄

δðx − uÞδðx − ūÞ

× ½GRð0Þ
k ðuvÞ _RR

k ðvv̄ÞGRð0Þ
k ðv̄ ūÞ þGAð0Þ

k ðuvÞ _RA
k ðvv̄ÞGAð0Þ

k ðv̄ ūÞ�; ð52Þ

∂kΔð1ÞΓϕϕ
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2Þλcl

Z
uūvv̄

δðx − uÞδðx − ūÞ

× ½GRð0Þ
k ðuvÞ _RR

k ðvv̄ÞGRð0Þ
k ðv̄ ūÞ þ GAð0Þ

k ðuvÞ _RA
k ðvv̄ÞGAð0Þ

k ðv̄ ūÞ�; ð53Þ

where the “flavor” factor (N þ 2) comes from the following contraction of OðNÞ indices:

ðδaāδcc̄ þ δacδā c̄ þ δacδā c̄Þδcc̄ ¼ ðN þ 2Þδaā: ð54Þ

By comparison with Eq. (48), one recognizes the rhs as total k-derivatives and the flow equations can be integrated with
respect to the scale parameter k yielding3

3Note that at k ¼ kUV the action is given by the bare equation. Hence, the corresponding boundary terms on the lhs vanish. Similarly,
on the rhs, the resulting propagators are suppressed for sufficiently large choice of the cutoff scale kUV, again giving rise to vanishing
boundary terms.
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Δð1ÞΓϕϕ̃
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2ÞλcliFð0Þ

k ðxx̄Þ;

Δð1ÞΓϕ̃ ϕ̃
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2Þλqu½GRð0Þ

k ðxx̄Þ þ GAð0Þ
k ðxx̄Þ� ¼ 0;

Δð1ÞΓϕϕ
k ðxx̄Þ ¼ −

i
2
δðx − x̄ÞðN þ 2Þλcl½GRð0Þ

k ðxx̄Þ þ GAð0Þ
k ðxx̄Þ� ¼ 0; ð55Þ

irrespective of the details of the regulator, as long as the latter ensures the suppression of UV boundary terms and does not
introduce violations of causality such that the terms in the last two lines vanish.
Based on the expressions in Eq. (55), one immediately realizes that the only contribution at the one-loop level is a

manifestly real and local correction, which physically amounts to the familiar one-loop mass shift Δð1Þm2
k ¼

− 1
Vdþ1

R
xx̄ Δ

ð1ÞΓϕϕ̃
k ðxx̄Þ. Hence, one concludes that in the absence of spontaneous symmetry breaking, any nontrivial

modifications of the spectral shape only occur starting at the two-loop level, and it is therefore important to understand how
these are generated within the real-time FRG approach.
Beside the one-loop correction to the two-point function, we will also need the one-loop corrections to the four-point

functions, which enters the perturbative calculation of the spectral function at the two-loop level. Evidently, the one-loop
corrections to the four-point functions can be obtained in an analogous fashion from the flow equation of the four-point
function

ð56Þ

Based on the apparent symmetries of the corresponding diagrams, we can decompose the one-loop corrections to the four-
point functions according to

Δð1ÞΓαββ̄ ᾱ
k;abb̄ ā

ðxyȳ x̄Þ ¼ ½ðN þ 4Þδabδā b̄ þ 2δaāδbb̄ þ 2δab̄δāb�δðx − yÞδðx̄ − ȳÞΔð1ÞΓαβ;β̄ ᾱ
k ðxx̄Þ

þ ½2δabδā b̄ þ ðN þ 4Þδaāδbb̄ þ 2δab̄δāb�δðx − x̄Þδðy − ȳÞΔð1ÞΓαᾱ;ββ̄
k ðxyÞ

þ ½2δabδā b̄ þ 2δaāδbb̄ þ ðN þ 4Þδab̄δāb�δðx − ȳÞδðx̄ − yÞΔð1ÞΓαβ̄;βᾱ
k ðxx̄Þ; ð57Þ

where the OðNÞ index structure of the expression is obtained by evaluating the index contraction of bare propagators and
vertices according to

ðδabδef þ δafδbe þ δaeδbfÞδeēδff̄ðδā b̄δē f̄ þ δā f̄δb̄ ē þ δā ēδb̄ f̄Þ ¼ ðN þ 4Þδabδāδb̄ þ 2δaāδbb̄ þ 2δab̄δāb:

One is then left with the calculation of the one-loop vertex functions Δð1ÞΓϕϕ;ϕϕ̃
k ðxx̄Þ of the classical (ϕϕϕϕ̃) vertex,

Δð1ÞΓϕϕ̃;ϕ̃ ϕ̃
k ðxx̄Þ of the quantum (ϕϕ̃ ϕ̃ ϕ̃) vertex, as well as the two vertex functions Δð1ÞΓϕϕ̃;ϕϕ̃

k ðxx̄Þ and Δð1ÞΓϕϕ;ϕ̃ ϕ̃
k ðxx̄Þ of

the anomalous (ϕϕϕ̃ ϕ̃) vertex. By combining the individual terms in an appropriate fashion, we can compactly express the
result in the form

∂kΔð1ÞΓϕϕ;ϕϕ̃
k ðxx̄Þ ¼ −

i
2
λ2cl½ð∂kiF

ð0Þ
k ðxx̄ÞÞGAð0Þ

k ðxx̄Þ þ iFð0Þ
k ðxx̄Þð∂kG

Að0Þ
k ðxx̄ÞÞ

þ ð∂kiF
ð0Þ
k ðx̄xÞÞGRð0Þ

k ðx̄xÞ þ iFð0Þ
k ðx̄xÞð∂kG

Rð0Þ
k ðx̄xÞÞ�; ð58Þ
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∂kΔð1ÞΓϕ̃ ϕ̃;ϕ̃ϕ
k ðxx̄Þ ¼ −

i
2
λclλqu½ð∂kiF

ð0Þ
k ðxx̄ÞÞGAð0Þ

k ðxx̄Þ þ iFð0Þ
k ðxx̄Þð∂kG

Að0Þ
k ðxx̄ÞÞ

þ ð∂kiF
ð0Þ
k ðx̄xÞÞGRð0Þ

k ðx̄xÞ þ iFð0Þ
k ðx̄xÞð∂kG

Rð0Þ
k ðx̄xÞÞ�; ð59Þ

∂kΔð1ÞΓϕϕ̃;ϕϕ̃
k ðxx̄Þ ¼ −

i
2
λ2cl½ð∂kiF

ð0Þ
k ðxx̄ÞÞiFð0Þ

k ðxx̄Þ þ iFð0Þ
k ðxx̄Þð∂kiF

ð0Þ
k ðxx̄ÞÞ�

−
i
2
λclλqu½ð∂kG

Að0Þ
k ðxx̄ÞÞGAð0Þ

k ðxx̄Þ þGAð0Þ
k ðx̄xÞð∂kG

Að0Þ
k ðx̄xÞÞ

þ ð∂kG
Rð0Þ
k ðxx̄ÞÞGRð0Þ

k ðxx̄Þ þGRð0Þ
k ðx̄xÞð∂kG

Rð0Þ
k ðx̄xÞÞ�; ð60Þ

∂kΔð1ÞΓϕϕ;ϕ̃ ϕ̃
k ðxx̄Þ ¼ −

i
2
λclλqu½ð∂kG

Að0Þ
k ðxx̄ÞÞGRð0Þ

k ðxx̄Þ þGAð0Þ
k ðxx̄Þð∂kG

Rð0Þ
k ðxx̄ÞÞ

þ ð∂kG
Að0Þ
k ðx̄xÞÞGRð0Þ

k ðx̄xÞ þGAð0Þ
k ðx̄xÞð∂kG

Rð0Þ
k ðx̄xÞÞ�: ð61Þ

Since the rhs represents a total derivative with respect to the scale k, the above flow equations can be integrated yielding the
following results for the (scale dependent) one-loop vertex functions:

Δð1ÞΓϕϕ;ϕϕ̃
k ðxx̄Þ ¼ −

i
2
λ2cl2iF

ð0Þ
k ðxx̄ÞGAð0Þ

k ðxx̄Þ; ð62Þ

Δð1ÞΓϕ̃ ϕ̃;ϕ̃ϕ
k ðxx̄Þ ¼ −

i
2
λclλqu2iF

ð0Þ
k ðxx̄ÞGAð0Þ

k ðxx̄Þ; ð63Þ

Δð1ÞΓϕϕ̃;ϕϕ̃
k ðxx̄Þ ¼ −

i
2
λ2clðiFð0Þ

k ðxx̄ÞÞ2 − i
2
λclλqu½ðGRð0Þ

k ðxx̄ÞÞ2 þ ðGAð0Þ
k ðxx̄ÞÞ2�; ð64Þ

Δð1ÞΓϕϕ;ϕ̃ ϕ̃
k ðxx̄Þ ¼ −

i
2
λclλqu2G

Að0Þ
k ðxx̄ÞGRð0Þ

k ðxx̄Þ ¼ 0; ð65Þ

where we exploited the symmetries

GAð0Þ
k ðxx̄Þ ¼ GRð0Þ

k ðx̄xÞ; iFð0Þ
k ðxx̄Þ ¼ iFð0Þ

k ðx̄xÞ ð66Þ

to further compactify the expressions. We note in passing that for the quantum theory, the (tree-level) symmetry relation
λcl ¼ 4λqu between the local classical and quantum vertices also holds for the nonlocal vertex functions at the one-loop

level, i.e.,Δð1ÞΓϕϕ;ϕϕ̃
k ðxx̄Þ ¼ 4Δð1ÞΓϕϕ̃;ϕ̃ ϕ̃

k ðxx̄Þ. Nevertheless, there is also a nonlocalΔð1ÞΓϕϕ̃;ϕϕ̃
k ðxx̄Þ vertex generated at one-

loop level in both classical and quantum theories.

B. Two-loop contributions to propagators

Since the flow equation for the propagators is of one-loop form, we can obtain the two-loop contribution in a
similar fashion, by using one propagator or respectively one vertex at one-loop order and use bare versions for all other
quantities, i.e.,

ð67Þ

where the black dot denotes the perturbative one-loop vertex and double lines denote the perturbative one-loop propagators
given by

Δð1ÞGR
k ¼ GRð0Þ

k Δð1ÞΓϕ̃ϕ
k GRð0Þ

k ; Δð1ÞGA
k ¼ GAð0Þ

k Δð1ÞΓϕϕ̃
k GAð0Þ

k ;

Δð1ÞiFk ¼ GRð0Þ
k Δð1ÞΓϕ̃ϕ

k iFð0Þ
k þ iFð0Þ

k Δð1ÞΓϕϕ̃
k GAð0Þ

k : ð68Þ
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By inserting the corresponding expressions into the
above flow equation, one finds that the contributions

to ∂kΔð2ÞΓϕϕ̃
k ðxx̄Þ fall in two topologically different

categories, given by “double bubble” and “sunset”
diagrams, respectively. These diagrams are shown in
Fig. 1. By performing a straightforward but cumbersome
set of manipulations, the contributions from diagrams
with a one-loop propagator can be expressed as

∂kΔð2ÞΓϕϕ̃
k ðxx̄Þjdouble bubble

propagator ¼ −
i
2
δðx − x̄ÞðN þ 2Þλclδaā

Z
ww̄
f∂k½GRð0Þ

k ðxwÞΔð1ÞΓϕ̃ϕ
k ðww̄ÞiFð0Þðw̄xÞ

þ iFð0ÞðxwÞΔð1ÞΓϕϕ̃
k ðww̄ÞGAð0Þ

k ðw̄xÞ� −GRð0Þ
k ðxwÞð∂kΔð1ÞΓϕ̃ϕ

k ðww̄ÞÞiFð0Þkðw̄xÞ
− iFð0Þ

k ðxwÞð∂kΔð1ÞΓϕϕ̃
k ðww̄ÞÞGAð0Þ

k ðw̄xÞg: ð69Þ

By combining this contribution with a corresponding set of double-bubble diagrams with a one-loop vertex, which upon
further manipulations and dropping off vanishing terms can be compactly expressed in the form

∂kΔð2ÞΓϕϕ̃
k ðxx̄Þjdouble bubblevertex ¼−

i
2
δðx− x̄ÞðNþ2Þλclδaā

Z
ww̄
ðGRð0Þ

k ðxwÞiFð0Þ
k ðūwx̄Þþ iFð0Þ

k ðxwÞGAð0Þ
k ðw̄x̄ÞÞ∂kΔð1ÞΓϕϕ̃

k ðww̄Þ;

ð70Þ

one finds that the sum of two contributions yields a total derivative with respect to k, such that

Δð2ÞΓϕϕ̃
k ðxx̄Þjdouble bubble ¼ −

i
2
δðx − x̄ÞðN þ 2Þλclδaā

Z
ww̄
½GRð0Þ

k ðxwÞΔð1ÞΓϕ̃ϕ
k ðww̄ÞiFð0Þðw̄xÞ

þ iFð0ÞðxwÞΔð1ÞΓϕϕ̃
k ðww̄ÞGAð0Þ

k ðw̄xÞ�; ð71Þ

yielding

Δð2ÞΓϕϕ̃
k ðxx̄Þjdouble bubble ¼

�
i
2

�
2

δðx − x̄ÞðN þ 2Þ2λ2clδaā
Z
w
½GRð0Þ

k ðxwÞiFð0Þ
k ðwwÞiFð0ÞðwxÞ

þ iFð0ÞðxwÞiFð0ÞðwxÞGAð0Þ
k ðw̄xÞ�: ð72Þ

Similar to the one-loop correction Δð1ÞΓϕϕ̃
k ðxx̄Þ, this term is manifestly real and local providing the two-loop correction to

the mass shift. However, there is also the contribution from the sunset diagrams which can be compactly expressed as

Δð2ÞΓϕϕ̃
k ðxx̄Þjsunset ¼ −

3

2
ðN þ 2Þδaā

�
λ2cliF

ð0Þ
k ðxx̄ÞiFð0Þ

k ðxx̄ÞGAð0Þ
k ðxx̄Þ þ λclλqu

1

3
ðGAð0Þ

k ðxx̄ÞÞ3
�
: ð73Þ

Clearly, this contribution to the effective action is nonlocal
and possesses a nonvanishing imaginary part, which
describes the collisional broadening of the spectral func-
tion. We further emphasize that in the real-time FRG
framework the sunset contribution arises entirely due to
the one-loop vertex correction, indicating the importance of
including nonlocal vertex structures into the truncation of
the real-time FRG flow equations. By including these
nonlocal vertex structures, as in Eq. (57), one is then able
to derive the two-loop perturbative contributions to the
damping rate [54], as discussed in Appendix C.

IV. NONTRIVIAL TRUNCATIONS FOR
REAL-TIME CALCULATIONS

Based on our perturbative analysis of the flow equations
in the preceding section, we conclude that a two-loop
complete truncation scheme for the two-point function is
necessary to describe the collisional broadening of the
spectral function in the symmetric phase. We have also
observed that a two-loop complete truncation scheme for
the two-point function necessarily has to include a nonlocal
four field interaction (e.g., generated at the one-loop level),

(a) (b) (c) (d)

FIG. 1. The four different kinds of diagrams contributing to the
flow equation ∂kΓϕϕ̃ at two-loop order. Diagrams (a) and (b) come
from diagrams with a one-loop propagator, diagrams (c), and
(d) come from diagrams with a one-loop vertex.
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indicating the local potential approximation that is com-
monly used in Euclidean FRG calculations is insufficient
for the purpose of real-time calculations.

Now, in order to devise a more suitable truncation
scheme, we first note that we can generally express the
scale-dependent effective action in a vertex expansion as

Γk½ϕ; ϕ̃� ¼
XQ
n¼1

1

n!

�Yn
i¼1

Z
xi

�Xn
j¼0

�
n

j

�
Γðj;n−jÞ
k ðfxgÞ

�Yj
l¼1

ϕðxlÞ
�� Yn

m¼jþ1

ϕ̃ðxmÞ
�
: ð74Þ

Since in the symmetric phase only the n—even terms contribute, a two-loop complete expansion can be achieved by
truncating the vertex expansion at the level of the four-point function (Q ¼ 4) keeping only two- and four-point functions.
Hence, the simplest possible two-loop complete expansion scheme is given by

Γk½ϕ; ϕ̃� ¼
1

2

Z
xx̄
ðϕaðxÞ ϕ̃aðxÞ Þ

 
0 Γϕϕ̃

k;aāðxx̄Þ
Γϕ̃ϕ
k;aāðxx̄Þ Γϕ̃ ϕ̃

k;aāðxx̄Þ

!�
ϕāðx̄Þ
ϕ̃āðx̄Þ

�
þ 1

3!

Z
xx̄yȳ

ϕaðxÞϕbðyÞΓϕϕϕϕ̃
k;abb̄ ā

ðxyȳ x̄Þϕb̄ðȳÞϕ̃āðx̄Þ

þ 1

2!2!

Z
xx̄yȳ

ϕaðxÞϕ̃bðyÞΓϕϕ̃ϕϕ̃
k;abb̄ ā

ðxyȳ x̄Þϕb̄ðȳÞϕ̃āðx̄Þ þ
1

3!

Z
xx̄yȳ

ϕaðxÞϕ̃bðyÞΓϕϕ̃ ϕ̃ ϕ̃
k;abb̄ ā

ðxyȳ x̄Þϕ̃b̄ðȳÞϕ̃āðx̄Þ; ð75Þ

where the above truncation only takes vertices into account that can be generated at one-loop level, i.e., the ðϕϕϕϕÞ,
ðϕ̃ ϕ̃ ϕ̃ ϕ̃Þ, and ðϕϕ; ϕ̃ ϕ̃Þ vertices vanish. A similar truncation scheme to extractOðNÞ spectral functions employing Dyson-
Schwinger equations was used in [55]. With regards to the nonvanishing vertex functions, we employ a generalization of the
one-loop result in Eq. (57) as our ansatz

Γϕϕϕϕ̃
k;abb̄ ā

ðxyȳ x̄Þ ¼ ½vdiagcl;A;kðxx̄Þδabδā b̄ þ voffcl;A;kðxx̄Þδaāδbb̄ þ voffcl;A;kðxx̄Þδab̄δāb�δðx − yÞδðx̄ − ȳÞ
þ ½voffcl;A;kðyx̄Þδabδā b̄ þ vdiagcl;A;kðyx̄Þδaāδbb̄ þ voffcl;A;kðyx̄Þδab̄δāb�δðx − x̄Þδðy − ȳÞ
þ ½voffcl;A;kðȳ x̄Þδabδā b̄ þ voffcl;A;kðȳ x̄Þδaāδbb̄ þ vdiagcl;A;kðȳ x̄Þδab̄δāb�δðx − ȳÞδðx̄ − yÞ; ð76Þ

Γϕϕ̃ϕϕ̃
k;abb̄ ā

ðxyȳ x̄Þ ¼ ½vdiaganom;kðxx̄Þδabδā b̄ þ voffanom;kðxx̄Þδaāδbb̄ þ voffanom;kðxx̄Þδab̄δāb�δðx − yÞδðx̄ − ȳÞ
þ ½voffanom;kðyx̄Þδabδā b̄ þ vdiaganom;kðyx̄Þδaāδbb̄ þ voffanom;kðyx̄Þδab̄δāb�δðx − x̄Þδðy − ȳÞ; ð77Þ

Γϕϕ̃ ϕ̃ ϕ̃
k;abb̄ ā

ðxyȳ x̄Þ ¼ ½vdiagqu;R;kðxx̄Þδabδā b̄ þ voffqu;R;kðxx̄Þδaāδbb̄ þ voffqu;R;kðxx̄Þδab̄δāb�δðx − yÞδðx̄ − ȳÞ
þ ½voffqu;R;kðyx̄Þδabδā b̄ þ vdiagqu;R;kðyx̄Þδaāδbb̄ þ voffqu;R;kðyx̄Þδab̄δāb�δðx − x̄Þδðy − ȳÞ
þ ½voffqu;R;kðȳ x̄Þδabδā b̄ þ voffqu;R;kðȳ x̄Þδaāδbb̄ þ vdiagqu;R;kðȳ x̄Þδab̄δāb�δðx − ȳÞδðx̄ − yÞ; ð78Þ

with scale-dependent vertex functions vXY;kðxx̄Þ. While at
the one-loop level, the diagonal vdiagY;k ðxx̄Þ and off-diagonal
voffY;kðxx̄Þ vertex functions are simply related by a factor of
ðN þ 4Þ=2, this is not the case beyond one loop and we
generally have to distinguish between diagonal and off-
diagonal vertex functions. Based on the symmetries of the
effective action for an equilibrium system, the above vertex
functions satisfy the following symmetry relations:

vXcl;R;kðxx̄Þ ¼ vXcl;A;kðx̄xÞ; ð79Þ

vXqu;R;kðxx̄Þ ¼
1

4
vXcl;R;kðxx̄Þ; ð80Þ

as well as the fluctuation-dissipation relation

ṽXanom;kðpÞ ¼ neffðp0ÞðṽXcl;R;kðpÞ − ṽXcl;A;kðpÞÞ: ð81Þ

A. Explicit form of flow equations
for two-point functions

Based on the truncation of the effective action in
Eq. (75), the two-point equations obey the flow equation

ð82Þ

ð83Þ
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which upon inserting the explicit expressions for the nonlocal vertex functions in Eqs. (76)–(78) gives rise to the following
structure of the flow equations:

ð84Þ

ð85Þ

featuring a two-loop structure of sunset diagrams in the first and second columns and double bubble diagrams in the third
column. By introducing the following shorthand notation for the one-loop integrals:

BR=A
k ðxx̄Þ ¼

Z
zz̄
GR=A

k ðxzÞ _RR=A
k ðzz̄ÞGR=A

k ðz̄ x̄Þ;

BF
k ðxx̄Þ ¼

Z
zz̄
GR

k ðxzÞ _RR
k ðzz̄ÞiFðz̄ x̄Þ þ iFðxzÞ _RA

k ðzz̄ÞGA
k ðz̄ x̄Þ þGR

k ðxzÞ _RF
k ðzz̄ÞGA

k ðz̄ x̄Þ; ð86Þ

the flow equations for the two-point functions then take the form

∂kΓ
ϕϕ̃
k ðxx̄Þ ¼ −i

2

�
δðxx̄Þ

Z
y
½Nvdiagcl;A;kðyÞ þ 2voffcl;A;kðyÞ�BFð0Þ þ ½2vdiagcl;A;kðxx̄Þ þ 2ðN þ 1Þvoffcl;A;kðxx̄Þ�BFðxx̄Þ

þ ½2vdiaganom;kðxx̄Þ þ 2ðN þ 1Þvoffanom;kðxx̄Þ�BAðxx̄Þ
�
; ð87Þ

∂kΓ
ϕ̃ ϕ̃
k ðxx̄Þ ¼ −i

2
f½2vdiaganom;kðxx̄Þ þ 2ðN þ 1Þvoffanom;kðxx̄Þ�BFðxx̄Þ þ ½2vdiagqu;R;kðxx̄Þ þ 2ðN þ 1Þvoffqu;R;kðxx̄Þ�BRðxx̄Þ

þ ½2vdiagqu;Aðxx̄Þ þ 2ðN þ 1Þvoffqu;Aðxx̄Þ�BAðxx̄Þg; ð88Þ
where we dropped acausal contributions proportional to BR=Að0Þ ¼ 0 (for causal regulators).

B. Vertex flow

Evidently, to close the system of equations, we still need expressions for the vertex functions. In the following, we will
compare two different truncations.

1. One-loop vertex functions

We start by using the one-loop expressions of the vertex functions with self-consistently determined propagators.
Explicitly, for the four-point functions, Eqs. (76)–(78), the perturbative one-loop expressions determined at each step of the
renormalization group evolution take the form

vdiagcl;A;kðxx̄Þ ¼ λclδðxx̄Þ − ðN þ 4Þiλ2cliFkðxx̄ÞGA
k ðxx̄Þ;

voffcl;A;kðxx̄Þ ¼ −2iλ2cliFkðxx̄ÞGA
k ðxx̄Þ;

vdiaganom;kðxx̄Þ ¼ ðN þ 4Þ
�
−
i
2
λ2clðiFkðxx̄ÞÞ2 −

i
2
λclλqu½ðGR

k ðxx̄ÞÞ2 þ ðGA
k ðxx̄ÞÞ2�

�
;

voffanom;kðxx̄Þ ¼ 2

�
−
i
2
λ2clðiFkðxx̄ÞÞ2 −

i
2
λclλqu½ðGR

k ðxx̄ÞÞ2 þ ðGA
k ðxx̄ÞÞ2�

�
;

vdiagqu;R;kðxx̄Þ ¼ λquδðxx̄Þ − ðN þ 4ÞiλclλquiFkðxx̄ÞGR
k ðxx̄Þ;

voffqu;R;kðxx̄Þ ¼ −2iλclλquiFkðxx̄ÞGR
k ðxx̄Þ; ð89Þ
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such that diagonal and off-diagonal vertex functions differ only by their corresponding flavor factors.

2. Vertex flow equation

While Eq. (89) represents the simplest possible two-loop complete truncation, there are many possible ways to improve
upon this truncation; for instance, the four-point couplings vclk ðxx̄Þ, vanomk ðxx̄Þ, and vquk ðxx̄Þ could be determined self-
consistently by projecting the corresponding flow equations for the four-point functions and solving the coupled set of two-
and four-point functions simultaneously. Clearly, the main advantage of this procedure is the automatic renormalization of
the coupling that comes with solving the flow equations for the four-point functions. While this amounts to a selective
resummation of higher order contributions, it is also clear that this does not improve the perturbative completeness of the
calculation, unless more complicated nonlocal structures and higher order vertices are to be included as well.
Since within our truncation, the classical, quantum, and anomalous four-point functions are not independent [see

Eqs. (79)–(81)], we will only solve the flow equation for the classical vertex function and reconstruct the other two
vertices from the classical vertex function. Note that within any reasonable truncation scheme, the fluctuation-
dissipation relation for the two-point functions needs to be satisfied. This is demonstrated in Appendix D. Based on our
discussion in Sec. II, the flow equation for the classical vertex takes the form

ð90Þ

where the black dots correspond to insertions of the full four-point vertex functions. Solving the flow equation for the
full four-point function with all its space-time arguments is prohibitively expensive. Hence, our strategy will be to
project the flow equation onto the vertex functions vðxx̄Þ and solve the corresponding flow equations. We will now
switch to momentum space as the projection to the vertex functions is simpler here. The classical four-point function in
momentum space takes the form

Γϕϕϕϕ̃
k;abb̄ ā

ðpjqq̄ p̄Þ ¼ ð2πÞ2þ1

V
δ

�
pþ qþ q̄þ p̄

2

��
vdiagcl;R;k

�
pþ q − p̄ − q̄

2

�
δabδā b̄ þ voffcl;R;k

�
pþ q − p̄ − q̄

2

�
δaāδbb̄

þ voffcl;R;k

�
pþ q − p̄ − q̄

2

�
δab̄δāb þ voffcl;R;k

�
pþ p̄ − q − q̄

2

�
δabδā b̄ þ vdiagcl;R;k

�
pþ p̄ − q − q̄

2

�
δaāδbb̄

þ voffcl;R;k

�
pþ p̄ − q − q̄

2

�
δab̄δāb þ voffcl;R;k

�
pþ q̄ − p̄ − q

2

�
δabδā b̄

þ voffcl;R;k

�
pþ q̄ − p̄ − q

2

�
δaāδbb̄ þ vdiagcl;R;k

�
pþ q̄ − p̄ − q

2

�
δab̄δāb

�
; ð91Þ

and we will use the following relation to project the flow equation onto the diagonal and off-diagonal vertex functions:

3ðvdiagcl;R;kðpÞ þ 2voffcl;R;kð0ÞÞδabδā b̄ þ 3ðvoffcl;R;kðpÞ þ vdiagcl;R;kð0Þ þ voffcl;R;kð0ÞÞðδaāδbb̄ þ δab̄δābÞ

¼ Γϕϕϕϕ̃
k;abb̄ ā

�
−
p
2
;þp

2
;−

p
2
;−

p
2

�
þ Γϕϕϕϕ̃

k;aābb̄

�
−
p
2
;−

p
2
;þp

2
;−

p
2

�
þ Γϕϕϕϕ̃

k;ab̄ ā b

�
−
p
2
;−

p
2
;þp

2
;−

p
2

�
: ð92Þ

By performing the projection of the flow equation according to Eq. (92), the flow-equation for the projected vertex
function then takes the following diagrammatic form4:

4Since for p ¼ 0, the lhs of Eq. (92) involves diagonal and off-diagonal vertex functions in exactly the same way, there is a hidden
ambiguity of how to treat momentum-independent contributions to the vertex function. However, as the vertex functions in Eq. (91)
always appear in the combination vdiagcl;R þ voffcl;R þ voffcl;R, any momentum-independent contribution can be arbitrarily distributed between
diagonal and off-diagonal vertex functions, and in practice, we split the momentum-independent contribution and absorb parts in both
the diagonal and off-diagonal parts of the vertex function.

S. HUELSMANN, S. SCHLICHTING, and P. SCIOR PHYS. REV. D 102, 096004 (2020)

096004-14



ð93Þ

where it is important to state that Eq. (92) is fully symmetrized, such that all six permutations of the outer indices on the
right-hand side of the flow equation enter in exactly the same way. Clearly, this flow equation has a rather complicated
structure, as there are three different vertex-propagator combinations for each diagram drawn, and additionally, every
vertex comes with its substructure; see Eq. (91).
Generally, the flow equation for the vertex functions in Eq. (93) contains 81 terms and can be found in Appendix E. Since

the resulting expression is rather lengthy, we only state the explicit form for the single component N ¼ 1 theory,

∂kðvcl;Rk ðpÞ þ 2vcl;Rk ð0ÞÞ

¼ −i
Z
l

�
ðvcl;Rk ðpÞ þ vcl;Rk ðlÞ þ vcl;Rk ð−lÞÞGR

k

�
p
2
þ l

�
BF
k

�
p
2
− l

�
ðvcl;Rk ðpÞ þ vcl;Rk ðlÞ þ vcl;Rk ðlÞÞ

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
GR

k ðlÞBF
k ð−lÞ

�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
GR

k ðlÞBF
k ð−lÞ

�
vcl;Rk ð0Þ þ vcl;Rk

�
−p
2

þ l

�
þ vcl;Rk

�
p
2
− l

��

þ ðvcl;Rk ðpÞ þ vcl;Rk ðlÞ þ vcl;Rk ð−lÞÞiFk

�
p
2
þ l

�
BR
k

�
p
2
− l

�
ðvcl;Rk ð−lÞ þ vcl;Rk ð−lÞ þ vcl;Rk ðpÞÞ

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
iFkðlÞBR

k ð−lÞ
�
vcl;Rk

�
p
2
− l

�
þ vcl;Rk

�
−p
2

− l

�
þ vcl;Rk ð0Þ

�

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
iFkðlÞBR

k ð−lÞ
�
vcl;Rk

�
−p
2

− l

�
þ vcl;Rk

�
p
2
− l

�
þ vcl;Rk ð0Þ

�

þ ðvcl;Rk ðpÞ þ vcl;Rk ðlÞ þ vcl;Rk ð−lÞÞGR
k

�
p
2
þ l

�
BR
k

�
p
2
− l

�
ðvanomk ðlÞ þ vanomk ðlÞÞ

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
GR

k ðlÞBR
k ð−lÞ

�
vanomk

�
p
2
þ l

�
þ vanomk

�
−p
2

þ l

��

þ
�
vcl;Rk ð0Þ þ vcl;Rk

�
p
2
þ l

�
þ vcl;Rk

�
p
2
− l

��
GR

k ðlÞBR
k ð−lÞ

�
vanomk

�
−p
2

þ l

�
þ vanomk

�
p
2
þ l

���
; ð94Þ

where there is no distinction between diagonal and off-diagonal index structures for the single component theory. When
performing calculations with self-consistently determined vertex functions, we will employ the one-loop vertex functions in
Eq. (89) evaluated at the UV scale as initial condition for the flow equation (94).
Besides N ¼ 1, another relatively simple case is the limit N → ∞, where one can employ a 1=N expansion. Since the

leading-order (LO) contributions to a vertex always come from the diagonal vertex functions ðvdiag ∼ 1=NÞ, one can simply
drop all terms containing off-diagonal vertex functions ðvoff ∼ 1=N2Þ to leading order in the 1/N expansion of the flow
equation [see e.g., Eq. (57)]. Evaluating the remaining terms, one finds that, due to the contraction of O(N) indices in the
one-loop diagrams in Eq. (93), the subset of diagrams where the flavor index flow is identical to the momentum flow will be
enhanced by a factor of N relative to all other diagrams. By collecting the leading Oð1=NÞ contributions, the flow
equation (93) then takes the following form in the large N limit:

∂k½vdiagcl;R;kðpÞδabδā b̄ þ vdiagcl;R;kð0Þðδaāδbb̄ þ δab̄δābÞ�

¼ −iN
�
δabδā b̄v

diag
cl ðpÞ

�Z
l
GR

�
p
2
þ l

�
BF

�
p
2
− l

�
þ BR

�
p
2
þ l

�
iF

�
p
2
− l

��
vdiagcl ðpÞ

þ ðδaāδbb̄ þ δab̄δābÞvdiagcl ð0Þ
�Z

l
GRðlÞBFð−lÞ þ BRðlÞiFð−lÞ

�
vdiagcl ð0Þ

�
: ð95Þ
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By separating the different index structures, one obtains the
final result

∂kv
diag
cl ðpÞ ¼ −iNvdiagcl ðpÞ

�Z
l
GR

�
p
2
þ l

�
BF

�
p
2
− l

�

þ BR

�
p
2
þ l

�
iF

�
p
2
− l

��
vdiagcl ðpÞ;

such that in contrast to Eq. (94), the flow of the vertex
function in the large N limit is local in momentum space, in
the sense that all vertex functions in Eq. (96) are evaluated
at the same momentum. We further note that for special
choices of the regulator function one can show that the
right-hand side of the flow equation simplifies to a total
differential [26,27,56,57]

∂kv
diag
cl ðpÞ

≃ −iNvdiagcl ðpÞ
�
∂k

Z
l
GR

�
p
2
þ l

�
iF

�
p
2
− l

��
vdiagcl ðpÞ;

ð96Þ

which can be solved directly by separation of variables

Z
kIR

kUV

dk
∂kv

diag
cl ðpÞ

ðvdiagcl ðpÞÞ2

¼ −iN
Z

kIR

kUV

dk∂k

Z
l
GR;k

�
p
2
þ l

�
iFk

�
p
2
− l

�
; ð97Þ

1

λcl
−

1

vdiagcl ðpÞ ¼ −iN
Z
l
GR

�
p
2
þ l

�
iF

�
p
2
− l

�
; ð98Þ

eventually yielding the familiar result of the two-particle
irreducible (2PI) 1/N expansion to next-to-leading order
(NLO) [27,58]

vdiagcl ðpÞ ¼ λcl
1þ iNλcl

R
l GRðp2 þ lÞiFðp

2
− lÞ ; ð99Þ

which corresponds to an infinite resummation of one-loop
bubble chains. Based on this analysis, we therefore con-
clude that the above truncation of the real-time FRG flow
equations not only encompasses the correct two-loop
perturbative behavior of the spectral function for generic
N, but also includes all contributions up to next-to-leading
order of the 2PI 1/N expansion in the large N limit. We
further note that the interplay of the 2PI approach and the
FRG in Euclidean time has been explored in the literature,
e.g., the use of 2PI truncations in FRG calculations [59] or
the use of the FRG to perform the complicated renormal-
ization of 2PI calculations [60,61], and we expect the
interplay of the approaches to be similarly useful for real-
time calculations.

V. NUMERICAL IMPLEMENTATION

Due to the nested one-loop structure of the real-time
FRG flow equations, it is beneficial to employ (pseudo-)
spectral methods to solve the functional differential equa-
tions numerically. We have explored two different
schemes, with the first one based on a straightforward
lattice discretization of frequencies, where for an arbitrary
function GðωÞ, we store the information at a discrete set of
frequencies ωi,

GðωiÞ ¼ GðωÞ
i ; ωi ¼

2πi
Ntat

; i ¼ 0;…; N − 1: ð100Þ

Similarly, the corresponding function GðtÞ in coordinate
space is obtained at a discrete set of points ti,

GðtiÞ ¼ GðtÞ
i ; ti ¼

�
iΔt i ≤ N=2

ði − NÞΔt i > N=2;
ð101Þ

by a fast Fourier transform (FFT) GðtÞ
i ¼ 1

Ntat

P
j G

ðωÞ
j eiωjti .

Clearly, the advantage of this method is that the right-hand
sides of the flow equations are simple products and sums in
position space, whereas in momentum space we would
need to compute convolution integrals. Similarly, also the
tadpole term can be computed efficiently using the FFT
method by employingZ

y
½Nvdiagcl;A;kðyÞ þ 2voffcl;A;kðyÞ�BFð0Þ

¼ ½Nṽdiagcl;A;kðp ¼ 0Þ þ 2ṽoffcl;A;kðp ¼ 0Þ�BFðx ¼ 0Þ:
ð102Þ

While the evaluation of the right-hand sides of the flow
equation for the two-point functions then becomes straight-
forward, the situation is different for the flow equation for
the four-point function, where the integral on the right-hand
side of the flow equation for the vertex function (94) cannot
be solved by using FFT, and we instead use the lattice sum
to approximate the integral. Subsequently, the FRG flow
equations themselves are solved numerically using a fourth
order Runge-Kutta scheme.
Second, we have also explored the possibility of numeri-

cally solving the FRG flow equations based on an expan-
sion in Hermite functions, whereby the propagators GðtÞ
and GðωÞ in the time and frequency domain are expanded
according to

GðtÞ ¼
XN−1

k¼0

gðtÞk Ψkðt=atÞ; GðωÞ ¼
XN−1

k¼0

gðωÞk Ψkðω=aωÞ;

ð103Þ
with the spacing aω ¼ 1=at adjusted to properly resolve
the propagators at all relevant scales. Numerically, we keep
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track of the expansion coefficients gðtÞk and gðωÞk , as well as
the values of the propagators at times t ¼ xkat and
frequencies ω ¼ xkaω, where xi are the Gauss-Hermite
points, for which GðtÞ and GðωÞ are simply given by

Gðt ¼ xiatÞ ¼
XN
k¼0

gðtÞk ΨkðxiÞ;

Gðω ¼ xiaωÞ ¼
XN−1

k¼0

gðωÞk ΨkðxiÞ; ð104Þ

which then allow for efficient calculations of basic products
and sums of the various functions. By use of the ortho-
normality relation

R
∞
−∞ dxΨiðxÞΨjðxÞ ¼ δij for Hermite

functions, the expansion coefficients gðtÞk and gðωÞk can be

obtained from the integrals gðtÞk ¼ R dt=atGðtÞΨkðt=atÞ and
gðωÞk ¼ R dω=aωGðωÞΨkðω=aωÞ, where in practice we
employ Gauss-Hermite quadrature, such that

gðtÞk ¼
XN−1

i¼0

ΨkðxiÞGðxiatÞwi;

gðωÞk ¼
XN−1

i¼0

ΨkðxiÞGðxiaωÞwi; ð105Þ

where wi ¼ 1
Nψ2

N−1ðxiÞ
are the corresponding quadrature

weights. Based on the following relations between the

expansion coefficients gðtÞk and gðωÞk :

gðtÞk ¼ aωffiffiffiffiffiffi
2π

p ð−iÞkgðωÞk ; gðωÞk ¼ at
ffiffiffiffiffiffi
2π

p
ðþiÞkgðtÞk ; ð106Þ

it is then straightforward to perform Fourier transforma-
tions, in order to efficiently calculate the right-hand side of
the flow equations for the two-point functions. Similarly, to
the FFT method, we employ a Gauss-Hermite quadrature
when evaluating the integrals on the right-hand side of the
flow equation for the four-point function, and for simplicity
we resort to a forward Euler scheme when solving the FRG
flow equations.

VI. BENCHMARKS AND CASE STUDIES

We will benchmark the method at the example of the
anharmonic oscillator, which corresponds to the scalar field
theory in d ¼ 0 dimensions. Generally, the results for such
an anharmonic oscillator depend on the three dimensionless
combinations of parameters

λ

m3
;

λ

βm4
;

γ

βm
; ð107Þ

as well as on the number of field components N, which
we will set to N ¼ 1. However, it is well known that in the

classical-statistical theory, the coupling constant and
temperature dependence are related, such that upon
performing a rescaling of the classical field equations
of motion with

x0 → mx0; ϕ →

ffiffiffiffiffiffi
λ

m3

r ffiffiffiffi
m

p
ϕ; η → η=

ffiffiffiffi
m

p
; ð108Þ

the dependence on λ
m3 can be eliminated from the classical-

statistical field theory. Of course, this is not the case in the
corresponding quantum theory, such that for fixed values of
the (dimensionless) thermal interaction strength λ

βm4, the

dimensionless parameter λ=m3 effectively describes the
quantum interaction strength, with λ=m3 ¼ 0 corresponding
to the classical-statistical limit.
Before we present a series of results of real-time FRG

calculations for classical and quantum systems, some sanity
checks are in order to instill confidence in our numerics.
Evidently, a first important check is to compare the results
obtained by different numerical methods, as shown in Fig. 2,
where we compare results for the spectral functions com-
puted using the discrete Fourier grid and Gauss-Hermite
representation methods described in Sec. V. Excellent agree-
ment between the two approaches is observed when suffi-
ciently many discretization points are taken into account,
indicating the common convergence to the correct result.
Despite significant differences in the underlying implemen-
tation, we also find that within our implementation both
approaches have comparable execution times on the order of
40s for calculations with one-loop vertices and 20m for
calculations with self-consistent vertices, when employing
the same number of N ¼ 1024 discretization points.5

However, we note that the convergence of the results
generally appears to be somewhat better for the discrete
Fourier grid.
Besides the convergence of the discrete representation of

functions, another important sanity check for any FRG
calculation is the comparison of results using different
regulator schemes as the physical results in the infrared
should be independent of the regulator choice. Figure 3
shows a comparison of spectral functions calculated with
the one-loop form for the vertex functions. Our first
regulator choice is masslike with a sharp regulator function,
i.e., choosing γk ¼ 0 and rk being the optimized Litim
regulator in Eq. (39). Our second regulator scheme is using
the dþ 1 dimensional regulator obeying causality, i.e.,
choosing μk and γk according to Eq. (40) and a smooth
double exponential cutoff

rkðωÞ ¼ ðk2 − w2Þ exp
�
−
ω2

k2

�
: ð109Þ

5Calculations were performed on a single node equipped
with an Intel Xeon Silver 4110, the UV cutoff was chosen to
be Λ ¼ 10 and the step size dk ¼ 0.05.
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The spectral function from both regulator schemes match
almost perfectly, giving us good confidence in our methods.

A. Benchmarks in the classical-statistical limit

We begin with the study of classical-statistical dissipa-
tive systems, which in accordance with our discussion in
Sec. II can be compared against exact numerical results
from classical-statistical simulations [37–40]. With regards
to the classical-statistical simulations, we follow the meth-
odology of previous works [39,40] and simulate the time
evolution of an ensemble of Nsamples ¼ 128 independent
realizations by solving the discretized classical evolution
equations using an Euler-Maruyama scheme with step
width mΔt ¼ 0.01. We then calculate the classical-
statistical equilibrium spectral function from the unequal
time correlation function

ρsðt; t0Þ ¼
β

2
hϕðtÞπðt0Þ − πðtÞϕðt0Þiclass:stat:; ð110Þ

where h:iclass:stat: denotes the average over the classical-
statistical ensemble. Subsequently, we perform a discrete
sine transformation to obtain the classical-statistical spec-
tral function ρcsðωÞ in frequency space, which can then be
compared directly with the classical-statistical real-time
FRG calculations.
We provide an example of such a comparison in Fig. 4,

where results for the spectral functions from classical-
statistical simulations are compared to one- and two-loop
perturbation theory [cf. Eqs. (55), (72), and (73)], as well as
to FRG calculations with the one-loop vertex and fully
self-consistent FRG calculations with a flowing vertex
function. We see that for the particular choice of parameters
λ=βm4 ¼ 2 and γ=βm ¼ 1=2 in Fig. 4 the system cannot be
sufficiently described by perturbation theory; while the one-

loop result overestimates the thermal mass shift, the two-
loop results overcorrect this behavior, further indicating a
poor convergence pattern. Conversely, the real-time FRG
calculations are able to reproduce the classical-statistical
results, such that even with the one-loop vertex ansatz the
position and width of the peak are rather well described. By
including the self-consistent determination of the vertex
functions, the spectral function only exhibits minor changes
with a slight shift and narrowing of the broad resonance
peak. Nevertheless, it is encouraging to observe that the
inclusion of the self-consistent vertex flow does improve the
agreement with the exact result from classical-statistical
simulations.
Next, in order to further quantify the performance of

different approaches, we have extracted the massesmeff and
widths γeff of the main peak of the spectral function by
performing a fit to a Breit-Wigner ansatz. Our results are
compactly summarized in Fig. 5, where we compare the
results of the different approaches as a function of the
(thermal) coupling strength λ=βm4. Evidently, for small
couplings, we find a good agreement between all methods,
while for larger couplings perturbation theory becomes
unreliable as the LO result seems to overestimate the mass
shift and does not capture the broadening of the peak, while
the NLO result underestimates the mass shift and over-
estimates the broadening. Conversely, the one-loop FRG
results and the data from fully self-consistent FRG simu-
lations are comparable to each other and in general in good
agreement with the classical-statistical results up to the
largest investigated coupling in Fig. 5.
Eventually, for even larger values of the coupling

constant, the spectral functions from the FRG calculations
also deviate substantially from the classical-statistical
results as can be seen from Fig. 6, where we present the
results for λ=βm4 ¼ 4. Strongly coupled classical-statistical
calculations in Fig. 6 still produce a rather narrow
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quasiparticle peak, whereas the FRG calculation with the
one-loop vertex overestimates the broadening resulting in
large infrared contributions for the spectral function. The
spectral function from the FRG calculation with the
self-consistently determined vertex matches the spectral
function best; however, the data show some spurious
oscillations in the spectral function. Eventually for λ≳ 4,
the FRG calculations fail to produce stable and sensible
results for the spectral functions. We note that the point
where the FRG with the one-loop vertex becomes unreli-
able can be readily estimated by looking at Eq. (89). Since
this is a perturbative expression for some given coupling λ,
the corrections of the bare vertex become of the same
order of the bare vertex itself and—similar to perturbation
theory—our results become unreliable. Even though one
could expect that the inclusion of self-consistent vertices

improves the behavior in the regime of large coupling
strength, we find that for large couplings the calculations
with self-consistent vertices become numerically unstable
and we have not succeeded in obtaining physical results for
the spectral function for significantly larger coupling
strengths than in Fig. 6.
So far, we have investigated the spectral functions for a

strongly dissipative anharmonic oscillator (γ=βm ¼ 0.5),
and we will now study the effect of reducing the dissipative
coupling to the heat bath. Before we proceed, we briefly
note that the effect of the dissipative coupling γ=βm is
somewhat peculiar in 0þ 1d as, in contrast to higher
dimensional theories, we expect to recover a discrete
spectrum in the limit of a closed system γ=βm → 0, and
the behavior could be qualitatively different in higher
dimensions. Figure 7 shows a comparison of spectral
functions obtained by classical-statistical simulations and
FRG calculations with one-loop vertices in the classical
limit. We observe that the deviations from the classical-
statistical results are increasing when we decrease the
dissipative coupling γ=βm, as may be expected due to
the fact that the longer-lived excitations can interact with
each other over a larger time scale. While for γ=βm ¼ 0.2,
the FRG calculation with one-loop vertex functions still
provides a rather accurate description of the classical-
statistical result, the agreement becomes gradually worse
with decreasing γ=βm. Especially for very small values of
the dissipative coupling γ=βm < 0.05, the quasiparticle
peak of the spectral function splits into a double peak,
which is clearly not observed in the classical-statistical
data. Similarly, also the strength of the 1 ↔ 3 resonance
peak around located ω ∼ 3m generally tends to be over-
estimated by the FRG calculations.
We note that the FRG calculations with scale-dependent

vertex functions also become unstable for small dissipative
coupling γ=βm than shown in Fig. 7. In order to further
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investigate the instability of the self-consistent FRG
method at large couplings (i.e., small dissipative cou-
plings), we can now look at the momentum dependence
of the classical, retarded vertex function vcl;R. Figure 8
shows a comparison of the self-consistently determined
data for vcl;R with the perturbative one-loop result for the
same parameters as in Fig. 4. We recognize that for small
frequencies the self-consistent vertex function behaves as
expected, as both real and imaginary parts of the vertex
functions are suppressed compared to the perturbative
result. However, for larger frequencies, we find large
enhancements of the self-consistently determined vertex
function over the perturbative result. Due to the rather
complicated structure of the flow equation for the four-
point function, we are currently not sure about the exact
origins of these spurious enhancements, which may be

connected to the particular situation in 0þ 1 dimension and
we hope that our procedure will work out better in higher
dimensions. Besides additional studies of this behavior, it
would also be useful to extract the corresponding vertex
functions directly from classical-statistical simulations,
which is clearly beyond the scope of this work but could
potentially be achieved along the lines of [62].

B. Spectral functions in the quantum theory

Now that we have benchmarked and assessed the range of
applicability of the method at the hand of the classical-
statistical theory, we can continue to investigate spectral
functions in the corresponding quantum theory. A compact
summary of our results is provided in Fig. 9, where we show
a comparison of spectral functions from the FRG with the
one-loop vertex with results from classical-statistical simu-
lations and perturbative calculations for different values of
the thermal and quantum coupling strength. We see that for
small coupling all methods agree very well. When we
increase the coupling, we see a second peak emerging at
roughly 3m due to the 1 ↔ 3 processes in the one-loop
correction to the four-point function. As there is no vertex
correction at the perturbative one-loop level also, the one-
loop spectral function fails to capture this feature. When we
increase the coupling either by increasing the dimensionless
combination of coupling and temperature or by driving the
system more toward a strongly coupled quantum system we
see that perturbation theory becomes unreliable rather
quickly as there are large differences between the LO and
NLO results. Specifically, for large couplings, the perturba-
tive spectral functions at the two-loop level show additional
spurious peaks or may even become negative. Conversely,
the FRG results remain much more well behaved throughout
the observed parameter range, except perhaps for the largest
combination of couplings shown in the bottom right panel.
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VII. CONCLUSIONS AND OUTLOOK

We have presented an overview over on how to employ
the functional renormalization group approach on the
Schwinger-Keldysh contour to extract real-time spectral
functions for scalar theories. We introduced a dþ 1
dimensional regulator that is compatible with the time
ordering properties of the propagators opening the pos-
sibility of having a fully Lorentz symmetric regulator
scheme. By introducing a novel diagrammatic representa-
tion of the n-point functions, we were able to reduce the
number of involved diagrams and simplify the derivation of
flow equations significantly. We performed a careful
perturbative analysis of the FRG flow equations, which
revealed that local potential approximations of the effective
action, which are commonly used in Euclidean FRG
calculations, are insufficient for describing real-time
dynamics as, e.g., such truncations will never lead to a
broadening of the spectral function in the symmetric phase.

Based on our perturbative analysis, we developed a differ-
ent truncation scheme for real-time FRG calculations based
on a vertex expansion. By taking into account nonlocal
contributions to the four-point function, all propagators in
this scheme are two-loop complete and the FRG flow
induces a finite decay width of the spectral functions.
Based on this expansion, we derived the relevant flow

equations for the two-point functions. By employing a
generalization of the perturbative one-loop expression for
the four-point functions, we also derived the flow equations
for the vertex functions, taking into account generalized
fluctuation-dissipation relations and neglecting contribu-
tions involving higher n-point functions, which enable us to
solve the truncated system self-consistently. We developed
to different numerical procedures to solve the RG flow
equations employing (pseudo-)spectral methods, based on
a straightforward lattice discretization using FFT and an
expansion in terms of Hermite functions.
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We benchmarked our methods at the 0þ 1d example of
the anharmonic oscillator where we compared results from
perturbation theory, our FRG calculations with both trun-
cation schemes, and results from classical-statistical sim-
ulations. Since the real-time FRG framework can be
formulated in essentially the same way for classical and
quantum theories, the comparison to exact results from
classical-statistical simulations proved to be an important
benchmark to assess the range of applicability and perfor-
mance of the method. Overall, we find that the real-time
FRG is able to reproduce the classical-statistical results
much better than the perturbative calculations. Still, we
find that in larger couplings also the FRG fails to reproduce
the correct results. In case of the one-loop vertex truncta-
tion, this is connected to the perturbative origin of the
vertex. In case of the fully self-consistent FRG calculations,
we found a spurious enhancement of the vertex functions at
large momenta leading to a breakdown of the method for
large couplings. The origin of this enhancement is still
unclear but could particularly be a problem of the 0þ 1
dimensional theory. Another possible cause is the omission
of six-point functions in our truncation. Similar to the
requirement of a scheme with two-loop complete propa-
gators to reproduce the broadening of the spectral func-
tions, we might also need a truncation with two-loop
complete four-point functions to be able to correctly
renormalize the vertices.
While the formalism described in this work has been

derived for N component scalar field theories in dþ 1
dimensions, so far our numerical investigations have been
limited to the 0þ 1 dimensional theory. Clearly, the next
important step would be to generalize our numerical
investigations to higher dimensional systems, especially
in 3þ 1d. Evidently, the comparison of real-time FRG
calculations in the classical limit to classical-statistical
simulations proved extremely insightful and should also
be pursued for studies in higher dimensions. We also expect
that in higher dimensions it should be possible to take the
limit of vanishing dissipative coupling γ=βm → 0, which
would further allow to compare real-time FRG calculations
in the quantum theory to results from lattice Monte-Carlo
simulations and/or analytically continued FRG calculations
in Euclidean space-time. Eventually, we want to generalize
our framework to include fermions opening the possibility
of applying our framework to low energy effective theories
of QCD like, e.g., the quark-meson model.
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APPENDIX A: CONVENTIONS FOR
REAL-TIME PROPAGATORS

Below we summarize our conventions and also note
some useful relations among the various real-time propa-
gators. Based on the operator definitions, one has

Fðxx̄Þ ¼ 1

2
hfϕ̂ðxÞ; ϕ̂ðx̄Þgi; ρðxx̄Þ ¼ ih½ϕ̂ðxÞ; ϕ̂ðx̄Þ�i;

ðA1Þ

along with

GRðxx̄Þ ¼ þθðx0 − x̄0Þρðxx̄Þ;
GAðxx̄Þ ¼ −θðx̄0 − x0Þρðxx̄Þ: ðA2Þ

We also note for convenience the following relations
between real and imaginary parts of the various correlation
functions6:

ρðpÞ ¼ 2iImGRðpÞ ¼ GRðpÞ −GAðpÞ;
FðpÞ ¼ −ineffðpÞρðpÞ; ðA3Þ

where in the quantum case we have nqueff ¼ nBE þ 1=2 with
nBEðpÞ ¼ 1=ðeβp0 þ 1Þ being the Bose-Einstein distribu-
tion, such that

nqueffðpÞ ¼ ðnBEðpÞ þ 1=2Þ ¼ −ðnBEð−pÞ þ 1=2Þ

¼ 1

2
cothðβp0=2Þ: ðA4Þ

In the classical case, we find

ncleffðpÞ ¼
1

βp0

ðA5Þ

to be the Rayleigh-Jeans distribution. Our convention for
the Fourier transformation reads

φðxÞ ¼
Z

dω
2π

Z
ddp
ð2πÞd e

þipxφðpÞ: ðA6Þ

We further note the following symmetry relations:

ρðpÞ ¼−ρð−pÞ; FðpÞ ¼Fð−pÞ; GRðpÞ ¼GAð−pÞ;
ðA7Þ

6Note that unlike other authors we do not introduce an
additional factor of −i in the Fourier transform of the spectral
function. Hence, the corresponding factor of −i appears explicitly
in the relation between the statistical function and the spectral
function.
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as well as the various relations for the real and imaginary
parts,

ReðρðpÞÞ ¼ 0;

ImðρðpÞÞ ¼ þ2ImGRðpÞ ¼ −2ImGAðpÞ;
ReðFðpÞÞ ¼ þ2neffðp0ÞImGRðpÞ ¼ −2neffðp0ÞImGAðpÞ
ImðFðpÞÞ ¼ 0; ðA8Þ

along with

ImGRðpÞ ¼ þ1

2i
ρðpÞ;

ReGRðpÞ ¼ P:V:
1

2πi

Z
∞

−∞
dω

ρðω; p⃗Þ
ω − p0

; ðA9Þ

ImGAðpÞ ¼ −1
2i

ρðpÞ;

ReGAðpÞ ¼ P:V:
1

2πi

Z
∞

−∞
dω

ρðω; p⃗Þ
ωþ p0

; ðA10Þ

where we used the relations θðxÞ ¼ 1
2πi

R∞
−∞ dω 1

ω−iϵ e
iωx

along with 1
ω−iϵ ¼ P:V: 1ω þ iπδðωÞ, such that the above

identities follow directly from the respective time orderings.

APPENDIX B: EVALUATION OF THE
REAL-TIME EFFECTIVE ACTION

IN THE LIMIT k → Λ

Starting from the definition of the effective action in
Eq. (22), it is convenient to perform a field shift φ → ϕþ φ
in the functional integration to separate off the contribution
from the classical action. By exploiting the equations of
motion to reexpress the appearance of the sources J; J̃ in
terms of derivatives of the effective action, Eq. (22) can
then be recast into a functional integro-differential equation
for the effective action

Γk½ϕ; ϕ̃� ¼ S½ϕ; ϕ̃� − i logΔZk½ϕ; ϕ̃�; ðB1Þ

with ΔZk½ϕ; ϕ̃� given by the functional

ΔZk½ϕ; ϕ̃� ¼ eiðSC ½ϕþ
δ
δj̃
;ϕ̃þ δ

δj�−SC½ϕ;ϕ̃�−Γϕ
k⊗

δ
δj̃
−Γϕ̃

k⊗
δ
δjÞ
Z

½DφDφ̃�kej̃⊗φþj⊗φ̃

				
j¼j̃¼0

; ðB2Þ

where
R ½DφDφ̃�k denotes the regulated path integralZ

½DφDφ̃�k ¼
Z

DφDφ̃eiΔSk½φ;φ̃�; ðB3Þ

which for a Gaussian regulator can be evaluated explicitly. Expressing the functional integrations in Fourier space, one finds
(up to irrelevant prefactors)

Z
½DφDφ̃�k ¼

Y
a

Z
∞

−∞
dφð0Þ

a

Z
∞

−∞
dφ̃ð0Þ

a e−γkðωÞωneffðωÞðφ̃
ð0Þ
a Þ2−iμkðωÞφð0Þ

a φ̃ð0Þ
a

				
ω¼0

×
Y
ω>0

Z
∞

−∞
dReφaðωÞ

Z
∞

−∞
dImφaðωÞ

Z
∞

−∞
dReφ̃aðωÞ

Z
∞

−∞
dImφ̃aðωÞ

× e−γkðωÞωneffðωÞjφ̃aðωÞj2−iμkðωÞφaðωÞφ̃
�
aðωÞþφ�aðωÞφ̃aðωÞ

2
−iγkðωÞφaðωÞφ̃

�
aðωÞ−φ�aðωÞφ̃aðωÞ

2i : ðB4Þ

Evaluating the functional integral explicitly according to

Z
½DφDφ̃�kej̃⊗φþj⊗φ̃ ¼

Y
a

2π

jμkðωÞj
e
−iμkðωÞ
μ2
k
ðωÞ j̃

0
aj0a
e
ωγkðωÞneff ðωÞ

μ2
k
ðωÞ j̃0aj̃0aY

ω>0

ð2πÞ2
μ2kðωÞ þ ω2γ2kðωÞ

ðB5Þ

e
2ωγkðωÞ

μ2
k
ðωÞþω2γ2

k
ðωÞðjð−ωÞj̃ðωÞ−jðωÞj̃ð−ωÞþ2j̃ð−ωÞj̃ðωÞneffðωÞÞ

e
− 2iμkðωÞ
μ2
k
ðωÞþω2γ2

k
ðωÞðjð−ωÞj̃ðωÞ−jðωÞj̃ð−ωÞÞ; ðB6Þ

one finds that in the limit k → Λ, the relevant factors characterizing the variations with respect to the sources j; j̃ are
inversely proportional to regulators, such that

lim
k→Λ

ωγkðωÞ
μ2kðωÞ þ ω2γ2kðωÞ

¼ 0; lim
k→Λ

μkðωÞ
μ2kðωÞ þ ω2γ2kðωÞ

¼ 0; ðB7Þ
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and the functional becomes independent of the sources j; j̃
in the vicinity of j ¼ j̃ ¼ 0 where derivatives are to be
evaluated. One concludes, that in the limit k → Λ the
effective action in Eq. (B1) does not receive any additional
contributions from the path integral in Eq. (B2) and thus
reduces to

lim
k→Λ

Γk½ϕ; ϕ̃� ¼ SC½ϕ; ϕ̃�: ðB8Þ

APPENDIX C: PERTURBATIVE CONTRIBUTION
TO THE DAMPING RATE

Here we will evaluate the perturbative contribution to
the damping rate, which is also useful to understand the
differences between classical and quantum statistical
processes and in establishing the comparison to the
literature that is largely based on analytic continuations
of Euclidean calculations. Based on Eq. (73), the per-
turbative contribution is obtained by evaluating the rhs
with free propagators, which take the following form in
momentum space:

GR
0 ðpÞ ¼

−1
ω2 − E2

p þ iγ=βω
;

GA
0 ðpÞ ¼

−1
ω2 − E2

p − iγ=βω
: ðC1Þ

Spectral function and statistical function are then given
by

ρ0ðpÞ ¼ GR
0 ðpÞ −GA

0 ðpÞ ¼
2iðγ=βÞω

ðω2 − E2
pÞ2 þ ðγ=βωÞ2 ;

ðC2Þ

F0ðpÞ ¼
ðγ=βÞω2neffðωÞ

ðω2 − E2
pÞ2 þ ðγ=βωÞ2 ; ðC3Þ

allowing us to proceed directly with the evaluation of
diagrams. By expressing all retarded/advanced propaga-
tors in terms, the spectral function using Eq. (A2), the
retarded self-energy, is defined as

GRðxx̄Þ ¼ GR
0 ðxx̄Þ þ GR

0 ðxyÞΣRðyȳÞGRðȳ x̄Þ; ðC4Þ

ΣRðxx̄Þ ¼ ΣR
clðxx̄Þ þ ΣR

quðxx̄Þ; ðC5Þ

which can be expressed in the form

ΣR
clðxx̄Þ ¼ −

3

2
ðN þ 2Þλ2clθðxx̄ÞiFðxx̄ÞiFðxx̄Þρðxx̄Þ; ðC6Þ

ΣR
quðxx̄Þ ¼

− 3
2
ðN þ 2Þ
3

λclλquθðxx̄Þρðxx̄Þρðxx̄Þρðxx̄Þ;
ðC7Þ

Since spectral and statistical correlation functions are
purely real in coordinate space, and have well defined
real and imaginary parts in momentum space, the real
and imaginary parts of the can be readily evaluated, by
use of relations as in (A9), which follow directly from the
properties of the Heaviside step function. Since likewise
the real part can be reconstructed from Kramers-Kronig
type relations, we will focus on the imaginary part, which
can be directly evaluated as

ImΣR
clðpÞ ¼ −

3

2
ðN þ 2Þλ2cl

Z
ddþ1k
ð2πÞdþ1

Z
ddþ1q
ð2πÞdþ1

iFðkÞiFðqÞρðp − k − qÞ
2i

; ðC8Þ

ImΣR
quðpÞ ¼

− 3
2
ðN þ 2Þ
3

λclλqu

Z
ddþ1k
ð2πÞdþ1

Z
ddþ1q
ð2πÞdþ1

ρðkÞρðqÞρðp − k − qÞ
2i

: ðC9Þ

Specifically, in the limit γ → 0 of nondissipative systems, the energy integrations can be performed using

ρ0ðpÞ ¼γ→0
2πisignðωÞδðω2 − E2

pÞ ¼ 2πi
X
sp

sp
δðω − spEpÞ

2Ep
; ðC10Þ

F0ðpÞ ¼γ→0
2πδðω2 − E2

pÞneffðjωjÞ ¼ 2π
X
sp

neffðjωjÞ
δðω − spEpÞ

2Ep
; ðC11Þ
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and the result can be compactly expressed in the form

ImΣR
clðpÞ ¼ −

3

2
ðN þ 2Þλ2cl

Z
q⃗;k⃗

X
sksqsr

srneffðEkÞneffðEqÞ
8EkEqEr

ðC12Þ

× πδðp0 − skEk − sqEq − srErÞ;

ImΣR
quðpÞ ¼

− 3
2
ðN þ 2Þ
3

λclλqu

Z
q⃗;k⃗

X
sksqsr

sqsksr
8EkEqEr

πδðp0 − skEk − sqEq − srErÞ; ðC13Þ

where the summation over si ¼ � collects the positive and negative frequency contributions and we denote
R
q⃗;k⃗ ¼R

ddk
ð2πÞd

R ddq
ð2πÞd as well as r ¼ p − k − q to lighten the notation. By further symmetrizing the integrand of ImΣR

clðpÞ, the
expressions can be recast in the form

ImΣR
clðpÞ ¼

− 3π
2
ðN þ 2Þ
3

λ2cl

Z
q⃗;k⃗

X
sksqsr

δðp0 − skEk − sqEq − srErÞ
8EkEqEr

ðC14Þ

½srneffðEkÞneffðEqÞ þ sqneffðEkÞneffðErÞ þ skðneffðEqÞneffðErÞ�;

ImΣR
quðpÞ ¼

− 3π
2
ðN þ 2Þ
3

λclλqu

Z
q⃗;k⃗

X
sksqsr

δðp0 − skEk − sqEq − srErÞ
8EkEqEr

sksqsr; ðC15Þ

where the prefactors of the two terms are equal except for the different appearances of the coupling constants λcl and λqu. We
will now concentrate on a quantum theory where we can set neffðEÞ ¼ nðEÞ þ 1=2—with the Bose-Einstein distribution
nðEÞ—and exploit the relation λqu ¼ λcl=4 between the classical and quantum (tree level) vertices, it is straightforward to
show that the above terms can be combined in the following way:

sqsksr
4

þ sr

�
nðEkÞ þ

1

2

��
nðEqÞ þ

1

2

�
þ sq

�
nðEkÞ þ

1

2

��
nðErÞ þ

1

2

�
þ sk

�
nðEqÞ þ

1

2

��
nðErÞ þ

1

2

�

¼
�
nðEkÞ þ

1þ sk
2

��
nðEqÞ þ

1þ sq
2

��
nðErÞ þ

1þ sr
2

�
−
�
nðEkÞ þ

1 − sk
2

��
nðEqÞ þ

1 − sq
2

��
nðErÞ þ

1 − sr
2

�
;

ðC16Þ

which contains the usual quantum statistical factors for in/outgoing particles in a scattering process. Collecting
everything, the imaginary part of the retarded self-energy ImΣRðpÞ ¼ ImΣR

clðpÞ þ ImΣR
quðpÞ can then be compactly

expressed as

ImΣRðpÞ ¼ −
πðN þ 2Þ

2
λ2cl

Z
ddk
ð2πÞd

Z
ddq
ð2πÞd

X
sksqsr

�
δðp0 − skEk − sqEq − srErÞ

8EkEqEr

�
nðEkÞ þ

1þ sk
2

��
nðEqÞ þ

1þ sq
2

�

×

�
nðErÞ þ

1þ sr
2

�
−
�
nðEkÞ þ

1 − sk
2

��
nðEqÞ þ

1 − sq
2

��
nðErÞ þ

1 − sr
2

��
ðC17Þ

in agreement with the standard result in Ref. [54]. Vice versa, in the classical-statistical theory, the contribution proportional
to λqu vanishes identically, and the occupancy factors nðEpÞ þ 1=2 are to be replaced by the Rayleigh-Jeans distribution
nclðEpÞ ¼ 1=βEp, such that

ImΣR
clðpÞ ¼

− 3π
2
ðN þ 2Þ
3

λ2cl

Z
q⃗;k⃗

X
sksqsr

δðp0 − skEk − sqEq − srErÞ
8EkEqEr

× ½srnclðEkÞnclðEqÞ þ sqnclðEkÞnclðErÞ þ sknclðEqÞnclðErÞ�; ðC18Þ
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now yielding the classical-statistical factors for in/outgoing
particles in a scattering process. We have thus verified
explicitly that with a suitable truncation which properly
accounts for the nonlocal vertex structure generated at the
one-loop level, the real-time FRG approach correctly
captures the collisional broadening of the spectral function
at the two-loop level.

Since for βEp ≪ 1 the statistical factors nðEpÞ þ
1þsp
2

≈ 1=βEp agree approximately, the classical-statistical
theory is expected to accurately capture the relevant
contributions of excitations with energies much smaller
than the temperature. However, one crucial difference is
that the classical-statistical theory only allows for inter-
actions between physically occupied excitations of the
system. Due to the statistical factors, the classical-
statistical result behaves as ImΣR

clðpÞ ∼ T3, such that in
the limit T → 0 where classically no states are physically
occupied, all contributions to the self-energy vanish
identically, which is of course not the case in the
corresponding quantum theory.

APPENDIX D: FLUCTUATION-DISSIPATION
RELATION

Below we demonstrate explicitly that the flow equations
of the two-point functions satisfy the relation

∂kΓ
ϕ̃ ϕ̃
k ðpÞ ¼ neffðp0Þð∂kΓ

ϕ̃ϕ
k ðpÞ − ∂kΓ

ϕϕ̃
k ðpÞÞ: ðD1Þ

A quick calculation with the one-loop forms for the vertices
show that at one-loop level we have

vanðpÞ ¼ neffðp0Þðvcl;R;kðpÞ − vcl;A;kðpÞÞ: ðD2Þ

And thus also

Γϕ̃ ϕ̃ðpÞ ¼ neffðp0ÞðΓϕ̃ϕðpÞ − Γϕϕ̃ðpÞÞ: ðD3Þ

Now, in the case of the O(N) model beyond one loop, we
have to introduce diagonal and off-diagonal vertex func-
tions. Here we will make an assumption for the structure of
the diagonal as well as the off-diagonal parts of the vertex
function, namely,

vXqu;Rðxx̄ÞBAðxx̄Þ ¼ vXqu;Aðxx̄ÞBRðxx̄Þ ¼ 0: ðD4Þ

This equation just tells us that vqu;R=A is an retarded/
advanced function7; thus, this assumption should better be
true. Let us go to momentum space and write down the flow
equations for the quantities in Eq. (D3),

∂kðΓϕ̃ϕðpÞ − Γϕϕ̃ðpÞÞ ¼ −
i
2

Z
q
f2½ðvdiagcl;R;kðp − qÞ − vdiagcl;A;kðp − qÞÞ þ ðN þ 1Þðvoffcl;R;kðp − qÞ

− voffcl;A;kðp − qÞÞ�neffðq0ÞBρðqÞ þ 2½vdiagan ðp − qÞ þ ðN þ 1Þvoffan ðp − qÞ�BρðqÞg;

∂kΓϕ̃ ϕ̃ðpÞ ¼ −
i
2

Z
q
f2½vdiagan ðp − qÞ þ ðN þ 1Þvoffan ðp − qÞ�neffðq0ÞBρðqÞ

þ 2½ðvdiagqu;Rðp − qÞ − vdiagqu;Aðp − qÞÞ þ ðN þ 1Þðvoffqu;Rðp − qÞ − voffqu;Aðp − qÞÞ�BρðqÞg;

where we have used the assumption from Eq. (D4). We have further used that there is a fluctuation-dissipation relation for
the B’s,

BFðpÞ ¼ neffðpÞBρðpÞ; with BρðpÞ ¼ BRðpÞ − BAðpÞ: ðD5Þ

By compactifying

vcl;R=AðpÞ ¼ vdiagcl;R=AðpÞ þ ðN þ 1Þvoffcl;R=AðpÞ; vanðpÞ ¼ vdiagan ðpÞ þ ðN þ 1Þvoffan ðpÞ;

the flow equations now read

∂kðΓϕ̃ϕðpÞ − Γϕϕ̃ðpÞÞ ¼ −
i
2

Z
q
2½ðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞneffðq0Þ þ 2vanðp − qÞ�BρðqÞ;

∂kΓϕ̃ ϕ̃ðpÞ ¼ −
i
2

Z
q
½2vanðp − qÞneffðq0Þ þ 2ðvqu;Rðp − qÞ − vqu;Aðp − qÞÞ�BρðqÞ:

7This is not correct in a strict sense as vqu;R=A is not necessarily zero for x − x̄ ¼ 0 but its good enough for our purposes.
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Now, let us check if the fluctuation-dissipation relation does hold,

∂kΓϕ̃ ϕ̃ðpÞ ¼ neffðp0Þ∂kðΓϕ̃ϕðpÞ − Γϕϕ̃ðpÞÞ;Z
q
½vanðp − qÞneffðq0Þ þ ðvqu;Rðp − qÞ − vqu;Aðp − qÞÞ�BρðqÞ

¼
Z
q
neffðp0Þ½ðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞneffðq0Þ þ vanðp − qÞ�BρðqÞ;

⇒ vanðp − qÞneffðq0Þ þ ðvqu;Rðp − qÞ − vqu;Aðp − qÞÞ
− neffðp0Þ½ðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞneffðq0Þ þ vanðp − qÞ� ¼ 0:

In case of a quantum theory, the relation between classical and quantum vertices is given by

vcl;R=AðpÞ ¼ 4vqu;R=AðpÞ ðD6Þ

for all k. So, we find

ðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞ
�
1

4
− neffðq0Þneffðp0Þ

�
þ vanðp − qÞðneffðq0Þ − neffðp0ÞÞ ¼ 0;

vanðp − qÞ ¼ ðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞ neffðq0Þneffðp0Þ − 1
4

neffðq0Þ − neffðp0Þ
: ðD7Þ

By using the addition theorem for the coth or, respectively, the effective occupation numbers, we arrive at

vanðp − qÞ ¼ neffðp0 − q0Þðvcl;R;kðp − qÞ − vcl;A;kðp − qÞÞ: ðD8Þ

In the case of a classical theory, we have vqu;R=AðpÞ ¼ 0, i.e., we can just drop the −1=4 in Eq. (D7). By plugging in the
Rayleigh-Jeans distribution, we again find Eq. (D8). Going through the calculation in reverse order proves that the existence
of a generalized fluctuation-dissipation relation for the vertex functions beyond one loop leads to a fluctuation-dissipation
relation for the two-point functions. The only assumption that goes into the proof in Eq. (D4) is a generalization of the one-
loop result and if violated will lead to a violation of causality in the two-point functions.
Another subtlety is the use of Eq. (D5). A quick calculation shows that Eq. (D5) holds if the propagators fulfill the

fluctuation-dissipation relation, but obviously this is only true at all k if the differential equation (D1) holds at all k. Which is
what we wanted to show. However, at the UV-cutoff k ¼ Λ, the propagators and therefore the B’s fulfill the fluctuation-
dissipation relation and so does the differential equation (D1). But that means, the B’s at k − dk obey Eq. (D5) and
eventually the B’s fulfill the fluctuation-dissipation relation for all k.

APPENDIX E: VERTEX FLOW EQUATION FOR ARBITRARY N

In the flow equation for the vertex function for arbitrary N in Eq. (93), there are in total nine contributing diagrams on the
right-hand side,
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where a line with a box stands for the according B’s introduced in Eq. (86), and the arrows indicate the direction of
momentum flow with all external momenta taken as incoming. Denoting the differentOðNÞ index structures as ŝ ¼ δabδā b̄,
t̂ ¼ δaāδbb̄, and û ¼ δab̄δāb, the contributions of the individual diagrams are then given by
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