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There is an interesting relation between the quantum periods on a certain limit of local P 1 ×
P 1 Calabi-Yau space and a TBA (Thermodynamic Bethe Ansatz) system appeared in the studies of 
ABJM (Aharony-Bergman-Jafferis-Maldacena) theory. We propose a one-parameter generalization of the 
relation. Furthermore, we derive the differential operators for quantum periods and the TBA-like equation 
in various limits of the generalized relation.
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1. Introduction and summary

In geometry, we often compute period integrals, which are the integrals of differential forms in certain cohomological classes over 
cycles of the geometry. For Calabi-Yau three-folds, the classical periods of the holomorphic 3-form over 3-cycles play important roles in 
mirror symmetry [1]. The classical periods in mirror symmetry satisfy a set of differential equations known as the Picard-Fuchs equa-
tions. Basically, because the cohomology space is finite dimensional, we can construct Picard-Fuchs operators by linear combinations of 
derivatives of complex structure moduli, whose actions on the differential form are exact forms, so that the integrals vanish over cycle.

There have been many works to generalize the notion to quantum geometry and quantum periods, see e.g. [2]. In the context of 
mirror symmetry, we consider local Calabi-Yau geometries which can be described by complex one-dimensional curves. Quantization of 
the geometry amounts to promoting the complex coordinates of the curves to canonical conjugate operators [x̂, p̂] = ih̄. For notational 
convenience with the i factor we also denote ε ≡ ih̄. The wave function of the quantum system has a standard WKB expansion ψ(x) =
exp[ 1

ε

∫ x w(x′)dx′], where the integrand in the exponent has a power series expansion in ε parameter. The quantum periods can be 
computed by integrals of w(x)dx over cycles, which in this case are contour over the complex x plane. In the classical limit ε → 0, this 
reduces the classical periods, which are integrals of the canonical differential one-form pdx over cycles. An important property of the 
quantum periods is that the higher order contributions can be computed by certain differential operators acting on the classical periods 
[3–5].

* Correspondence to: Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China.
E-mail address: minxin@ustc.edu.cn.
https://doi.org/10.1016/j.physletb.2021.136102
0370-2693/© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2021.136102
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136102&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:minxin@ustc.edu.cn
https://doi.org/10.1016/j.physletb.2021.136102
http://creativecommons.org/licenses/by/4.0/


M.-x. Huang Physics Letters B 814 (2021) 136102
The classical periods provide a solution for the prepotential of the Calabi-Yau geometry. The free energy of topological string theory also 
includes higher genus contributions. More generally, motivated by Nekrasov’s calculations [6] of instanton partition function of Seiberg-
Witten theory, one can define refined topological string theory which has expansion over two small parameters ε1,2 [7]. The conventional 
genus expansion corresponds to ε1 + ε2 = 0, while another special limit of setting one parameter to zero e.g. ε2 = 0 is known as the 
Nekrasov-Shatashvili (NS) limit [8]. One application of the quantum periods is that they can compute the topological free energy in NS 
limit, in the same way as the classical periods compute the prepotential. This has been studied in Seiberg-Witten theories as well as 
topological string theory [3,4]. Furthermore, exact quantization conditions for quantum systems of mirror curves including novel non-
perturbative contributions are conjectured in [9–11].

In this note, we consider the case of a well studied local P 1 ×P 1 Calabi-Yau space, which in a special limit is related to the compu-
tations of partition functions of ABJM theory on 3-sphere [12,13]. On the other hand, the partition function of ABJM theory can be also 
formulated in terms of fermion gas, and is related to a TBA system, which are studied in many papers [14–20], based on the early seminal 
papers [21,22].

In particular, a novel relation between the quantum periods and the TBA system was conjectured and later derived in [23,24]. The 
derivation uses ABJM theory as well as its many sophisticated technical ingredients. However, in order to have a deeper understanding as 
well as exploring possible generalizations to more Calabi-Yau spaces, it is worthwhile to directly study the relation which by itself can be 
formulated independently without ABJM theory.

We should note that in our study we will only use a TBA-like difference equation and will not need integral equations which may be 
more familiar for obtaining the analytic properties of the underlying quantum spectral problem. We will not study the spectral theory but 
only solve the difference equations perturbatively around a small complex structure deformation parameter for the purpose of comparing 
with quantum A-periods. As in the examples in a subsequent paper [25], our difference equations are similar to, but are not necessarily 
equivalent to those of an actual TBA system with good analytic properties. In this sense, this type of difference equations is usually called 
TBA-like.

The paper is organized as the followings. In section 2, we introduce the notations and propose a one-parameter generalization of the 
relation between quantum periods and TBA system in [23]. In sections 3 and 4, we then take another perspective of the relation by 
expanding perturbatively for small ε parameter, but keep the coefficients exactly as a function of z in terms of differential operators. We 
will compute the differential operators to the first few orders for various limits in the generalized setting, and verify that they are the 
same for the TBA system and the quantum periods.

Subsequently after this paper appeared, we further generalize the relation for a large class of Calabi-Yau geometries [25]. This later 
work indicates that the relation studied here is not an isolated phenomenon, but rather universal.

2. A one-parameter generalization

The mirror curve of the local P 1 ×P 1 Calabi-Yau model is

ex + ep + z1e−x + z2e−p = 1, (2.1)

where x, p are the complex coordinates and z1, z2 are the complex structure moduli parameters. We promote the complex coordinates to 
canonical operators x̂ = x, p̂ = ε∂x . The mirror curve acts on a wave function ψ(x) so that

(−1 + ex + z1e−x)ψ(x) + ψ(x + ε) + z2ψ(x − ε) = 0. (2.2)

It is convenient to use exponential variables q = eε, X = ex . A particular choice of z1 → q
1
2 z, z2 → q− 1

2 z corresponds to the calculations 
of ABJM partition function. Here we will instead consider a one-parameter generalization of the ABJM setting, by keeping the general 
P 1 ×P 1 geometry. We introduce the following parametrization with an additional m parameter

z1 = emz, z2 = e−mz. (2.3)

The original conjecture in [23] corresponds to a special choice m → ε
2 in our set up.

One also introduces a function V (X = ex) = ψ(x+ε)
ψ(x) . Instead of the standard WKB expansion of the wave function ψ(x) =

exp[ 1
ε

∫ x w(x′)dx′], we consider the logarithmic function log V (X) = 1
ε

∫ x+ε
x w(x′)dx′ , which may differ with w(x) only by some total 

derivatives. So their residue is actually the same. We have a function of four parameters V (X, ε, z, m) which satisfies the equation

−1 + X + emz

X
+ V (X, ε, z,m) + e−mz

V (q−1 X, ε, z,m)
= 0 (2.4)

We can compute the function V (X, ε, z, m) recursively as a perturbative expansion of small z. The equation (2.4) is quadratic in the 
classical limit ε → 0. Without loss of generality, we choose one of the two solutions which is a nonzero constant in the z → 0 limit. In 
this case, the equation becomes linear at z = 0 with a unique solution V (X) = 1 − X . We take this as the initial function for the small z
perturbation, then the first few terms are

V (X, ε, z,m) = 1 − X − (
e−mq

q − X
+ em

X
)z − (

e−2mq

q2 − X
+ 1

X
)

q3z2

(q − X)2
+O(z3). (2.5)

The function log(V ) has only a finite number of poles in the complex x plane in the small z perturbation. The quantum A-period can 
be computed by a contour integral of log(V )dx around a large circle enclosing all the poles, and by contour deformation the calculation 
becomes a residue around x ∼ −∞. Instead of computing residue of x, it is more convenient here to compute equivalently the residue of 
X = ex around X ∼ 0 with an extra factor of 1 since dx = dX , which would be just the constant term in the Laurent expansion around 
X X

2
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X ∼ 0. It also turns out that the residue of X missed a log(z) term due to the change of integration variable at infinity. Taking this into 
account and use the proper combination, we have the quantum A-period

�A = log(z) − ResX=0
2

X
log(V (X, ε, z,m) (2.6)

= log(z) + 2(em + e−m)z + [3(e2m + e−2m) + 2(4 + 1

q
+ q)]z2 +O(z3),

where the log(z) term is well known to be present in the classical periods and responsible for their monodromy. The proper combination 
of log(z) with the residue can be fixed by comparing with classical period at q = 1 which is determined by a Picard-Fuchs differential 
equation.

On the other hand, the TBA-like system corresponding to the ABJM theory of the choice z1 → q
1
2 z, z2 → q− 1

2 z is described by a function 
η(X, ε, z) of the three variables, which also satisfies a difference equation

1 + z[η(qX) + η(X)][η(q−1 X) + η(X)](X + X−1 + q
1
2 + q− 1

2 ) = η(X)2. (2.7)

It is reasonable to expect that there should be a one-parameter deformation which corresponds to the general local P 1 ×P 1 Calabi-Yau 
model described above. After some guessworks, we find such a deformation, which is to simply replace the q

1
2 +q− 1

2 term with em + e−m , 
where m is the extra deformation mass parameter. In the generalized model, we now have a four-parameter function η(X, ε, z, m), defined 
by a deformed equation

1 + z[η(qX) + η(X)][η(q−1 X) + η(X)](X + X−1 + em + e−m) = η(X)2. (2.8)

Subsequently after this paper appeared, the above equation (2.8) is derived using the spectral theory in [25]. We provide some details 
of the general procedure in Appendix A. In our case, the function u(x) in (A.8) can be expressed in terms of Faddeev’s quantum dilogarithm 
function. Using some functional relations one can show that in our case the general equation (A.8) becomes (2.8) with only elementary 
functions.

One can also solve the function η(X, ε, z, m) recursively as a perturbative series of z. With the choice of plus sign for the leading term, 
the first few terms are

η(X, ε, z,m) = 1 + 2(em + e−m + X + X−1)z + 2(em + e−m + X + X−1)

·[3(em + e−m) + (q + 1 + q−1)(X + X−1)]z2 +O(z3). (2.9)

The relation between quantum A-period and the TBA-like system is then

ResX=0
1

X
η(X, ε, z,m) = θz�A(ε, z,m), (2.10)

where the differential operator is defined θz ≡ z∂z . Although the equations for quantum periods (2.4) and for the TBA-like system (2.8)
look quite different and the expansions are also different, after taking residue, one can check the relation (2.10) perturbatively for small z
where the coefficients are rational functions of q and em . Thus we have provided a generalization of the relation in [23].

We do not provide a rigorous proof of the relation (2.10). In the ABJM case of TBA-like equation (2.7), a somewhat rigorous derivation 
is given [24]. However, the approach seems very specific to ABJM theory and it is not clear whether the derivation can be conveniently 
applied to our case of general mass parameter. In lights of the much more general results in our subsequent work [25], it is probably 
preferable to search for a more universal approach for rigorous proof. We may return to this question in future works.

3. Differential operators for a TBA-like system

We now consider a different expansion, by solving the equations as a perturbative series of ε . We can treat the extra parameter m in 
two ways, either as an independent finite parameter, or it can depend also on ε , e.g. scaling like m = m̃ε with m̃ finite. We will compute 
in both cases.

In this section, we study the TBA-like equation (2.8). First we consider the case of m as an independent finite parameter. We denote 
the perturbative series and the residue as

η(X, ε, z,m) =
∞∑

n=0

ηn(X, z,m)εn, pn(z,m) ≡ ResX=0
1

X
ηn(X, z,m). (3.1)

Since the equation is invariant under the sign switch ε → −ε , the coefficients vanish ηn(X, z) = 0 for odd integers n. So we only need to 
consider even terms.

The leading term can be solved by a simple quadratic equation. Our convention uses the solution with plus sign

η0(X, z,m) = 1√
1 − 4(em + e−m + X + X−1)z

. (3.2)

We can compute the leading period perturbatively for small z expansion

p0 = 1 + 2(em + e−m)z + 6(e2m + e−2m + 4)z2 + 20[e3m + e−3m + 9(em + e−m)]z3

+O(z4). (3.3)
3
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The exact expression is determined by a Picard-Fuchs differential operator L so that its action on the leading term Lη0(X, z, m) is a total 
derivative of x. Such operator can not be constructed by linear combinations of 1, θz with rational z coefficients, so we need at least up to 
the second derivative θ2

z . After some computations we determine the operator

L = [16(em − e−m)2z2 − 8(em + e−m)z + 1]θ2
z + 8z[4(em − e−m)2z − em − e−m]θz

+2z[6(em − e−m)2z − em − e−m]. (3.4)

The operator will be compared with the Picard-Fuchs operator of the classical A-period of the local P 1 ×P 1 geometry in the next section. 
So the leading order period satisfies a second order differential equation Lp0 = 0. We note that this operator (3.4) is uniquely determined 
up to multiplication from the left by any operator or rational functions of z. Otherwise we can make a nonzero linear combination which 
does not contain θ2

z . The coefficient of θ2
z term is the discriminant of the curve, and is denoted

� = 16(em − e−m)2z2 − 8(em + e−m)z + 1. (3.5)

The higher order terms ηn(X, z, m) can then be written as linear combinations of η0(X, z, m) and θzη0(X, z, m), plus a total derivative 
of x. So p0 and θz p0 provide a linear basis for the higher period pn . After some computations, we determine the differential operators for 
next two orders

p2 = [16(em + e−m)(em − e−m)2z2 − 8(e2m + e−2m − 6)z + em + e−m] zθz p0

6�

+[4(em + e−m)(em − e−m)2z − e2m − e−2m + 10] z2 p0

3�
, (3.6)

p4 = {2048(em − e−m)4[e3m + e−3m − 85(em + e−m)]z6 − 512(em − e−m)2[3(e4m + e−4m)

+494(e2m + e−2m) + 3038]z5 + 2048[107(e3m + e−3m) − 191(em + e−m)]z4

+64[5(e4m + e−4m) − 658(e2m + e−2m) + 2474]z3 − 8[15(e3m + e−3m)

+109(em + e−m)]z2 + 2[9(e2m + e−2m) + 292]z − (em + e−m)} zθz p0

360�3

+{512(em − e−m)4[(e3m + e−3m) − 85(em + e−m)]z5 − 128(em − e−m)2

·[2(e4m + e−4m) + 519(e2m + e−2m) + 2990]z4 − 64[e5m + e−5m − 733(e3m + e−3m)

+1404(em + e−m)]z3 + 8[8(e4m + e−4m) − 907(e2m + e−2m) + 3798]z2

−2[7(e3m + e−3m) + 79(em + e−m)]z + e2m + e−2m + 62} z2 p0

180�3
. (3.7)

The calculations here are similar as in the previous papers e.g. in [4]. We use a proper ansatz with some unknown coefficients for the 
total x derivative which has the same analytic structure as ηn(X, z, m), whose denominator is an odd power of the square root factor in 
(3.2). The square root factor can be cancelled out and then we have a polynomial equation of X . Comparing the coefficients of X gives rise 
to a system of linear equations, with the variables z, m treated as constant parameters and the unknowns also including the coefficients 
of p0 and θz p0. The solution of the linear equations gives the above expressions (3.6), (3.7) which will be compared with those in the 
calculations of quantum periods in the next section.

Next we study another parametrization m = m̃ε with m̃ finite, where a choice of m̃ = 1
2 corresponds to the ABJM case. In this case we 

denote the perturbative series and the residue as

η(X, ε, z,m̃ε) =
∞∑

n=0

ηn(X, z,m̃)εn, pn(z,m̃) ≡ ResX=0
1

X
ηn(X, z,m̃). (3.8)

The leading order calculations and the Picard-Fuchs operator are obtained by simply setting m → 0 in the above equations (3.2), (3.3), 
(3.4). The higher order periods are different since the ε dependence in m contributes in the expansion. Again after some computations, 
we find the differential operators that determine the higher order periods

p2 = z

3(1 − 16z)
[2(3m̃2 + 4z − 48m̃2z)p0 + (1 + 12m̃2 + 16z − 192m̃2z)θz p0],

p4 = [15m̃4 − 4(−8 + 15m̃2 + 45m̃4)z − 4(43 − 1680m̃2 + 2880m̃4)z2

+320(25 − 432m̃2 + 816m̃4)z3 − 6144(7 − 120m̃2 + 240m̃4)z4] zp0

90(1 − 16z)3

+[−1 + 30m̃2 + 60m̃4 + (310 − 1080m̃2)z − 32(31 − 1200m̃2 + 2160m̃4)z2

+512(73 − 1260m̃2 + 2400m̃4)z3 − 24576(7 − 120m̃2 + 240m̃4)z4] zθz p0
3
. (3.9)
180(1 − 16z)

4
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4. Differential operators for quantum periods

In this section, we solve the equation for quantum periods (2.4) as a perturbative series of ε and the results can be compared with 
those of the previous section 3. In practice it turns out the calculations in this section are much more complicated than those in the 
previous section using the TBA-like system. In this sense, the relation with the TBA-like system provides a simpler way to compute the 
quantum periods and their associated differential operators for Calabi-Yau geometries.

Again we first consider the case of m as an independent finite parameter. We denote the perturbative series as

log V (X, ε, z,m) =
∞∑

n=0

wn(X, z,m)εn. (4.1)

We expand the quantum A-period (2.6) as

�A(ε, z,m) =
∞∑

n=0

�
(n)
A (z,m)εn. (4.2)

Unlike in previous section, the odd n power terms wn(X, z, m) do not simply vanish, but are still total derivative of x, as familiar in 
calculations of quantum periods [4]. So the terms �(n)

A with odd n in the expansion of quantum A-period vanish.

In order to later compare with the TBA-like system, we denote the derivative of the quantum period p̃n(z, m) = θz�
(n)
A (z, m), where we 

use the tilde symbol to distinguish from the notation of TBA-like system in the previous section, though they are equivalent through our 
generalized proposal. These coefficients are

p̃0(z,m) = ResX=0
1

X
[1 − 2θz w0(X, z,m)],

p̃n(z,m) = −ResX=0
2

X
θz wn(X, z,m), n ≥ 1. (4.3)

The functions wn(X, z, m) can be solved recursively. The leading term is solved by a simple quadratic equation. Since we will take 
residue, we assume X ∼ 0 and take the branch which have the same leading term as (2.5) for z = 0

w0(X, z,m) = log[1

2
(1 − X − emz

X
+ e− m

2

X

√
−4X2z + em(−X + X2 + emz)2)]. (4.4)

The Picard-Fuchs operator is more complicated to derive than the previous section. Since the leading order period p̃0 should be the same 
as p0 in the previous section, we have Lθz�

(0)
A = Lp̃0 = 0 with the operator L in (3.4). So the Picard-Fuchs operator for the classical 

period is simply Lθz , as one can directly verify that Lθz(log z − 2w0) is indeed a total derivative of x = log(X), with no residue around 
X ∼ 0 after dividing by X. We note that a constant is also a total derivative but still has non-vanishing residue ResX=0

1
X = 1, due to the 

monodromy of log(X) function. So here the log(z) term is needed so that the total contribution has no monodromy in our case.
We consider the higher order periods. The differential operators for the local P 2 ×P 1 Calabi-Yau model are computed in our previous 

paper [4]. The results are

�
(2)
A = − z1 + z2

6
θz�

(0)
A + 1 − 4z1 − 4z2

12
θ2

z �
(0)
A ,

�
(4)
A = 1

360�2
{2[z2

1(1 − 4z1)
3 + z2

2(1 − 4z2)
3 + 4z1z2(8 − 37z1 − 37z2 − 328z2

1

+1528z1z2 − 328z2
2 + 1392z3

1 − 1376z2
1z2 − 1376z1z2

2 + 1392z3
2)]θz�

(0)
A

+[−z1(1 − 4z1)
4 − z2(1 − 4z2)

4 + 4z1z2(69 − 192z1 − 192z2 − 1712z2
1

+6880z1z2 − 1712z2
2 + 5568z3

1 − 5504z2
1z2 − 5504z1z2

2 + 5568z3
2)]θ2

z �
(0)
A },

where the discriminant is (3.5) and the parametrization is z1 = emz, z2 = e−mz. We act the operator θz on both sides of the equations, and 
use the Picard-Fuchs operator L in (3.4) to eliminate the second derivatives of p̃0. In this way, we can derive the differential operators for 
p̃2, p̃4 as linear combinations of p̃0 and θz p̃0. We verify that the results are the same as from the TBA-like system in (3.6), (3.7).

Finally we consider the parametrization m = m̃ε with m̃ finite. However for general m̃, the computations for higher order periods are 
quite complicated. Instead of working out the general case, as an illustrative example, we study a special case m̃ = 1

2 , corresponding to 
the ABJM theory. We determine the differential operators for p̃2, p̃4 in this special case and verify the results are again the same from the 
TBA-like system in (3.9).

Some other well studied local Calabi-Yau models, such as the local P 2 model, also have the same feature that the Picard-Fuchs 
operator for classical periods can be written as Lθz , where L is a second order differential operator. The corresponding TBA-like equations 
are studied in [19], and compared with quantum periods in a semiclassical h̄ expansion. It would be interesting study whether this can 
be tested for finite h̄ as in this paper. A connection of ABJM theory to local P 2 model is found by studying the partition functions on 
ellipsoid [26]. It would be interesting to explore whether such a connection can be found for quantum periods as well.
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Appendix A. Some details on the derivation of the TBA-like equation

Suppose we have a quantum mirror curve of the form

ρ(x̂, p̂) = u(x̂)−
1
2 [2 cosh(p̂)]−1u∗(x̂)−

1
2 . (A.1)

It was conjectured in [21] and proved in [22] that the spectral operator is related to some TBA-like equations. We provide some details 
of the derivations here. We use the variable θ ≡ πx

h̄ which is common in the literature and absorbs the Planck constant. We also define a 
function U (x) ≡ log(|u(x)|), since we can always perform a unitary transformation to absorb the phase in the function u(x), which does 
not change the spectrum. So the spectrum of the operator (A.1) is equivalent to the study of the following integral kernel

K (θ, θ ′) = 1

2π

exp[− U (θ)+U (θ ′)
2 ]

2 cosh( θ−θ ′
2 )

. (A.2)

One introduces R0(θ) = e−U (θ) and the iterated integral

Rl(θ) = e−U (θ)

∞∫

−∞

exp[−∑l
i=1 U (θi)]

cosh θ−θ1
2 cosh θ1−θ2

2 · · · cosh θl−θ
2

dθ1 · · ·dθl, l ≥ 1. (A.3)

Furthermore we define a generating series and the decomposition into the even and odd parts

R(θ |z) =
∞∑

l=0

(− z

4π
)l Rl(θ),

R+(θ |z) = 1

2
[R(θ |z) + R(θ | − z)], R−(θ |z) = 1

2
[R(θ |z) − R(θ | − z)].

(A.4)

The expansion parameter z will be identified with the complex structure parameter of the mirror curve. Then the theorems of [21,22]
state that the even and odd generating functions can be computed by a TBA system with the integral equations

U (θ) = ε(θ) +
∞∫

−∞

dθ ′

2π

log(1 + η2(θ ′))
cosh(θ − θ ′)

,

η(θ) = −z

∞∫

−∞

dθ ′

2π

e−ε(θ ′)

cosh(θ − θ ′)
.

(A.5)

The TBA integral equations determine the two functions η(θ), ε(θ) and we have

R+(θ |z) = e−ε(θ), R−(θ |z) = R+(θ |z)
∞∫

−∞

dθ ′

π

arctan(η(θ ′))
cosh2(θ − θ ′)

. (A.6)

To derive the difference equations, we perform Fourier transforms on both sides of the two integral equations (A.5). We use the integral 
formula 

∫ ∞
−∞

eiθξ dθ
cosh θ

= π

cosh(
πξ
2 )

, where ξ is the Fourier conjugate variable of θ . We then multiply both sides by cosh(
πξ
2 ) and perform the 

inverse Fourier transforms back to the θ variable, arriving at the following difference equations

U (θ + π i

2
) + U (θ − π i

2
) = ε(θ + π i

2
) + ε(θ − π i

2
) + log(1 + η2(θ)),

η(θ + π i

2
) + η(θ − π i

2
) = −ze−ε(θ).

(A.7)

We can eliminate the function ε(θ) and obtain a difference equation for η(θ). In order to compare with quantum periods, we change back 
the variable θ = πx

h̄ and also need to make some transformations z → z− 1
2 , η → iη. We will use the TBA-like difference equation for the 

function η(X) after these manipulations

1 + z[η(qX) + η(X)][η(q−1 X) + η(X)]|u(q
1
2 X)u(q− 1

2 X)| = η(X)2, (A.8)

where we use the exponentiated parameters X = ex, q = eih̄ .
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