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Vacuum and thermal properties of pseudoscalar and vector charm mesons are analyzed within a self-
consistent many-body approach, employing a chiral effective field theory that incorporates heavy-quark
spin symmetry. Upon unitarization of the vacuum interaction amplitudes for the scattering of charm mesons
off light mesons in a fully coupled-channel basis, new dynamically generated states are searched. The
imaginary-time formalism is employed to extend the calculation to finite temperatures up to T ¼ 150 MeV.
Medium-modified spectral shapes of the D, D�, Ds, and D�

s mesons are provided. The temperature
dependence of the masses and decay widths of the nonstrange D�

0ð2300Þ and D�
1ð2430Þ mesons, both

showing a double-pole structure in the complex-energy plane, is also reported, as well as that of the
D�

s0ð2317Þ and D�
s1ð2460Þ resonances and other states not yet identified experimentally. Being the first

calculation incorporating open-charm vector mesons at finite temperature in a self-consistent fashion, it
brings up the opportunity to discuss the medium effects on the open-charm sector under the perspective of
chiral and heavy-quark spin symmetries.
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I. INTRODUCTION

The in-medium properties of mesons with charm content
have been a matter of high interest over the years (see [1–4]
for reviews). This interest was triggered because of the J=Ψ
suppression in heavy-ion collisions, as seen at super proton
synchrotron (SPS) energies by the NA50 Collaboration [5],
which was predicted in Ref. [6] as a signature of the
existence of the quark-gluon plasma due to color screening.
The J=Ψ absorption in hot dense matter could be also
modified due to the change of the properties of open-charm
mesons in matter in the comover scattering scenario (see,
e.g., the initial works of Refs. [7–10]), thus providing a
complementary explanation for J=Ψ suppression.
Moreover, the possible attraction felt by D mesons in
nuclear matter could lead to the formation of open-charm
meson bound states in nuclei [11–15]. Also, the FAIR
experimental facility in Germany with the CBM heavy-ion
collision experiment will address the features of the phase

QCD diagram using medium-modified open-charm mesons
as a fundamental probe [1]. The NA61 Collaboration at SPS
energies, on the other hand, will also focus on open-charm
production in fixed-target heavy-ion collisions after upgrad-
ing their detector [16].
Several theoretical works have addressed the properties

of open-charm mesons in nuclear matter. Those works
range from phenomenological estimates based on the
quark-meson coupling model (see, e.g., the initial works
of [17,18]), nuclear mean-field calculations in matter
[19–21], Polyakov-loop extensions of Nambu-Jona-
Lasinio models [22], models based on π-exchange imple-
menting heavy-quark symmetries [15], QCD sum-rule
(QSR) computations (see [23] for a recent review) to
self-consistent unitarized coupled-channel approaches
(for a review, see [2]). The full spectral features of the
open-charm mesons in nuclear matter emerge naturally
from the latter ones. Starting from the exploratory works of
Refs. [24,25], the spectral features of open charm in nuclear
matter have been studied within t-channel vector-meson
exchange unitarized models [26–29].
Later on, heavy-quark spin symmetry constraints were

implemented explicitly in a unitarized coupled-channel
approach [30–34]. Heavy-quark spin symmetry is a proper
QCD spin-flavor symmetry that appears when the quark
masses, such as the charm mass, become larger than the
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typical confinement scale. As a consequence of this
symmetry, the spin interactions vanish for infinitely mas-
sive quarks. Thus, heavy hadrons come in doublets (if the
spin of the light degrees of freedom is not zero), which are
degenerated in the infinite quark-mass limit. The imple-
mentation of this symmetry led to the determination of
open-charm-nucleon interactions and open-charm spectral
functions in nuclear matter in a consistent and reliable
way [12,13,35].
Other studies have been devoted to examine the proper-

ties of charmed mesons in a meson-rich environment. Most
of these works, though, have been concentrated on the
determination of the hidden-charm J=Ψ dissociation cross
sections in heavy-ion collisions (see [36] for a review). In
fact, there are several studies on the J=Ψ-hadron interaction
at finite temperature based on chiral Lagrangians [37–39],
quark model calculations [38,40–42] and QSR schemes
[43,44], QCD lattice (see [45] and references therein), and
effective Lagrangians [46,47]. With regards to open-charm
mesons, the studies on open-charm thermal relaxation in
heavy-ion collisions [48–54] have triggered the interest of
open charm at finite temperature. Investigations of open-
charm mesons at finite temperature have been performed
using QSR approaches [55–57] and calculations on the
lattice [58–60]. Also, effective models in a hot hadronic
bath have been developed in Refs. [19,22,49,61–63].
Recently, a finite-temperature unitarized approach

based on a SUð4Þ effective Lagrangian has been put
forward [64], where the implications of pionic matter at
finite temperatures on the properties of open and hidden
charm mesons have been studied. Whereas the J=Ψ stays
narrow even at T ¼ 150 MeV, the D and D� mesons
acquire a substantial width in the pionic bath, reaching
30–40 MeV at T ¼ 150 MeV.
In the present paper, we address the properties of open-

charm mesons in a hot mesonic bath (mainly formed by
pions), within a finite-temperature unitarized approach,
following the path of Ref. [64] and extending our previous
work in Ref. [65]. As compared to Ref. [64], the dynamics
of open charm with light mesons is based on an effective
Lagrangian that is expanded up to next-to-leading order
(NLO) in the chiral counting, while keeping leading order
(LO) in the heavy-quark expansion [51,66–68]. Moreover,
the present paper extends our work of Ref. [65], going
beyond the analysis of D�

0ð2300Þ and Dsð2317Þ states and
their possible identification as the chiral partners of the D
and Ds ground states [65].
In this work, we perform a detailed analysis of not only

the scalar open-charm sector but all strange-isospin chan-
nels in the scalar and axial vector open-charm sectors in
vacuum and at finite temperature by exploiting the heavy-
quark spin symmetry. To this end, we use a unitarized
approach based on a chiral effective field theory that
implements heavy-quark spin symmetry at leading order.
We start by analyzing the pole structure in vacuum of the

dynamically generated scalar excited states D�
0ð2300Þ and

D�
s0ð2317Þ states as well as the axial vector excited ones

D�
1ð2430Þ and D�

s1ð2460Þ. We then extend our calculations
to finite temperature by means of a self-consistent many-
body approach and study the thermal dependence of the D,
D�, Ds, and D�

s mesons together with that of D�
0ð2300Þ,

D�
s0ð2317Þ, D�

1ð2430Þ, and D�
s1ð2460Þ states not only in a

pionic bath, as in our previous work, but also in a pionic
and kaonic medium.
The paper is organized as follows. In Sec. II, we

present the details of the effective Lagrangian and the
unitarization procedure for open charm at zero and finite
temperature, whereas in Sec. III we show our results for
the scattering amplitudes and dynamically generated
states at zero and finite temperature, paying a special
attention to the spectral functions of open-charm ground
states as well as the finite-temperature mass and width
modifications of open-charm ground states and dynami-
cally generated ones. Finally, in Sec. IV, we give our
conclusions and future outlook.

II. D-MESON INTERACTION WITH
LIGHT MESONS

In this section, we give details on the effective field
theory used to describe the dynamics of D and D� mesons,
and their interactions with light mesons: π, K, K̄, and η
mesons (we do not consider η0 mesons in this work because
of their larger mass).
In the first part, we present the effective Lagrangian

involving the heavy and light mesons, which is based on
chiral and heavy-quark symmetries and expanded up to
NLO in the chiral counting and at LO in heavy-quark-mass
counting [51,66–68]. We describe how to fix the unknown
low-energy constants from recent lattice-QCD calculations
in the same sector [69]. Then, we provide the values of the
tree-level scattering amplitudes for the different processes
considered in this work. Finally, we describe how to
construct unitarized amplitudes by solving a Bethe-
Salpeter equation in a coupled-channel basis, at both T ¼
0 and T ≠ 0. For the latter, we work within the imaginary-
time formalism (ITF) requiring self-consistency of the
heavy-meson self-energy.
We summarize in Table I the degrees of freedom (both

heavy and light mesons) used in this work together with
their vacuum masses.

A. Effective Lagrangian and tree-level scattering
amplitudes

Interactions between heavy and light mesons are
described in terms of an effective Lagrangian for the
degrees of freedom described in Table I. It is based on
chiral symmetry (involving the physics of the pseudo-
Goldstone bosons at low energies) as well as heavy-quark
spin-flavor symmetry for the charmed mesons (both
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pseudoscalar D and vector D� mesons). In the heavy-
quark-mass counting, we only consider the LO effective
Lagrangian, whereas in chiral power counting we will
consider both LO and NLO orders. From now on, the
terminology LO and NLO will exclusively refer to chiral
power counting in the effective Lagrangian,

L ¼ LLO þ LNLO: ð1Þ

The LO Lagrangian contains the kinetic terms and
interactions of the D mesons as well as self-interactions
of the pseudo-Goldstone bosons. For the latter, the pure
light-meson sector is described by the standard chiral
perturbation theory (ChPT) [71], whose Lagrangian is
not explicitly written here. The LO Lagrangian reads

LLO ¼ LChPT
LO þ h∇μD∇μD†i −m2

DhDD†i
− h∇μD�ν∇μD

�†
ν i þm2

DhD�νD�†
ν i

þ ighD�μuμD† −DuμD�†
μ i

þ g
2mD

hD�
μuα∇βD

�†
ν −∇βD�

μuαD
�†
ν iϵμναβ; ð2Þ

where D denotes the antitriplet of 0− D-mesons, D¼
ðD0 Dþ Dþ

s Þ, and similarly for the vector 1− states,
D�

μ¼ðD�0 D�þ D�þ
s Þμ. The light mesons are encoded into

uμ ¼ iðu†∂μu − u∂μu†Þ, where u ¼ expðiΦ=
ffiffiffi
2

p
fπÞ is the

unitary matrix of pseudo-Goldstone bosons in the exponen-
tial representation,

Φ ¼

0
BBBBBB@

ffiffi
1
2

q
π0 þ

ffiffi
1
6

q
η πþ Kþ

π− −
ffiffi
1
2

q
π0 þ

ffiffi
1
6

q
η K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCCCA
; ð3Þ

and fπ is the pion decay constant, fπ ¼ 92.4 MeV.We note
that in the matrix representation of the SUð3Þ meson octet
we have already identified the η8 with the physical η by
neglecting the η − η0 mixing.
The angle brackets in the Lagrangian denote the trace in

flavor space and the connection of the covariant derivative
∇μDð�Þ ¼ ∂μDð�Þ −Dð�ÞΓμ reads Γμ ¼ 1

2
ðu†∂μuþ u∂μu†Þ.

The NLO Lagrangian reads

LNLO ¼ LChPT
NLO − h0hDD†ihχþi þ h1hDχþD†i þ h2hDD†ihuμuμi þ h3hDuμuμD†i þ h4h∇μD∇νD†ihuμuνi

þ h5h∇μDfuμ; uνg∇νD†i þ h̃0hD�μD�†
μ ihχþi − h̃1hD�μχþD

�†
μ i − h̃2hD�μD�†

μ ihuνuνi
− h̃3hD�μuνuνD

�†
μ i − h̃4h∇μD�α∇νD

�†
α ihuμuνi − h̃5h∇μD�αfuμ; uνg∇νD

�†
α i; ð4Þ

where LChPT
NLO represents the NLO ChPT Lagrangian involv-

ing only Φ, and χþ ¼ u†χu† þ uχu, with the quark-mass
matrix χ ¼ diagðm2

π; m2
π; 2m2

K −m2
πÞ. For more details, we

recommend Refs. [51,52,67,68,72].
The tree-level amplitudes are extracted from the LOþ

NLO Lagrangian and they will be kept at strictly lowest
order in heavy-quark-mass expansion, that is, we will only
consider amplitudes Oð1=m0

D; 1=m
0
D� Þ. They have already

been given in the cited references. For convenience, we
reproduce them here once more. Since we are working with
the lowest-order amplitudes, there are no tree level dia-
grams converting D mesons into D� [51], and the two
sectors are independent, but related by heavy-quark spin
symmetry. For a binary scattering involving a charm meson
with incoming channel i and outgoing channel j, the
amplitudes read

TABLE I. Isospin multiplets of the light and heavy mesons considered in this work, together with the spin, parity, isospin, strangeness
and charm quantum numbers, and the isospin-averaged values of the masses in the PDG book [70].

JP ¼ 0− Multiplet I S C mðMeVÞ JP ¼ 1− Multiplet I S C mðMeVÞ
π ðπþ; π0; π−Þ 1 0 0 138.04
η ðη0Þ 0 0 0 547.86
K ðKþ; K0Þ 1=2 þ1 0 495.64
K̄ ðK̄0; K−Þ 1=2 −1 0 495.64
D ðDþ; D0Þ 1=2 0 þ1 1867.24 D� ðD�þ; D�0Þ 1=2 0 þ1 2008.56
D̄ ðD̄0; D−Þ 1=2 0 −1 1867.24 D̄� ðD̄�0; D�−Þ 1=2 0 −1 2008.56
Ds ðDþ

s Þ 0 þ1 þ1 1968.34 D�
s ðD�þ

s Þ 0 þ1 þ1 2112.20
D̄s ðD−

s Þ 0 −1 −1 1968.34 D̄�
s ðD�−

s Þ 0 −1 −1 2112.20
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Vijðs; t; uÞ ¼ 1

f2π

�
Cij
LO

4
ðs − uÞ − 4Cij

0 h0 þ 2Cij
1 h1

− 2Cij
24ð2h2ðp2 · p4Þ þ h4ððp1 · p2Þðp3 · p4Þ

þ ðp1 · p4Þðp2 · p3ÞÞÞ
þ 2Cij

35ðh3ðp2 · p4Þ þ h5ððp1 · p2Þðp3 · p4Þ

þ ðp1 · p4Þðp2 · p3ÞÞÞ
�
; ð5Þ

where s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ2, u ¼ ðp1 − p4Þ2 are
the Mandelstam variables. The different channels i, j we
consider in this work are summarized in Table II. The
isospin coefficients Cij are given in Table III, whereas in
Appendix A we provide the isospin coefficients in the
charge basis.
The low-energy constants (LECs) hi with i ¼ 0;…; 5

have been revisited in this work in view of the recent studies
[67,69,72] based on lattice-QCD data. The LEC h0 is
determined in the latest two references through the
fit of lattice-QCD data for the masses of the D and Ds at
different pion masses, while the value of h1 can be fixed
from the physical mass splitting between the D and Ds,
h1 ¼ ðm2

Ds
−m2

DÞ=½4ðm2
K −m2

πÞ�. Linear combinations of
the remaining LECs, h24¼h2þh4=M̄2

D and h35¼h3þ2h5=
M̄2

D, with M̄
2
D ¼ ðMD þMDs

Þ=2, are determined in [67,72]
by fits to the scattering lengths calculated on the lattice,
simultaneously also to lattice finite-volume energy levels in
[69]. We have taken the values of the LECs from the Fit-2B
in [69] for which the full amount of lattice data available and
the physical value of fπ are considered, and which is the
preferred fit of the authors according to largeNc arguments.

The values are shown in Table IV for the sake of complete-
ness, for both pseudoscalar and vector charmed mesons,
where we have considered hi ¼ h̃i at LO in the heavy-quark
expansion but used the different physical values of M̄D

and M̄D� in the determination of h4, h5, h̃4, and h̃5. The
difference between our unitarized amplitudes and those in
[69] lies in the regularization procedure, as will be explained
in the next section.
To conclude this section, we comment on the extraction of

the S-wave component of these tree-level scattering ampli-
tudes. The S-wave projected amplitude is computed as

VijðsÞ ¼ 1

2

Z
1

−1
dðcos θÞVijðs; tðs; cos θÞÞPL¼0ðcos θÞ; ð6Þ

where tðs; cos θÞ is given in terms of s, cos θ and the
meson masses cf. [69], u ¼ P

i m
2
i − s − t, and PLðcos θÞ

is the Legendre polynomial of order L normalized toR
1
−1 dxPLðxÞPL0 ðxÞ ¼ 2δLL0=ð2Lþ 1Þ. In particular, for
the S-wave projection, we only need PL¼0 ¼ 1.

TABLE II. Meson-meson channels considered in this work
together with the threshold energy, their total spin, strangeness,
and isospin quantum numbers. We provide the channels involv-
ing the pseudoscalar (JP ¼ 0−) D meson and the vector
(JP ¼ 1−) D� meson.

ðS; IÞ
Channels
(JP ¼ 0−)

Threshold
(MeV)

Channels
(JP ¼ 1−)

Threshold
(MeV)

ð−1; 0Þ DK̄ 2364.88 D�K̄ 2504.20

ð−1; 1Þ DK̄ 2364.88 D�K̄ 2504.20

ð0; 1
2
Þ Dπ 2005.28 D�π 2146.59

Dη 2415.10 D�η 2556.42

DsK̄ 2463.98 D�
sK̄ 2607.84

ð0; 3
2
Þ Dπ 2005.28 D�π 2146.59

(1,0) DK 2364.88 D�K 2504.20
Dsη 2516.20 D�

sη 2660.06
(1,1) Dsπ 2106.38 D�

sπ 2250.24
DK 2364.88 D�K 2504.20

ð2; 1
2
Þ DsK 2463.98 D�

sK 2607.84

TABLE III. Isospin coefficients Cij for the sectors with
strangeness S and isospin I.

ðS; IÞ Channel i→j Cij
LO Cij

0 Cij
1 Cij

24 Cij
35

ð−1; 0Þ DK̄ → DK̄ −1 m2
K m2

K 1 −1
ð−1; 1Þ DK̄ → DK̄ 1 m2

K −m2
K 1 1

ð0; 1
2
Þ Dπ → Dπ −2 m2

π −m2
π 1 1

Dπ → Dη 0 0 −m2
π 0 1

Dπ → DsK̄ −
ffiffi
3
2

q
0 −

ffiffi
3

p
2
ffiffi
2

p ðm2
Kþm2

πÞ 0
ffiffi
3
2

q
Dη → Dη 0 m2

η − 1
3
m2

π 1 1
3

Dη → DsK̄ −
ffiffi
3
2

q
0 1

2
ffiffi
6

p ð5m2
K−3m2

πÞ 0 − 1ffiffi
6

p

DsK̄ → DsK̄ −1 m2
K −m2

K 1 1

ð0; 3
2
Þ Dπ → Dπ 1 m2

π −m2
π 1 1

(1,0) DK → DK −2 m2
K −2m2

K 1 2

DK → Dsη −
ffiffiffi
3

p
0 − 1

2
ffiffi
3

p ð5m2
K−3m2

πÞ 0 1ffiffi
3

p

Dsη → Dsη 0 m2
η − 4

3
ð2m2

K −m2
πÞ 1 4

3

(1,1) Dsπ → Dsπ 0 m2
π 0 1 0

Dsπ → DK 1 0 − 1
2
ðm2

K þm2
πÞ 0 1

DK → DK 0 m2
K 0 1 0

ð2; 1
2
Þ DsK→DsK 1 m2

K −m2
K 1 1

TABLE IV. Values of the LECs used in this work (from Fit-2B
in [69]) for the interaction of pseudoscalar (first row) and vector
(second row) charmed mesons with the light mesons.

h0 h1 h2 h3 h4ðMeV−2Þ h5ðMeV−2Þ
DΦ 0.033 0.45 −0.12 1.67 −0.0054 × 10−6 −0.22 × 10−6

D�Φ 0.033 0.45 −0.12 1.67 −0.0047 × 10−6 −0.19 × 10−6
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The analysis of higher partial waves is left for future
studies, as in the present work we focus on dynamically
generated resonances that can correspond to some observed
states listed in the PDG [70]. In the energy region explored
here, no potential candidates are found that can correspond
to states generated dynamically from the meson-meson
interaction in partial waves higher than L ¼ 0. In addition,
we note that, for a particular channel, the P-wave inter-
action kernel is of reduced strength compared to the S-wave
one, especially close to threshold, around which the
molecular states appear.

B. Unitarization and self-consistent propagators

Let us motivate the need of a unitarization technique
for the scattering amplitudes. The amplitudes found in
Eq. (5) can describe the meson-meson scattering at low
energies, but they do not satisfy the exact unitarity con-
dition. For the S-wave projected amplitude [Eq. (6)],
this condition would read (for the one-channel case DΦ)
ImVðsÞ ¼ ρDΦðsÞjVðsÞj2, where ρDΦðsÞ is the two-body
phase space. This relation is evidently not satisfied because
VðsÞ are real. This causes an unphysical increase of the
cross sections at intermediate energies. In addition, the
polynomial structure of VijðsÞ cannot generate resonances,
which are signaled by the presence of poles (singularities)
in the scattering amplitude. A unitarization method aims at
constructing from VijðsÞ a new amplitude TijðsÞ which
satisfies (for the one-channel case DΦ)

ImTðsÞ ¼ ρDΦðsÞjTðsÞj2: ð7Þ

This is a standard method used by the so-called unitarized
chiral perturbation theories with great success since many
years [73]. Among the different unitarization methods, we
employ theonebasedon theBethe-Salpeter equationbecause,

within a straightforward extension of field theory, it
can be simply applied to finite temperature. Upon unitariza-
tion, TijðsÞ helps to extend the limit of validity in energy
because of the increase of the amplitude is tamed, and the
cross sections saturate. Being a rational function of s, the T
matrix also allows for thedynamical generationof resonances.
We summarize here the unitarization procedure which

allows us to fulfill exact unitarity in all scattering amplitudes.
Starting from the tree-level amplitudes VijðsÞ, we construct
the unitarized ones TijðsÞ by solving a Bethe-Salpeter
equation for the two-body problem in a full coupled-channel
basis. We distinguish the cases at T ¼ 0 and T ≠ 0 as their
methodologies and ulterior analyses differ considerably.

1. Unitarization in vacuum

In the on-shell factorization approach [74,75], the Bethe-
Salpeter equation for the unitarized amplitude atT ¼ 0 reads

TijðsÞ ¼ VijðsÞ þ VilðsÞGlðsÞTljðsÞ; ð8Þ

where i, j represent the incoming and outgoing channels (see
Table II), and we sum over the possible intermediate
channels l. The two-body propagator function in vacuum
is the loop function

GlðsÞ¼ i
Z

d4q
ð2πÞ4

1

q2−m2
Dþ iϵ

1

ðp−qÞ2−m2
Φþ iϵ

; ð9Þ

with pμ ¼ ðE; p⃗Þ. We make explicit that at T ¼ 0 the loop
function is given as a function of the Mandelstam variable
s ¼ p2. This function should be regularized in vacuum, for
which one can employ a hard momentum cutoff Λ, and the
corresponding expression of the loop reads

Gl
ΛðsÞ ¼

1

32π2

�
−
m2

Φ −m2
D

s
ln
m2

D

m2
Φ
þ ln

m2
Dm

2
Φ

Λ4
þ σ

s

"
ln

�
sþ ðm2

Φ −m2
DÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ΦΛ−2
q �

þ ln

�
s− ðm2

Φ −m2
DÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

DΛ−2
q �

− ln

�
−s− ðm2

Φ −m2
DÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ΦΛ−2
q �

− ln

�
−sþ ðm2

Φ −m2
DÞ þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

DΛ−2
q ��

þ 2
ðm2

Φ −m2
DÞ

s
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

DΛ−2
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ΦΛ−2
p − 2 ln

��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

D

Λ2

r ��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

Φ
Λ2

r ���
; ð10Þ

with σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmD þmΦÞ2Þðs − ðmD −mΦÞ2Þ

p
. Alternatively, the loop integral can be calculated in dimensional

regularization (DR),
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Gl
DRðs;alðμÞÞ¼

1

16π2

�
alðμÞþ ln

m2
D

μ2
þm2

Φ−m2
Dþ s

2s
ln
m2

Φ
m2

D
þ qlffiffiffi

s
p ½lnðsþðm2

Φ−m2
DÞþ2ql

ffiffiffi
s

p Þ

þ lnðs− ðm2
Φ−m2

DÞþ2ql
ffiffiffi
s

p Þ− lnð−s− ðm2
Φ−m2

DÞþ2ql
ffiffiffi
s

p Þ− lnð−sþðm2
Φ−m2

DÞþ2ql
ffiffiffi
s

p Þ�
�
; ð11Þ

where alðμÞ is the channel-dependent subtraction constant
at the regularization scale μ for channel l and ql ¼ σ=ð2 ffiffiffi

s
p Þ

is the on-shell three-momentum of the meson in the loop. If
one demands that both regularization procedures give the
same value of the loop function at threshold, the following
expression for the subtraction constants is obtained:

alðμÞ ¼ 16π2½Gl
ΛðslthrÞ − Gl

DRðslthr; al ¼ 0Þ� ð12Þ

for a given μ. Notice that the running of alðμÞ cancels the
explicit μ dependence in Eq. (11), so the loop function does
not depend on the regularization scale.
In Ref. [69], the loop function is regularized with DR and

the subtraction constants are considered as fit parameters
together with the LECs. In a different approach, here we
use the cutoff regularization scheme so as to follow the
same convention as for T > 0, where the loop function is
usually regularized by limiting the integrals to jq⃗j < Λ. We
adjust the cutoff value to a representative scale of the
degrees of freedom that are implicitly integrated out in the
construction of the meson-meson interaction amplitude
from the effective Lagrangian. Indeed, the pointlike inter-
action of Eq. (5) could have also been obtained from a
t-channel diagram, involving two cubic meson vertices and
the propagator of a vector meson of mass mV ∼mρ, in the
limit m2

V ≫ t with t being the four-momentum exchanged
in the process. With this rationale in mind, our cutoff value
is taken to be of the order of the ρ meson mass, namely,
Λ ¼ 800 MeV, for all the channels. We have checked that
the equivalent values of the subtraction constants obtained
using Eq. (11) are compatible with those employed in [69],
with μ ¼ 1 GeV, and that the reproduction of scattering
observables with our prescription is of comparable quality.
This agreement reinforces the choice of Λ ¼ 800 MeV as
an appropriate selection, a value which, in turn, determines
the position of the dynamically generated resonances.
In the on-shell approximation [74], the unitarized scat-

tering amplitude has an algebraic solution

TijðsÞ ¼ VikðsÞ½1 − VðsÞGðsÞ�−1kj ; ð13Þ

which, in the general coupled-channel case, is a matrix
equation.
Notice that the internal propagators of the loop function

should include self-energy corrections due to interactions in
vacuum. This effect dresses (and renormalizes) the mass of
the mesons. At T ¼ 0, the dressed masses are simply the

physical ones given in Table I, and there is no need to
perform a self-consistent procedure. This is different in the
T ≠ 0 case.
The unitarization process leads to the potential emer-

gence of poles in the resummed amplitude TijðsÞ at the
zeros of the denominator of Eq. (13). These poles corre-
spond to states that are dynamically generated by the
attractive coupled-channel meson-meson interactions.
The characterization of these states requires to analytically
continue the T matrix to the complex energy plane, where
the search for poles should be performed in the correct
Riemann sheet (RS). The loop function in Eq. (9) is a
multivalued function with two RSs above threshold. To
select a particular RS, one needs to add a contribution to the
imaginary part [76],

Gl
IIð

ffiffiffi
s

p þ iεÞ ¼ Gl
Ið

ffiffiffi
s

p
− iεÞ ¼ ½Gl

Ið
ffiffiffi
s

p þ iεÞ��
¼ Gl

Ið
ffiffiffi
s

p þ iεÞ − i2ImGl
Ið

ffiffiffi
s

p þ iεÞ
¼ Gl

Ið
ffiffiffi
s

p þ iεÞ þ i
ql

4π
ffiffiffi
2

p ; ð14Þ

where the subindices I and II denote the first and second
RSs, respectively. The same result follows from changing
the sign of the momentum ql in Eq. (11) or σ in Eq. (10) and
taking the phase prescription of the logarithms ln z ¼
ln jzj þ iθ as 0 ≤ θ < 2π.
The analytic structure of Gl provides the unitarized

amplitude TijðsÞ with a set of 2n RSs, where n is the
number of coupled channels. We define the second RS of
the TðsÞ amplitude as the one which is connected to the real
energy axis from below and is obtained by using Gl

I for
Re

ffiffiffi
s

p
< mΦl

þMDl
and Gl

II for Re
ffiffiffi
s

p
> mΦl

þMDl
. This

prescription provides the pole position and half-width
closer to the values obtained from a Breit-Wigner para-
metrization of the associated amplitude [76]. However, not
too far from a threshold channel to which a resonance
couples strongly, the pole might appear in an RS for which
the transition from Gl

I to Gl
II is not applied and yet the

resonance has a visible effect in the real-axis amplitudes.
This is the case for the second, higher energy poles
associated to the D�

0ð2300Þ and the D�
1ð2430Þ, as will be

discussed in Sec. III.
In the complex

ffiffiffi
s

p ≡ ffiffiffi
z

p
plane, the real and imaginary

parts of the pole positions ffiffiffiffiffizpp , give the mass and the half-
width of the dynamically generated states, respectively,
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MR ¼ Re
ffiffiffiffiffi
zp

p
; ΓR=2 ¼ Im

ffiffiffiffiffi
zp

p
: ð15Þ

The poles located on the real axis of the physical RS, below
the lowest threshold, correspond to bound states, those on
an unphysical sheet at a necessarily complex energy
correspond to resonances, and virtual states are poles that
lie on the real axis of an unphysical sheet, below the lowest
threshold. Resonance poles that are located on the unphys-
ical sheet closest to the physical sheet (the second RS) are
the ones that, together with bound states, are more likely to
generate structures in the scattering amplitude. Therefore, it
is common to call resonances only the resonant poles in the
second sheet and generalize the term virtual state to
resonant poles in any other unphysical sheet, which can
still yield to structure and cusps near the thresholds.
The scattering amplitude can be expanded in a Laurent

series around the pole position

TijðzÞ ¼ gigj
z − zp

þ
X∞
n¼0

TðnÞ
ij ðz − zpÞn; ð16Þ

where gi is the coupling of the resonance or bound state to
the channel i and gigj is the residue around the pole.
Therefore, from the residue of the different components of
the T matrix around the pole, one can extract the coupling
constants to each of the channels,

g2i ¼
� ∂
∂z2

�
1

TiiðzÞ
�				

zp

�
−1
: ð17Þ

The concept of compositeness of shallow bound states
was formulated byWeinberg in Ref. [77], applied to narrow
resonances close to threshold in [78,79], and subsequently
extended to the complex pole position of a resonance by
analytical continuation in [80–83]. An appropriate unitary
transformation [84] permits assigning real values to the
compositeness of complex poles lying in the second
Riemann sheet as

χi ¼
				g2i ∂GiðzpÞ

∂z
				; ð18Þ

which effectively measures the amount of ith channel
meson-meson component in the dynamically generated
state.

2. Finite-temperature case

For T ≠ 0, we need to account for several modifications,
both in the methodology and in the final analysis of
the dynamically generated states. We use the ITF, where
the time dimension is Wick rotated and compactified in the
range ½0; β ¼ 1=T�, where T is the temperature of the
system. Any integration over the energy variable is there-
fore transformed into a summation over the so-called
Matsubara frequencies, q0 → iωn ¼ 2nπTi for bosons
(see [85–89] for details of the formalism).
The tree-level amplitudes remain unmodified, but the

two-body loop function in the Bethe-Salpeter equation is
now modified as compared to the vacuum case. It reads

GDΦðiωm; p⃗;TÞ ¼ −T
X
n

Z
d3q
ð2πÞ3

1

ω2
n þ q⃗2 þm2

D

×
1

ðωm − ωnÞ2 þ ðp⃗ − q⃗Þ2 þm2
Φ
: ð19Þ

Before performing the Matsubara summation over ωn,
we introduce the Lehmann representation for the propa-
gators in terms of the spectral function,

DMðiωn;q⃗Þ¼
Z

dω0SMðω0;q⃗Þ
iωn−ω0

¼
Z

∞

0

dω0SMðω0;q⃗Þ
iωn−ω0 −

Z
∞

0

dω0SM̄ðω0;q⃗Þ
iωnþω0 ;

ð20Þ
where the subindex M denotes the meson (D or Φ)
and in the second equality we have separated the particle
and antiparticle parts. Using delta-type spectral functions,
SMðω; q⃗Þ¼ ωM

ω δðω2−ω2
MÞ, with ωM¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2þm2

M

p
, it is

straightforward to see that Eq. (19) is recovered. By keep-
ing generic spectral functions SDðω; q⃗Þ and SΦðω0;p⃗−q⃗Þ,
the Matsubara summation using Cauchy’s residue theorem
gives the following expression for the loop function:

GDΦðiωm; p⃗;TÞ ¼
Z

d3q
ð2πÞ3

Z
∞

0

dω
Z

∞

0

dω0
�
SDðω; q⃗ÞSΦðω0; p⃗ − q⃗Þ

iωm − ω − ω0 ½1þ fðω; TÞ þ fðω0; TÞ�

þ SD̄ðω; q⃗ÞSΦ
iωm þ ω − ω0 ½fðω; TÞ − fðω0; TÞ� − SDðω; q⃗ÞSΦ̄ðω0; p⃗ − q⃗Þ

iωm − ωþ ω0 ½fðω; TÞ − fðω0; TÞ�

−
SD̄ðω; q⃗ÞSΦ̄ðω0; p⃗ − q⃗Þ

iωm þ ωþ ω0 ½1þ fðω; TÞ þ fðω0; TÞ�
�
; ð21Þ

where fðω; TÞ ¼ 1=ðexpðω=TÞ − 1Þ is the equilibrium Bose-Einstein distribution function.
We use fð−ω; TÞ ¼ −½1þ fðω; TÞ� and SM̄ð−ω; q⃗;TÞ ¼ −SMðω; q⃗;TÞ and analytically continue the external Matsubara

frequency to real energies iωm → Eþ iϵ so as to write the expression above in the following compact way:
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GDΦðE; p⃗;TÞ ¼
Z

d3q
ð2πÞ3

Z
dω

Z
dω0 SDðω; q⃗;TÞSΦðω0; p⃗ − q⃗;TÞ

E − ω − ω0 þ iε
½1þ fðω; TÞ þ fðω0; TÞ�; ð22Þ

where the integrals over energy extend from −∞ to þ∞.
At finite temperature, the meson masses are dressed

by the medium. The effects of finite temperature in the
unitarized scattering amplitudes are readily obtained by
solving Eq. (8) with finite-temperature loops containing
dressed mesons. Notice that in the ITF, as the thermal
corrections enter in loop diagrams [87,88], the tree-level
scattering amplitudes remain the same as in vacuum (with
the zeroth component of the four-momentum expressed as a
bosonic Matsubara frequency).
The spectral function of the heavy meson is computed

from the imaginary part of its retarded propagator,

SDðω; q⃗;TÞ¼−
1

π
ImDDðω; q⃗;TÞ

¼−
1

π
Im

�
1

ω2− q⃗2−m2
D−ΠDðω; q⃗;TÞ

�
; ð23Þ

where the heavy-meson self-energy follows from closing
the light-meson line in the T matrix.
In this work, we are interested in analyzing the medium

modification of the D-meson propagator due to light
mesons. However, light mesons also suffer medium mod-
ifications and their spectral functions are modified by the
interactions among themselves. For a pion gas, we can use
previous results in the literature to convince that the mass
modification is small so that the use of a free spectral
function is justified. In Appendix B, we show this fact,
where up to temperatures of T ¼ 150 MeV, the pion mass
varies at most 10%.At the top,T ¼ 150 MeV,we have used
mπ ¼ 120 MeV mass in our numerical calculation and
found that the final charm meson masses (both ground
and the dynamically generated states) are modified less than

0.1%. Therefore, for this work, we find good enough to use
the free pion spectral function. A more thorough study
(include mass modification of all Goldstone bosons as well
as their thermal widths) will be performed in the future.
For temperatures below Tc, the largest contribution to the

D-meson dressing will come from pions, as the abundance
of heavier light mesons, that is, kaons and eta mesons, is
suppressed by the Bose factors. We note that the contri-
bution of a kaonic bath can be relevant for temperatures
close to Tc. In order to study this contribution, in Sec. III,
we will analyze the modification of open-charm mesons in
the presence of a kaonic bath by taking into account the
corresponding Bose-Einstein distribution.
The pion contribution to the heavy-meson self-energy is

computed in the ITF,

ΠDðiωn; q⃗;TÞ

¼ −T
Z

d3q0

ð2πÞ3
X
m

Dπðωm − ωn; q⃗0ÞTDπðωm; p⃗Þ; ð24Þ

where q⃗0 ¼ p⃗ − q⃗ is the three-momentum of the pion. It is
convenient to use the Lehman representation for the pion
propagator introduced in Eq. (20), as well as for the T
matrix,

TDπðiωm; p⃗Þ ¼ −
1

π

Z
dE

ImTDπðE; p⃗Þ
iωm − E

; ð25Þ

and, following the same procedure as for the loop function
described above, the expression obtained for the heavy-
meson self-energy reads

ΠDðiωn; q⃗;TÞ ¼
1

π

Z
d3q0

ð2πÞ3
1

2ωπ

Z
∞

0

dE

�
1þ fðE; TÞ þ fðωπ; TÞ

E − iωn þ ωπ
þ 1þ fðE; TÞ þ fðωπ; TÞ

Eþ iωn þ ωπ

−
fðE; TÞ − fðωπ; TÞ

E − iωn − ωπ
−
fðE; TÞ − fðωπ; TÞ

Eþ iωn − ωπ

�
ImTDπðE; p⃗;TÞ; ð26Þ

with ωπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þm2

π

p
. This expression can be condensed in the following:

ΠDðω; q⃗;TÞ ¼
1

π

Z
d3q0

ð2πÞ3
Z

dE
ω

ωπ

fðE; TÞ − fðωπ; TÞ
ω2 − ðωπ − EÞ2 þ iεsgnðωÞ ImTDπðE; p⃗;TÞ ð27Þ

after the analytical continuation iωn → ωþ iε. Note that we only consider the Bose-Einstein distribution for pions at finite
temperature while neglecting other possible medium modifications.
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The self-energy needs to be regularized as it also
contains the vacuum contribution. In order to do so, we
separate the vacuum and matter parts. The vacuum con-
tribution is identified with the expression surviving in
the limit T → 0. One can see from Eq. (26) that in this
limit the Bose factors in the statistical weights of the
numerators cancel, and only the terms with a factor 1
remain. Our prescription for the regularization is to take
these terms to zero at finite temperature, as they were
effectively included in the renormalization of the D-meson
mass at T ¼ 0.
This set of equations is solved iteratively until self-

consistency is obtained. The procedure is sketched in
Fig. 1. The T-matrix amplitude is represented by a red
blob, whereas the perturbative amplitude VðsÞ is denoted
with a blue dot. Subfigure (a) in Fig. 1 shows the Bethe-
Salpeter equation for the two-body scattering. The inter-
mediate propagator of the D-meson (yellow solid line)
is itself dressed by interactions as shown in subfigure
(b) of Fig. 1, where the T matrix is used in the Dyson
equation for the propagator, giving rise to a self-consistent
set of equations. As illustrated in the subfigure (c) of
Fig. 1 only the pion contribution, as being the dominant
excitation in the thermal bath, is considered in theD-meson
self-energy.

III. RESULTS

We start this section by presenting our results for
the scattering amplitudes and dynamically generated
states at T ¼ 0 for both J ¼ 0 and J ¼ 1 charmed sectors.
We then show the spectral functions of pseudoscalar
and vector open-charm ground-state mesons at finite
temperature. We finally determine the evolution with
temperature of the masses and widths of not only the
ground-state mesons but also the dynamically generated
states.

A. Scattering amplitudes and dynamically
generated states at T = 0

In this section, we focus on the T ¼ 0 case and
distinguish the scalar D and vector D� cases separately.
Notice that these two sectors are not mixed when keeping
the scattering diagrams at lowest order in the heavy-mass
expansion, as argued before Eq. (5).

1. J = 0 case: Interactions and D�ð2300Þ and D�
s0ð2317Þ

We start by analyzing the D and Ds interaction with
noncharmed pseudoscalar mesons for two different sectors
given by total strangeness S ¼ 0 (Fig. 2), corresponding to
the Dπ, Dη, and DsK̄ coupled-channels calculation, and
S ¼ 1 (Fig. 3), built from the DK and Dsη channels. We
focus on those two sectors since we obtain several resonant
states, among them two that can be identified with the

FIG. 2. The inverse of the interaction kernel, Vii, the real and
imaginary parts of the loop function, Gi, and the real and
imaginary parts of the diagonal components of the T matrix,
Tii, in the sector with strangeness and isospin ðS; IÞ ¼ ð0; 1

2
Þ, at

various temperatures. The subindices 1, 2, 3 refer to the channels
Dπ, Dη, and DsK̄, respectively.

FIG. 1. (a) Bethe-Salpeter equation. The T matrix is solved self-
consistently with dressed internal heavy-meson propagator.
(b) Dressed heavy-meson propagator. (c) Heavy-meson self-
energy. The heavy meson is dressed by the unitarized interaction
with pions (T matrix, red dot).
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experimental D�
0ð2300Þ and D�

s0ð2317Þ, as we will discuss
later on.
The diagonal amplitudes in the strangeness S ¼ 0 and

isospin I ¼ 1=2 sector are represented in the panels on the
right-hand side (rhs) of Fig 2 as functions of the total
energy and for a center-of-mass momentum P⃗ ¼ 0 and
various temperatures. In order to understand the structures
appearing in these amplitudes, it is convenient to analyze
first the energy dependence of the loop functionG, which is
displayed in the panels on the left-hand side (lhs) of the
same figure. The imaginary part of the loop function
(dashed lines) starts to have a significant strength from
the value of mD þmΦ onward, which is the energy at
which the right-hand T ¼ 0 unitarity cut starts. We note
that, at finite temperature, a left-hand cut starting at
mD −mΦ opens up. For the energy range displayed in
Fig. 2, this cut can only be seen in the top panel,
corresponding to the Dπ channel, and it is more visible
as the temperature increases. The inverse of the diagonal
interaction kernel is also displayed in the panels on the lhs
(dotted line) if it falls within the vertical scale employed
for each channel. In an uncoupled channel calculation, one
should expect an enhancement in the corresponding uni-
tarized amplitude when this quantity equals or becomes
very close to the real part of the loop function (solid lines).
This is just the reflection on the real energy axis of the pole
generated by the solution of Eq. (13). The consideration of
coupled channels, apart from modifying slightly the energy
position of the structures, makes them to be present in all
the amplitudes, with more or less intensity depending on

the coupling strength of the pole to each particular channel.
As can be seen in the rhs panels, in this ðS; IÞ ¼ ð0; 1

2
Þ

sector, besides cusps related to thresholds that are espe-
cially visible in the real part of the amplitudes (solid lines),
we clearly see two enhancements in the imaginary part
(dashed lines), at around 2100 and 2450 MeV, which are
connected to poles of the amplitude in the complex plane,
as we will discuss below.
Our results for the strangeness S ¼ 1 and isospin I ¼ 0

sector are shown in Fig. 3. In this case, we only observe a
narrow structure around 2250 MeV, tied to the position of
the crossing of the inverse of the DK potential with the real
part of the loop function, which occurs below themD þmK
threshold and therefore leads to a bound sate in the real axis
at T ¼ 0, as we will see.
As discussed in the previous plots, apart from threshold

effects, the different structures that appear in the scattering
amplitudes correspond to the presence of poles or dynami-
cally generated states that appear due to the attractive
coupled-channel meson-meson interactions. The five poles
that we find in the J ¼ 0 sector at T ¼ 0 are summarized in
Table V. The first column of this table indicates the possible
experimental assignment of the poles according to the PDG
[70], whereas the second column shows the strangeness and
isospin content of the state. The third column indicates the
RS where the pole is found, with the convention that the RS
of the loop function for each of the coupled channels is
indicated as þ for first and − for second. In the fourth and
fifth columns, we give the mass MR and width ΓR=2 of the
state, while in the fifth column gi denotes the effective
coupling to different channels and in the sixth column χi is
the compositeness of the state.
In ðS; IÞ ¼ ð−1; 0Þ sector, we find one virtual state, as

the pole lies below the lowest threshold but it appears in the
unphysical (−) RS. In the ðS; IÞ ¼ ð0; 1

2
Þ sector, we find two

poles that correspond to the D�
0ð2300Þ state. This double

pole structure of the D�
0ð2300Þ is well documented [70],

being our results compatible with those given in
Refs. [69,90]. For the position of the lower pole, we find
that the real part lies between theDπ andDη thresholds and
it has a sizable imaginary part, which is a consequence of
the large value of the coupling of the generated resonance to
the Dπ channel, to which it can decay. The mass of the
higher pole is above the last threshold, that is, theDsK̄ one,
and also has a large decay width, as it couples sizably to the
channels opened for its decay. However, this pole appears
in the ð−;−;þÞ RS, with this RS being only connected to
the real axis between the Dη and the DsK̄ thresholds. In
fact, for different values of the parameters [69,90], this pole
appears between the Dη and DsK̄ thresholds or even below
the Dη threshold. Moreover, it is worth noticing that the
lower pole qualifies mainly as a Dπ state, as indicated by
the large value of the compositeness, whereas the higher
one is essentially DsK̄ system, although we should note
that this case does not correspond to a canonical resonance

FIG. 3. The same as in Fig. 2 in the sector with ðS; IÞ ¼ ð1; 0Þ.
The subindices 1, 2 refer to the channels Dsπ and DK,
respectively.
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in the sense that the associated pole does not reside in the
RS that is directly accessible from the physical one.
Therefore, as discussed in Ref. [84], the physical inter-
pretation of Eq. (18) as a probabilistic compositeness is not
valid for this resonance, a fact that is corroborated by the
value larger than one obtained in this case. In the ðS; IÞ ¼
ð1; 0Þ sector, we find only one pole, which lies on the real
axis below the DK threshold, that is in the ðþ;þÞ RS. It is
identified with the D�

s0ð2317Þ resonance, and has sizable
couplings to both DK and Dsη, as given by the compos-
iteness. With the present model, the pole mass turns out to
be smaller than that of the experimental resonance, but
small variation of the parameters can easily accommodate
this state to the observed position, in line with similar
models in the literature that have advocated this resonance
to be mostly a DK hadronic molecule (see Ref. [91] and
references therein). In the ðS; IÞ ¼ ð1; 1Þ sector, there is a
resonance in the (−;þ) RS with a large width, as it couples
strongly toDsπ states to which it can decay. This resonance
cannot be identified with any of the PDG states known up
to now.

2. J = 1 case: Interactions and D�
1ð2430Þ and D�

s1ð2460Þ
The coupled-channels interaction of the pseudoscalar

meson octet with the heavy vector mesons gives rise to a
very similar phenomenology to that found for the inter-
action with the heavy pseudoscalars, only displaced
toward higher energies by the increase of the thresholds
due to the mass difference between the vector and
pseudoscalar heavy mesons. This is clearly seen in
Figs. 4 and 5, where the loop functions and the diagonal
amplitudes of the JP ¼ 1þ interaction in the ðS; IÞ ¼ ð0; 1

2
Þ

and (1,0) sectors are shown, respectively, as functions of
the total energy for a total momentum P⃗ ¼ 0 and various
temperatures.

FIG. 4. The inverse of the interaction kernel, Vii, the real and
imaginary parts of the loop function, Gi, and the real and
imaginary parts of the diagonal components of the T matrix,
Tii, in the sector with strangeness and isospin ðS; IÞ ¼ ð0; 1

2
Þ, at

various temperatures. The subindices 1, 2, 3 refer to the channels
D�π, D�η, and D�

s K̄, respectively.

TABLE V. Dynamically generated poles in the J ¼ 0 sector. We find five poles in the different ðS; IÞ channels. The first column is
reserved for those poles that can be associated to a state listed in the PDG [70]. RS denotes the Riemann sheet of the pole with the
convention given in the main text. MR and ΓR=2 are the real and imaginary parts of the pole location in the complex energy plane, gi
denotes the effective coupling to different channels, and χi is the compositeness of the state.

ðS; IÞ RS MR (MeV) ΓR=2 (MeV) jgij (GeV) χi

ð−1; 0Þ (−) 2261.5 102.9 jgDK̄ j ¼ 11.6 χDK̄ ¼ 0.43
D�

0ð2300Þ ð0; 1
2
Þ ð−;þ;þÞ 2081.9 86.0 jgDπ j ¼ 8.9 χDπ ¼ 0.40

jgDηj ¼ 0.4 χDη ¼ 0.00
jgDsK̄j ¼ 5.4 χDsK̄ ¼ 0.05

ð−;−;þÞ 2529.3 145.4 jgDπ j ¼ 6.7 χDπ ¼ 0.10
jgDηj ¼ 9.9 χDη ¼ 0.40
jgDsK̄j ¼ 19.4 χDsK̄ ¼ 1.63

D�
s0ð2317Þ (1,0) ðþ;þÞ 2252.5 0.0 jgDK j ¼ 13.3 χDK ¼ 0.66

jgDsηj ¼ 9.2 χDsη ¼ 0.17
(1,1) ð−;þÞ 2264.6 200.9 jgDsπ j ¼ 7.3 χDsπ ¼ 0.21

jgDK j ¼ 5.9 χDK ¼ 0.08
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At T ¼ 0, we also find five poles in the J ¼ 1 ampli-
tudes, which are summarized in Table VI. As seen, a double
pole structure, which can be identified with the D�

1ð2430Þ
resonance listed in the PDG [70], is obtained in the ðS; IÞ ¼
ð0; 1

2
Þ sector, one pole being mostly a D�π state and the

other mostly a D�
sK̄ one. A resonance coupling mostly to

D�K states is obtained in the ðS; IÞ ¼ ð1; 0Þ sector,
although the present model locates it at a somewhat lower
energy than the mass of the D�

s1ð2460Þ of the PDG [70]. A
virtual state is found in the ðS; IÞ ¼ ð−1; 0Þ sector, while a
resonance with ðS; IÞ ¼ ð1; 1Þ, having no PDG counterpart,
is also seen.

We note that the cutoff dependence analyses performed
in Refs. [92,93] indicate that employing higher (lower)
values of the cutoff lowers (increases) the energies of the
dynamically generated states, due to the larger (smaller)
amount of phase space included in the unitarized ampli-
tudes. In our case, when the cutoff value is varied between
600 and 1000 MeV, the mass of the resonances in the
ðS; IÞ ¼ ð0; 1=2Þ sector, D�

0ð2300Þ and D�
1ð2430Þ, both

change moderately by þ5−15 MeV, while a larger change,
of �70 MeV, is observed for both bound states in the
ðS; IÞ ¼ ð1; 0Þ sector, D�

s0ð2317Þ and D�
s1ð2460Þ.

B. Open-charm spectral functions and dynamically
generated states at T ≠ 0

We conclude the presentation of our results by analyzing
in this section the finite-temperature effects on the
interaction of the open-charm mesons with the light
pseudoscalars, together with the consequences for the
ground-state spectral functions and the dynamically gen-
erated states at finite temperature. In particular, we describe
the thermal dependences of the masses and widths for open-
charm ground and excited states for temperatures below the
chiral restoration temperature Tχ ¼ 156 MeV [94].

1. Interactions and open-charm spectral functions

The inclusion of temperature on the real and imaginary
parts of the different meson-meson loop functions results in
a smoothening of the real and imaginary parts of the
scattering matrices in all strange-isospin sectors for both
pseudoscalar and vectors mesons, as seen in Figs. 2–5. As
the meson Bose-Einstein distributions in the intermediate
meson-meson propagators extend over higher momenta for
larger temperatures, sharp meson-meson thresholds are
diluted and the strength of the real and imaginary parts
of the loop functions is smoothened out. As a consequence,
the corresponding scattering amplitudes are smeared out
while spreading over a wider energy range. Physically, this

FIG. 5. The same as in Fig. 4 in the sector with ðS; IÞ ¼ ð1; 0Þ.
The subindices 1, 2 refer to the channels D�

sπ and D�K,
respectively.

TABLE VI. Dynamically generated poles in the J ¼ 1 sector. Table with a similar structure than the one in Table V.

ðS; IÞ RS MR (MeV) ΓR=2 (MeV) jgij (GeV) χi

ð−1; 0Þ (−) 2404.9 87.8 jgD�K̄ j ¼ 13.2 χD�K̄ ¼ 0.53
D�

1ð2430Þ ð0; 1
2
Þ ð−;þ;þÞ 2222.3 84.7 jgD�πj ¼ 9.5 χD�π ¼ 0.40

jgD�ηj ¼ 0.4 χD�η ¼ 0.00

jgD�
s K̄ j ¼ 5.7 χD�

s K̄ ¼ 0.05

ð−;−;þÞ 2654.6 117.3 jgD�πj ¼ 6.5 χD�π ¼ 0.09
jgD�ηj ¼ 10.0 χD�η ¼ 0.40

jgD�
s K̄ j ¼ 18.5 χD�

s K̄ ¼ 1.47

D�
s1ð2460Þ (1, 0) ðþ;þÞ 2393.3 0.0 jgD�K j ¼ 14.2 χD�K ¼ 0.68

jgD�
sηj ¼ 9.7 χD�

sη ¼ 0.17

(1, 1) ð−;−Þ 2392.2 193.0 jgD�
sπj ¼ 7.9 χD�

sπ ¼ 0.22

jgD�K j ¼ 6.3 χD�K ¼ 0.08
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can be understood as larger temperatures result in a larger
available phase space for decay.
The smearing of the scattering amplitudes with temper-

ature gives rise to the broadening of the spectral functions,
as seen in Figs. 6 and 7. In Fig. 6, we show the spectral
functions in a pionic bath as a function of the meson energy
for different temperatures up to T ¼ 150 MeV in the case
of the pseudoscalar open-charm ground-state mesons, that
is, D (left panel) and Ds (right panel), whereas in Fig. 7 we
display the vector open-charm ground-state spectral func-
tions for D� (left panel) and D�

s (right panel) in a pionic
medium, respectively. We clearly see the increased broad-
ening of all spectral functions with temperature. Moreover,
we observe that the maximum of the spectral functions is
shifted toward lower energies for higher temperatures,

indicating the attractive character of the interaction of
open-charm mesons with a pionic bath.
It is also interesting to note the similar shape of the

pseudoscalar and vector open-charm ground-state spectral
functions, that is, the parallel behavior with temperature of
the D and D� spectral functions as well as the Ds and D�

s
ones. As previously mentioned, at LO in the heavy-mass
expansion, pseudoscalar and vector open-charm ground
states are related by heavy-quark spin symmetry. Therefore,
a similar behavior with temperature of the spectral func-
tions in the pseudoscalar and vector sectors is expected.

2. Determination of masses and widths at T ≠ 0

In order to obtain a quantitative description of the
thermal dependence of the masses and widths of the

FIG. 6. Spectral functions of the J ¼ 0 ground states (D and Ds) at different temperatures in a pionic bath.

FIG. 7. Spectral functions of the J ¼ 1 ground states (D� and D�
s) at different temperatures in a pionic bath.
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open-charm ground states, one should analyze the behavior
of the corresponding spectral functions with temperature.
The mass change with temperature can be extracted from
the position of the peak of the spectral function at different
temperatures, that is, from the position of the so-called
quasiparticle peak, ωqp, obtained from

ω2
qp − q⃗2 −m2

D − ReΠðωqp; q⃗;TÞ ¼ 0; ð28Þ

whereas the variation of the width with temperature can be
obtained from the thermal spectral function at half height.
However, the determination of the behavior of the mass

and width with temperature of the dynamically generated
states, such as D�ð2300Þ and D�

s0ð2317Þ as well as
D�

1ð2430Þ and D�
s1ð2460Þ, is rather delicate. The calcula-

tion of the poles in the complex plane at finite temperature,
while performing the self-consistency program, is compu-
tationally very expensive and unfeasible. In addition, the
analytic continuation to the different RSs should be
performed, not from the real energy axis, but from the
imaginary Matsubara frequencies, and it is not clear how to
perform this technically. Therefore, we employ the method
described in the following to obtain the particle properties
on the real axis, through fits of the imaginary part of the
unitarized scattering amplitudes at finite temperature
shown in Figs. 2–5.

For isolated resonances close to the real energy axis and
not close to any threshold, we simply use a Breit-Wigner
form. But in the case of resonances that interact with the
background of another resonance (in the coupled-channel
case) we use a Breit-Wigner-Fano shape [95]. This can be
used for the lower pole in the double pole structure of the
D�

0ð2300Þ. Indeed, we have checked that the obtained mass
and width of the fit at T ¼ 0 are in very good agreement
with the values of the pole mass and the width in Table V.
The Breit-Wigner-Fano-type distribution provides a

simple parametrization to describe the distorted lower
resonance at finite temperature,

fBWFðE;A;mR;ΓR; qÞ ¼ A
ΓR=2þ ðE −mRÞ=q
ðΓR=2Þ2 þ ðE −mRÞ2

; ð29Þ

where q is the Fano parameter measuring the ratio of
resonant scattering to background scattering amplitude. In
the absence of background, the value of q goes to infinite
and Eq. (29) becomes the usual Breit-Wigner distribution.
For resonances close to a threshold, we fit to a Flatté-type

distribution [96]. In particular, for the higher pole in the
double pole structure, we first subtract the background and
then we use a generalized Flatté parametrization with three
coupled-channels,

ImTijðs;C;mR; g1; g2; g3Þ ¼ Cgigj

�
ρ1g21

ðm2
R − sþ jρ2jg22 þ jρ3jg23Þ2 þ ðρ1g21Þ2

θðmD þmη −
ffiffiffi
s

p Þ

þ ρ1g21 þ ρ2g22
ðm2

R − sþ jρ3jg23Þ2 þ ðρ1g21 þ ρ2g22Þ2
θð ffiffiffi

s
p

−mD −mηÞθðmDs
þmK̄ −

ffiffiffi
s

p Þ

þ ρ1g21 þ ρ2g22 þ ρ3g23
ðm2

R − sÞ2 þ ðρ1g21 þ ρ2g22 þ ρ3g23Þ2
θð ffiffiffi

s
p

−mDs
−mK̄Þ

�
; ð30Þ

where ρi stands for the phase space of the ith channel,

ρið
ffiffiffi
s

p Þ¼ 2pið
ffiffiffi
s

p Þffiffiffi
s

p

¼
��

1−
ðmiaþmibÞ2

s

��
1−

ðmia−mibÞ2
s

��
1=2

:

ð31Þ

The resonance width is given by

mRΓR ¼ ρ1ðmRÞg21 þ ρ2ðmRÞg22 þ ρ3ðmRÞg23; ð32Þ

where the phase spaces have been evaluated at the
resonance mass. In our case, the subindices correspond
to 1≡Dπ, 2≡Dη, and 3≡DsK̄. In order to avoid an ill
behavior of the fit due to the large amount of free
parameters, the value of g1 is imposed to vary linearly

from its lowest value at T ¼ 0 to the highest one at
T ¼ 150 MeV.
The Breit-Wigner-Fano distribution is also used for

isolated resonances at high temperatures, if they become
wide enough to be affected by threshold effects.

3. J = 0 case: D=D�ð2300Þ and Ds=D�
s0ð2317Þ

Our results for the masses and widths of the ground-state
mesons D and Ds as well as the dynamically generated
states D�ð2300Þ and D�

s0ð2317Þ are shown in Fig. 8 for a
pionic bath (solid lines) and when the medium is populated
by both pions and kaons (dashed lines). They are summa-
rized as follows:
(1) In a pionic medium, the ground-state D mass shows

a sizable decrease of ΔmD ∼ 40 MeV at the largest
temperature T ¼ 150 MeV. This reduction is twice
larger than that observed in [61], where a more
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phenomenological approach for theD-meson propa-
gator is used. Our reduction, however, is smaller
than the one shown in Ref. [63], where a nonuni-
tarized ChPT is considered. In contrast, the SUð4Þ
effective approach of [64] shows no significant
modification of the mass of the ground state. On
the other hand, the mass of the two poles of the
D�

0ð2300Þ change less rapidly with temperature
compared to the ground state, moving downward
and distancing from each other with increasing
temperature. As a consequence, we cannot conclude
that masses of opposite parity states become degen-
erate for the temperatures studied, as discussed
in Ref. [65].

(2) The width of the nonstrange states increases with
temperature, being more relevant the change in
width for the ground state. The D meson has a
width of around ∼70 MeV at T ¼ 150 MeV, con-
sistent with [49,61,64]. The widths of the two poles
of the D�

0ð2300Þ increase moderately with respect to
the vacuum values.

(3) In the strangeness sector, the Ds and D�
s0ð2317Þ

decrease their masses with temperature in a similar
manner. Thus, both chiral partners are still far from

chiral degeneracy at T ¼ 150 MeV. The trend of the
mass of both states is in line with the low temper-
ature behavior observed in Ref. [63] within the linear
sigma model.

(4) The decay widths of both strange partners increase
similarly with the temperature of the pionic bath,
reaching moderate values of 15–20 MeV at
T ¼ 150 MeV. Compared to the ground state, the
D�

s0ð2317Þ contains the additional contribution of
the decay into DK states due to the reduction of the
mass and the widening of the D meson.

(5) In a bath that includes K and K̄ in addition to pions
(see dashed lines in Fig. 8), the masses of the ground
states D and Ds decrease an additional amount of 5
and 4 MeV at T ¼ 150 MeV, respectively. The
modification of the width is, however, different
for the nonstrange and the strange states. In the
case of the D meson, the width increases around
20% while the one for the Ds meson is almost 3
times larger than the width in a pionic medium at
T ¼ 150 MeV. This follows from the stronger
interaction of the Ds mesons with kaons than with
pions. On the other hand, the effect of the pionic and
kaonic bath on the dynamically generated states is

FIG. 8. Temperature evolution of the mass (left panels) and width (right panels) of the J ¼ 0 ground-state mesons and dynamically
generated states in the ðS; IÞ ¼ ð0; 1

2
Þ sector (upper panels) and in the ðS; IÞ ¼ ð1; 0Þ sector (lower panels) in a pionic medium (solid

lines) and in a medium with π, K and K̄ (dashed lines)
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rather moderate, with the masses of the two reso-
nances of the D�

0ð2300Þ increasing a few MeV and
no significant modification of the widths, whereas
the mass of the D�

s0ð2317Þ drops slightly and the
width increases around 5 MeV.

4. J = 1 case: D�=D�
1ð2430Þ and D�

s=D�
s1ð2460Þ

With regards to the thermal evolution of the masses and
widths in the J ¼ 1 case for the ground-state mesons D�
and D�

s as well as the dynamically generated states
D�

1ð2430Þ and D�
s1ð2460Þ, we observe a clear parallelism

in their behavior with that obtained for the J ¼ 0 states, and
which is shown in Fig. 9. Again, this is due to the fact that
interactions of light mesons with pseudoscalar open-charm
ones are related by heavy-quark spin symmetry to those
with vector open-charm ground states. Thus, our conclu-
sions are similar to the ones presented for J ¼ 0, namely,
the following:
(1) In a mediumwith pions, theD� mass shows a sizable

decrease of ΔmD� ∼ 40 MeV at the largest temper-
ature T ¼ 150 MeV, similar to the D mass shift. As
for two poles that formed theD�

1ð2430Þ, their masses
decrease less rapidly with temperature compared to

the ground state, distancing from each other as
temperature increases, in an analogous manner as
for the two poles of the D�

0ð2300Þ. As a conse-
quence, also in the J ¼ 1 case, we cannot conclude
that masses of opposite parity states become degen-
erate with temperature, at least for the range of
temperatures studied here.

(2) The width of the nonstrange states increases with
temperature, being the change more relevant for the
ground state, as in the case of J ¼ 0. The D� meson
shows a similar width of around ∼70 MeV at T ¼
150 MeV as the D. The widths of the two poles of
the D�

1ð2430Þ increase moderately with respect to
vacuum value, as seen for the D�

0ð2300Þ.
(3) In the strangeness sector, the D�

s and its chiral
partner D�

s1ð2460Þ behave similarly to the Ds and
D�

s0ð2317Þ states, as they decrease their masses with
temperature analogously. Hence, the D�

s and
D�

s1ð2460Þ states follow the trend of the Ds and
D�

s0ð2317Þ, so they are still far from chiral degen-
eracy at T ¼ 150 MeV.

(4) The decay widths of both strange partners increase
with temperature and reach similar values at
T ¼ 150 MeV, becoming slightly larger compared

FIG. 9. Temperature evolution of the mass (left panels) and width (right panels) of the J ¼ 1 ground-state mesons and dynamically
generated states in the ðS; IÞ ¼ ð0; 1

2
Þ sector (upper panels) and in the ðS; IÞ ¼ ð1; 0Þ sector (lower panels) in a pionic medium (solid

lines) and in a medium with π, K, and K̄ (dashed lines)
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to the ones of theDs andD�
s0ð2317Þ. Similarly to the

D�
s0ð2317Þ, the width ofD�

s1ð2460Þ is affected by the
reduction of the mass and the widening of the D�
due to the dominant contribution of theD�K channel
in its dynamical generation.

(5) The addition of kaons in the mesonic bath (see
dashed lines in Fig. 9) results in a modification of
the ground-state D� and D�

s masses and widths in a
similar manner to that of theD andDs. Their masses
drop 5 and 4 MeV and their widths increase about
20% and by almost a factor 3 at T ¼ 150 MeV,
respectively. Furthermore the modification of the
dynamically generated states D�

1ð2430Þ and
D�

s1ð2460Þ is analogous to that described above
for the case of the J ¼ 0 states.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have studied the properties of pseudo-
scalar and vector charm mesons in a thermal medium up to
T ¼ 150 MeV. The interactions of the ground-state D;Ds

and D�; D�
s with light mesons (π; K; K̄; η) are described by

an effective field theory based on chiral and heavy-quark
spin symmetries. The medium modification of the heavy-
meson propagator is calculated in a self-consistent way, in
which the charm meson self-energy is corrected by the
effects of the T-matrix amplitude, which in turn, is
computed via the solution of a Bethe-Salpeter equation,
with in-medium heavy-meson propagators.
In vacuum, we have analyzed the different dynamical

generated states of the T-matrix in a series of channels by
extending the scattering amplitudes to the appropriate
Riemann sheet. In the J ¼ 0 case, we have described the
D�ð2300Þ state and its double-pole structure, the
D�

s0ð2317Þ bound state, together with a virtual state and
an additional resonance not yet experimentally identified.
In J ¼ 1, we have paid attention to theD�

1ð2430Þ resonance
(also with a double pole structure), the D�

s1ð2460Þ, as well
as a virtual state and a resonance. The parallelism between
the J ¼ 0 and J ¼ 1 sectors is due to the heavy-quark spin
symmetry, which is maintained at LO, and only broken due
to the explicit value of the heavy-meson vacuum masses.
At finite temperature, we have studied the thermal

dependence of the ground-state D,D�,Ds, andD�
s mesons,

as well as the experimentally identified dynamically
generated states. We have observed a generic downshift
of the thermal masses with temperature, as large as
ΔmD;ΔmD� ≃ 40 MeV for the nonstrange mesons at T ¼
150 MeV in a pionic bath. Their strange counterparts Ds
and D�

s present half of this mass downshift at the same
temperature. We have also obtained that the decay widths
of these states increase with temperature up to values of
ΓD;ΓD� ≃ 70 MeV, and ΓDs

;ΓD�
s
≃ 20 MeV at T ¼

150 MeV if we consider a pionic medium. The mass of
both poles of the D�

0ð2300Þ resonance as well as that of the

D�
s0ð2317Þ decreases more softly with temperature with

respect to the ground states in this pionic environment.
On the other hand, the decay widths in pionic matter
increase in a similar magnitude as those of D and Ds, with
the exception of the lower pole of the D�

0ð2300Þ resonance,
with an increase of ΔΓ ¼ 50 MeV with respect to its
vacuum value. The addition of kaons in the meson bath
results in a slight modification of the masses of the
nonstrange and strange J ¼ 0 ground-state mesons,
whereas the widths increase significantly, in particular
for the Ds. The effect of the kaonic and pionic medium
on the masses and widths of the dynamically generated
states is, however, rather moderate. We notice that the
modifications of the J ¼ 1 states are similar to the J ¼ 0
sector due to heavy-quark spin symmetry.
Our results provide the first systematic approach to the

thermal effects on open-charm mesons below the crossover
temperature in view of the present and future heavy-ion
experiments at low-baryonic densities as well as forth-
coming results in lattice-QCD simulations at finite temper-
ature. In the future, we will explore the effects of medium-
modified light mesons in the self-consistent calculation,
and the straightforward extension to bottom flavor, exploit-
ing the heavy-quark flavor symmetry together with the
heavy-quark spin symmetry. On the other hand, we will
apply our results of the D-meson spectral functions to the
calculation of transport coefficients like the heavy-flavor
diffusion coefficient. This will constitute an extension of
our previous results [52–54,97,98] incorporating off-shell
effects in the kinetic approach.
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APPENDIX A: ISOSPIN COEFFICIENTS IN THE
CHARGE BASIS

In this Appendix, we provide the isospin coefficients in
the charge basis. They are shown in Tables VII and VIII.

APPENDIX B: FINITE-TEMPERATURE
MODIFICATIONS OF LIGHT MESONS

In this work, we have neglected the medium modifica-
tions of the light mesons and used vacuum spectral
functions for them, in both the T-matrix calculation as
well as in the D-meson self-energy corrections. This
approximation—which should be reasonable at low tem-
peratures—was implemented in Ref. [65], where we based
our assumption on the pion mass modifications given in
Refs. [99,100]. We leave a more thorough study of the

thermal modification of light mesons into our self-
consistent approach for the future. In this Appendix, we
present a validity check using a medium-modified pion mass.
To address the correction of the pion self-energy due to

the thermal bath, we have applied the methodology of [99].
As opposed to our calculation for heavy mesons, the
method in [99] is not self-consistent but based on the
one-loop correction to the meson self-energy in the dilute
limit. We have computed the real part of the pole of the pion
propagator, whose self-energy is corrected by the thermal
medium producing a modified dispersion relation,

ωðpÞ ≃ ωp −
1

ωp

Z
d3q

ð2πÞ32ωq
fðωq; TÞReTππðsÞ; ðB1Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmπðT ¼ 0Þ

p
is the vacuum dispersion

relation (with mπðT ¼ 0Þ ¼ 138 MeV), fðωp; TÞ is the
Bose-Einstein distribution function, TππðsÞ is the (isospin

TABLE VII. Coefficients Cjk
i of the LO and NLO terms of the potential for Dϕ → Dϕ in Eq. (5) in the sectors with charm C,

strangeness S, and charge Q in the particle basis.

ðS;QÞ Channel Cjk
LO Cjk

0 Cjk
1 Cjk

24 Cjk
35

ð−1;−1Þ D0K− → D0K− 1 m2
K −m2

K 1 1
ð−1; 0Þ D0K̄0 → D0K̄0 0 m2

K 0 1 0
D0K̄0 → DþK− 1 0 −m2

K 0 1
DþK− → DþK− 0 m2

K 0 1 0
ð−1;þ1Þ DþK̄0 → DþK̄0 1 m2

K −m2
K 1 1

ð0;−1Þ D0π− → D0π− 1 m2
π −m2

π 1 1
(0,0) D0π0 → D0π0 0 m2

π −m2
π 1 1

D0π0 → Dþπ− −
ffiffiffi
2

p
0 0 0 0

D0π0 → Dþ
s K− − 1ffiffi

2
p 0 − 1

2
ffiffi
2

p ðm2
K þm2

πÞ 0 1ffiffi
2

p

D0π0 → D0η 0 0 − 1ffiffi
3

p m2
π 0 1ffiffi

3
p

Dþπ− → Dþπ− −1 m2
π −m2

π 1 1
Dþπ− → Dþ

s K− −1 0 − 1
2
ðm2

K þm2
πÞ 0 1

Dþπ− → D0η 0 0 −
ffiffi
2
3

q
m2

π
0

ffiffi
2
3

q
Dþ

s K− → Dþ
s K− −1 m2

K −m2
K 1 1

Dþ
s K− → D0η −

ffiffi
3
2

q
0 1

2
ffiffi
6

p ð5m2
K − 3m2

πÞ 0 − 1ffiffi
6

p

D0η → D0η 0 m2
η − 1

3
m2

π 1 1
3

ð0;þ1Þ D0πþ → D0πþ −1 m2
π −m2

π 1 1
D0πþ → Dþπ0

ffiffiffi
2

p
0 0 0 0

D0πþ → Dþ
s K̄0 −1 0 − 1

2
ðm2

K þm2
πÞ 0 1

D0πþ → Dþη 0 0 −
ffiffi
2
3

q
m2

π
0

ffiffi
2
3

q
Dþπ0 → Dþπ0 0 m2

π −m2
π 1 1

Dþπ0 → Dþ
s K̄0 1ffiffi

2
p 0 1

2
ffiffi
2

p ðm2
K þm2

πÞ 0 − 1ffiffi
2

p

Dþπ0 → Dþη 0 0 1ffiffi
3

p m2
π 0 − 1ffiffi

3
p

Dþ
s K̄0 → Dþ

s K̄0 −1 m2
K −m2

K 1 1
Dþ

s K̄0 → Dþη −
ffiffi
3
2

q
0 1

2
ffiffi
6

p ð5m2
K − 3m2

πÞ 0 − 1ffiffi
6

p

Dþη → Dþη 0 m2
η − 1

3
m2

π 1 1
3

ð0;þ2Þ Dþπþ → Dþπþ 1 m2
π −m2

π 1 1
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averaged) forward amplitude of the ππ → ππ process, and
s ¼ ðpþ qÞ2 the Mandelstam variable.
TππðsÞ is calculated using the unitarized scattering

amplitudes coming from SUð3Þ chiral perturbation theory
Lagrangian [101,102]. The unitarization approach used in
[101,102] is similar (but not equal) to ours. In particular, the
scattering amplitudes from [102] have no corrections due to
the temperature, but this is consistent with the one-loop
approximation for the pion self-energy.
In this Appendix, we neglect the pion width—which is

also generated due to temperature effects—so we can still

use Dirac delta spectral functions peaked atωðpÞ.We define
the thermal pion mass as the valuemπðTÞ¼ωðp¼0;TÞ and
plot it in Fig. 10 up to T ¼ 150 MeV. At this temperature,
the pion mass is mπðT¼150MeVÞ¼120MeV.
We have run our code for the D-meson self-energy at

T ¼ 150 MeV using this reduced pion mass (the pion
decay will be added in a future study). We find that the

mass of the ground-state Dð�Þ and Dð�Þ
s mesons are only

slightly modified with a decrease of ΔmDð�Þ ¼ 4 MeV and
Δm

Dð�Þ
s

¼ 2 MeV, with respect to the thermal masses

reported in Sec. III B 2, while the widths do not change
appreciably. With regards to the dynamically generated
states, the lowest-lying state that corresponds to D�ð2300Þ
as well as the one for D�

1ð2430Þ change their masses by
−2 MeV, being the widths 20 MeV larger. As for the
highest-lying resonances both change by −2 MeV, with a
similar change in width. For the bound states D�

s0ð2317Þ
and D�

s1ð2460Þ, the change in mass is of −2 MeV, while
the width increases by 1 MeV.
In conclusion, for low temperatures T ≪ 150 MeV,

it is acceptable to neglect the medium effects of the light
mesons. For the largest temperature considered
T ¼ 150 MeV, the effects of a medium-modified pion
are noticeable, but still small. In the future, we plan to
incorporate the medium-modified spectral functions (with
both mass and decay width depending on temperature) to
decide whether the widening of the pion (and also the
modification of the other light mesons) can produce a
significant change on the properties of heavy-flavor mesons
at intermediate temperatures.

TABLE VIII. Continuation of Table VII.

ðS;QÞ Channel Cjk
LO Cjk

0 Cjk
1 Cjk

24 Cjk
35

(1,0) D0K0 → D0K0 0 m2
K 0 1 0

D0K0 → Dþ
s π

− 1 0 − 1
2
ðm2

K þm2
πÞ 0 1

Dþ
s π

− → Dþ
s π

− 0 m2
π 0 1 0

ð1;þ1Þ Dþ
s π

0 → Dþ
s π

0 0 m2
π 0 1 0

Dþ
s π

0 → D0Kþ 1ffiffi
2

p 0 − 1

2
ffiffi
2

p ðm2
K þm2

πÞ 0 1ffiffi
2

p

Dþ
s π

0 → DþK0 − 1ffiffi
2

p 0 1

2
ffiffi
2

p ðm2
K þm2

πÞ 0 − 1ffiffi
2

p

Dþ
s π

0 → Dþ
s η 0 0 0 0 0

D0Kþ → D0Kþ −1 m2
K −m2

K 1 1
D0Kþ → DþK0 −1 0 −m2

K 0 1
D0Kþ → Dþ

s η
ffiffi
3
2

q
0 1

2
ffiffi
6

p ð5m2
K − 3m2

πÞ 0 − 1ffiffi
6

p

DþK0 → DþK0 −1 m2
K −m2

K 1 1
DþK0 → Dþ

s η
ffiffi
3
2

q
0 1

2
ffiffi
6

p ð5m2
K − 3m2

πÞ 0 − 1ffiffi
6

p

Dþ
s η → Dþ

s η 0 m2
η − 4

3
ð2m2

K −m2
πÞ 1 4

3

ð1;þ2Þ Dþ
s π

þ → Dþ
s π

þ 0 m2
π 0 1 0

Dþ
s π

þ → DþKþ 1 0 − 1
2
ðm2

K þm2
πÞ 0 1

DþKþ → DþKþ 0 m2
K 0 1 0

ð2;þ1Þ Dþ
s K0 → Dþ

s K0 1 m2
K −m2

K 1 1
ð2;þ2Þ Dþ

s Kþ → Dþ
s Kþ 1 m2

K −m2
K 1 1

FIG. 10. Pion mass mπðTÞ ¼ ωðp ¼ 0;TÞ as a function of the
temperature after incorporating SUð3Þ ChPT amplitudes of
Ref. [102] into the one-loop pion self-energy correction of
Ref. [99].
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