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1 Introduction

Feynman integrals — integrals over Feynman propagators appearing in perturbative quan-
tum field theory calculations — are primarily useful for making observable predictions
about particle physics experiments. Famously, they have been used to make some of the
most precise predictions in the history of science [1]. However, these integrals have also
increasingly become recognized as interesting mathematical objects in their own right,
exhibiting a variety of geometric, analytic, and number-theoretic properties.

One of the aspects of Feynman integrals that has become better understood in recent
years is the class of transcendental functions they evaluate to in integer dimensions. In
particular, at low loop order and low particle multiplicity, they can often be expressed
in terms of generalized polylogarithms [2-4]. These functions are under good theoretical
and numerical control, due in part to the symbol and coaction [5-9], which provide a
systematic way to understand their analytic structure and to exploit identities among them.
In particular, arbitrarily complicated polylogarithms can be broken down into simpler
building blocks such as logarithms and Riemann zeta values, at the cost of losing only
integration boundary data.

Knowing the analytic structure of polylogarithms has proven especially useful in the
computation of Feynman integrals and scattering amplitudes, as the branch cut structure
of these quantities is constrained by physical principles such as locality and causality. For
example, in the Euclidean region where all Mandelstam invariants are negative, Feynman
integrals can only have logarithmic branch points at the vanishing loci of sums of external
momenta. This places strong constraints on the symbol and coaction of the polylogarithms
these integrals produce.’

That Feynman integrals have branch cut singularities has been known since the early
days of quantum field theory. In a seminal paper by Landau [17], these branch cuts were
shown to be associated with regions of external momenta where the poles in Feynman
propagators coalesce around the integration contour, so that the contour is pinched be-
tween the singularities (see also [18, 19]). Cutkosky subsequently gave a general formula
relating the discontinuity across these branch cuts to “cut graphs” in which some Feynman
propagators are replaced by delta functions [20]. ’t Hooft and Veltman later gave a simple
diagrammatic derivation of Cutkosky’s cutting rules [21, 22]. However, these works are
mostly confined to the study of a single discontinuity of Feynman integrals.

In this paper, we are interested in studying the cutting rules for discontinuities of
discontinuities: is there a way to compute sequential discontinuities of Feynman integrals
with cut diagrams, as there is for single discontinuities? Cutkosky and his contemporaries
touched on this topic, but computing sequential discontinuities is significantly more com-
plicated than computing a single discontinuity. Usually cuts are computed as differences
F(s+ie) — F(s —ie) = F(s+ie) — F(s+i€)*, which is appropriate in the physical region
where the cut runs along the positive kinematic invariants and the amplitude satisfies a

!This constraint on the symbol can also be extended to Feynman integrals that evaluate to elliptic
polylogarithms [10-12]; however, no coaction has been worked out for the types of worse-than-elliptic
integrals that appear in Feynman integrals in integer dimensions (see for instance [13-16]).



reality condition F'(s —ie) = F(s+ie)*. However, as can be observed in explicit examples,
when taking cuts of cuts the situations is more complicated. In particular, one generically
encounters complex branch points, and the same reality condition does not hold (in fact,
this reality condition clashes with holomorphy).

Some progress on the study of sequential discontinuities was made in [23], where a
formula relating sequential discontinuities in different channels to a sum over cuts was
conjectured. Drawing inspiration from this work, we make use of time-ordered perturbation
theory (TOPT) to derive more general relations between the sequential discontinuities of
Feynman integrals and cut integrals. In particular, our method clarifies the role of the +ie
prescription in cut integrals, and emphasizes the importance of considering monodromies
around branch points rather than discontinuities across branch cuts. In this approach,
we can analytically continue from the physical region, along a path that goes around a
branch point and returns to the physical region. Now the function can be thought as being
evaluated on a different sheet and the discontinuity is the difference between the initial
value and the final value.? While this monodromy-based approach does not appear to be
widely used, it goes back at least as far as [24]. Our approach was also influenced more
by recent mathematical literature on polylogarithms, where the general theory simplifies
in several ways. One of the simplifications is that the monodromy group is represented
by numerical matrices whose entries are integer (or rational) multiples of powers of i.
Using these methods, we are able to compute discontinuities in any sequence of channels,
including discontinuities in the same channel.

Sequential cuts of Feynman integrals can also be computed using the multivariate
residue calculus of Leray [25]. This has been worked out explicitly at one loop [26]. While
this approach is both general and mathematically rigorous, it quickly becomes computa-
tionally onerous. More Hodge-theoretic approaches have also been developed in [27, 28];
we comment on the difference between these approaches and the methods of the present
paper at the end of section 4.2. In this paper, our main goal was to come up with a pre-
scription for computing sequential discontinuities that was more computationally tractable
than existing approaches.

One set of constraints on sequential discontinuities are the Steinmann relations. As
originally studied by Steinmann [29], these relations follow from causality and express
linear relations between vacuum expectation values of certain types of operator products
called R-products (as defined in [30]). Steinmann originally studied these relations for the
case of four local gauge-invariant operators; they were subsequently generalized to higher
multiplicity [31-34]. Later, it was shown that the Steinmann relations imply scattering
amplitudes cannot have double discontinuities in partially overlapping momentum chan-
nels [35]. The Steinmann relations have also been studied directly from the point of view
of S-matrix theory, without reference to local fields and their commutators; for a review,
see [36].

Steinmann-type constraints have proven extremely useful for the modern amplitude
bootstrap program, which attempts to determine the functional forms of Feynman inte-

2Note that in this approach the choice for where to place the branch cut is not important.



grals or scattering amplitudes from their general properties (such as symmetries, analytic
properties, and factorization in certain kinematic limits). So far, these methods have been
mostly applied to processes in planar N' = 4 supersymmetric Yang-Mills theory [37-48],
where there is rich theoretical data available and integrability-based computations provide
crucial consistency checks [49-52]. However, similar analytic constraints and bootstrap
techniques are expected to extend to non-supersymmetric quantities as well (see for in-
stance [53-55]).

Scattering amplitudes in Yang-Mills theories necessarily involve massless particles,
so the Steinmann relations, originally derived in field theories with a mass gap, do not
necessarily apply. Indeed, massless particles engender infrared divergences in these theories.
In planar N' = 4, instead of studying the amplitude itself, one typically studies finite
Feynman integrals (see for instance [48, 56—60]) or remainder functions, defined as ratios of
amplitudes or ratios of amplitudes to the exponentiation of lower-order amplitudes. It is to
these types of remainder functions that Steinmann-type constraints are often applied [44,
45, 61, 62].> While there has been some progress in systematically extracting the infrared-
finite content of the S-matrix (for example, through the construction of an infrared-finite
S-matrix [64, 65]), there remains some uncertainty over how and when constraints like
Steinmann relations should hold. One goal of this paper is to pry away some of the strong
assumptions used in the axiomatic field theory approach. Thus, rather than full scattering
amplitudes in mass-gapped theories, we study Feynman integrals directly.

More broadly, in this paper we set out to provide some clarity on how to think about
and compute sequential discontinuities of Feynman integrals, and to study the types of
constraints these sequential discontinuities satisfy. We treat this problem both at the level
of cut integrals and at the level of polylogarithmic functions. In particular, we make use of
time-ordered perturbation theory (TOPT) to prove new relations between the sequential
discontinuities of Feynman integrals and their cuts. We also describe how these discon-
tinuities can be computed systematically from polylogarithmic representations of these
integrals with the use of variation matrices and the monodromy group, both of which we
describe in some detail.

The main practical results of this paper take the form of relations between disconti-
nuities of Feynman integrals and cuts of those integrals. For example, we show that the
m' discontinuity of the Feynman integral M in a momentum channel corresponding to
the Mandelstam invariant s satisfies the relation

[Discy"M] p, = m! Z {:L} (—1)mk [Miecuts] Ry (1.1)
k=m

where {¥} = L S0 (—1)"(")¢* are the Stirling numbers of the second kind. On
the left side of the equation, we compute m discontinuities in the s channel by taking m
monodromies around a branch point in s. We write this as

Disci' M = (1 — ey )™ M (1.2)

3The Steinmann relations were first used to analyze these amplitudes in the multi-Regge limit, where it
was also pointed out that normalizing by the BDS ansatz did not preserve these relations [63].



These monodromies are taken by analytically continuing along a closed contour that goes
between the region R*, which we define to be the region in which all Mandelstam invariants
are real and negative, except for s which is real and positive, and the Euclidean region R*,
where all invariants are negative. On the right-hand side, M_cuts denotes the sum over all
ways of cutting the Feynman integral k times, with positive energy flowing across all cuts.
These cuts must be computed in the region RS , where the 4+ subscript indicates that all the
Feynman propagators in these cut diagrams should be assigned +ie. A careful treatment
of the +ie in the cut diagrams is essential to have a sensible (and correct) formula relating
discontinuities and cuts. Eq. (1.1) is derived in section 5. We also derive similar relations
between cuts and discontinuities in different channels.

One thing that our analysis makes clear is that sequential discontinuities can only
be nonzero when there exists at least one TOPT diagram that depends on the energies
corresponding to each cut momentum channel. When one of these energies is not present,
the cut in this channel vanishes. Since the energies that appear in TOPT diagrams always
take the form of sums of external energies ) . ; F;, where the sets of summed-over external
particle indices J that appear in a given diagram are strict subsets or supersets of each
other, TOPT graphs never have sequential discontinuities in partially-overlapping momen-
tum channels. This amounts to a new proof of the Steinmann relations in perturbation
theory. We emphasize that the relations we derive between sequential discontinuities and
cuts hold for individual Feynman integrals, and as such the Steinmann relations must also
be obeyed by individual Feynman integrals.

This is a long paper, partly because we wanted to give a pedagogical introduction to
various subjects relevant for the main results in a uniform language. We begin in sections 2
and 3 by reviewing first the cutting rules and then the discontinuities of integrals in both
covariant perturbation theory and TOPT. These sections essentially review what is needed
to understand and prove the relation between single discontinuities and cuts, as in the
optical theorem. We proceed in section 4 to introduce the main mathematical tools we use
for computing sequential discontinuities. Here, we discuss the maximal analytic continu-
ation of polylogarithmic functions and introduce the formalism of variation matrices. We
then show how the discontinuities of polylogarithms can be computed using the action of
the monodromy group. Our treatment of these topics draws heavily from [66, 67], but is
intended to be introductory since these topics have not featured prominently in the physics
literature. In section 5 we use these tools to prove our main results for sequential disconti-
nuities and cuts of Feynman integrals. A corollary is a new integral-by-integral proof of the
Steinmann relations. In section 6 we work through some explicit examples that illustrate
these new relations between the cuts and discontinuities of Feynman integrals, including
bubble, triangle, and box diagrams up to L-loop order. A summary and discussion of some
possible implications of our work and future directions are given in section 7.

We also include in this paper a number of appendices with some technical details
not needed for the main results of the paper. Appendix A discusses the relation between
the variation matrix and the coproduct. Appendix B discusses the relationship between
the monodromy group associated with a polylogarithm and the fundamental group of the
manifold on which it is defined, and explicitly works out the relation between these groups



in the case of the triangle and box ladder integrals. Appendix C shows how single-valued
functions can be easily constructed in the variation matrix formalism. In appendix D, we
provide details on how the permutation symmetry of the one-loop triangle integral acts
on its rational and transcendental parts. Appendix E presents the variation matrix for
the transcendental function ®5(z,z) appearing in the two-loop ladder triangle and box
diagrams. Finally, appendices F and G give some details of the calculation of cuts of the
three-loop and L-loop triangle diagrams.

2 Cutting rules: a review

The branch points and branch cuts of Feynman integrals have been studied since the early
days of S-matrix theory. Landau described how to compute the location of these branch
hypersurfaces [17], and later Cutkosky described how to compute discontinuities across
these hypersurfaces, using Feynman integrals with cut propagators [20]. In this section
we review the cutting rules and the relationship between cuts, discontinuities, and the
imaginary part of a scattering amplitude.

2.1 Cutkosky, 't Hooft and Veltman

We begin with the generalized optical theorem, which states that the imaginary part of a
scattering amplitude A is given by a sum over intermediate states X,

ImA(A — B) = iZ/dHX(27r)464(pA Cpx)AA = X)ANX < B).  (2.1)
X

This optical theorem is non-perturbative and follows from the unitarity of the S-matrix.
By expanding each side order-by-order in any coupling, the theorem implies a constraint
on the sum of all Feynman diagrams contributing to A at any order. However, it does
not provide any constraints on individual diagrams. Some nontrivial checks on the optical
theorem, including examples where disconnected diagrams play a crucial role, can be found
in [68].

One can derive stronger results than the optical theorem by directly studying indi-
vidual Feynman integrals. These integrals are Lorentz-invariant integrals over Feynman
propagators, and take the form

_ d'ky 1
M= /1;[ iz L e m? + ie (2.2)

J

In our notation, the integer ¢ indexes L loop momenta k¢, and j indexes the internal lines.
The variables k and p denote the collective set of loop and external momenta, respectively,
while ¢;(k,p) and m; denote the momentum and mass of the 4 internal line. We do
not include factors of 7 in the numerators of the propagators, but include a factor of 1/i
per loop integral in anticipation of the i’s generated by the k? integrals. Throughout this
paper, we take incoming particles to have positive energy.

Feynman integrals are defined in terms of external four-momenta p*, but since they are
Lorentz invariant they depend only on invariants of the form s; = P?, where P} = X", ; p!’



denotes a sum of external momenta. These invariants cannot all be independent. For
instance, in four dimensions a Feynman integral M(p) depends on n external momenta
and hence (at most) 4n independent quantities, while there are 2" invariants s;. The
number of independent invariants is further reduced by momentum conservation and the
on-shell condition for each external particle. Thus, the s; are highly interdependent. The
constraints on the sy are easiest to derive using their expression in terms of four-momenta.

The integral M may become singular as i€ — 0 in the propagators. For physical
momenta the Mandelstam invariants sy are real, but we can analytically continue M to be a
function of complex s;. Then the singularities as ¢ — 0 can be thought of as the endpoints
of branch cuts on a Riemann surface (more generally a hypersurface of maximal analytic
continuation) associated to M. In 1959, Landau derived a set of equations whose solutions
indicate the regions of momenta where these singularities may reside, collectively known
as the Landau surface [17]. The Landau surface may be disconnected, but each connected
component corresponds to some set of propagators becoming singular: [g;(k, p)]> = mf
Cutkosky. Shortly after Landau’s paper, Cutkosky gave a prescription for computing the
discontinuity across one region of the Landau surface [20]. If the singularity is associated
with the region L£; where the propagators j € J go on-shell, then the discontinuity is
given by

Ak,

. 1
Discy,M = /H i2m)
14

2 2
qr —m

[I(=2mi)d(q; —mHe(q;)| 1

jeJ kJ

(2.3)

Cutkosky also considered the singularities of Disc,, M. He argued that the discontinuity
across a region of the Landau surface associated with a set of propagators K (that are in
the complement of J) going on-shell is given by

Disc., Discs ;M = Discz, M. (2.4)

This is the type of sequential discontinuity we focus on in this paper.

Unfortunately, Cutkosky’s results are phrased entirely in terms of discontinuities across
regions of the Landau surface where particular propagators go on-shell. However, it is
generally not possible to isolate a region corresponding to the singularity locus of (just) a
given set of propagators in the space of independent invariants. For example, a string of
bubbles depends only on a single external kinematic invariant p?, but the Landau equations
identify a different branch hypersurface when the propagators in different bubbles are cut.
Thus, Cutkosky’s formula gives no constraint for sequential discontinuities in the same
channel, a central focus of this paper.

’t Hooft and Veltman. A simplified treatment of cuts and discontinuities was provided
in the 1970’s by 't Hooft and Veltman [21, 22]. Their approach sidestepped the Landau
equations and analytic continuation entirely, to provide a constraint on M directly. They
start with the Feynman graph associated with the Feynman integral M, and consider all
possible colorings of the vertices of this graph as either black or white. The following rules



are then assigned to the edges between these colored vertices:

1 1 .
TP —mltie  © Tr-—mr—ie ° o= ~2mid(p* — m*)®(po)

(2.5)
The graph with all black vertices is the original time-ordered Feynman integral M, with
all 4+ie propagators, while the graph with all white vertices corresponds to —M, where M

is defined by
dky 1
/H—z 2m)d (k m2 —ic (26)
q] ,p)|> —m? —ie

Propagators connecting black and white vertlces are said to be cut, meaning these lines are
on-shell and positive energy flows from black to white. Using the position-space version
of these rules, 't Hooft and Veltman showed that the sum over all possible assignments of
white and black vertices is zero. This implies what we call the covariant cutting rules

_ d’k 1
M_M:Z( /H equJQ m?Jris
1
X H —2mi)6 ?)(—)@0) 011 my (2.7)

where the sum is over all diagrams with mixed black and white vertices and L, is the
number of loops connecting exclusively white vertices.

There are a few important aspects of this equation to note. First, the covariant cutting
rules (like Cutkosky’s rules) do not require unitarity. Eq. (2.7) is derived algebraically, as
a constraint among integrals over propagators and delta functions. In a unitary theory,
M is related to the complex-conjugated integral M* (where the numerators and vertices
are complex conjugated in addition to +ie — —ie), and the numerators of cut propagators
correspond to a sum over physical spins. Then the sum over cuts gives the total scattering
cross section, and the generalized optical theorem in eq. (2.1) results.

Second, even in a non-unitary theory the covariant cutting rules relate an integral with
all +ie propagators to an integral with all —ie propagators. Since the Feynman integrals
we consider have all the other sources of imaginary parts stripped out, the cutting rules
directly compute ImM. Although we would like to view M as an analytic function, so
that ImM is related to the discontinuity of M around a branch point, this has to be done
with some care. The covariant cutting rules directly let us compute only M — M.

Third, if we compare to Cutkosky’s formula in eq. (2.3) we note that the covariant
cutting rules involve mixed +ie and —ie propagators, while eq. (2.3) is agnostic to the
pole positions of the propagators. This does not make the two equations inconsistent,
since left-hand-side of eq. (2.3) is the discontinuity across a Landau surface defined by the
cut propagators while the left-hand side of eq. (2.7) is the imaginary part of M. It does
however make it difficult to explicitly verify Cutkosky’s equation. In contrast, eq. (2.7) can
be verified in a straightforward manner in any number of examples.

Finally, because the 't Hooft-Veltman derivation of the cutting rules builds on a single
constraint among all the diagrams (the largest time equation), it is hard to break it down



further to derive constraints on individual Feynman diagrams. Although such a dissection
might be possible, we find it more transparent to work in time-ordered perturbation theory
where the cutting rules can be derived in a way that makes generalizations to sequential
cuts and discontinuities more straightforward.

2.2 Time-ordered perturbation theory

To prove the cutting rules in time-ordered perturbation theory (TOPT) we exploit the
following simple mathematical identity. If some functions A;, B; and C; are related by

Aj = Bj=0Cj, (2.8)
then
Ay---A,—By---B,=C1By---B,+ A1C9B3--- B+ -+ A1+ A,_1C,, . (29)

For n = 1, there are no A; or Bj on the right hand side, and so eq. (2.9) reduces to eq. (2.8).

. R 1
For example, if we take A; = e Bi=

corresponds to the familiar relation
1 1

- = —27id(p?). 2.10
Prie 2o () (2.10)

To be clear, this is an identity in the sense of distributions; it is the cutting equation for

M= pZ.}H‘e‘ In general, with this choice of A;, B; and C}, the left hand side of eq. (2.9)

corresponds to the difference between an integral with all +ie propagators and one with

all —ie propagators, which is either M — M or M + M depending on the number of
loops. For an even number of loops, eq. (2.9) can be applied, but even then it produces
some combination of propagators with +ie propagators, some —ie propagators and delta
functions with no clear relation to eq. (2.7).

To derive the cutting rules using eq. (2.9), we use TOPT. Recall that covariant Feyn-
man rules are derived for time-ordered products by inserting extra energy integrals to
generate expressions in terms of Feynman propagators. In TOPT, the time-orderings are
kept separate and no energy integral is introduced. Each Feynman diagram is the sum of
v! TOPT diagrams, with v the number of vertices. In a time-ordered diagram, the internal
lines are on-shell (meaning gy = w, = /72 + m?2) and three-momentum is conserved at
each vertex, but energy is in general not conserved at each vertex. The positive sign is
always taken for the energy (in front of the square root), because all intermediate states are
Fock-state elements of physical on-shell positive-energy particles. Each intermediate state

contributes an energy denominator to the TOPT amplitude M, with its energy subtracted
1

2wq

momentum ¢, and loop three-momenta are integrated over. A detailed discussion, and a

from the initial energy, along with a +is. M also acquires a from each propagator with

derivation of the TOPT Feynman rules, is given in [69] (see also [65]). For example, the
scalar loop can be written as



p 2m)4 k2 —mi +ie (p— k)2 — m3 + ie

k
N\ [ dY% 1 1

=/ - (2.11)
>t ° [

)

_ / Bk 11 1 N 1
N (27)3 2w, 2wp—i | Bp — (wi +wp—k) +ie  Ep — (i + wp—k + 2wp) + i€

where E, = w, = y/p? + m? is the energy of p* and wy, = k2 + m3, wy—p =/ (P — E)Q +m3

are the energies of the virtual particles. Eq. (2.11) can be verified by performing the kg
integral, which picks up two of the four poles. In terms of diagrams, we have

= () + K 3 (2.12)

S
I
)
b

The intermediate state in the TOPT diagrams changes as each vertex is passed in time
(where time flows to the right). In the first diagram this state includes only the k£ and p—k
lines, so its energy is wy + wp—; in the second diagram, the intermediate state includes
also the energy of the initial and final states, and thus its energy is wy + wp— + 2wy

It is often difficult to perform the kg integrals to reduce Feynman diagrams to TOPT
diagrams. Their equivalence is easiest to show from more general principles of quantum field
theory, since both compute the same time-ordered products (cf. [69, 70]). Keep in mind that
although the +ie is necessary to determine the kg integration contour, it cannot be removed
after the integration is done. Indeed the +ie originates from the fact that particles move
forward in time with positive energy and is an essential part of the Lippmann-Schwinger
propagator in TOPT.

Now for each term in the TOPT decomposition we can apply the identity in eq. (2.9),
using the TOPT analog of eq. (2.10):

1 1
Ej*Wj+i€ Ej*wj'*it?

= —2Wi5(Ej — wj) . (213)

The sum of all TOPT diagrams with a given topology and all +i¢ propagators gives the
Feynman diagram M, while the sum of these diagrams with all —ic propagators gives
M. The remaining terms have §(E; — w;) factors which impose energy conservation at an
intermediate time. These diagrams neatly split in two along the cut, with positive energy
automatically flowing across the cut (because TOPT diagrams have positive energy at any
intermediate time) and where all cut particles are on-shell (since all particles are on-shell
in TOPT). By eq. (2.9) all the propagators before the cut have +ie and those after the cut
have —ie. Thus the cut TOPT diagram is one particular time-ordering of a white/black
partition, which is one time-ordering of a cut Feynman diagram. The sum of all possible
cut TOPT diagrams gives all the possible time-orderings of the black and white vertices,
and therefore reproduces the full cut Feynman diagram and confirms the cutting rules.



For example, when we apply eq. (2.9) to eq. (2.12), there is only one intermediate state
in each diagram to cut (in contrast to the Feynman diagram, which has two intermediate
propagators to cut). Cutting the first diagram gives

( I ) / 27)3 2wy, 2“; . (—2mi)6(E)p — (Wi, + wp—k))

4 41./
_ / i(‘éf) ; / ié :’)4 (=2m) (27)36% (p — k — K)(—2mi)5 (k2 — m?) (2.14)

x O (ko) (—2mi)o (k2 — m2)O(K,) .

So this diagram alone gives the cut of the Feynman diagram. The cut of the other diagram
is zero, since energy conservation at the cut is impossible to satisfy:

Ak 1 1 ,
/ 27)3 2wk %0y 1 (—2mi)0(Ep — (2wp + wi, + Wp—k)) =0. (2.15)
p—

This is typical of TOPT graphs: when one time-ordering can be cut, the same diagram

with vertices in reversed time order cannot be cut.

More broadly, the key reason why the cutting rules can be derived diagrammatically in
TOPT is that cuts in TOPT are associated with internal multiparticle states, not individual
particles. So a cut, which replaces a TOPT propagator by a delta function, splits the
diagram in two, ordered by time, in contrast to Feynman diagrams, where using eq. (2.9)
just opens up a loop.

In fact, we have derived something stronger than the covariant cutting rules: the
constraint on the amplitude holds for each time-ordered Feynman diagram separately and
it holds point-by-point in phase space. Indeed, the equation that we use to prove it, eq. (2.9)
holds at the integrand level. Let us define an individual TOPT integrand for fixed loop
momenta as

1 1 — 1 1
M= ... —, M .. .
FEi —wy +ie E, —w, +1e Ei —wy —ie E, —w, —ic

(2.16)

Then, by putting in the explicit form of the TOPT propagators, eq. (2.9) gives what we
call the time-ordered cutting rules:

1 1

M — M =
;El — w1 + 1€ Ej_l —Wwj-1 + 1

(—2mi)6(Ej — wj)

1 1
X — . (217)

Ej1 —wjpr —ie E, —w, —ic

When the loop momenta are integrated over, this equation implies the cutting rules, but
this equation holds for any F; and w;.
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3 Discontinuities

Having understood the cutting rules in covariant perturbation theory and in time-ordered
perturbation theory, we can now proceed to connect cuts to the discontinuities of am-
plitudes. As discussed above, the Feynman integral M, viewed as an analytic function
of Mandelstam invariants, is a multi-valued function on a complex manifold. Cutkosky
showed that one can compute the discontinuity of M across some region of its Landau
surface by summing over integrals in which different sets of propagators have been cut.
However, to provide practical constraints on amplitudes we need a prescription much more
explicit than Cutkosky’s. For example, how do we identify what region of the surface we
are probing from knowledge of which Feynman propagators have been cut? And how do
we actually perform the analytic continuation around the relevant branch points?

There are two related concepts that we will discuss, and which we want to connect.
The first is the total discontinuity of a Feynman integral in a particular region, which
is computed by the covariant cutting rules. A region in this context is the specification
of the signs of the Mandelstam invariants, and the signs of the energies (which particles
are incoming and which are outgoing), if necessary. Once the signs are specified, we can
compute the total discontinuity using eq. (2.7). The second concept is the discontinuity of
a Feynman integral with respect to a particular kinematic invariant s. More specifically, we
define Discs M as the difference between M before and after analytic continuation along a
path that encircles the branch point in s (but no other branch points). Since Mandelstam
invariants are not all independent, this has to be done with some care.

3.1 Covariant approach

We begin with the total discontinuity M — M, which can be computed using the covariant
cutting rules in eq. (2.7). As defined in egs. (2.2) and (2.6), M is a Feynman integral with
all +ie propagators and M is the same integral with all —ie propagators, multiplied by a
factor of (—1)L. At any real phase-space point, M and M are complex conjugates of each
other for finite values of ie. From this point of view, M and M are separated by a branch
cut at ie¢ = 0, and may have a finite difference as ie — 0 from the positive or negative
direction. In contrast, viewed as an analytic function of the momenta, M and M are
evaluations of the same function at different points on a complex manifold. Thus the finite
difference between M and M can be thought of as the discontinuity of a single function
M. We would like to understand the analytic continuation contour along which M can
be transformed into M, as this will allow us to connect the total discontinuity computed
by the covariant cutting rules to the notion of discontinuities with respect to particular
Mandelstam invariants.

The branch cut between M and M starts at a branch point (more generally, a branch
hypersurface) somewhere in the space of Mandelstam invariants on which M depends. As
such, the discontinuity can be computed by analytically continuing M around this branch
point to the other side of the branch cut. To do this, we can continue M into a regime
where it is analytic, and then to the region where it matches M. For example, suppose
M = In(—s +ig) and M = In(—s — i), and take s > 0. Then we can continue M along
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the path s — €/®s with 0 < o < 7 to the region where s < 0. From this region we can

i@g or keep going to arrive at M on the

either go back and reproduce M using s — e~
other side of the branch cut using s — ¢’®s. We can also continue increasing the phase of
s in this manner: as « increases, we end up on higher and higher sheets of the Riemann
surface of In(—s). A single discontinuity corresponds to the single monodromy around the
branch point at s = 0. In equations, for the logarithm we have Discs M = DiscigtM =
M — M = 2iIm M in the region where s > 0.

A useful concept for studying the analytic properties of Feynman integrals is the Eu-
clidean region. In this region, all Mandelstam invariants are negative and M is analytic.*
To see that integrals are analytic in the Euclidean region, it is helpful to write a general
Feynman integral in the Symanzik representation [71]. This is done by using Feynman
parameters and then integrating over the loop momenta. The result is that a Feynman
amplitude as in eq. (2.2) can be written as

un—2L—2
M) = [ Tldey 600= Y m) " (3.1)

x>0 J

Here, the first Symanzik polynomial U/ is

L{:Z[Hl‘j}, (3:2)

T J¢Th

where the sum is over all 1-trees 71, which correspond to tree diagrams that connect all
vertices in the graph. The second Symanzik polynomial F is

F = Z [ H ij} (_SP(TQ)) —H/Iijm? - iE, SP(TQ) = [ Z pj}Q, (3.3)

T2 J€T2 Jj=1 J€T2

where m; are the masses of the internal lines and the sum is over 2-trees 7, which them-
selves correspond to pairs of disconnected tree diagrams that involve all vertices of the
original graph. The nice thing about this parametrization is that M is now manifestly a
function of Mandelstam invariants.

Singularities in M can only arise when F = 0. Since the integration region corresponds
to z; > 0 and in the Euclidean region sp(r,) < 0 for all 72 and m]2 > 0 for all j, the
denominator will never vanish and the result will be analytic in the external momenta.
Note that the Euclidean regime is identified with a stronger requirement than that M is
analytic; it requires that all Mandelstam invariants are negative, not just those associated
with 2-trees from a particular graph. We denote the Euclidean region by R*.

We denote generic regions, in which kinematic invariants can be positive or negative,
by R. We use the more precise notation R4 to indicate a region in which all positive
invariants are slightly above the associated branch cut, i.e. all propagators have +ic. The

4Due to momentum conservation, the Euclidean region will not exist for all Feynman integrals. However,
while the Euclidean region is useful for motivating the relations we derive in section 5, these relations will
not depend on the existence of this region. In particular, any number of Mandelstam invariants will be
allowed to be positive in these relations in addition to the Mandelstams with respect to which discontinuities
are being taken.
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region in which all positive invariants are instead below the associated branch cut, and all
propagators have —ie, will be denoted R_.°> Thus, we write

[Discior M| = [M M]R — Mg, — Mg . (3.4)

To compute the right hand side, we would like to understand how to analytically continue
the amplitude between R, , R*, and R_. There are many ways to do this. The precise path
should not affect the answer for the discontinuity. It is nevertheless important to know
that the path exists, and having an explicit path can help determine which branch points
are encircled.

Since M is Lorentz invariant, it may seem most natural to continue the invariants
themselves. For example, we can rotate all the positive invariants to negative values via
s; — e"s; with 0 < o < 7 while leaving the negative invariants stationary. This puts us
in R*, where all s; < 0 and the amplitude is nonsingular. We can then keep going, and
analytically continue all the invariants that were originally positive further by extending
0 < a < 2m, to end up in R_. Unfortunately, since the invariants are not all independent,
this procedure can be ambiguous. For example, in massless four-particle kinematics, if we
want to rotate s from being positive to negative while holding the other invariants fixed,
we could try the above analytic continuation path. But if we rewrite our amplitude or
integral to depend just on the other invariants using the relation s = —t — u, this rotation
would seem to have no effect. Thus, one must be careful to do the rotation in a manner
that respects the reparameterization invariance of the integrals.

In this paper, we will restrict ourselves to analytic continuations in external energies
that respect overall energy conservation and leave all external three-momenta fixed. In
addition to avoiding the issue described above, this choice facilitates our derivation of
relations between sequential discontinuities and cut integrals, and leads to unambiguous
predictions. In addition, rotating the energies while respecting four-momentum conserva-
tion ensures that we always satisfy any Gram determinant constraints.

In general, there are many ways to rotate external energies to get from a region R to
the Euclidean region. For example, if the momenta in R all take non-exceptional values,
one can uniformly lower the energies F; — aF; with o < 1. Eventually, at some point
amin all the invariants become negative. One can then rotate the energies in the complex
plane around oyin F; and return to o = 1 on the opposite side of the real energy axis. This
procedure respects energy-momentum conservation everywhere along the path. One only
has to be careful that the invariants do not encircle their branch points twice. A concrete
example involving three momenta that follows a path homotopic to the one described in this
paragraph is shown in figure 1. We construct a number of similar paths for the examples
we consider in section 6.

Let us now assume that an appropriate analytic continuation in the energies has been
chosen, which takes us from a region Ry to the corresponding region R_ (where all Man-
delstam invariants have the same sign, but each +ic has been changed to —ic). Then the

®With Feynman propagators, the amplitude in this region also has a (—1)% in R_ due to the additional
rotation of the energies in the loop integrals. With TOPT, we simply flip ic — —ie as there are no energies
in the loop integrals.
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Figure 1. Example analytic continuation involving three external energies. We start at the
kinematic point p; = (4,2,0,0), p» = (3,6,0,0), and p3 = (—7,-8,0,0), where we have
p? = 12, pf = =27, and p3 = —15. We rotate the energies by E; — [0.1 + 0.9¢"™ cos(ms)] E;
with 0 < s < 1. During this rotation the positive invariant p? circles its branch point at p? = 0,
thus taking us from R! — R* — R', but changing the sign of the corresponding ic. The small gaps
at the beginning and end of the paths represent the +ie.

difference between M before and after this analytic continuation should match the total
discontinuity of a Feynman integral in the region R using the covariant cutting rules:

[DiSCtotM]R+ =Mpr, —Mpr_ = Z MRH, (3.5)

cuts
We emphasize the right side of this equation involves a sum over all cuts (in all channels),
as explicitly given in eq. (2.7). When we cut a set of propagators, we replace each one by

cut : pZ—rr1L2+zs — —2mid(p? — m?)0(po) (3.6)
and use +ie for all propagators before the cut and —ie for all propagators after the cut, as
implied by the subscript on R |_.

We would now like to derive a concrete relation between Discs M, and the cuts of M.
The discontinuity of M with respect to s corresponds to analytically continuing M from
being evaluated at s 4+ ie to being evaluated at s — ie, while the other invariants remain
unchanged. Let us denote the region in which s > 0 and all other kinematic invariants are
negative by R°. As only the invariant s is positive in this region, all the nonzero cuts in
the sum in eq. (3.5) are in the s-channel. As a result, we have

[DiSCtOtM]RS = MRi — Mps = ZMRHf = Z MR+|7 . (3.7)
cuts cuts in s
To further connect this sum of cut integrals to Discs M, we must show that the analytic
continuation corresponding to Disciot in this region encircles a branch point in only in
s, and in no other invariants. This turns out to be easiest to see in TOPT, which we
turn to now.
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3.2 Discontinuities in TOPT

In TOPT all internal lines are on-shell with positive energy and real masses (¢o > 0 and
¢®> > 0). External lines, however, have no such restriction; they can have p? < 0 if the
diagram is meant to be embedded in a larger diagram (for example, the off-shell photon
in deep-inelastic scattering is spacelike), and incoming external particles can have negative
energy if they correspond to outgoing particles.

Because we are ultimately interested in the analytic properties of Feynman integrals
as functions of external energies, it is helpful to separate out the contributions to TOPT
propagators from internal and external lines. In particular, we can put each TOPT propa-
gator in the form 1/(Ep — wy + ic), where Ep corresponds to a sum over external energies,
and wy = Zj wj is a sum over particles in internal lines, where w; = Vv q_]'-2 + mj2

Consider for example the one-loop TOPT graph, with all E; > 0:
. b2

B 1 1
N Ey — (w1 +w2) +ie (B1 — E3) — (w2 + w3) +ic

(3.8)
' p3

In the first propagator, Ep = Ey = Fo+F3 and w, = wi+w2 while in the second propagator
Ep = F1 — E3 = E3 and wy = wa + wo. If we had drawn py and p3 as incoming lines with
negative energy, the diagram would have been more awkward to draw, but we would have

found an equivalent expression:
p2 1 1

1 1
N E; — (w1 +w2) +ie (E1 + E3) — (w2 + ws3) +ic

(3.9)

P3

The value of the diagram is the same since we have flipped F3 — —FE3. We use the
convention that all lines have positive energies, as in eq. (3.8).

For a general TOPT graph, the energies £ appearing in the amplitude have a natural
sequence. We begin with the total initial-state energy on the far left. Each time a vertex
connecting to an external momentum is passed, the external energy is either added, if it
is incoming, or subtracted, if it is outgoing. If the vertex is purely internal, then Ep does
not change. For example, consider this graph:

(3.10)

The initial energy is E1 + Eo and the energy past the first vertex (i.e. the energies of the
states that cross the first vertical dashed line) is Ey + Fy + E5 + w; + wy + w3 for some
internal energies wj;; this first propagator depends on the difference between these energies
Ep = —F5. The sequence of Ep values as we move forward in time is

— Es, By—FEs, By—FEs, BE1—FEs, E1—FEs—E3, E1—E5—F3+E>. (3.11)
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If we took all momenta to be incoming, then we would flip the sign of Fs3, 4, and Es5 so
all the signs in eq. (3.11) would be positive. The corresponding sequence is

5—=1—=23—->2—4. (3.12)

If we use energy conservation to rewrite the energy sum (i.e. E5 = —Ey — E3 — Ey — E),
the sequence would be the same, in the opposite direction: 5 <— 1 < 3 < 2 < 4. The
fact that the energies appearing in each successive propagator are a subset of the energies
that appeared the preceding propagators (or vice versa) will be important to proving the
Steinmann relations in section 5.

Each energy Ej is the energy of a four-vector PI' = 3, .; £p!'. Thus there is a one-to-
one correspondence between invariants sy = PIQ and these energies. A TOPT propagator
1/(Er — wq + ie) can only become singular when E; = w,, which only happens if s; > 0.
To check this claim, note that the three-momentum Py is the same as the sum of the
three-momenta of all the internal particles contributing to w,, namely P = > dj- So we
have two four-vectors, P} = (Fy, ]31) and ¢ = (wy, 131), with the same three-momentum.
Recall that w, is the sum of the (positive) energies of the on-shell internal lines. Thus,
the four-vector ¢* must be timelike, ¢*> > 0, since it corresponds to the sum of four-
momenta of physical on-shell particles. Therefore, P/ must be timelike when F; = w,.
So if s; = PI2 < 0 then E; # wy. Thus the TOPT propagators can go on-shell only in
the kinematical regions where there are singularities in the full Feynman integral, namely
when sy > 0. As a corollary, we can drop the +ie in any TOPT propagator corresponding
to a negative invariant.

Now let us discuss how to take the discontinuity of a TOPT graph. A TOPT graph
is a product of propagators of the form 1/(E; — wy + ic). To take the discontinuity in the
channel sy associated with Ej, we want to analytically continue Ej around the pole of this
propagator. More precisely, we want to continue Er around the branch point E7 at the end
of the line of possible values of w, for a given external momentum. This branch point E7
is at least as large as the magnitude of the momentum in the channel, ET > ]]31\ but can
be strictly larger, for example, if the internal lines are massive. The analytic continuation
between Ry and R_ should have all the energies pass around their branch points, holding
the three-momenta fixed and respecting energy conservation.5

Taking the difference between a single TOPT propagator before and after this analytic
continuation gives

1 1 1
- = —2mid(Er — wg) , (3.13)

DiSCtOt — = . .
Er—wg+ic  Er—wg+ic Er—wg—ie

as expected. Similarly, taking the difference between a generic TOPT graph M before and
after analytically continuing from R — R* — R using a path that encircles the branch
points in all of the energies, we get

1 1

DisciotM =Y s (=2mi)8(Bp, — wj) - (3.14)
j

Er —wy +ie E[n*wn*ig‘

SNote that we do not require the external masses to remain fixed, so in general external particles will
not remain on-shell during this analytic continuation.
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If we sum over all TOPT diagrams with the same topology, this reproduces the covari-
ant cutting rules for the total discontinuity of the corresponding Feynman integral M.
That is, we have shown that eq. (2.7) holds with the left-hand side explicitly written as a
discontinuity, and have thereby rederived eq. (3.5) using TOPT.

Egs. (3.5) and (3.14) hold in any region R. Let us now focus on the region R®,
where only the Mandelstam invariant s is positive, and all other invariants are negative.
Since we have shown that singularities in TOPT diagrams only arise when the energy and
corresponding invariant are positive (P? > 0 and s = P2 > 0), in the region R® there can
only be singularities associated with s. In other words, as we continue from R% to R* and
back to R? , we can only pass around branch points associated with s. This is what we set
out to show at the end of the last subsection. As a result, we can now write

[DiscsM] s = [DisciotM]ge = Y Mp, = Y Mg, . (3.15)

all cuts cuts in s

Stated more formally, what we have shown is that the analytic continuation used to com-
pute Discs M is homotopic to the path used to compute Disciot M in the region R?.

We would next like to generalize this formula to the case of sequential discontinuities, in
the same or different channels. Unfortunately, we cannot simply repeat the procedure that
allowed us to compute the first discontinuity. The problem is that this first discontinuity
takes the difference of two functions on the branch cut, and thus seems to be only defined
on the branch cut itself. For example, DiscIn?(s) = 47iln|s|©(—s) is only defined for
negative real s, where the branch cut is. In addition, when we take a cut, we turn all the
propagators beyond the cut from —+ic to —ie. What is then the right way to cut a —ie
propagator? To proceed, we will now describe a more sophisticated set of mathematical
tools that will allow us to analytically continue Feynman integrals beyond the cut plane.
This will allow us to take sequential discontinuities of Feynman integrals.

4 Discontinuities as monodromies

The +ie notation in Feynman propagators is sufficient to compute single discontinuities
of Feynman integrals, because this first discontinuity computes the difference between the
value of the integral on different sides of a branch cut. For sequential discontinuities,
we must explore a larger swath of the analytic structure of the various polylogarithmic
functions that appear in a given Feynman integral.” The =+ic notation is not sufficient to
describe this structure. Thus, in this section we review how polylogarithmic functions can
be analytically continued beyond the principal branch, and how the resulting functions
can be related back to the +ie prescription. We also discuss how these types of analytic
continuations can be carried out on TOPT propagators.

"While more general types of functions are known to appear in Feynman integrals, we leave these
generalizations to future work.
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4.1 Warm-up: the natural logarithm

Consider first the natural logarithm. It can be defined in the region |s — 1| < 1 by the sum
=1
Ins=->» —(1—s)" for [s — 1] < 1. (4.1)

To define Ins outside the region |s — 1| < 1, one can series expand eq. (4.1) around
points other than s = 1 that are within the original region of convergence to find sum
representations that are valid beyond this region. Iterating this procedure, one can extend
the function In s to the entire complex plane, excluding a curve going from the origin to
infinity (the branch cut). This is called the cut complex plane. Since the cut complex plane
is simply connected, this analytic continuation is uniquely defined, once the location of the
branch cut has been chosen. While the shape of this branch cut is in principle arbitrary,
some of this arbitrariness can be removed if we ask that the continued logarithm satisfy
the reality property f(5) = f(s). The standard branch cut choice for the logarithm, going
from 0 to —oo along the real s axis, is consistent with this requirement. We call In s with
this choice of branch cut the principal branch of the logarithm.

With the standard placement of the branch cut for Ins along the negative real axis,
the value of In s for negative real s is usually defined to mean the function produced by
analytic continuation going counterclockwise from the positive real axis. Moreover, the
discontinuity of the logarithm, which computes the difference between the value of this
function just above and below the negative real axis, is given by

DiscgIns = In(s + ie) — In(s — ig) 2L o O(—s), (4.2)

where 2% indicates that this value for Discs In s only makes sense when one restricts to
infinitesimally-separated points that are both in the principle domain. The fact that this
discontinuity is nonzero for negative values of s illustrates the ambiguity in defining In s
directly on the branch cut. This is consistent with the way discontinuities were calculated
in the previous section, as the only way to analytically continue a function back to the
same point in the cut complex plane is if we start and end on the cut.

The +ie notation is sufficient for indicating which side of a branch cut we are on
when we restrict ourselves to the principal branch of a function. However, when taking
additional discontinuities, the +ie notation and the associated non-analytic theta function
are problematic. The single logarithm is a bit too simple, but already In? s demonstrates
the problem. Its discontinuity in the cut complex plane picture is

Disc, In? s = In?(s + ie) — In?(s — ic) P4 4riln |s| ©(—s). (4.3)

As with Ins, the discontinuity of In?s is only nonzero for real s < 0, since otherwise
In?(s+ie) and In?(s—ic) agree. But if this discontinuity is only nonzero on the negative real
axis, further analytic continuations are ambiguous, and correspondingly so are sequential
discontinuities.
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Figure 2. The logarithm can be defined as an integral along a path In,s = fv df, where the
paths begin at x = 1 and end at x = s. The value of In, s depends on the number of times the
integration contour wraps around the branch point at the origin. We define families of paths by ~,
where n denotes the number of times the path circles the origin. The family labelled 7y is defined
to give the principal branch of the logarithm. On the negative real s axis In,, s = In(s + ie) and
In, , s =In(s —ic).

To proceed, we note that an alternative way to define the logarithm (other than
eq. (4.1)) is through the contour integral
sdx
Ins = —. 4.4
"2 (14)
The integration is to be performed along any contour within the cut complex plane that
goes from 1 to s. This definition agrees with the series definition and analytic continuation.
The discontinuity across the branch cut can then be computed as

s+ie s—ie
Discslns:/ dw—/ dzﬂ:/ dj:Qwi, (4.5)
1 z 1 z Oy X

where ©¢ is the infinitesimal contour that wraps around the origin once counterclockwise.
For other functions, like In® s or the dilogarithm Lis(s), the discontinuity will not be con-
stant. In such cases we can consider further discontinuities. To do so we need to consider
the maximal analytic continuation of our functions, in which we do not restrict their domain
to the cut complex plane.

A clue to how to proceed is given by the closed contour &g in eq. (4.5), which apparently
passes right through the cut. Indeed, although the integral computation agrees with the
discontinuity across the cut, what it is actually computing is the difference between the
value of the function on two sheets of a Riemann surface; the location of the branch cut
is immaterial. The only invariant is the location of the branch point, at s = 0 for the
logarithm. This is the unmovable singularity of the integrand.

We can extend the definition of the logarithm in eq. (4.4) beyond the cut complex

plane by simply writing

dx
1 = | — 4.6
D,YS T ) ( )
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where the integration contour v can be any path from 1 to s that does not pass through
the origin. This is the maximal analytic continuation of In s. The domain of the maximal
analytic continuation in this case is an infinite number of copies of the complex plane with
a branch point at s = 0. These additional copies can be accessed by integration contours
that wrap around this branch point a given number of times. By considering all such
paths, we obtain an infinite number of values for In s that differ by multiples of 27i. This
is illustrated in figure 2, where we denote by ~,, equivalence classes of paths that end at s
after wrapping around the origin n times in the counterclockwise direction. The principal
branch of the logarithm corresponds to paths that never cross the negative real s axis.

The infinite tower of values associated with In s can be thought of as being generated
by the closed integration contour around the branch point at the origin. This integral is
referred to as the monodromy of In s around the origin, and constitutes the only element
of the natural logarithm’s monodromy group. The discontinuities of polylogarithms can be
computed in terms of their monodromies; for instance, in our new notation the discontinuity
across the branch cut of In s becomes

dx
1 —1 = = =27 4.7
nys—ln,_s /@ i, (4.7)

where the integral over &g is the monodromy. To connect the monodromy picture to the
cut-plane picture, we now identify

In(s +ie) = Iny,s, In(s —ie) =1In,_,s. (4.8)

To be clear, In(s+ie) on the left side of these equations means we approach the real s axis
from above or below on the principal branch of the logarithm on the cut complex plane.
The logarithms on the right hand side are defined through contours and have no branch
cut — the function In, s is analytic on the negative real s axis (and everywhere else) as
long as the path v is deformed smoothly to change s. With this identification, eq. (4.7)
then agrees with eq. (4.2) up to the theta function. Indeed, the discontinuity defined in
terms of the monodromy is an analytic function, while the difference using the principal
branch of the logarithm comes with a non-analytic O(—s).

If we adopt the relations in eq. (4.8) as analytic generalizations of In(s+ic) and In(s—
i€), we can easily compute discontinuities of powers of logarithms by simply substituting
in eq. (4.7). For instance,

Disc, In?(s + ig) = In?(s + ie) — In*(s — ic) = (27i) [21n(s + ig) — 2] (4.9)
and
Discs In?(s + ig) = In3(s + ic) — In®(s — ie)
= (2mi) [3In°(s + ie) — 6miIn(s + ic) — 47%] . (4.10)

We can now proceed to take additional discontinuities by subtracting from the function its
value with all +ie switched to —ie. We then find

Disc,Discs In®(s + ic) = (27i)? [6In(s + ig) — 12m4] (4.11)
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and
Disc,DiscsDisc, In?(s + ie) = 6(27i)>. (4.12)

If we take any further discontinuities of In®(s + ic) we get zero. It is worth emphasizing
here that Disc does not in general satisfy the product rule

Disc(AB) # ADiscB + BDiscA. (4.13)

The discontinuity operator computes a finite difference around a branch point, which is
not an infinitesimal differential in any sense.

In summary, we have seen that for powers of logarithms, we can compute sequen-
tial discontinuities by identifying the +ie prescription with integration contours that end
on different Riemann sheets, and the discontinuity across the cut with the monodromy
around the branch point. In general, the transcendental functions that show up in scatter-
ing amplitudes are more complicated than logarithms, and depend on many Mandelstam
invariants with many branch points. Understanding the monodromy group of these more
complicated functions will help us untangle their analytic structure, and thereby help us
compute their sequential discontinuities. Correspondingly, we now turn to a systematic
procedure for computing the generators of the monodromy group associated with a general
polylogarithmic function.

4.2 The monodromy group

Given a function defined by a contour integral, we can determine the effect of an analyti-
cally continuing around one of its branch points by integrating along a closed contour that
encircles this branch point. The integrals along these closed contours are referred to as the
monodromies of the function, and form a group. By computing an explicit representation
of this group, we can compute the value of this function anywhere in its maximally ana-
lytically continued domain. We illustrate how this group can be systematically computed,
by working through some examples.

One branch point. Let us first return to the example of powers of logarithms In" s,
for any positive integer n. As the discontinuities of In" s involve lower powers of In s, we
consider all powers up to n simultaneously. The total differential of these functions is

In" s In"!s\ ds
d () U (4.14)

n! (n=1") s
where we have normalized In" s by a factor of n! for convenience. Let’s take n = 3 for
concreteness and collect the functions that appear in the derivatives of In® s into a vector

V= (1 Ins %11125 élnss) (4.15)
The differential relations in eq. (4.14) can then be put in the matrix form

av=V-uw, (4.16)
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where the connection w is an (n+1) x (n+1) matrix defined on C* = C\{0} whose entries
are one-forms:

040 0
00 % 0
— s 4.17
““loo o (4.17)
00 0 0

As we analytically continue In" s around s = 0, the vector of functions V will mix with other
functions that, like V), satisfy the differential equation in eq. (4.16). These other functions
have lower transcendental weight, and the mixing coefficients will be proportional to powers
of im. Thus, general solutions to eq. (4.16) will contain all the possible information about
the monodromies of the function.

As there are n + 1 independent solutions to eq. (4.16), we can group these solutions
into an upper-triangular matrix .# called the variation matriz, which we normalize to have
1’s along the diagonal. The variation matrix on the principal branch of the logarithm for
n = 3 can be written as

llns%IHQS %lngs
0 1 Ins 1ln2s

o $)=10 0 1 lns (4.18)
0 0 0 1

Variation matrices have a close connection to the coproduct structure often utilized in
Feynman integral calculations. Further discussion of this connection is given in appendix A.

To extend the variation matrix in eq. (4.18) beyond the cut complex plane, we need
to determine the effect of deforming the integration contour defining its entries around
their branch points. Although this extension changes the value of the function at s, the
differentials of the function will still be related by the differential equation eq. (4.16). Since
the general solution to this differential equation are linear combinations of the rows of the
variation matrix, we can interpret the action of the monodromy as multiplication of the
variation matrix by another matrix, the monodromy matrix.

The most general solution to the differential equation in eq. (4.16) is given by

M (s) = Pexp ([y w) , (4.19)

where P exp( fv w) is a path-ordered exponential along the path « starting at 1 and ending
at s. For a given contour from a to b, the path-ordered exponential is defined by

b b b
Pexp(/ w)-l—i—/w—i—/wow—l—--- (4.20)

where [ ; w o w denotes an iterated integral. Since w is a matrix, w o w implies matrix
multiplication:

b
/ wow= win(t1)eng (£) (4.21)
a a<t1<t2<b
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Here we have made the matrix indices explicit for clarity, and k is to be summed over.
Note that the expansion in powers of w is finite since w is nilpotent.

For differential forms in several variables x = (z1,...,x,), these iterated integrals are
defined as follows. First, we choose a path v parametrized by ¢ € [0,1] and defined by
(x1(t),...,xn(t)). Then, given some differential forms &;(z),...,&x(z) in the variables z,
we can pull them back to the path v, whereupon they become differential forms ~v*&;(t)
in the variable ¢ parameterizing the path. The iterated integral of these forms along = is
defined as

[a@e-oa@ = [ Y (1) 7 Er(t). (4.22)
¥ 0<t1 <<ty <1

We discuss how to evaluate integrals of this type in more detail in appendix E.

Given an integration contour + that ends at x, the value of .Z, () can be computed by
integrating the path-ordered exponential in eq. (4.19). We can split up any path v between
the basepoint (where the integration starts) and x into a contour 7y that goes from the
basepoint to x without encircling any of branch points (the poles in w), and a series of
contours {75} that each begin and end at x and encircle one of the branch points of w.
That is, we have v =90~ o---0; , where 7, o, denotes the composition of paths in
which we first run along the path =, and then along the path ~,. A very useful feature of
defining matrices as path-ordered exponentials is that composing two paths corresponds
to matrix multiplication. So

My = M

oo oo, = M, -///%41 ~~-///%4n (4.23)
Now, this contour can also be written v = (yp 07}, © 761) o---0(yo07;, o 761) 0o, where
Vi =0 orygk oYy ! encircles the same poles as i, but starts and ends at the same basepoint
as 7 rather than starting and ending at x. Hence, we can also write

My = Moy ooy = Moy -+ Moy, - Mo (4.24)

i1
where we are now prepending closed contour integrals from a common basepoint onto the
integration contour before we arrive at x. This convention ensures that the monodromy
matrices are independent of the endpoint . In summary, to compute the monodromy
from z along the path 7] followed by ~5 we first multiply on the left by ., followed by
multiplication on the left of the result by .#,, where the paths v, and v start and end at
the basepoint independent of x.

In the case of In" s there is only a single branch point at the origin. The contour ~q
can be taken to be the straight path from 1 to s, except when s lies on the negative real
axis, in which case we deform the path g to go just above the branch point at zero. Then
one can check that the variation matrix .#, in eq. (4.18) is exactly Pexp [ w along this
path (see eq. (4.29) below). Since there is only one branch point, we define paths v and
~v_ that encircle the origin counterclockwise or clockwise with unit radius. We can thus
decompose a general path v into some number of iterations of v or v_, followed by ~o,

namely y =4 0---0yp 09 0ry=7-0---07_ 0.
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Given a member ;, of the equivalence class of contours that encircle the origin £k times
clockwise and end at s, we have

M (5) = (Mo )" My (5). (4.25)

The matrix .#,_ can thus be seen to be a generator of the monodromy group, since it maps
In" s to its value after encircling the branch point s = 0 one more time. Such representations
of the monodromy group generators are sometimes called monodromy matrices.

Since we have specified their integration contours, .#(s) and .#,_ can be computed
directly. To calculate .#,_, we parametrize the path y_ by s = exp(—i6) for 6 € [0, 27].
This gives us % = —id#, and thus

—_9i\J
/ ds ... p 48 _ (=2mif 2,7‘”) , (4.26)
-GS S, J:

J
The analogous set of integrals over g just return the logarithms we started with, namely

J
ds o8 _In(s) (4.27)
70 S S, J!

J

Expanding the path-ordered exponentials and evaluating the iterated integrals as described
above on the connection in eq. (4.17) for In® s, we find

1 —2mi §(—2mi)? (—2mi)3
0 1 —2mi  (—2mi)?
%yf(s):]l—i-/ w—i—/ wow+/ Wowow = T 5 m) (4.28)
77 77 '77 0 0 1 _271'2
0 0 0 1

and
n

1 Ins % In?s
0 1 Ins
0 0 1

(4.29)

in agreement with eq. (4.18).
Using eq. (4.25), we can then compute the effect of going around the branch point by
multiplying these matrices. For example, we can calculate the first discontinuity by

0 —27i 72wilns+% %ln28+%ms+%
0 0 i —omilns + 2
1-4, ) My (s) =— 2
( Y ) ’YO() 0 0 0 —omi
0 0 0 0
(4.30)

The discontinuity of In®s is then 3! times the top-right entry of this matrix, in agreement
with eq. (4.10).
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More generally, under the action of .#,_ the entry in the first row and last column of
M, (s) transforms as

In"(s) < In"F(s) (—2mi)¥ '

= (n—k)! k! (4.31)

Here we are generalizing notation slightly by having .#, act on a function rather than
the variation matrix in which it is the upper-right entry. Thus, the discontinuity is

n"— k _ Y
DiscgIn"s = (1 — .#,_)In"s = Z n' li)? ( 2];2) . (4.32)

This agrees with what we get using the substitution In(s —ic) = In(s + i) — 274, as we did
for instance in eq. (4.9), which gives us

n

Discg In" (s +ie) = In" (s + i) — In" (s — i) Z < > In"*(s +ie)(—2mi)k  (4.33)
k=1

for arbitrary n.

Further discontinuities can be computed by acting with the same operator 1 — .Z,_
For later reference, we list here some general formulas that can be derived either using the
substitution method or with the use of monodromy matrices:

DiscsDiscs In" (s + i) = In" (s + ie) — 2[In(s + i) — 2mi]" + [In(s + i) — 4mi]"  (4.34)

T R s

Similarly, the formula for m discontinuities is

Discy* In" (s +ic) = i(—l)é (?) [In(s + i) — £2mi]" (4.36)
=0
1)™m! f: { § } (Z) " (s + ie)(—2mi) (4.37)
k=1 "

where

fagor)e e

are the Stirling numbers of second kind. These numbers have a useful combinatorial inter-
pretation: {¥ 1 is the number of ways of partitioning a set of k elements into m non-empty
sets.

Multiple branch points. Let us now consider an example involving two branch points,

the dilogarithm

oo n
Lis(s) = Z fT for |s| < 1. (4.39)



Im s

Figure 3. Lis(s) has branch points at s = 0 and s = 1. The principal branch of Lis(s) has a
branch cut on the real line from s = 1 to +00. The standard contour vy in the analytic integral
definition of Lis(s) begins at a basepoint at s = ¢ > 0 and proceeds in a straight line to s, diverting
in a counterclockwise path around the branch points when necessary.

Similar to the definition of the logarithm in eq. (4.1), this power series definition is only
convergent in the region |s| < 1, but can be uniquely continued to the rest of the cut
complex plane, where the branch cut is usually placed on the positive real axis running
from 1 to co. The dilogarithm can also be given by an integral definition,

5d 5 d
Lis(s) = / T ri(z),  with  Lii(s) = / T (s, (4.40)
(N 0

1—=x

We write the integral in terms of Lij(s) rather than —In(1 — s) to make the singularities
more transparent, as Lij (s) and Lia(s) both have branch points at s = 1, with a branch cut
conventionally going from 1 to oo along the positive real s axis. The standard placement
of the branch cut for Li,(s), from 1 < s < oo is consistent with the standard branch cut
for the logarithm, s < 0.

Using equation (4.40), we have

d d

dLis(s) = —f In(l—s),  dln(l—s)=—1 _SS. (4.41)

We can again put these relations in a matrix form
d (1 Liy(s) Lia(s)) = (1 Lis(s) Lia(s)) - w (4.42)

where

02 0
w=|0 0 % (4.43)

00 O

is defined on C\{0, 1}.
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For Lis(s), we take the basepoint to be s = 0 and the path vy defining its principal
branch to be the straight line from 0 to s, which avoids the branch points at 0 and 1 with
a counterclockwise detour if necessary. This is shown in figure 3. Note that this contour
is problematic for the differential %, which diverges at the lower integration bound. This
can be dealt with using tangential basepoint regularization, which amounts to introducing
a cutoff € on the lower integration limit and dropping the powers of Ine that result (see
for instance [72]).® For example,

S s / s/ 1
ds | _ds :/ ds / d%:_LiQ(s)—ln(l—s)lnz (4.44)

o s 1—s 1—-¢ s

= —Lig(s) —In(1 — s)Ins, (4.45)

where = means terms divergent in € are dropped and then € — 0. Then it is straightforward
to compute the variation matrix by integrating w along ~vo:

1 Lil (S) Liz(s)

M, (s) = Pexp </ w> =10 1 Ins |. (4.46)
0 0o 0 1

Note that the this variation matrix encodes precisely the coproduct structure of Lia(s),
ALis(s) = 1 ® Lia(s) + Lii(s) ® Ins 4+ Lia(s) ® 1, (4.47)

as discussed further in appendix A.

We would now like to extend this construction to the maximal analytic continuation of
Lisg(s). As there are multiple branch points, we should in general be careful to distinguish
between infinitesimal contours that encircle these branch points, and the full contours
that not only wrap around these points but also start and end at our chosen basepoint of
integration. For In"™ s we took the basepoint to be 1, but for all the other functions we
study in this paper we will take the basepoint to be 0 (or a small value € on the positive real
axis, when regularization is required). We denote the infinitesimal contour in a variable z
that encircles the point p counterclockwise by &7. In contrast, we denote the path around
x = p that starts and ends at the basepoint by $O7. When the function under study only
depends on a single variable z, we will often drop the index indicating which variable the
contour is taken in.

The contribution from moving along any contour is computed by evaluating the path-
ordered exponential P exp( [, w) on the contour. For the monodromy around 0, we find

10 0
Mer, = Mé, = |01 2mi | . (4.48)
00 1

8In more detail, this regularization implies a choice of parametrization for the path in which the tangent
vector to the path at the basepoint is of length one. The monodromy group is then defined with respect to
the paths that satisfy this constraint. In other words, we consider homotopy classes of paths which can be
continuously deformed into one another with the tangent at the basepoint being kept constant.
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To compute the monodromy matrix associated with the branch point at 1, we first use
eq. (4.46) to determine the contribution from the path between 0 and 1, and compute the
infinitesimal contour around 1 as before. We find

107 1 —2mi 0
My1 =101 0 , .//6)1 =10 1 0], (4.49)
00 1 0 0 1

where we have dropped all logarithmically-divergent terms in accordance with tangential
basepoint regularization. The complete path thus gives

1 27 0
Mes, = Moy - Mo, - (Mos1) =0 1 0] . (4.50)
00 1

We highlight again that the action of the monodromy matrices proceeds from left to right;
eq. (4.50) computes the effect of moving from 0 to 1 along the real line, rotating counter-
clockwise around an infinitesimal contour centered at 1, and then moving back to 0.
Acting with these matrices on .Z,, allows us to compute any sequence of monodromies
on the functions appearing in .#,,. For instance, prepending a monodromy around 0 to
the path g gives
1 Lil(s) LiQ(S)
My =10 1 Ins+2mi|, (4.51)
0 0 1

Mo

0

while prepending a contour around 1 gives

1 Lij(s) — 2mi Lig(s) — 2milns
My =10 1 Ins . (4.52)
0 0 1

Mo

1

These matrices imply that Lij(s) and Liz(s) only have a monodromy around s = 1 while
Ins only has a monodromy around s = 0, as expected. We can also now compute the
sequential discontinuity of Lis(s) by first taking the monodromy around s = 1 and then
around s = 0. As we prepend these contours, this corresponds to

00 —(2mi)?
(1 —Mey,)- (N — Mes,) - Myy =00 0 : (4.53)
00 0

which tells us that DiscoDisci Lia(s) = —(2mi)?. Similarly, we can compute that (1—.# )-
(1 — Mep,) - My, = 0, consistent with the fact that Liz(s) does not have a discontinuity
around s = 0.

Multiple variables. Let us finally turn to an example involving multiple variables. We
consider the two-variable function

®1(2, %) = 2Lia(2) — 2Lis(%) — In(22) [Lix (2) — Lix(2)] . (4.54)
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This function arises in the one-loop triangle and one-loop box integrals (see section 6.2
below). Here we treat z and z as independent variables, so this function is analytic for
|2— 4] < 1 and |z— 1| < 1. Following the same steps as in our previous examples, we first
compute

= _dz )111(22). (4.55)

1—2 1-—-2

oy = (% - C) (Linte) + 1) - (

z

This can be put in the matrix form d.Z,, = .#,, - w, where

d dz _d dz
0ELE S 0
0 0 0 - 4 5
= 1-z 1-z
w= P . (4.56)
0 0 0 e dz
0 0 0 0

The connection w is well-defined in C?\{z =0,z = 1,Z = 0,z = 1}, so there are now four
codimension-one branching varieties.

We can define a path 7y between the basepoint (0,0) and (z, Z) in the same way we
did for Lia(s), namely we use straight line paths, except when z or z are on the real line
outside of (0, 1), when we go counterclockwise around the branch points. Integrating along
this path gives the variation matrix on the principal branch. The result is

1 In(zZz) Lii(2) + Liy(2) Dy(z,2)

N\ . 0 1 0 —Lil(z) + Lll(g)
M~y (2,%2) = Pexp ([m w) =10 o ) In(z/2) . (4.57)
0 O 0 1

Note that the antisymmetry of ®;(z,2) in its arguments is encoded in the matrices .#,
and w by the action of conjugation by diag(1, 1,1, —1), namely

diag(1,1,1,=1) - Ay (2, 2) - diag(1,1,1, -1) = A (%, 2) . (4.58)

Further, it can be checked that the connection w is closed (dw = 0) and flat (dw—wAw = 0).
These requirements were trivially satisfied in the preceding one-variable examples, but
guarantee that the functions appearing in Pexp [ w only depend on the homotopy class
of ~v. Further discussion of this point can be found in appendix E.

We now compute the monodromy matrices associated with the branch points at 0 and
1 in both z and z by evaluating the path-ordered exponential (4.20) on cycles that encircle
each of these four poles. First, we compute

1270 0 12780 0
0100 010 0
Mo, = My = Mer: = Mez = 459
95 S = 1o o0 1om | %% %~ 1o 0 1—2m (4.59)
0001 000 1
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To compute the monodromy matrices associated with contours around 1 we need

100 2¢ 10 —-2m 0
010 0 01 0 2mi
. = : = 4.60
///0—” 001 0 |’ Ao 00 1 o0 |’ ( )
000 1 00 0 1
100 —2¢ 10—-2m O
010 O 01 0 —2m
Moz = ) Mgz = . 4.61
051~ {001 0 %~ loo 1 0 (4.61)
000 1 00 O 1
Putting these paths together, we find
10 -2 0O
01 0 2mi
-1
Moz = My, - M (Myz) = , (4.62)
00 1 0
00 0 1
102w 0
1 01 0 —2m
00 O 1

Note that the matrices that encode monodromies in the variable z commute with the
matrices that encode monodromies in the variable Z.

These matrices allow us to compute monodromies of ®(z, z) and the other functions
appearing in eq. (4.57) anywhere in their domain, and therefore to compute sequential
discontinuities in z or z (and correspondingly the kinematic invariants of the triangle or
box diagrams). For example, to compute a sequential discontinuity in z around 1 and then
0, we would evaluate

000 —(2mi)?

000 0

000 0

Taking these discontinuities in a different order, we get a different result
000 (2mi)?
000 O
1 — (1 = 2) - = 4.65

000 O

It is also possible to take a discontinuity around both branch points by considering the
monodromy matrix associated with co. We construct this monodromy matrix and discuss
the full monodromy group in appendix B.
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As long as we analytically continue along paths which are fully contained in the Eu-
clidean region, we never encounter branch singularities and the functions we consider are
single-valued. The variation matrix approach lends itself well to the description of single-
valued functions, and in appendix C we describe a general construction that builds a
single-valued version of any generalized polylogarithm from its variation matrix.

Finally, let us highlight that the variation matrices we associate with Feynman integrals
using the above construction are not the same as the matrices considered in [27, 28]. The
matrices considered in those works look similar, insofar as they are lower-diagonal matrices
in which a Feynman integral sits in the bottom-left entry and various cuts of the Feynman
integral appear in other entries. However, in that approach several lower-diagonal matrices
are associated with each graph. For example, they associate six such matrices with the
triangle diagram, labeled by spanning trees whose edges are ordered. The variation matrices
we consider are useful for determining how the transcendental functions appearing in them
transform under monodromies. It is unclear to us if the matrices described in [27, 28] can
be used in the same way, and if they can, what representations of the monodromy group
they furnish.

4.3 Monodromies of propagators

We have seen that the +ie notation is good for describing where we are on the principal
branch of multivalued functions, where they describe being on opposite sides of a branch
cut. We have also seen that discontinuities across the branch cut can be recast using
monodromies around the branch point where the cut begins.

In the case of the logarithm, we recall that this amounts to identifying

In(s + i) = Iny,s, In(s —ic) =In,_; s, (4.66)

where 7y is homotopic to the straight path from 1 to s, and ~_1 is given by a path that
first crosses the real negative axis before ending at s, as shown in figure 2. With these
identifications, we have that In(s — ie) = In(s + ie) — 2mi for all values of s. Using this
identity, we can compute the discontinuity of not only In(s+i¢), but also In(s —i¢), finding

Discgln(s — ie) = Discg[In(s + ie) — 2mi] = 273 . (4.67)
This can be rewritten in a more suggestive manner:
Discgln(s —ic) = In(s — i) — [In(s — i) — 27i] =In,_,s —In,_,s. (4.68)

Thus, when we take the discontinuity of In(s — ic), we are not computing the difference
between its value and the value of In(s + ic). Rather, we are computing the difference
between analytically continuing In.,s around the origin of s once versus twice.

For sequential discontinuities, the contour definitions are particularly helpful as they
allow us to migrate away from the principal branch where +ie is applicable. Recall however
that all the +ie displacements in Feynman integrals originate in the +ie displacement of
the poles in TOPT propagators. Thus, just as we were able to identify higher winding
number versions of In(s & ie) using different integration contours, we should be able to
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identify higher winding number versions of propagators. To do so, recall that propagator
comes originally from a semi-infinite integral over time

1 7 1 N
= —i [ dt P! = —i / dt 't 4.69
E +ie Z/ “ E —ic L e (4.69)
so that
o0
1 1 . iFt .
Fiic B_i- ! / dt '™ = -2mid(F) . (4.70)

Thus, for the propagator the integration path goes from ¢t = 0 to t = +00 and the +ie is
shorthand for this integration path. We can correspondingly take sequential discontinuities
of products of propagators in the same way as for logarithms. To do so, we introduce the

notation
Dj = —2m’6(Ej - Wj) (471)
and
pP™ = v +nD; (4.72)
J Ej —wj +ie 7
where we call this distribution a propagator with winding number n. The propagators we
are used to seeing correspond to P( ) = m and Pj(fl) = ﬁ

In this notation, a TOPT amphtude and its conjugate are

(=1)
Py
1

=

I
—

S

n o n
(4.73)

J=1 J=

The TOPT cutting rules in eq. (2.17) become

DisciotM = M — M = Z(H ")D (ﬁ pY). (4.74)

k=1 k=j+1

Since Disciot is a linear operator, this can also be generalized to products of propagators
with arbitrary winding numbers:

n noJ n ;
Diseior [T P17 =3 (TT 2")os( TT 7" 7Y). (4.75)
j=1

j=1 k=1 k=j+1

To take further discontinuities, we just use eq. (4.72) to express propagators with nonzero
winding number in terms of propagators with winding number 0. Then, as in eq. (4.35),

Disc? M = Discyot M — Discioy M (4.76)
:(Pl"'Pn)_2(P1_D1)"‘(Pn_Dn)+(P1_2D1)"'(Pn_2Dn)
= Z k(28— 2)[Dy -+ DyPygs -+ Py + perms]
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where the sum over permutations in the last bracket corresponds to the (}) choices for

which k propagators to replace with delta functions. The analog of eq. (4.37) is

(Disciot)™ Py - - - P = i(—nf <m> (Pr = ¢Dy) - (P, — (D,,)]

¢
=0 (4.77)

n

= f:(—l)z (?) > [Pl -+ P({Dgy1) -+ (€Dy) +permS} .
(=0

k=1

Although the winding numbers have been left implicit in eq. (4.76) and eq. (4.77), these
equations are valid for any assignment of winding numbers.

Let us try to briefly summarize this section. We found that to take sequential discon-
tinuities the +ie language was insufficient. For a single discontinuity, one can compare a
function on two sides of a branch cut on the principal branch. However, to take additional
discontinuities, one needs an analytic function defined away from the cut itself. A natural
way to do that is to treat the discontinuity as a monodromy around the branch point.
In the monodromy language, there is no branch cut at all (the branch cut is an artifact
of projecting onto a complex plane) and the discontinuity is automatically an analytic
function. Moreover, monodromies can be computed in an algebraic way using a variation
matrix and a connection. Finally, we saw that the monodromy picture led to a natural
generalization of the +ie propagator to a family of propagators with additional winding
numbers. These propagators will be used in the derivation of the relation between multiple
cuts and sequential discontinuities, to which we now return.

5 Sequential discontinuities

We saw in section 3 that an advantage of TOPT over the covariant formalism is that one
can directly identify the origin of singularities in a particular channel. Propagators in
a given TOPT diagram depend on a sequence of energies, E;, — --- — Ej , and each
propagator will only lead to a singularity in the integration region if the corresponding
energy and invariant are non-negative (F; > 0 and s; = PIQ > 0). We then saw in section 4
that, while the +ie notation is sufficient to identify the two sides of a branch cut for taking
a single discontinuity, for sequential discontinuities it proves useful to think in terms of
branch points and monodromies. We now make use of these tools to derive formulas for
the sequential discontinuities of Feynman integrals in terms of cuts.

If we work in a region R®, where only a single invariant s = s; = P12 with P}' = >, P!
is positive, then we can drop the i in all TOPT propagators not involving the energy
associated with this invariant. To make the equations in this section more transparent, we
denote the energy and momentum associated with the s channel by Es = Ep, and Py = P.
In this notation, a generic TOPT diagram in R® takes the form

vl

PP, Ep, — w;

1 1
Es—wl—i—i&‘.nES—wn—&-ie

(5.1)
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In this region, the discontinuity in the s channel is the same as the total discontinuity:

[Discs M| s = [Discior M] ps

1 1 1
- — o (=200 (Es — w;) -+
Pil;IPS Ep, —wi;Es—wl—He ( )o( '7)

E, —w, —ic’
(5.2)

The second equality comes from applying the TOPT cutting rules in eq. (2.17) to all
propagators, or equivalently just to the propagators involving Fs, as all the delta func-
tions involving other sums of energies evaluate to zero. Summing over all TOPT graphs
with a given topology then gives the discontinuity of the corresponding Feynman integral,
[DiscsM|pgs from eq. (3.15).

Before taking further discontinuities, let us pause to clarify the role being played by
the region R® in eq. (5.2). In principle, the discontinuity operator Discy that appears in this
equation can be applied anywhere in the maximal analytic domain of the function M. On
the other hand, the relation between DiscsM and cut integrals in eq. (5.2) only holds in
regions where these cuts are allowed, and only when appropriate analytic continuation
paths from R® to R* are used to take this discontinuity. This requirement, that the
analytic continuation path starts in the region where the cuts are being computed and
only passes through an adjacent region, will become even more important when we compute
sequential discontinuities below. For instance, in the triangle and box ladder integrals we
will consider in section 6.2, we will see there are multiple ways of encircling branch points
in the z and z variables used there that correspond to encircling the branch point in a
given Mandelstam invariant; however, only some of these monodromies in z and z can be
accessed via paths that pass through the appropriate regions. Thus, while we can compute
the discontinuities of M in arbitrary regions, these discontinuities must be evaluated in
the appropriate region and using appropriate contours to be related to cuts. For instance,
DiscsM can be computed (and will in general be nonzero) in the Euclidean region, where
the cuts of M are zero. However, it is perfectly valid for us to analytically continue the
discontinuity that has been computed using the right monodromy matrices in the Euclidean
region to the region R® where it must satisfy eq. (5.2).

5.1 Sequential discontinuities in the same channel

We are now ready to consider discontinuities of discontinuities. To take a second disconti-
nuity of eq. (5.2) in the s channel we can simply rotate all the energies around the same
path as for the first discontinuity. This gives

1

. 2 0 0

{DISCSM}RS = H mZZP( NEy —wi)---PO(E, —wj_y)
P;#Ps 4 J k
X (=2m1)8(Es — wj)PCV(Ey —wjy1) - POY(Ey — wi_1)
X (=2m0)0(Eys — wi) P2 (Ey — wipyr) - PO (B — wy).

(5.3)

In words, the first cut turns the +ie propagators, denoted PO to —ie propagators, denoted
P1 . The second cut turns the P(-1) propagators into P(~2) ones.
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To make sense of the P(~?)(E) propagators, we rewrite them using eq. (4.72),

1

P(E) = E +ie

—2(—2mi)o(E). (5.4)
To avoid any ambiguity, we also substitute P(~Y(E) = ﬁ — (=2mi)0(E). The result
is a sum over cutting different numbers of s-channel propagators, in which each non-cut
propagator is in the region corresponding to +ie. Explicitly, we get

| Disc2M | =11 % S (—1)k(2F —2) (5.5)

PP TP T Wi

s [(—2mi)d(By — w1) -+ (~2m)3(Es — ) ! !

Es —wpy1 +ie FEs —w, +ic

+ perms} ,

similar to eq. (4.76).

Summing over the double discontinuities of all TOPT diagrams with the same topology,
we get the double discontinuity of the associated Feynman integral. Recall that each delta
function in a TOPT diagram directly corresponds to a Feynman diagram cut. As such, we
can extract the combinatorial factor from eq. (5.5) and directly compute the cut Feynman
diagram with all +ie propagators. Doing so, we get

[Discz./\/l} R = [Z<_1)k(2k - 2)-/\/lk—cuts ) (56)

k=2 RS

where M._cuts is the sum over all possible ways to cut M exactly £ times, and R indicates
that all uncut propagators have +ic. Each cut should split the diagram in two, and the
sum of momenta flowing across it should be Ps, as the cuts in all other channels vanish in
R,

The formula for the triple discontinuity can be computed the same way, giving

[DisciM} = [§(1)k(3k +3.92F— 3)Mk_cuts] . (5.7)

and the generalization to m cuts is as in eq. (4.37):

(5.8)

[Discl M) . = (1 — M) M = m fj {7];} (1" [Mieus]

+

k=m

where {¥} = LS (—1)m~¢(")¢* are the Stirling numbers of the second kind. We
emphasize again that this relation holds when all non-cut propagators in Mp_cuts are taken
to be in the region corresponding to +ic. We have also included the definition of the
discontinuity operator in terms of //[$O3= which returns the monodromy around s = 0.
More precisely, this monodromy matrix acts on the variation matrix .4, which should be
computed along paths from the basepoint to R®. Examples are given in section 6.
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5.2 Sequential discontinuities in different channels

Next, let us consider how to take sequential discontinuities in different channels. Unlike the
case of sequential discontinuities in the same channel, we must now analytically continue
along at least two different paths. As before, we insist on using paths that rotate the
external energies while leaving the external three-momenta fixed and respecting energy-
momentum conservation. This gives us n — 1 independent parameters that we can vary
along each analytic continuation path, where n is the number of external particles. One
also must make sure that the relevant invariants only encircle their branch points once. In
the examples we have explored (see section 6), we have not found these constraints to be
overly restrictive. Nevertheless, choosing paths has to be done carefully. While Cauchy’s
residue theorem guarantees that normal contour integrals only depend on the homology
class of the integration contour, iterated integrals in general depend on the homotopy class
of the integration path. This means that one can in general find multiple discontinuity
operators that give the same first discontinuity, but different sequential discontinuities.
This highlights the importance of our prescription for taking discontinuities by analytically
continuing through specific kinematic regions. We discuss this ambiguity in more detail in
appendix B.

To fix our notation, suppose we want to compute Disc,Disc;M, where s = s; = (Pr)?
and t = s; = (P;)? for sets I and J are different momentum invariants. We abbreviate the
associated energies and momenta with £y = Ep,, Ps = P;, £y = Ep,, and P, = P;. We
also denote by R{**} the region in which s > 0, t > 0, and all other Mandelstam invariants
are real and negative. A general TOPT amplitude with ns propagators in the s channel
and n; propagators in the ¢ channel in the region R{**} has the form

I | el | b
[M] sy = : —.
PgPopy TP T Wiy s —wk e o By —wetie

(5.9)

We have dropped the ie from all propagators in channels other than s or ¢, since these will
never go on-shell.

To take the discontinuity in the ¢ channel, we want to pass around the branch point at
t = 0 and no other branch points. We can do this by passing through the region R*, where
only s > 0 and then back to R1**} on the other side of the t = 0 branch cut. Thus we must
find a path rotating the energies, respecting energy conservation, to go from R{s* — Rs
(some examples are given in section 6). Let us assume such a path exists. This path will
encircle the branch point for F;, located at the smallest value of w; appearing in any E;
propagator, but will not encircle the branch point for Es. The difference between M before
and after analytic continuation along this path is thus

1 o 1

Disc; M| a6 =
[Disc:M] gty = H Ep, —w; Es —wp +ie
Pgé{Ps,Pt} k=1 (5.10)
1
—27i)0(Ey — ———— |
XZEt—wl—i-zs H(=2mi)o(Ey — w) Ey —wp, — e

Again, the propagators not in the ¢ channel will remain unaffected since our analytic
continuation path has gone from Rt} — Rs — Rist},
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We can take a discontinuity in the s channel in an analogous way, using an analytic
continuation path in energy that encircles the branch point for E, while going from R{®t} —
Rt — Rt} This allow us to compute

1
[DiscsDisc;M] oy = ]

pip,p, BP @i

s 1 1
% - (= 2m)0(Bs—wp) i ——

k; By —an e (2mOEs mwn) e g i o (5.40)
It 1 1

P Ey —wy + e (=2mi)0(Ey — wi) By —wy,, — e

Like before, when we take the s-channel discontinuity, the ¢-channel propagators are unaf-
fected since we have not gone around the branch point at ¢t = 0.

We cannot immediately sum over TOPT diagrams in eq. (5.11) to get a Feynman
integral, since it is not clear which Feynman propagators should get +ie and which should
get —ie. To remedy the problem, we rewrite each diagram in terms of all +ie propagators
as we did for the sequential discontinuities in section 5.1. This gives

1
[DiSCSDiSCtM]R{s,t} = H =
PP, PP Wi
Ns 1
xS (=D)F (=276 (Ey — wi) -+ 6(Es — wy
kzzzl( ) [( i) 0(Es — wi) (E; wk)ES — W41 i€ By —wp, +ie + perms}
nt 1
X 1) (—270)'0(By —wy) - 6(Ey — w — — + perms
;< ) [(—2m)6(By — wi) - 0B i el ]
(5.12)
After summing over all TOPT diagrams with the same topology, we get
o oo
[DiSCsDiSCtM]R{Svt} = [Z Z(_l)k—MM{k’ cuts in s, £ cuts in t}‘| (513)
k=1¢=1 it

where the sum is over all diagrams with k > 1 cuts in the s-channel and ¢ > 1 cuts in the
t channel, and all propagators are assigned +ie.

One should think of eq. (5.13) as applying at an implicit phase-space point in the
physical region where the cuts are to be computed. One can analytically continue the
resulting cut graphs to any region one wants, such as the Euclidean region, but the result
will not be the same as evaluating the cut graphs at a phase-space point in the Euclidean
region. This is because the theta functions associated with the original region determine
whether the cut vanishes, rather than by the kinematics of the new region. In other words,
one cannot evaluate some of the cuts at a phase space point in R® and others at a phase
space point in R!. Thus, our formula is derived assuming we want to relate cuts and
discontinuities at a single phase space point in Rt You can use a region other than
Risit} (such as R{s’t’“}), as long as the paths in analytic continuation between these regions
exist.
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In terms of monodromy matrices, this sequential discontinuity can be computed as
[DiSCSDiSCtM]R{S,t} = (]l - ‘%%6)(1 - %gog)./\/l , (514)

where we recall that the action of these monodromy matrices should be read left to right
(unlike discontinuity operators). The variation matrix M should be evaluated along paths
from the basepoint to the region R{**}. The monodromy matrices are computed from the
basepoint and the monodromies are prepended to the path  ending in R{*}. Alternatively,
one can apply the monodromy matrices in some other region, such as R* and then continue
to Rist}: since we are prepending the monodromies, whether we continue before or after
we prepend them gives the same answer. However, we highlight again that the same is not
true of cuts — for instance, all cuts evaluate to zero in R*.

One can generalize this formula to apply to m; discontinuities in channel ¢ without
additional complication:

[(Discs, )™ -+ - (Discs, )™ M] jor. - on}

_ Naises—Neuts | ! EOO ki Eoo Fon
_ (_1) iscs cutsy 1o omy,! [M{kl cuts in 51}}1%{51,4,4,571}
: +

ki=m mi kn=mn Mn

k, cuts in s,

(5.15)

where
Ngises =m1+ - +my and News =k1+---+kn. (5.16)

This is the master formula for computing any number of sequential discontinuities in any
channels. Note that the right side of this equation does not depend on the order in which
discontinuities are taken on the left side, which points to a non-obvious set of identities
that the discontinuities of these functions must satisfy.

One can even go one step farther and generalize from s; being individual invariants
to being sets of invariants. For example, we might have a set S; = {s,t}. Then the
discontinuity in S; is computed by taking the monodromy from a region R% where the
invariants in S; are positive through the Euclidean region and back. Then

[DiSCSiM]RSi = (]l - %sosl)M = Z {Mcuts in s; € Si]Rsi (517)
j +

The generalization to multiple sets and multiple discontinuities is

1 1
e B [(Discs, )™ - - - (Discs, )™ M] pus,
! "
= (=1 Naiscs—Neuts § C E n M. rom ) 5.18
( ) k1=m1 {ml} kn=mn {mn} |: k] cuts from set SJ:| RiSZ ( )

where Discg; is taken between the region RYSi where all invariants in any set S; are positive
to a regionRYSi/Si where all the invariants have the same sign as in RS except for those
in S;, which are negative. An example of this type of set discontinuity is given in eq. (6.43)
below.
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In [23], a different prescription for calculating sequential discontinuities in different
channels was proposed. Their proposal was that DiscsDisc; M should be computed by
first calculating Disc;M in R, and then analytically continue to R{** before computing
Discs. They defined these discontinuities as the difference between a function on different
sides of a branch cut. Using the language of monodromies around a branch point rather
than discontinuities across branch cuts, this can be interpreted to mean first prepending a
monodromy matrix around ¢ = 0 to a path going into R* and then extending the path into
R} Since the monodromy matrix is independent of the endpoint of the integration, this
is the same as simply computing the discontinuity in ¢ in the region R{®*} to begin with.
No details were given in [23] for how to choose paths for analytic continuation.

As for the cuts, the prescription given in [23] for how to compute sequential cuts in-
volves an algorithm with tuples of black and white dots that determines whether +ie or
—i¢ should be chosen. For the examples they considered, this algorithm worked. However,
in more complicated cases, it may not correctly account for the discontinuity of —ie prop-
agators that appear after a first discontinuity. The main difference, however, is that [23]
excluded from consideration cases where sequential discontinuities were taken in the same
channel. Our formulas allow for any number of discontinuities in any channels, with no
restrictions.

5.3 Steinmann relations

Finally, let us connect to the Steinmann relations. One of the important implications of
eq. (5.13) is that [DiscsDisciM]ps4p can only be nonzero when there exists at least one
TOPT diagram in which both E, and F; appear. However, it is a general feature of TOPT
that whenever two energies F; and Fs appear in the propagators of a single diagram, one
must depend on a subset of the energies that appear in the other (e.g. Esx = E1 + E9 + E3
and E; = Ey + E). It follows that [DiscsDisciM]psy will vanish whenever s and ¢
involve partially overlapping sets of energies. More precisely, recall from the beginning of
this section that s = (3,c; P5)? and t = (3,5 P;)?. Then,

[DiscsDisceM| pey =0 if I ¢J and J¢I. (5.19)

This is a version of the Steinmann relations, which state that the double sequential discon-
tinuity in such overlapping channels must vanish, which we have thus proven at the level
of Feynman integrals.

It is worth emphasizing two conditions that are necessary for our proof of the Stein-
mann relations to hold. First, the region Rt} where all invariants other than s and ¢ are
negative and all momenta are real, must exist. The existence of such regions is consistent
with the assumptions of axiomatic field theory, where all particles are massive; however,
when there are massless external particles, the on-shell constraint may mean the region
Rt} is empty. In such a case, we cannot immediately apply our formulas.

Second, we go around the poles in the TOPT propagators by continuing the external
energies, holding the external three-momenta fixed. This allowed us to isolate the singu-
larities, since the internal energies wy depend only on the external three-momenta, which
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are held fixed during the analytic continuation. If one tries to impose a constraint on some
of the external momenta, such as fixing their masses to zero or some other value, then
one must also rotate the external momenta to maintain the mass-shell condition. In such
cases, finding the singular variety for the TOPT propagators is more complicated and our
derivation also does not immediately apply.

Because of these preconditions, the Steinmann relations in eq. (5.19) do not restrict all
possible double discontinuities in partially-overlapping channels. In particular, they do not
apply to discontinuities on sheets that are far removed from the physical sheet; they only
hold at real kinematic points, in the physical region. This subtlety appears, for instance, in
the one-loop box with massless internal and external legs. This box is infrared divergent.
In d = 4 — 2¢ dimensions it has the expansion [73]

Momzl{4—2(ln_s—l-ln_t>+2ln_sln_t—7r2+(9(5) (5.20)

st |22 ¢ 112 112 nz 2
where s = (p1+p2)? and t = (pa+p3)? partially overlap. The O(e") term has a In(—s) In(—t)
component that has a nonzero sequential discontinuity in s and ¢t. With massless external
lines, the region R{%t} does not exist, so there is no contradiction with our formula. This
observation is consistent with results from S-matrix theory; since s and ¢ can only simul-
taneously vanish outside of the physical region, the Steinmann relations do not apply [74].

If internal particles are massless, our sequential discontinuity formulas in eq. (5.8)
and eq. (5.13), and correspondingly the Steinmann relations in eq. (5.19), should still
apply. The key problem with massless external particles is that the massless condition
constrains the surface of maximal analytic continuation; massless internal particles impose
no such constraint. Nevertheless, with massless internal particles, certain cuts also have
to be treated with care when applying the Steinmann relations (as explained, for instance,
in [36]). When two overlapping momentum channels only depend on a single common
momentum, cutting both channels can lead to a three-point vertex in which an external
state decays into a pair of internal physical states. Some discussion of these vertices is
given in appendix G. In S-matrix theory, external states are stable and massless three-
point vertices do not appear.

Finally, let us highlight the fact that the right side of eq. (5.15) does not know anything
about the order of the discontinuities begin taken on the left side. This implies that the
Steinmann relations force any sequence of discontinuities involving partially-overlapping
channels to vanish, even if these partially-overlapping discontinuities are separated by a
long sequence of unrelated discontinuities. This is related to the fact that eq. (5.15) only
governs discontinuities that are computed at a phase-space point in which all the relevant
cuts are accessible, and holding all other variables fixed [74]. Thus, in many cases the
relevant region may not correspond to real kinematics, in which case this restriction does
not immediately apply.

6 Examples

In this section, we consider a number of examples in which we can check the general
relations between cuts and discontinuities developed in the previous sections.
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6.1 Bubbles

The first examples we consider are sequences of bubbles. The single bubble integral with
massless internal lines in d = 4 — 2¢ dimensions evaluates to

p (2m)d k2 +ie (p — k)2 + ie

1 1 -s .
——@ [—e—l—ln (ﬁQ_ZE> —2:| > (62)

The counterterm graph is analytic, so we add it to

k
d 1 1
Mbare = O =t [ X (6.1)
p—k

where s = p? and fi2 = 4mwe E 2.

remove the UV divergence and the algebraic part of the integral (the —2 contribution),
giving a simpler answer for the renormalized amplitude:

1 —s
= — In{— —1i]. .
M 6.2 1B (ﬁQ zs) (6.3)

The cut through the bubble is finite in four dimensions:

M = —— Q (6.4)

d4k ; 2 0 . 2 0 0
_ /W(—%m)é(k )O(K) (—274) 8(p — k)20 — k°) =

;
—0O(s). 6.5

—0(s).  (6.5)
Here we have assumed p° > 0. If p® < 0, this cut vanishes but the cut with energy flowing
in the opposite direction compensates and gives the same result. M; has a branch cut on
the positive real line in the s plane. The discontinuity across this branch cut is

DiscsM; = (—2mi) O(s) = MS™, (6.6)

1
1672
in agreement with the covariant cutting rules and the optical theorem. Similarly, the
monodromy computed around the branch point at s = 0,

i
(1 - //stg)Ml T 8n (6.7)
gives the same answer in R®, where s > 0.

Sequential discontinuities in the same channel. Now we consider an example that
has a nonzero sequential discontinuity in a single channel. We keep the propagators in the
loops massless, but give the internal lines connecting the bubbles a mass m so that we can
ignore their discontinuities for m > y/s. The chain of three bubbles is given by

_ ( > m_ N\ m
Mg = s A @ C (6.8)
1 1 2 —-s .
- (—1672)3 (s — m2> In® F B zs) ' (6.9)
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Since this is just a product of logarithms, the discontinuities in s are simple to calculate
using eq. (4.37). We find

. 271 1 2 -s . . -s .
Disc, M3 = (1672)? (S — m2) {3 In? <M2 - 15) + 67 In <M2 - 16) — 47r2} ,

(6.10)

SO R O P
and - ,

Disc,Disc,Disc, Mg = ?1(2:;))3 (S _1m2) , (6.12)

We expect these discontinuities to be related to cuts by eq. (5.8).
Assuming p° > 0 and s > 0, and using all +ie propagators, the cut through loop A is

MER = —— A:ltm@m(c)—

The cuts of the second and third loop give identical results since we always assign uncut

given by

propagators +ie. Thus, we have MSH = MS% = ML, There are also three diagrams
involving two cuts. Cutting loops A and B gives

Ml = — Aiwm @ — @

- ((__1267:2))23 (8 _1m2)21n (;; - z‘s) : (6.14)

The other diagrams involving two cuts give identical results: MY, = MK, = MSY5.

The triple cut is

MCHt /}El\ m @ m /(;\ (6.15)

_ (2w’ ( 1 )2. (6.16)
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We can now compute the right side of eq. (5.8). For m = 1, we get

> k -cuts -cu -cuts -cuts
—Z(—l)’f{l}Mg’“ ) — M p et et (6.17)
k=1

= (Mg + Mgg + M50) — (M3ip + Miio + MSo) + MSipe  (6.18)

(—27i) 1 \? 5 (=S . (s 5
= (—167r2)3 (s—mQ) {31n <'u?—za) + 67t In (/ﬁ—za) —471} .

(6.19)
This agrees with Discs; M3, as expected. Similarly, for m = 2 and m = 3 we get
= k k-cuts cu cu cu cu
23 (-1 {2} MG = 2(M§l + Mo + MSHo) —6MSipo. (6:20)
k=2
and
> k k-cuts cu
3!2(1)’f{3}/\4§ %) M. (6.21)
k=3

It can be checked that these quantities agree with the discontinuities computed in eq. (6.11)
and eq. (6.12).

One can similarly check that the relation in eq. (5.8) holds for the m'" discontinuity
of the n-loop bubble chain. This is not particularly surprising, since the algebra involved
is essentially the same as the algebra used to derive equations like eq. (5.7).

Sequential discontinuities in different channels. We now turn to an example in-

volving discontinuities in different channels. We consider the diagram

Fe i 1 —5 —t
My = = sl (;ﬂ _ Z'g) In (u2 - 7;5) . (622)

where s = P? and t = P2. This function has branch points at s = 0 and at t = 0. In
the space of complex s and ¢, these branch points correspond to one-dimensional complex
hypersurfaces. We have depicted this in figure 4.

The connection and variation matrix for this function in the Euclidean region where

s<0andt<0are

0 % % (? 1 In(—s) In(—t) In(—s) In(—¢)
000 % 0 1 0 In(—t)
= M. 6.23
““loooe| =l o0 1 m—s) |° (02
00 0O 0 0 0 1
and the monodromy matrices are
12760 0 1027 0
0100 01 0 2mi
Mers = Moy = 6.24
%70 0 12w %100 1 0 (6.24)
0 001 00 0 1
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Figure 4. The function In(—s) In(—t) has branch hypersurfaces at s = 0 and ¢ = 0, shown in black.
The Euclidean region R* corresponds to s < 0 and ¢ < 0. We can compute discontinuities in s and
t of M by rotating around the branch points as indicated by the curves on the right. These curves
pass out of the real s,t plane.

The variation matrix in a region with s > 0 and/or ¢t > 0 is the same with In(—s) —
In(—s — ie) and/or In(—t) — In(—t — ie).

We can compute DiscsDisc; M by computing monodromies around the branch points
at s = 0 and ¢t = 0. First, the discontinuity in s gives

. —2m1 -t .
Discs Mg = (1 — «///sog)Mst = 2rgd In (MQ — ze) . (6.25)

Computing the discontinuity in ¢ of this quantity gives

(—2mi)?

Disc,Discs My = (1 — Mooy )(1 — Mooy )Mot = ~5r 3

(6.26)

To compute the cuts, we must be in the region Rt where neither cut vanishes. There,
we find

(—2mi)?
[CUtStMSt]R{S,t} = W (6.27)
We see that the cut and the sequential discontinuity agree, as they should according to

eq. (5.13).
We can also compute the total discontinuity of this function in R{%*},

[DiSCtOtMSt]R{s,z} == Mst — Mst
- [m (‘S - @5) In ("f - ie) “n (‘S +i5> In (‘t Heﬂ
T 925674 /‘2 MQ #2 N2

— 271 -5 . —t .
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in agreement with the standard cut prescription, where the ic is flipped on the In(—t)
propagator because it comes after the s cut. We can also write this in our standardized
form, where the ie are homogeneous:

_ —2mi -5 . -t . )
[Disciot Mst] gty = 2564 [ln (M2 — za) +1n (Mg — ze) + 2m] . (6.29)
According to section 5.2, this should match the function returned by the operator Discy, 43,
which corresponds to analytically continuing around both the branch points s = 0and ¢t =0
along a path R®t} — R* — R{s#} as depicted by the green curve in figure 4. The result is

[DiSCMst]R{s,t} = (]l — %@8%@6)/\4“ (6.30)

—27 -s . -t . )
= See-1 [ln </12 — ze) +1In (/12 - zs) + 2%1} , (6.31)
in agreement with eq. (6.29).

6.2 Triangles and boxes

Next we consider the triangle and box ladder integrals, with massless internal lines and
massive external lines. These integrals are known to all loop orders [75], and can be treated
simultaneously because they give rise to the same transcendental function at each order.
For simplicity, we concentrate mostly on the triangle ladders, and comment on the box
ladders at the end of the section. Our momentum labeling convention is shown in figure 5.
All momenta are incoming, and we have ) p; =

6.2.1 Triangle kinematics

For the triangle integrals, we follow the conventions of [23] and [76]. Since all internal lines
are massless, the amplitude depends only on ratios of the invariants p? , p3, and pg. These
kinematics can be parametrized using the variables u, v, z, and z, defined as

P} p3
u;%:zz and v:%:(l—z)(l—i), (6.32)
b1 b1
where we choose
Z:1+uv+\/1+u22+1122u1)2u2127 (6.33)
Z:1+u—v—\/1+u22—|—02—2uv—2u—2v‘ (6.34)

This corresponds to the convention that z < z for real kinematics. The triangle ladders
are invariant under the Zs symmetry z < Z.

For these integrals, it is possible to find real phase-space points with any pattern of
signs for the invariants p?, p3, and p%. We denote the region where p? > 0 and p3, p% <0
by R!. In this region, z and Z are real, and z < 0 while 1 < z. Similarly, we denote the
region in which p3 > 0 and p?, pg < 0 by R?, and here we have Z < 0 < z < 1. Finally, we
denote by R? the region where p3 > 0 and p?,p3 < 0, which implies 0 < z < 1 < z. We
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Figure 5. The L-loop triangle and box ladder integrals. We take all momenta incoming with ps
along the long direction of the triangle. For the box ladders, s = (p; + p2)? and t = (p2 + p3)*.

also consider dual regions in which two invariants are positive, such as R?3, where p3 < 0
and p3, pg > 0, and so on. Since taking pJQ- — — J2 for all j leaves u and v invariant (and
therefore also z and Z), any function of u and v has the same form in a given region and
the dual region in which all invariants have the opposite sign. For example, functions of
u and v take the same form in R?3 and R'. It is nevertheless important to distinguish a,
region from its dual because cuts can only be nonzero for positive invariants.

The Euclidean region, where all invariants are negative, is denoted R*. The Euclidean
region has a number of subregions, based on the relative sizes of the p? invariants (or
equivalently of z and z). Of particular importance is the region R, which corresponds
to real values 0 < z < z < 1. The functions Inz,In z, Li,z, and Li,Zz are all analytic
in this region. Region R{, corresponds to real z < z < 0, and region R} corresponds to
real 1 < zZ < z. Finally, region Ry involves complex z and z that are related by complex
conjugation, namely z = z*. All of these regions correspond to two-dimensional slices of
the four-dimensional space of complex z and Z, in which all the invariants p? are real. The
dual of the Euclidean region, where all invariants are negative, is denoted R'?* and also

*

has subregions corresponding to R%, R and Ry. A summary of the regions is shown in
figure 6.

To take sequential discontinuities of Feynman integrals, we analytically continue around
branch points where Mandelstam invariants vanish. This analytic continuation takes us
into different kinematic regions; for example, to take [Discpf] g we need to analytically
continue from R! to R* and back. Our formula relating cuts and discontinuities assumes
that we rotate the energies while preserving E1 + Fo + E3 = 0 and holding all three-
momenta fixed. Thus, we can set F3 = —E1 — Fy and p3 = —p7 — po and work in a frame
where all momenta are aligned in the x direction. Then, rescaling these momenta so that
p7 =1, we can solve for E} and E5 in terms of z, z, and the remaining unfixed momentum
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3,
2 2<0<z<1 R*/Rlz3
RZ/RB z=z
R1
1-
i 0<zkz<1 1<z<
20
[
-1 7<0<1<z 0<z<l<z
R'/R* R?/R"?
-2
-3 — . .
-3 -2 -1 0 1 2 3
u=p3/p}
2
Ry
1
RA R3/R12
0 b4

Figure 6. The triangle ladder integrals we consider depend only on u = p3/p? and v = p/p?,
or equivalently on z and z. The different regions in u,v and z,z space correspond to regions in
which the Mandelstam invariants have different relative signs. For instance, in R' the invariants
satisfy p? > 0, p3 < 0, and p3 < 0. The Euclidean region, where p? < 0 for all j, has four further
subregions, described in the text.
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component ps:

—2p§ — (242 227+ pi(2 + 2
B = D5 (Z+Z)’ By — ZZ+p2(Z+Z)‘

zZ—Zz

(6.35)

Z—z
One can use these equations to translate a given path in z and z to an acceptable path in
energy for a given value of p3. It turns out, however, that an analytic continuation path
cannot be found between any pair of regions. For example, we cannot go from R! to Ry.
To see this, note that in these coordinates, the invariants are given by

4(p% + 2)(p + z _ _
pi= (2(2_)(5)22 ) = =228, (6.36)

In R}, all the p? are negative. For a fixed value of pj > 0, this constraint is impossible to
satisfy, as z > z > 0 in R}, which implies p? > 0. In fact, we need —1 < p§ < 0 to get to
R} . But then, in R! where 0 < z < 1 < 2z, we must have p% 4+ 2z > 0 and p% + z < 0, and
so p? < 0. But this is a contradiction, since p? must be positive in R!. Thus, we cannot
go from R! to R%.

In addition to making sure the path exists, one must check that the path only encircles
the desired branch points in the invariants once. For example, in particle j’s rest frame,
E; — eQT”Ej would not be an acceptable path, as it would encircle the branch point in p?
twice.

Some paths that satisfy all of these constraints are shown in figure 7. For example,
we show a path from R? — Ry — R?. Tt is also possible to construct a path from
R?> - RE — R?. Conversely, no path exists from R? to R§, by the same type of argument
that showed the impossibility of analytically continuing between R! and R%. We also show
a path that starts and ends in R!, after passing through R¢,. When this path intersects the
Re z = Re z plane, the branch cut in the square root that distinguishes z and z is crossed.
This path can be viewed as going around z = 0 and z = 1, or as going around z = co. The
right side of this figure shows paths between other regions, such as R?3 — R3 — R?3. The
existence of such paths is required to take sequential discontinuities in p3 and p3.

Having constructed these paths, we can enumerate the monodromies corresponding to
each of the discontinuities we’re interested in computing. For sequential discontinuities in
a single channel, we find

Discyalm = 1 — M - M = 1 — M2, (6.372)
[DiSCp%]R2 =1- //l%(z-) , (6.37b)
[DiSCpg]st =1- /%(;Oi . (637C)

In each case, there are two choices of Euclidean region that we can pass through (e.g.
R?> —» Ry — R? or R*> - R{ — R?). This choice amounts to permuting z > z. The
monodromy matrix .27 corresponds to going around infinity counterclockwise, where
infinity is approached along some angle that goes below the real line. This implies that
the contour around infinity crosses the branch cut on the negative real axis before the one
on the positive real axis. This choice to go below the real axis corresponds to taking p?
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Figure 7. Analytic continuation of three-point and four-point ladder diagrams takes place in the
four-dimensional space of complex z and z. Sample paths of analytically continuing the energies
are shown. The figure on the left depicts contours that are relevant for computing sequential dis-
continuities in a single channel: R' — Rf, — R', % — 12 — 17 and R* — Ry — R®. The figure
on the right depicts paths relevant for computing sequential discontinuities in different channels:
R? — R?> - R?*, R™® — R* — R" and R?®> — R?> — R?3. These paths each encircle some combi-

nation of the branch hypersurfaces shown as black lines, corresponding to where z or z are equal
to either 0 or 1.

to have a small positive imaginary part, which endows z with a small negative imaginary
part, as per eq. (6.33). This monodromy matrix is computed in appendix B.

To compute sequential discontinuities in different channels, we consider analytic con-
tinuation paths from regions with multiple positive invariants to regions in which one of

these invariants has the opposite sign. To construct the discontinuity operator correspond-
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ing to each of these analytic continuations, we need to determine which branch points
in z and z the path encircles. Let us illustrate how this can be done for the path from
R'?2 — R? — R'? which computes a discontinuity in p? in the region R'2. We first take
the differential of eq. (6.32):

dlnz+dnz =dlnp3 — dnp?, (6.38)
dn(1 —2) +dIn(l —2) = dInp3 — dlnp?. (6.39)

Since we are considering a discontinuity in p?, our path v must satisfy
}{dlnp%:%ri, fdlnp%zj{dlnpgzﬂ (6.40)
gl gl ¥
Egs. (6.38) and (6.39) then imply that
f(dlnz +dlnz) = —2mi, y{(dlnu — ) +dln(l - 2)) = —2mi. (6.41)
gl gl

We furthermore have that 0 < Z < 1 < z in R'?, while Z < 0 < z < 1 in R?. This suggests
that z should encircle 1 while z should encircle 0 along this path. We see that this can be
achieved in a manner consistent with eq. (6.41) if both of these branch points are encircled
clockwise. Thus, we conclude that [Discj2|giz = 1 — ///zog C Mo

Using similar reasoning, we compute the discontinuity operators in each of the regions
involving two positive invariants to be

[Discyz]ges = 1 — ///sog, [DiSCpg]RQS =1 - Moz, (6.42a)
[Discpf]Rw =1- .///?Og . ///@Qi, [Discpg]Rm =1- ///goi, (6.42b)
[DiSCp%]Ru =1- .//?O(z’) : %?Of’ [DiSCpg]Rlz =1 - /%(;OS (6.42C)

In contrast to the first discontinuity, the region that we pass through is completely fixed,
so there is only a single correct monodromy matrix in each of these cases. The paths
corresponding to these discontinuity operators are depicted in figure 7.

One can also consider other analytic continuation paths, such as Ré% — R' — R}J??’
(not shown in the figure). Such a path exists and gives us the discontinuity with respect
to the pair of invariants Sa3 = {p3,p2}. This path encircles z =0 and z = 1, so

[DiSCS%]RgS =1- //{(;:)i . '///$Og . (6.43)

Other paths that encircle the branch points of more than one invariant are also possible.
It is easiest to compute the monodromy matrices in one region and then continue the
result to the other regions. The most natural region to use is R%, since 0 < z < z < 1
so all of Inz,In z, Li,(z) and Li,(2) are analytic there. To evaluate the matrices for real
values of z and z below 0 or above 1, we need to be careful about which side of the branch
cuts we are on. In the region R’, where only p? > 0 and the other squared momenta are
negative, we assign p? a small positive imaginary part. It can be checked using egs. (6.33)
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and (6.34) that this corresponds to giving z and z the following small imaginary parts in
these regions:

R'RZ RB R . 25 2—ie, zZ—ZzZ+ie, (6.44a)
R* R} R®: 2—z+ie, zZ—7Z—ic. (6.44b)

These assignments allow us to evaluate the variation matrix and monodromy matrices in
the different regions.

6.2.2 One loop

The one-loop triangle with all massless internal lines is finite in four dimensions. In the
region Ry, where all invariants are negative and z = 2*, the Feynman integral is

P2
- / 1 1
' 27r4k:2+ze(p2—k:)2+z's-:(p3+k)2+z's
P3
o
1 1, 4
167rp Z—Zz 1(2,2), (6.45)
where 1
B1 (2, 7) = 2Lis(2) — 2Li () + In(27) In (1 Z) . (6.46)
—Z

In the regions R} and R}, this function is analytic.
The variation matrix for ®; was given in eq. (4.57):

1Inz+Inz Lij(z) + Lii(2) Dq(z,2)

R} 0 1 0 —Lip (Z) + Lip (2)

_ 6.47

Ao 0 0 1 Inz—1Inz (6.47)
0 0 0 1

Here g is the straight-line path from the basepoint (0,0) to (z, z). In the region R}, the
variation matrix is analytic. In other regions, it has the same form with z and z on the
appropriate sides of their branch cuts as determined by the displacements in eq. (6.44).

Using the monodromy matrices in eqs. (4.59) and (4.62), we can calculate the differ-
ences of paths relevant to evaluating the discontinuities in eq. (6.37). We find

(1 — M) Py = 27 [Lil(z) - Lil(z)} C (= ) By = Qm'[lnz —In z] . (6.48)

and
(1 - %gz)@l = —2mi [Lil(z) —Lij(2)+Inz—Inz+ 27‘(7;} . (6.49)

Rewriting these results in terms of logarithms with manifestly positive arguments in the
relevant region, which in the case of [Discp%Tl] p1 means replacing

Liy(z —ie) — Li1(2) + Inz — In(Z + ie) + 2mi = — In {(z(l__l)i)_j)} , (6.50)
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we have

, 1 omi (- 1)(-3)

Disc,;Th] ., = T b ] : (6.51a)

D] L 2w [1-% 0

[ 1563 1} Rz 1672p? 2 — Z . [1—2z]’ (6:51b)
) 1 2mi [z

|:DISCP§T1:| R3 = m;ln -5:| . (6510)

As an initial cross check, we note that these discontinuities map to each other under the
dihedral symmetry that permutes the legs of the one-loop triangle. Both the rational part
and the transcendental part of these functions pick up a sign under odd permutations of
the legs; for instance, under ps <> p3, we have 2 — 1 — z and zZ — 1 — Z in the logarithms,
while (z —2z) — —(z—Z) in the rational prefactor. The action of this symmetry is discussed
in detail in appendix D.

The corresponding cuts must be computed in the appropriate region. For example,
the cut in p? requires p? > 0, and evaluates to

B 1 211 _ . _ . 2
Cut,2 T} = W;{ In[~2(1 - 2) = ie] — In[~2(1 - 2) — ie] }O(p}). (6.52)

In region R!, this can be written

[Cut,s ] L 2mi [(2_1)(_’2)] (6.53)

R 1672p2 2 — 2 (1-2)z

matching the discontinuity in eq. (6.51a) as well as the corresponding expression in [23].
The cuts in p3 and p% can similarly be computed, and agree with the discontinuities in
egs. (6.51b) and (6.51c), and with the results of [23].

We can also compute the discontinuity in pe and ps, using eq. (6.43). This gives

1 2
[DiSCS23T1]Ré23 = i [27i + Lij(z) — Liy(2) + In(z — ie) — In(z +i€)]  (6.54)

167m2pt 2 — 2
1 2mi (1-2)(—=2)
B 16w2p%z—zl [(1—z)<—2)} '

We should compare to the sum of the cuts in py and p? which can be deduced from
egs. (6.51b) and (6.51c):

(6.55)

1 211 1—2
[Cutpg T + Cutpng} [ln

z
= In—| . 6.56
R 1672p? 2 — Z i _] (6.56)

1—=z2 z

Again, we see the discontinuities and cuts agree.

A similar example involves going from R2® — R* — RI?. A path between these
regions exists that does not go around any branch points. So [Discs,,,T1] rzs = 0. In
R'23 the sum of the cuts also vanishes, although each individual cut does not. In other
words, total discontinuity in the dual Euclidean region vanishes, but the discontinuities in
separate channels do not. In contrast, in the Euclidean region Rf?’, all the cuts vanish

individually (and the total discontinuity is still zero, using the same path).
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To take sequential discontinuities in a single channel, we iterate the monodromies in
eq. (6.37). We find that these double discontinuities vanish in all channels,

Discp?DiscpiTl}Rj =0 V. (6.57)

This is consistent with our expectations, since the triangle has at most one cut in each
channel. We can also consider sequential discontinuities of the triangle in different channels,
such as Discp% Discpg T1. The corresponding double cut in p2 and p§ can be computed in the
region R?3, where p3 > 0, p% > 0, and p? < 0. Using the discontinuity operators defined in
eq. (6.42), we find

1 (2mi)?

[DiscpgDiSCp%Tl]Rzzs =(1- ///@T)(]l — ‘%ﬁi)g)Tl = m:

(6.58)
Notice that we could have equivalently taken these discontinuities in the other order, as
both sequences of discontinuities are related to the same cut integrals by eq. (5.13); that
is, we have [DiscpgDiscpg Ti|pes = [DiscpgDiscpgT 1] ges. Similarly, we find

o - 1 (2mi)”
[Disc,2Disc,2 11| g1z = [Disc,z Disc 2 Th | iz = R T — (6.59)
and (2mi)?
. . . . 1 2mi
[DISCP%DISCpng]RB = [DlscpgDISCp%Tl]Rla = _1671'72])%; . (6.60)

Notice the additional minus sign in both of these expressions compared to eq. (6.58). As
discussed in appendix D, these relative signs are expected from the invariance of the triangle
integral under permutations of its external legs.

To illustrate the importance of using the specific operators in eq. (6.42) for computing
sequential discontinuities in different channels, we can see what happens if we instead use
the discontinuity operators from eq. (6.37). In the case of DiscpgDiscpgT 1 we would have

found
. . 1 (2mi)?
[Dlscp§ [DlsCPSTl]R2]R3 =(1- ~///<$O§)(]1 - e//fsog)ﬂ = mﬁ ;
o (6.61)
1 (2m)

[Discpg [Discpng]RB]]p =(1- .//gog)(]l — '//1$Of)T1 = _167772]9%? .
The results differ by a sign. This highlights the importance of computing the discontinuities
by analytically continuing from the region in which the cuts are being computed into
adjacent regions.

Let us also reiterate that all the discontinuities we consider are computed along paths
in external energies such that energy is conserved. If one tries instead to do what may
seem more natural, by continuing the Lorentz invariants directly, one can run into trouble.
For example, by continuing z and z one can easily go from R}f?’ — R® - Rf?’ by passing
around z = 0 and z = 1. The discontinuity along this path is

1 2w . _ )
(1 - //gog F Meox)Th = 6272 — 2 [Li(2) — Lij(2) + In(z) — In(2) + 23] . (6.62)
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This is analytic in R}, but differs from Cutp%Tl in R1? in eq. (6.52) by the extra 2mi.
Thus, specifying the regions of interest is not in general enough: one must also know how
to connect them.

6.2.3 Two loops

Next, we consider the two-loop triangle. As before, all internal lines are taken to be
massless. The Feynman integral evaluates to

T, =

(6.63)

. / d4k'1 / d4k‘2 1
i(2m)t ) i(2m) k3 (ps — k1)® (k1 + p1)° k3 (p3 — k2)? (k1 — k2)?
1 1
— — (1)2(Z7 2)
(4m)* pipd (2 — 2)

where in the region R} the function ®5(z,2) takes the form

P9 (2, z) = 6[Lis(z) — Lia(2)] — 31In(zZz)[Lis(z) — Liz(2)] + % In?(22)[Lig(2) — Lia(2)], (6.64)

and as before z and Z satisfy the relations in egs. (6.32), (6.33), and (6.34). The variation
matrix for this integral is described in appendix E, where the relevant monodromy matrices
are also presented.

We first compute the single discontinuities, using the operators in eq. (6.37):

[Disc,2®s| = (2mi) x {8Lis(2) — 8Lis(2) + (Inz +In 2 — i) (Lis(2) — Lia())

Rl
+%lnz(lnz—lni—{—Qm’)(an—2772')}, (6.65a)
[Disc,3 | e = (27) {8Li3(2) = 8Lig(2) — (In 2+ In 2 + i) [Lia(2) — Lis ()]}, (6.65b)
{Discp§¢2} . (2mi) x { - %lnzlni (Inz —Inz) } (6.65¢)

All the explicit factors of i in these expressions can be absorbed into polylogarithms that
are manifestly real in the appropriate region (taking into account eq. (6.44)). The resulting
expressions agree with the cuts computed in egs. (5.26), (5.37) and (5.41) of [23].

The sequential discontinuities in these channels can be computed using the same mon-
odromy matrices. We find

1
[Discp%Discp%%} o= (2m’)2{Li2(z) — Lig(2) + 3 (nz —Inz+27i)(lnz+1In 2)} :

(6.66)
| Disc, 2 Disc,2 s | = (2mi)*{Lia(2) - Lia(2)} , (6.66b)
[DiscpgDiscpgég} . 0. (6.66¢)
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Note that the right side of eq. (6.66a) can be rewritten as Liy(1/z) — Liz(1/2) in R!, and
thus [Discp%Discp%CI)g] g and [Discp%Discp% ®5] ., get mapped to minus each other under
the permutation p; <> p2, which corresponds to z — 1/z,z — 1/z. This is consistent with
what we expect from appendix D. The triple discontinuities all vanish,

[ Disc,Disc,Disc,s®2| =0, (6.67)

J

in accordance with the fact that there aren’t three cuts in any of the channels.

These sequential cuts in the same channel have not been computed before to our
knowledge. To do so, we regulate the IR divergence of the cuts by giving the lines labeled
4 and 5 in the figure below with a small mass My, and work to leading power in myeg. In
region R3, we find

cut _
765 45)) o = (6.68)
where ,
1 m z
St = —In—2E1n 2. 6.69
2 64pip3n2(z —z) pi =z (6.69)
The other cuts give multiples of this expression. In particular, we find
cut _
(765, (135)) s (6.70)
cut _
(Z65) 23] o (6.71)
and
cut _
(768,135 s = (6.72)
[T(Cilst),(234)}R3 = (6.73)
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It follows that the sum of all double cuts in R3 is exactly zero,

l > TZ] =0, (6.74)
double cuts R3

which agrees with eq. (6.66c). Note that the diagrams in eq. (6.72) and Eq (6.73) both in-
volve an isolated three-point vertex with only massless lines. For d > 4 such cut graphs may
be zero, while they are nonzero in d = 4 (they contain integrals of the form [ dxd (m)x%)
If we were to set them to zero, we would get the wrong answer. This can easily be seen in
the example above, as eq. (6.69) would give a non-vanishing result in dimensional regular-
ization, while the graphs in eq. (6.70), eq. (6.71), eq. (6.72), and eq. (6.73) would vanish.
See appendix G for more details.

In R2, there is only one diagram. We find

1 2L12(Z) — 2L12<2) ‘

ut o B
[T&m’(m)} e ~ 256m2p3p3 27z (6.75)
Comparing to eq. (6.65b), we then find
l > Tz] = [DiscpgDiscpgTz(z,?:)} =2 {T@‘g),(mﬁ)} B2 (6.76)
double cuts R2

in agreement with eq. (5.6). The sum of double cuts in the p} channel are related by
2 ¢+ 1/z, Z <+ 1/Z to the sum of double cuts in the p3 channel, and thus the sum of double
cuts in R! is related to the sequential discontinuity computed in eq. (6.66a) by the same
combinatorial factor. These provide highly nontrivial checks of eq. (5.6).

Finally, we compute the sequential discontinuities in different channels. We find

1
[DiscpgDiSCp%(I)g} . (27ri)2{ —5 In? z +In zIn(Z + ie) — imln z}, (6.77a)
1
[DiscpgDiscp%q)g} a2 = (27ri)2{Lig(2) — Lig(z —ie) — 3 In?z+Inzlnz—irln z} ,
(6.77b)
1
[DiscpgDiscpgfbg} s = (27rz')2{§ In?z — InzIn(Z — ie) — imIn z} . (6.77c)

We believe these agree with the results in [23].” Recall that [23] uses a different cut pre-
scription, which involves both —ie and +ie propagators, and that they use dimensional
regularization and so massless three-point vertices vanish. For reasons discussed in ap-
pendix G, we believe it is safer to use a mass regulator. With our +ic convention, the

These equations differ slightly from egs. (6.4) and (6.5) in [23]. However, summing
the results from their appendix D, we believe their (6.4) should agree with our eq. (6.77a).
For DiSszDiSCp?q)z, we find that summing their expressions with some typos corrected gives

(27i)? {Li;(é) +Li2(1—2)+In(z—1)Inz— iIn*2+Inzlnz — %2}, which agrees with eq. (6.77b).
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double-cut graphs in R'? give

1
= (2m’)2{L12(E) — Lig(z —ig) — 5 In?z+Inzlnz+irlnz — 27iln Z} .
(6.78)

To match onto the discontinuity in eq. (6.77b), we must in our analysis add the three-cut
graphs according to eq. (5.15). We find

Inserting into eq. (5.15) the sum of all cuts gives

- - Y S 1 .
o cuts) _ CI>§3 Cuts)} o = (27m)2{L12(z) — Lig(z —ie) — 3 In?z+Inzlnz—irln z} (6.80)

in agreement with the discontinuity in eq. (6.77b). In particular, the three-cut diagrams
<I>§3'Cms) containing massless three-point vertices must be added to get the correct result. We
have verified this result using a mass regulator, and the technique discussed in appendix G.
Note that while these diagrams add up to a finite result in this case, each diagram would
naively be set to zero in dimensional regularization as discussed earlier, which would lead
to a wrong result. Further discussion on how to calculate massless three-point vertices can

be found in appendix G.

6.2.4 Three loops
It is instructive to continue to three loops. The most interesting case is the one in which
two cuts are taken in the p3 channel, where eq. (5.6) tells us we should find

[Discing] _ [2T3(2—cuts) . 6T§3—cuts)}

o (6.81)

R2
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when we assign all propagators +ie.
The three-loop triangle

—P3
o+ ko (682
ps + k1
-P1
is given by
1
T3 =— { [Liz(z) — Liz(2)] In3(22) — 12 [Lis(2) — Lig(2)] In?(22)

6 (4m)° pipg (2 — 2)
+ 60 [Li5(2) — Lis(2)] In(22) — 120 [Lig () — Lig(2)] } . (6.83)

Taking two discontinuities in the p2 channel using eq. (6.37) gives
1

. 92 . . /= _ . . . /-
DisclsTs = {5 { [Lis() - Lis(2)] [In(22) + 2mi] — 4 [Lia(2) — Lia(2)] } |
(6.84)
while taking three discontinuities results in
3 i : T
Disc s T3 = 5127557 (7 = 7) [Liz(z) — Liz(z)] . (6.85)

To facilitate the cut computation, we rewrite eq. (5.6) in a way that allows us to recycle
results for the single cuts of the two-loop triangle. The sum of all single cuts in the p3
channel of the two-loop triangle T5 (p?, p3, p3), with the traditional ic prescription involving
—ie’s to the right of the cut, was shown in [23] to agree with the discontinuity in p%. We can
use these results if we rewrite the term corresponding to the double cut C;Csy in eq. (6.82)
to have —ie’s to the right of the cut, adding a triple cut term to compensate for it. When
doing so, we must be careful with the combinatorial factors that come along with massless
three-point vertices, as these cut integrals involve delta functions with support only at
integration endpoints. In appendix G, we show that one gets an additional factor of %
compared to naively evaluating these delta functions to 1, where m is the number of cuts

T3(3—cuts)

being taken. Thus, we must absorb a term —6 to correct the +ig’s to —ie’s in the

term 2T3€ 1€2 The result we want to verify is therefore

. 2 C1,C C1,C Co,C:
|:<DISCP%) T3:| . =2 T31 2 + 2T31 3 4 2T32 3 (686)

—ie on r.h.s.

The first two terms in this expression correspond to cutting in C; and summing over the one-
cuts of the two-loop triangle. The details of the calculation are worked out in appendix F,
and the result is

C1,C2 ccs 1 1 B ) e
T3 —1e on r.h.s. of cut T3 - 204871'4 p%pg (z — 2) { 3 [L14 (Z) L14 (z)]
m?\ . U o
+1In (—2 [Liz (2) — Liz (2)] — 3 [ng (z) — Li2 (z)} } 7
D3
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where m is a small mass of the line labelled as k used to regulate the IR divergence of the
cut graphs. The cut T§263 is given by

[Liz (2) — Liz (2)]

pee s L [ () e i
3 N 2048m4p3ps (2 — 2) . p3 nies i
1 . 1. . .
+ {2L12 ()~ 3Lis (z)} ~[Lis(2) ~Lis ()]} (6.89)
The sum of all cuts is therefore

9 T3CI ,C2 +9 T?)Cl ,Cs +9 T3CQ’C3

—ie on r.h.s.

1
1024777 (= - 2)

{ [Lis() — Lig(2)] [In(2%) + 2mi] — 4 [Lia(2) — Lia(2)] | (6.89)
in agreement with egs. (6.86) and (6.84).

6.2.5 L loops

Let us now consider the L-loop triangle integral,

—k

ps — ko p3 1 .

Ty, (pi,pg,pg) = P po— ki (6.90)
kr,
ko ki D2
d*ky d*k;, 1 1 1 1
:/- A 112 L 12 40 .- 12 4. 2, (6.91)
2 (27‘() 2 (27‘() kl + 1€ k2 + 1€ kL + 1€ (p2 — kjl) + i¢e
1 1 1 1

>< .. .. .
(k‘l —k‘2)2—|—’i€ (kL—l —k}L)2+i€ (pg —k‘1)2+i€ (pg—k?[,)2+i€
The result after performing the loop integration is [75]

L L L= PP ()
=20 R () & G- DIRL—j)! [Li; (2) — Li; (2)]

Ty (v}, p8.03) = —

(6.92)
with z and z defined as before.

One thing we can immediately observe about this expression is that taking two or more
discontinuities along the long axis (in the p3 channel) gives zero. To see this, we note that
taking a discontinuity in p3 corresponds to taking a monodromy around z = 1, which is
only nonvanishing for the Li;(z) factor in eq. (6.92). Using the fact that the discontinuity
of Liy(2) corresponding to encircling the branch point at z = 1 gives 2mi 2 @ 1), , we get

—27i 1 '1n2L-j( Z) In/~1(2)
|

[Disc,e Tr (1,03, 93)] , = L) () 12 1L —j) (j—1

)!
(6.93)
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In this expression, there are no longer branch points at 1 in z or z. Thus, further discon-
tinuities in p% vanish,
. 2
|(Disc,2)°T | =0 (6.94)

The sum of taking two and more cuts of the L-loop triangle along the long axis must
correspondingly also vanish.

We now show that taking L discontinuities in the p3 channel amounts to taking L cuts
in the same channel, i.e.

{(Discpg)LTL (pf,pgapg)}m = [L! Cute, ... ¢, TL (p?p%p?,)}m : (6.95)

We start by computing the sequential discontinuity, which amounts to taking L disconti-
nuities of the factor In?277 (22) in the expression above. Only the first term in the sum
over j, where j = L, contributes to this discontinuity. The result is

iL

1
L 2 2 9 _ . .
[DlSCpgTL (pl,pg,pgﬂm i (8m)F 2 (pg)L—l [Lig (2) — LiL (2)] . (6.96)

Next, we calculate the cuts. Putting the lines corresponding to the cuts Cj - - - Cp, on-shell
in the region R? gives the following expression:

o 2 8 ()0 () - 1) 0 (1)

x 8 [(p2 = k1)*] © (08— K2) 6 [k — k2)*] © (K — K9) -6 [(hr — ki)?| © (KO, — kD)
1 1 1

(ps+k1)% (03 + k2)® (ps+kp)®

Cute, .. ¢, Tt (p%p%,p%) :/

X

(6.97)

We perform the energy integrals using the delta functions § (k%) ---§ (k%), and get

A3k A3k A3k .
3 - 3 L. 3 - (27”)L5(p§—2p2'/€1)
(2m)7 2wy, (2m)7 2wk,  (2m)° 2wg,,
1 1
(ps+k1)*  (ps+k)®

CUtcly"'ycLTL (pip%p%) :/

X(S(—Qk’l'k‘g)-"5(—2k7L_1~kL)

(6.98)

The remaining delta functions show that this cut only has support when the momenta
ki,---kr and ki1 — ko,---kr_1 — kg, are all collinear. We therefore get a product of L — 1
massless vertices. This configuration is singular and must be treated with care, using
TOPT. As explained in appendix G, evaluating the integrals over these remaining delta
functions gives rise to a combinatorial factor of % The result of the integral, worked out
in detail in appendix G, is

il 1

2= 2 L1(8m)" p? (p3)

Cute,...c, T, (p%,p%,pg) =— 7 [Lir (2) — Lip (2)] (6.99)

Comparing this result to eq. (6.96), we see that eq. (6.95) is indeed satisfied.
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Sequential discontinuities of the L-loop box ladders. We finally comment on the
sequential discontinuities of the L-loop box ladder,

z1

Y2 b1

g | T | Tep Zey | @2
Br (p1.03:93.0%, (014p2)%, (2 ps)?) = 70 | eF] N

b3 P2

T3

(6.100)
These ladder integrals yield the same transcendental functions as the triangle integrals.
This is easiest to see in dual space, as first considered in [77].!° Translating to dual space,
we label the dual points corresponding to loops by w,, and by z; for external points, with
j €{1,2,3,4}. The ladder integral is then given by

B, o ((x1 — x3)}) (@ — 24)? (6.101)

L dia, 1 L1 1 1
x/l:[l( li H 5 -

Lo, — x1)2(x€i —x3)% (22 — .%'51)2 i=1 (x@i - xfi+1)2 (fo — 4)

This integral is invariant under conformal transformations of the dual variables x, which
can be shown using Lorentz invariance and the (less obvious) invariance under inversion

ot — i—g By a combination of translation and inversion we can send x4 to infinity. In
N2

this limit we have % — 1. This is precisely the triangle ladder in dual space. The
L

box and triangle integrals therefore give the same analytic expression, and working out the
exact transformation between the two, one can show that z and z variables for the box are

given in terms of the Mandelstams as

2,2
__ P _ st
22 = =5, 1-2)(1-2)=—55, (6.102)
pirs pips

with s = (p1 +p2)? and t = (pa +p3)®. All of the analysis for the triangle integrals
therefore extends to L-loop box ladders.

We can also compute the sequential discontinuity of the box ladder integrals in the
s and then t channels, which is expected to vanish due to the Steinmann relations. To

10Duyal space can be defined as follows: for any planar diagram, we associate a variable x¢,; for each loop
and a variable z; for each region between two external lines. Then, once we pick an orientation on each of
the edges, we take the momentum flowing through that edge to be the difference between the dual variable
on the right and the dual variable on the left. This ensures momentum conservation at each vertex. In
some cases, the dual variables make manifest hidden symmetries, such as the dual conformal symmetry
(see [78]).
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compute this quantity, we go to the region R where s,t > 0 while all other invariants
p? < 0. For concreteness, we consider the phase-space point

p1= (17 9, —0, 0) ’ p2 = (17 —6,9, 0) ) (6103)
ps = (1,7,6,0), pi = (=3, —-4,7,0). (6.104)

We can analytically continue into R! by rescaling E1 — oF; and Fy — aFs by 1 > o > 0,
while keeping Fs5 fixed and varying Fy = —Fy — Fs — E3 along with Fy and E5. We then
return to Rt} by the reverse path, after encircling the branch point at s = 0. In the
z and z variables, this corresponds to analytically continuing around z = 1. A similar
path around the branch point at ¢ = 0 can be constructed by instead rescaling F»s and E3,
and also corresponds to computing a monodromy around z = 1. Since this sequence of
discontinuity operators is identical to the sequence of operators used to compute sequential
discontinuities in the p3 channel of the triangle, eq. (6.94) confirms that the Steinmann
relations are satisfied by the box ladder integral at all loop orders. This matches the
Steinmann analysis carried out in [55], where the expression that appears in eq. (6.93) was
also shown to reduce to a simpler functional form (given as eq. (19) of that paper, which
has slightly different rational normalization).

7 Conclusions

In this paper we have analyzed the discontinuities and cuts of Feynman integrals from
several points of view. We first described how to compute the imaginary part of Feynman
integrals in terms of cuts, reviewing the work of Cutkosky and 't Hooft and Veltman, and
also described the analogous relations in non-covariant time-ordered perturbation theory.
These traditional approaches are based on the idea that Feynman integrals have branch
cuts in physical regions, and that integrals over propagators with +ic and —ie displace-
ments are on opposite sides of these branch cuts. The main focus of this paper has been
to extend these methods to sequential discontinuities. The +ie prescription is in general
insufficient for computing more than one discontinuity, but the relevant computations can
be carried out by considering monodromies around the branch points of Feynman integrals.
In particular, by understanding discontinuities in terms of monodromies, we are able to
homogenize the +ic and —ic propagators that appear after the first discontinuity by analyt-
ically continuing them into same cut complex plane. This allows subsequent discontinuities
to be taken. For integrals that are expressible in terms of generalized polylogarithms, we
have also described how discontinuities can be computed using variation matrices and the
monodromy group.'!

17t should be possible to extend the variation and monodromy matrix construction to elliptic polylog-
arithms [10-12], which also appear in Feynman integral calculations. It would be interesting to see if it
could also be used in conjunction with the diagrammatic coaction [79-81].
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The main result of this paper is a formula relating the sequential discontinuities in the
same or different channels around branch points associated with invariants s; to cuts:

1 1 . '
1y [(Dises, )™ - (Discy, )™ Ml ooon)
! o
n Nk
— (1) 2" 725 Mg, cuts in channel s,} | gy any © (7-1)
klzml {ml} knzmn {mn} { {ki cuts in channe 8}]Ril’ sl

It is crucial that these relations are understood to apply only in regions where all the cuts
of interest are nonvanishing. In particular, we emphasize that these discontinuities are
always taken as the difference between M evaluated at the same physical value of real
external momenta on different Riemann sheets.

An important consideration that we have spent considerable time exploring is that the
analytic continuations by which these discontinuities are computed must be chosen with
care. Paths that are homologous but not in the same homotopy class may give different
answers (as discussed in appendix B). In addition, the derivation of our formulas is made
assuming a path exists which continues the external energies, holding the three-momenta
fixed and respecting energy conservation. We have presented many nontrivial examples of
cut and discontinuity computations, and have checked that egs. (5.8) and (5.13) hold in
these examples. For each example, we have been sure to find an explicit path in energies
connecting the relevant regions, and used the path to determine which branch points are
encircled. If one just picks an arbitrary path between regions, the discontinuity can still be
computed, but there is no guarantee of agreement with cuts (and in fact, the agreement
sometimes fails). While there is undoubtedly a more covariant way to understand the
constraints on the paths, in every case where we have found an explicit path in energy
we have found agreement between discontinuities and cuts according to our formulas, and
conversely, in cases where our formulas seem to fail, we have not been able to find an
explicit path in energy between regions (so that our formulas do not apply).

An important class of sequential discontinuities described by eq. (5.13) are those in
which the discontinuity channels are partially overlapping. In these cases, this equation
encodes the Steinmann relations, originally derived using axiomatic quantum field theory,
which state that sequential discontinuities in partially overlapping channels must vanish. In
the original S-matrix program, this was shown to hold for full non-perturbative S-matrix
elements in a mass-gapped scalar quantum field theory. Our analysis implies that the
Steinmann relations in fact hold for individual Feynman integrals.'? This amounts to a
proof of the Steinmann relations in perturbation theory, diagram by diagram. Our proof
requires only that the region where both channels can be simultaneously cut must exist,
and that the external momenta are not constrained (for instance by being massless).

Of course, the constraint that all external lines be massive is a strong one, and excludes
many theories of physical interest. As such, it would be good to understand the massless

12Tt had previously been observed that the Steinmann relations were obeyed by many of the Feynman
integrals that appear in planar A/ = 4, insofar as these integrals appear in the space of Steinmann-satisfying
hexagon functions [44, 48, 82].
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case in more depth. The tools we have developed should in principle apply to any Feynman
integral, but a full analysis of the massless case involves an additional profusion of subtleties.
For example, if we regulate the IR divergences of the massless box by going to d > 4
dimensions, we get a Inslnt contribution (see eq. (5.20)), and a nonzero (and IR-finite)
sequential monodromy in s and ¢t. However, regulating the external lines with masses, as
done in the four-mass box, the sequential monodromy in s and ¢ vanishes (this follows
from eq. (6.57), if we use eq. (6.102) to map the triangle to the box integral). Thus, this
sequential discontinuity, despite being IR finite, is regulator-dependent. We leave further
study of these subtleties to future work.

Time-ordered perturbation theory played an essential role in our derivation. There is
a sense in which time-ordered perturbation theory is more physical than covariant pertur-
bation theory, since particles are always on-shell. Indeed, the benefits of a non-covariant
formulation in some other contexts are well-known, such as how light-cone perturbation
theory is used to show factorization, and new uses are constantly being developed, such
as for cosmological polytopes [83, 84]. It would be interesting to see if Steinmann-type
constraints and the monodromy group could be useful as a bootstrapping technique in
cosmological contexts.

The existence of IR divergences in amplitudes involving massless particles actually
facilitates the study of certain aspects of these amplitudes. The IR structure of gauge
theories is particularly well understood: a scattering amplitude can be factorized into a
hard part, a jet (collinear) part, and a soft part [85-93]. The hard part is IR-finite and can
be interpreted as the S-matrix (the ‘hard’ S-matrix) in a computational scheme where the
soft and collinear parts are included in the asymptotic Hamiltonian [64, 65]. This suggests
that analytic properties of the hard part alone might be amenable to the same techniques
used to study massive, IR-finite theories like we have done in this paper. Indeed, the
analytic properties of scattering amplitudes in planar N' = 4 super-Yang-Mills theory are
usually studied at the level of IR-finite remainder functions, which can also be interpreted
as hard S-matrix elements. In fact, this connection was part of the motivation for the
current work.

The soft part of the scattering amplitude in theories with massless particles can also
reproduce the IR-dominated non-analytic behavior of the full S-matrix elements. The
soft function, which can be represented as a matrix element of Wilson lines, satisfies a
renormalization group equation and can be written as the exponential of the integral of the
soft anomalous dimension [94-100]. The soft anomalous dimension depends on kinematics
and is a matrix in color space; it contains a dipole part, which is diagonal in color space,
and a correction term with restricted kinematic dependence [101, 102]. The dipole part

oy In(7521),
where p is the renormalization-group scale. The correction to the dipole formula depends

is determined by the cusp anomalous dimension, and is proportional to >

only on the directions of the external momenta and not on their magnitudes; this implies
(ps-pj)(Pr-p1)

(ps-pr)(pjp1)”
This constitutes a strong constraint, and in particular implies that a soft function can never

that it can only depend on rescaling-invariant cross-ratios of the form p;x =

have cuts in channels with more than two particles. Since simultaneously cutting a pair of
partially-overlapping two-particle channels isolates a one-particle channel, i.e. a decay, such
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partially-overlapping cuts are forbidden in theories with only stable particles. This is one
way to understand the Steinmann relation in S-matrix theory in the soft limit. In contrast,
in theories with massless particles, 1 — n amplitudes do not have to identically vanish.
Correspondingly, the articulation of the Steinmann relations for these theories proves to be
more challenging. Nevertheless, the restriction to two-particle cuts in the soft limit gives a
clue to how we might understand the analytic properties of the massless case. Also, since
the soft function is an expectation value of a product of Wilson lines, one could ask what
restrictions causality imposes on this expectation value.'?

To facilitate our analysis, we have presented an introduction to the monodromies of
polylogarithmic functions, drawing inspiration from [66, 67]. A central role in this analysis
is played by the connection w and an integration contour . These ingredients are sufficient
to determine a variation matrix via .#, = P exp f,y w. The variation matrix is a homotopy
functional, i.e. its value depends only on the homotopy class of the integration contour
~. In typical cases, the number of homotopy classes is infinite. Nevertheless, in physical
applications one rarely considers analytic continuations in the full domain of analyticity;
in the examples we studied, it was sufficient to consider rotations in the phases of energies.
The allowed sequences of cuts correspond to non-vanishing elements in the variation matrix,
while forbidden sequences of cuts correspond to vanishing elements.

This type of reasoning, in which the vanishing of certain cuts (or sequences of cuts)
is used to constrain the analytic structure of polylogarithmic scattering amplitudes and
Feynman integrals, has appeared in a number of contexts (see for instance [23, 37, 38,
57, 76, 103]). These analyses are often carried out at the level of the symbol, with the
resulting objects only being later upgraded to full polylogarithmic functions using the
methods of [8, 9, 103] (or more implicitly, using the methods reviewed in [104]). It is
important to note, however, that when such constraints are imposed directly at the level of
the symbol, it is not always clear whether the corresponding cuts can arise in the physical
region, or only outside of it. This could prove salient, as the Steinmann relations do not
necessarily apply when the relevant cuts are not accessible within the physical region.

It would be particularly interesting to understand whether the Steinmann-type con-
straints that prove useful in planar N' = 4 [44] all correspond to cuts that are accessible
within physical regions, or point to some further special property of these amplitudes. In
particular, it has been observed that these constraints can be generalized to the extended
Steinmann relations, which apply to sequential discontinuities at all depths in the sym-
bol [48, 82], and that these extended constraints exhibit intriguing connections to cluster
algebras [105]. The extended Steinmann relations have been used in conjunction with addi-
tional formal constraints, such integrability (which ensures that symbols can be upgraded
to genuine functions), first entry conditions (which constrain the branch cuts that are
accessible on the boundary of the Euclidean region), and last entry conditions (which con-
strains the derivative of these amplitudes) to formulate ansétze for six- and seven-particle
amplitudes in this theory, which can be further constrained in special kinematic limits to

13While the Steinmann relations were initially studied for correlation functions of local operators, the
implications of causality on non-local operators do not seem to have been studied.

— 65 —



determine the amplitude at a given loop order [38-47]. These types of constraints can all
be conveniently formulated in terms of the connection w. The integrability condition is
just the requirement that w A w = 0, the first entry condition constrains the differentials
that appear in the first row of w, and the last entry condition constrains differentials that
appear in the last column of w.

In fact, one can consider bootstrapping Feynman integrals directly in terms of the
elements of their variation matrices //17.14 Many of the entries in the right column of
M~ correspond to different (sequential) cut channels, and should therefore be expressible

15 The integrability condition

as integrals over the phase space of on-shell amplitudes.
w A w = 0 imposes linear constraints that relate these cut integrals to the other entries
of .# . Moreover, when working in terms of the connection w, one can impose additional
constraints having to do with the unipotence of its monodromy matrices, namely that
property that (1 — jﬂ;o;)k = 0 for some integer k, where this integer k is related to
the number of cuts one can take in channel corresponding to this monodromy. More
generally, this unipotence property provides strong constraints on the underlying mixed
Hodge structure of the polylogarithmic functions that arise from Feynman integrals, and

it would be interesting to understand these constraints in more detail.
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A The coproduct from variation matrices

Polylogarithms come equipped with a motivic coproduct [5, 106] which is sometimes use-
fully upgraded to a coaction [7, 107]. The coproduct or coaction can be used to system-
atically decompose the analytic structure of complicated functions into simpler building
blocks. These mathematical notions have been used in a wide variety of Feynman integral
calculations to constrain the functional form of the answer based on knowledge of the loca-
tions of its discontinuities (see for example [6, 23, 47, 48, 103, 103, 108]). In this appendix,
we show how the coproduct arises naturally in the language of the variation matrices .Z .

1A similar idea, of using dispersion relations to complete the coproduct of a Feynman integral, was
developed in [23].
15This will not be true in channels that are only accessibly outside of physical regions.
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Let us consider again the example of the dilogarithm, which has the variation matrix

1 Lij(z) Lia(2)
A =10 1 In(z) |. (A1)
0 0 1

A couple of observations can be made about the entries in the top row and the last column
of this matrix. The first is that the product .#;.#;3 has the same transcendental weight as
the original function .#13, for all 7. Second, because of the differential equation this matrix
satisfies, the entries .#1; involve the iterated integral corresponding to carrying out the
first 4 — 1 integrations in the definition of Lis(z) (as given in eq. (4.40)), while the entries
;3 involve the iterated integral that results from dropping the first ¢ — 1 integrations.
Following these observations, we can consider defining an operator A that maps Lis(z) to
a sum over a tensor product of these matrix entries, which we might think of as summing
over the possible ways to partition the integrations in Liz(z) into an initial and a final set:

3
A3 = Z/flj ® M;3. (A.2)

j=1
Plugging in the functions that appear in .#, this equation becomes
ALiy(z) =1® Lis(z) + Lij(2) ® In(z) + Lig(2) ® 1, (A.3)

which can be recognized to be precisely the coproduct of the dilogarithm, as defined in [5].

These observations, and the corresponding construction of the coproduct, can be ex-
tended to the general case. Namely, due to the fact that each row of .# satisfies the same
differential equation, the product .#;;.#;, has the same transcendental weight as .#;;, for
all i < j < k. And while generic variation matrix entries .#;; involve sums of iterated inte-
grals, the functions .#;; still correspond to carrying out (some linear combination of) the
initial integrations entering .#, while the functions .4y still correspond to carrying out
(some linear combination of) the final integrations in .#;;. Correspondingly, the coproduct
can be defined in terms of entries of the variation matrix by

k
Ay, = Mij @ M. (A.4)
Jj=t
As indicated by the use of general indices 7 and k, the coproduct can be applied to any
entry of a variation matrix; however, as in [5], the second factor in this tensor product
must be interpreted modulo factors of im. Instances of im that appear in the first factor
can be retained using the methods of [8].

It is worth emphasizing that the coproduct (A.4) can be applied to entries of the
variation matrix in any region, and that it commutes with the action of the monodromy
matrices. For instance, recall the variation matrix for the triangle and box integral from
eq. (4.57),

1 In(zz) Lii(2) + Lii(2) Dy (z,2)

0 1 0 —Lil(z) + Lil(g)
— A.
=10 o . In(2/2) , (A.5)
0 0 0 1
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where we recall that
®(z,2) = —In(22)(Liy(2) — Lii(2)) + 2(Lia(2) — Lia(2)) . (A.6)
Using eq. (A.4), we can easily read off the coproduct of ®1(z, z) from eq. (A.5):

ADi(z,2) =1 P1(z,2) — In(22) @ Lij (2) + In(22) ® Li; (2) (A.7)
+ Lii(2) ® In(2/2) + Liy(2) @ In(2/2) + ®1(z,2) @ 1.

To analytically continue eq. (A.7) around one of its branch points, we can replace all of
the functions in the left factor of the coproduct with the value they take after being acted
on by one of the monodromy matrices. It should be clear that this results in the same
coproduct that one would get from applying eq. (A.4) directly to the variation matrix that
results from the action of the monodromy matrix. Further details on the properties of the
coproduct can be found in [109].

B The monodromy and fundamental groups

As seen in section 4, the complete analytic structure of a collection of polylogarithms can
be encoded in a set of monodromy matrices. These matrices occur in one-to-one correspon-
dence with the location of simple poles in the integral definition of these polylogarithms,
reflecting the fact that the corresponding integration contours are always homotopic to a
composition of (some sequence of) closed contours that encircle individual poles, and a
contour that does not cross any branch cuts. This indicates that there should be some
relation between the monodromy group and the fundamental group describing the mani-
fold on which these polylogarithms are defined, which has punctures at precisely the loci
of these simple poles.

To make this connection between the monodromy and fundamental groups more ex-
plicit, we first observe that monodromy matrices can be written as the conjugation of a
matrix with rational entries by a diagonal matrix whose entries are integer powers of 273.
For instance, the monodromy matrices of the dilogarithm from eq. (4.48) and eq. (4.50)
can be written as

1

10 0 10 0\ /100 10 0
M, = 012w | =027 0 lot1]-]o2m 0 (B.1)
00 1 0 0 (2mi)? 001 0 0 (2mi)?
and
1 —27i 0 1o o0\ ' /1-10\ /10 o0
My, =0 1 0]=]02m 0 o1 ol-]o2m 0 |. (B.2)
0 0 1 0 0 (2mi)? 001 0 0 (2mi)?

These conjugated matrices can be understood as furnishing a representation of the homo-
topy group of C — {0, 1} by matrices in GL(3,Z). More explicitly, the homotopy group of
C — {0,1} is the free group with two generators, which are associated with the homotopy
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classes of paths around z = 0 and z = 1. Up to conjugation by diag (1,27i, (27rz')2), the
monodromy matrices give us an explicit representation of this group.

Note that this connection to the fundamental group remains valid if we compactify
the complex plane by considering the monodromy matrix associated with infinity. Using
the connection in eq. (4.43), we can compute the monodromy matrix from an infinitesimal
contour encircling infinity. For instance, if we integrate the dilogarithm integrand around
a circular path that starts and ends at a complex point |R| > 1, we have

le_So . (2mi) /dt/ dul_Rzmu—Qﬂ + 2miln 7 (B.3)

Since In % is a continuous function for large |R|, limp_ o In % = 0 and we get 272

The full matrix can be computed to be

1 —27i 272
My =10 1 2mi]. (B.4)
0 0 1

Note that going around infinity clockwise corresponds to a counterclockwise contour around
0 and 1. If we compute the matrix along a straight line path between 0 and R, we get the
variation matrix in eq. (4.46):

1 —In(1 — R) Liy(R)
Myp=|0 1 mR |. (B.5)
0 0 1

Then, if we take R — oo with Im R > 0, we get

1 —-2mt O
///§Q = MoR - M ///0_>R =10 1 2m| = %{;@0 Mo, - (B.6)
0 0 1

This monodromy around infinity can be written as the product of a monodromy around 0
and 1, since the path around infinity is homotopic to a path around 0 then around 1, as
illustrated in the left part of figure 8. There, we see that the choice to take Im R > 0 was
what determined that we encircled the branch point at 0 first, and then the branch point
at 1. If we take R — oo with Im R < 0 (so that the contour circles the branch point at 1
first), the monodromy matrix differs in the top-right entry

1 2w 4n2
t%/& Mosp - Mo - My =10 1 —2mi = M, - M, (B.7)
00 1

The result is the product of the 0 and 1 monodromies in the opposite order. This path
around infinity is illustrated on the right in figure 8.

This ambiguity at O(7?) in the monodromy matrix associated with infinity is also
present for the other monodromy matrices. For example, we could have computed the
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monodromy around 1 using a contour that first crosses the negative real axis before going
around 1, as illustrated on the right in figure 8. The result would have been

1 —2mi 4x?
//&’(;:)071 = /Asi)o_l M, - Me, =01 0 |- (B.8)
0 O 1

The O(r) terms in this monodromy matrix are the same as for .Z« in eq. (B.2), as
expected from Cauchy’s residue theorem, but the O(7?) terms are different.

To describe these O(7?) ambiguities more formally, consider a codimension-one branch
variety defined by an equation f({s;}) = 0, for some set of variables {s;} which we can take
to be Mandelstam invariants. To compute the monodromy around this branch variety, we
find a closed path ~ such that fv dIn f({s;}) = 2mi. However, as there are many paths
that satisfy this requirement, there is some ambiguity in this choice. In particular, all the
paths in the same homology class of v satisfy the same relation; however, the paths in this
homology class may still be in different homotopy classes. While the integral ¢ dIn f({s})
depends only on the homology class of v, the elements of the monodromy group depend
on the homotopy class of ~.

The fundamental group and first homology group are related by Hurewicz theorem,
which states that the first homology group is the abelianization of the fundamental group.
That is, given any two elements a and b of the fundamental group, we can quotient the
fundamental group by the commutator subgroup generated by elements aba~'b~! to obtain
the homology group. The contour corresponding to the commutator aba='b~! is called
a Pochhammer contour, and corresponds to a trivial element in homology. Thus, for
every path v which satisfies the condition ¢, dln f({s;}) = 2mi, we can find another path
~vaba~1b~! that also satisfies this relation. Moreover, as this new path belongs to a different
homotopy class, it yields a different monodromy beyond O(r).

Despite these ambiguities, any choice of closed contours around 0, 1, and infinity
will furnish us with a representation of the fundamental group on the Riemann sphere
with three marked points. For instance, we can choose the rational matrices appearing in
egs. (B.1), (B.2), and (B.6), which satisfy a single multiplicative identity. Note, however,
that the contours used must all start at the same basepoint, so we cannot use the rational
matrices corresponding to .4, , A&, , and A& .

For a multivariable function, like the function ®1(z,z) that appears in the one-loop
triangle and box, we can carry out the same analysis for the contours in z while holding z
fixed. The contours around z = 0 and z = 1 were computed in eqs. (4.59) and (4.62) to be

1270 0 10 —21i 0
0100 01 0 2mi

%z: e% z — B9

57100 12m |0 T T oo 1 0 (B.9)
0001 00 0 1
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Figure 8. Paths around 0, 1 and co. We depict two possible contours that go around infinity,
starting at points in the upper or lower half-plane. These are each homotopic to paths around 0
and 1, but in different orders. The two contours around infinity are not homotopically equivalent.
The right panel shows that the path ambiguity is present also for paths around s = 1.

For the contours around infinity, a calculation analogous to the dilog case gives

1 270 —2mi —4x2

01 0 2w
. = == zZ * e Zy B.lO
=100 1 2mi Moy Mo, (B.10)

00 0 1

1 2mi —2mi 4n2

01 0 2
L%ézz :% z‘% Z. Bll
> 00 1 2 205 T R05 (B.11)

00 0 1

The monodromy matrices for contours in z can be computed in a similar fashion, and
commute with the monodromy matrices in z. Like for the case of the dilogarithm, each
monodromy matrix gives rise to an associated rational matrix that corresponds to a gener-
ator of the fundamental group, which in this case describes the manifold corresponding to
the space of complex z and z with the points 0, 1, and infinity in each variable removed.

More generally, the monodromy group describing the discontinuity of a set of polylog-
arithms also furnishes us with a representation of the fundamental group describing the
manifold on which these polylogarithms are defined. When we consider polylogarithms
that only depend on a single variable, the relevant manifold is the Riemann sphere with n
marked points and the fundamental group corresponds to the free group with n — 1 gener-
ators. However, the fundamental group of higher-dimensional manifolds will in general be
more complicated.
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C Single-valued polylogarithms

Using the Knizhnik-Zamolodchikov equation, polylogarithms can be mapped to single-
valued avatars of themselves [110]. In these new single-valued functions, all contributions
generated by analytically continuing around branch points are systematically cancelled
out by new functional dependence on variables conjugate to the variables of the original
function. This type of single-valued map has proven useful in a variety of physics contexts,
such as multi-Regge limits [111, 112], the infrared structure of gauge theory [54, 113], string
amplitudes [114], and massless ¢* theory [115]. Motivated by [66, 67] we show here that
the same map can be constructed in terms of variation matrices.

We begin by considering a variation matrix .# that depends on any number of vari-
ables, whose discontinuities are described by a set of monodromy matrices {.#«5 , } indexed
by k. In order to construct a single-valued version of the matrix .#, we want to find a
matrix that transforms in the opposite way as .# when analytically continued around
branch points. A natural object to consider is the inverse conjugate matrix %_1, namely
the inverse matrix of .# in which all variables z; have additionally been replaced by their
complex conjugates Z;. Under the action of the monodromy group, this pair of matrices
transform as

M = Moy M (C.1)

A s T Ty (C.2)

Thus, the product of these two matrices is not quite invariant under arbitrary analytic
continuations, because ]ggk . e/lsqk # 1.

This mismatch can be fixed by decomposing the monodromy matrices as discussed in
section B. In particular, we have

M, =D My - D, (C.3)

where D is a diagonal matrix whose entries are integer powers of 27i, and Mj, is an element
of the general linear group with rational entries. Since the action of the monodromy
matrices preserves transcendental weight, the matrix D (which encodes the relative weight
the rows of .#) does not depend on k. Having made this observation, we define the

single-valued matrix

1

My=#""D " D-u. (C.4)

This matrix invariant under the action of the monodromy group, since
Mo = (A DMD)-D D (DT My D) = Mo (C5)
whenever Z; = z7. We note that the definition (C.4) is equivalent to the map defined in
eq. (3.82) of [112] using the coproduct formalism.
Let us see how this works in the case of the dilogarithm. Referring to its variation
matrix .Z in eq. (A.1), we see that D '.D= diag(1,—1,1) and
1 —Li;(z) —Li2(Z) + Li1(Z) Inz
M =10 1 —Inz : (C.6)
0 0 1
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The single-valued matrix is thus given by

1 Lil (Z) + Lil (2) Liz(z) — Lig(g) + lIl(ZZ) Lil (5)
Msy =0 -1 —In(z2) . (C.7)
0 0 1

It is not hard to check that all effects of analytically continuing z and z in opposite directions
around any branch point cancel out in the entries of this matrix, as expected.

D Permutation symmetry of the triangle integral

The one-loop triangle integral considered in section 6.2.2, given by

w;%ZiZCI)l(z,z) (D.1)
where ®1(z,z) was defined in eq. (6.46), respects an S3 symmetry under the permutation
of its external legs. This symmetry turns out to be realized in an interesting way, by the
collusion of this integral’s rational and transcendental parts.

We first discuss the rational prefactor. To determine how the quantity p3(z — Z)
transforms under the permutation of external momenta, we consider the wedge product
p1 A p2. We work in the coordinate system described above eq. (6.35), where p; = (E1,1)
and po = (Fa,p3). In terms of a pair of basis vectors e; and e;, these momenta become
p1 = Erer + e, and py = Eaer + pies, and we have

1 _
pLAPy = —5pR(z — e A (D.2)

We can correspondingly use this quantity to study the transformation properties of p?3(z—z).
Clearly, under p; <> po the left-hand side of eq. (D.2) changes sign. Similarly, under p; <> ps3
we have p1 Aps <> p3Ap2 = —p1 Apa. We conclude that the representation of the symmetric
group S3 when acting on p?(z — z) is the sign representation.

Before moving on to discuss the symmetries of ®1(z, Z), we need to find the action of
the S3 symmetry on z and z. From the above, we know that

o(pi(z = 2) = Poy(0(2) — 0(2)) = (~1)7pi(= - 2). (D.3)

We also know, from eq. (6.32), that under the py <> p3 permutation we have zz <+ (1—2)(1—
Z). These constraints can be solved with the unique solution that ps <+ ps corresponds to
z<>1—zand z < 1 — Zz. Similarly, one can show that p; <+ ps must correspond to z <> %
and Z <> % The action of the remaining permutations can be determined from these two
transformations.

We are now ready to study the symmetry of the transcendental part of the triangle
function. It turns out that this is related to the Bloch-Wigner function

D(z) = S Lia(z) + arg(l — z) In(]z|). (D.4)
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In particular, using

S'Lig(z) = —(Lia(z) — Lia(2")), (D.5)
arg(l —z) = %ln 11__;, (D.6)
In|z| = }ln(zz*), (D.7)
we have
4iD(2) = 2(Lis(2) — Lia(=")) + In (11_;) In(z2"). (D.8)

In the region R}, where z = z*, this gives precisely the transcendental part of the one-loop
triangle, ®1(z, 2).

The Bloch-Wigner function satisfies

D(z) = —D(1—2) = —D (1> . (D.9)

z

These signs precisely compensate the signs arising from the action of the permutation
group on the rational prefactor. In the other regions, where z # z*, the transcendental
part should be thought as a function of two independent variables. Still, the same relations
hold under the transformation of both z and Zz.

How is the symmetry realized on the cuts? It is instructive to consider the example
of a leading singularity, where the only dependence on the kinematics is in the rational
prefactor, while the transcendental part is a power of 2wi. By the argument above, under
the action of the permutation of external legs, the rational prefactor may pick up a sign.
Hence, the residue on a given leading singularity is not invariant under the permutation
group. However, each leading singularity locus is paired with another one with opposite
residue, as required by global residue theorems. It follows that the set of values the residue
takes on all the leading singularities is invariant under the action of the permutation group.
A similar statement holds for the rest of the cuts.

E Variation matrix of the two-loop box

In this appendix we present the connection and variation matrix for the two-loop ladder
triangle /box function

By(z, 2) = 6[Lia(2) — Lis(2)] — 31n(22)[Lis(2) — Lis(2)] + % In?(22)[Lia(2) — Liz(2)] . (E.1)
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The two-loop connection is

0]—w; — w1 wo+wgo| O 0 0 0 0 0
0 0 0 —Wo wop 0 0 0 0
0 0 0 w1 —Wi wo + Wy 0 0 0
0 0 0 0 0 0 wo — Wo —wo 0
w=10 0 0 0 0 0 —Wwg —wg+wp| 0 , (EZ)
0 0 0 0 0 0 —w1 w1 0
0 0 0 0 0 0 0 0 wo
0 0 0 0 0 0 0 0 wo
0 0 0 0 0 0 0 0 0
where
dz dz
_dz _ = E.
wo > ) w1 5 17 ( 3)
dz dz
g = — 0] = . E.4
wo B ) w1 51 ( )

The connection trivially satisfies dw = 0, and using the fact that wy Aw; = 0, we also have
that w A w = 0. Thus, the connection has zero curvature (dw —w A w = 0).

Using this connection, we can compute the variation matrix .#,,. We encounter inte-
grals of one-forms, which are familiar, but also iterated integrals of higher weight. These
can be easily evaluated by leveraging the shuffle algebra associated with iterated inte-
grals [2, 106]. As an example, consider

Mg = / (w0 + @) © (wo + @) - (E.5)

While this integral can be computed using eq. (4.22) along a concretely chosen contour, it
is easier to use the fact that any pair of one-forms o1 and oo satisfies

[{(O‘loO'QJrO'QOO'l):([{Ul) <[Y02). (E.6)

This allows us to rewrite eq. (E.5) as
1 z z z z 1 z z
'%1,625/ OJO/ w0+/ WO/ wo+§/ w(]/ wy - (E7)
These integrals are much simpler to evaluate, and we get
1. 5 R
.//11,6:§ln z+lnzlnz+§ln z. (E.8)

The relation in eq. (E.6) can be iterated, to give us

/ Z O'jlo()'jzo..-gjn:/0-1/0-2.../0—n (Eg)
ol Y Y Y

{jlv"' JTL}
€perms of {1,---n}
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for n one-forms o1, - - , 0y, along with relations such as
/(0’100'2OG'3—|-O‘200‘100‘3—|-0‘200‘300’1):/0'1/0'200'3. (ElO)
¥ ¥ ¥

Using these kinds of formulas, we can reduce the expressions in the calculation of the

variation matrix to familiar integrals, such as
z
Lin(z):—/ W1owWyowy---0wp , (E.11)
0 —/_/
n—1

along with integrals that can easily be performed, such as
z
/ wp o wy 0wy = 2Li3 (2) — InzLiy (2) . (E.12)
0

The iterated integrals we study have the special property that they are independent of small
deformations of the integration contour which preserve its endpoints. This is a consequence
of the flatness of the connection w and is sometimes called integrability condition. In our
example, the integrability condition reads

(wo + wo) AN (wo + wo) = 0. (E.13)

This condition is trivial when both forms only depend on a single variable, but imposes
non-trivial restrictions when two or more variables are involved.
The result of performing the integrations is

Vo M3\ M4 M5 M| M7 Mg Ay
ol 1 0 | Moy Moy O | Moy Mag| Moy
00 0 1 | M4 M Ms6|M57 M358 M39
0f O 0 1 0 0 | AMyq Mog| Mag
My(z,2)=100 0 0| 0 1 0 | g Msg|l sy |, (E.14)
0f O 0 0 0 1 |\ Mo Meg| M9
0f O 0 0 0 0 1 0 | A9
0f O 0 0 0 0 0 1 | Aso
0f O 0 0 0 0 0 0 1
where
Mo =—In(1-2)—1In(1-2), (E.15)
%173 =Ilnz-+1In 2, (Elﬁ)
Mg = —Liz(Z) + In(1 — 2) (Inz + In 2) + Lis(2), (E.17)
M5 = —Liz(z2) —In(1 — 2) (Inz + In 2) + Lia(2), (E.18)
1 1
Mg = 3 In?z+Inzlnz+ 3 In?z, (E.19)
1
M7= [6Li3(2) — 4Lis(2) (In 2 + In 2) — 2Lia(2) (In 2 + In 2) — In(1 — 2) In’2

—2In(1 — 2)Inzlnz + 6Liz(z) — In(1 — 2) anz}, (E.20)
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+2In(l — 2)InzIlnz — 6Li3(2) + In(1 — ) IHQE},
Mg = Do,
Moy = —Inz, M5 =1nz,
1 1
///277:§ln22—1n21nz, ///278:—§ln2z+lnzln2,
1 1
Mo = §lnzln2§— §ln2zln2,
%3’4 = ln(l - Z), %375 = — ln(l — 5), %3,6 =Ilnz+Inz,
M7= —Lis(Z) —In(1 — z) (Inz + In 2) — 2Liy(2),
/%3,8 = 2L12(5) + ln(l — 2) (lIlZ +In 5) + Lig(z),
AM39 = 3Li3(Z) 4+ Liz(z) (Inz +In 2) — Liz(2) (In 2z + In z) — 3Li3(2),

1
My7=Inz—Inz, Myg = —1Inz, My = §1n2z—lnzln2,
1
Ms7=—1InZ, Msg=Inz—Inz, M9 = §ln2§fln21nz,
Mo = — In(1 — z), Mo g = In(1 — 2), Mep 9 = Lig(2) — Lia(2),
Mrg =1nz, Mz =1nz.

The monodromy around z = 0 is

110 2mi{0 0 §(2mi)?| 0 0 0
01t 0j02m 0 |0 —i@2m)? o
00 110 0 2m |0 0 0
00 0(1 0 0 |2mi —2mi |5(2mi)
Mz =00 001 0 |0 27 0
00000 1 |0 0 0
00 0f0 0 0 |1 0 2mi
00 000 0 |0 1 0
00 000 0 |0 0 1

1
Mg = 3 [ — 6Li3(2) + 4Lig(Z) (In 2 + In 2) 4 2Lis(2) (Inz + In 2) + In(1 — 2)In’z

(E.34)

We note that (1 — ’//&98)3 = 0. This is consistent with three (but not two) sequential cuts

in the p2 channel of the 2-loop triangle vanishing. The monodromy around z = 1 is

1{—27: 0/ 0 00| O 0]0
0, 1 00 00 0 OO
00 0 127200 O 0|0
0, 0 01 00 0 OO
///goi: 0, 0 00 10/ 0 OO
0, 0 00 01{—27 0|0
0, 0 00 00O 1 O0f0
0, 0 00 00O O 10
00 0 000 00 O 01
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In this case we have (1 — ///so,lz)Q = 0. This is consistent with two sequential cuts in
the pZ channel (the long direction) of the 2-loop triangle vanishing. Finally, the clockwise
monodromy around infinity (where we approach infinity above the real line) is

///ﬁoz = ///(;QS -///goi (E.36)

1|—2mi 2mi|(2mi)? 0 L(2mi)?|—5(2mi)3 0 0
o0 1 0] 0 2m 0 0 —3(2m)? 0
00 0 1] 2m 0 2m |—(2m)? 0 0
00 0 0] 1 0 0 2mi —2mi |1 (2mi)?

={o 0 0o 0 1 0 0 —2mi 0
o0 0 0| 0 0 1 —2mi 0 0
o0 0o 0/ 0 0 0 1 0 2mi
o0 o 0| 0 0 0 0 1 0
o0 0 0| 0 0 0 0 0 1

and again we get (1 — ///QZ)?’ =0.

To compute the monodromy matrices associated with contours in z, we can use the
fact that z and z can be exchanged in the connection from eq. (E.2) via conjugation by
the matrix

1
10
01
0 —10
C= 100 . (E.37)
0 01
0 —1
10
-1

That is, we have w(z, z) — w(z, z) = CwC~!. Thus, we also have that
_ -1 L -1

These are the last monodromy matrices that are needed to construct the discontinuity
operators in eq. (6.42).

F Cuts of the three-loop triangle

In this appendix, we work out the details of the calculations in section 6.2.4. We start by

computing the sum of the two cuts involving C; and write

C1,C C1,C:
T31 ’ —ie on r.h.s. * T31 3
1 [d% , ,
= / (2754 (—2mi) & (K3 —m?) O(kY) (—2i) 6 [(p — k1)*| O@Y — kD) (1)
1
X (st )’ > CUtkaQ [(p?, + k)’ 7k%7p§:| ;
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where ) Cutk%Tg [(P?) + k1)2 , k%,pg} is the sum of cuts in k7 through the two-loop triangle
T, with masses (p3 + k1)2, k? and pg. We take the particle with momentum k; to have a
small mass m to regulate the IR divergences that arise in the cut calculations, and work to
leading power in m?2. The factor of % arises because the mass regulator does not capture
the % arising from a product of L — 1 massless vertices, as worked out in appendix G. The
sum of the cuts through the two-loop triangle is given by [23],

Zcutk%Tz [(p3+k1)2 7m27p§}
_2m 1 1
2567 (pg+kp)t (1—2) (1-2) (2—2)

{8[Lis () ~Lis ()] —In (—2) [Liz (z) ~ Li2 (2)] } ,

(F.2)
with
_ m?
T = m , (F.3)
.
1l-2)1-2)= Tarl (F.4)

2

Working to leading power in k? = m?2, we can take either x or Z to be small. The final

answer is independent of which one is picked, so we assume that T is small, and hence
2

- m?(1—zx)

x

= 21. .

P
Usiﬁlg the delta functions, and performing the integral over the azimuthal angle, the

phase space can be written as

/d4"’1 (—2mi) 8 (K = m?) O(KY) (~21) 8 [(p2 — k1)?] O(pY — k) = Z'/1 dcos 0

i (27)" ! ! e I T '
(F.5)

In the rest frame of ps, the propagator in p3 + k1 becomes

(p3 + k1)* = p3 — ma (w3 — pcosb) , (F.6)

where p is the magnitude of the three-momentum of the outgoing particles, and where we
have dropped power corrections in m? and hence used that wy, = |k1| = m2/2. Changing

variables from cosf to x =1 — @ i 3}6 2 gives a Jacobian of

3 1

(ps + k1)*
dcost) = —————dx. (F.7)
mapp3
2,,2 .2
In this fragne, the energy of p3 is wg = %32’)1 and momentum of the outgoing particles
isp= _219712 (z — Z), which gives
1
(p3 + k1)* = ip% [(1—2)(1—cosf)+(1—2)(1+cosb)], (F.8)

and hence we have
r 11+4+cosf@ 11—cosb

-z 32 1-- T2 13
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2 This shows that z = Z for cosf = —1 and z = z for cosf = 1.

to leading power in m
Putting everything together, phase space along with the propagator in p3 + k1 can be

written as

1

Ak i 2 ) (—2mi —k1)? b K ———5
/i (=2 )5<k;1> O(ky) (-2 )5{(;02 k1) }9(172 kl)(p3+k1)2 (F.10)

(2m)

__i/zdxl
- 16m ) Tmap(l—a)

Then, dropping polylogarithms in Z that are subleading in the limit m? — 0,

1 1 Zd
TE1C2 T4 — / L3 () — In (~a7) Liz (x) }
z

16 (47)* mopp3 J:
(F.11)

The integration contour from Z to z in the region R? can be taken to be a straight line
2
from z < 0 to z, with 0 < z < 1. Integrating this expression and using p = —% (z—2)

—ie on r.h.s. of cut

gives

C1.C 1 1 ‘ o
T = - 3[L ~L
3 204874 p%p‘é (z — %) { [Lis (2) i (2)]

m2
+ln <p2> [Lis (2) — Lis (2)] — % L83 () - i3 (2)] }.

3

C1,C2
T3

—ie on r.h.s. of cut

(F.12)

Next, we calculate the double cut CoCs, with all other propagators having a +ic. We write
the cut as

4
62,63_1 d"k2 I, 2 2 0 2 1.2 2 2
120 =5 [ 5yt (208 (= m?) OUICut 2B (13, (s ) )
1
X —————Cut;2T? | (p3 + ko 2,k2,p2 ,
R [(ps + k2)* K3, 3]
(F.13)
where Cut(pQ_kQ)zB is an s—channel cut through a box with one massive internal line,
k1 — ko
ko — _:_) — —p3 — k2
Cut,B (p3, k3, (ps + k2)” 7 ) = BRI e || ks
po—L i,
ki1 —p2
(F.14)
lo [_ m2p%(p§—2wk2(w37p00529)) ] 1o
_ i 2m2(p§—m2(w3—pcos9)) Wy (F15)

16m  mg (p3 — ma (w3 — pcos b)) wi,
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where 6 is now the angle between p3 and ko. The cut of the three mass triangle is given by

Cut,.T! = ‘ 1 (L —< F.16

g 8%(5—5_) (p3 + k2)* n(1—§> (¥.16)
with ) )
= k3 = b3

_ ’ 1— 1—¢)= ——=—— | F.17

& (ot )2 (1-¢) ( 6) ot ) (F.17)

where we take k3 > 0, p3 < 0 and it can be shown that for these cuts, (ps + k2)2 < 0. As

before, we assume that £ is small. We make a change of variables from wy, and cos# to &
and x, defined by

p2 p2
=1-—3 r=1-— 3 , (F.18)
(p3 + k2) p5 — mg (wg —pcosf)
with Jacobian ne s
_ &) (Bur, Feost (F.19)
O(wg,, cos ) 0 aggse ’ :
where
o8 —2p§ (ws — pcosh) or mepg (F.20)
Owy, (ps + k2)4 ’ dcost [p3 — ma (w3 — pcos 0)}2 '

The limits of the £ integrals are at 0 and x, while the limits of the x integration are at z
and z. Putting everything together, we get

1 2 dx [ —m? (1 — 1 In(1—
Tg,CZ’CS = 4 2 /— $2 / d€n = (2 21’) o | (= ¢) : (F.21)
409674 map3 Jz xpp2 Jo p3p3é £
2
Performing the integrals in & and x, and using that p = —217712 (z — 2) results in

[Liz (2) — Liz (2)]

1 m2
T 2Cs — { “In| - | +1In(27) +2mi
3 204874pip] (z — 2) [ ( p%) (=2)

+ %Lig (2) - %Li% (z)} ~ [Lig () — Lis (2)] } .

(F.22)

G Massless three-point vertices

When calculating cut graphs, we sometimes encounter subgraphs with cuts of massless lines
on either side of a three-point vertex. This appendix discusses two important subtleties
involved in computing these cut subgraphs. The first relates to evaluating the diagrams
in dimensional regularization, and the second comes from delta functions evaluated at the
endpoints of integration.

When evaluating diagrams with massless three-point vertices in dimensional regular-
ization using the covariant cutting rules, one gets a delta function in the angle between the
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two particles multiplied with its argument raised to a power. For example, consider the
graph

1 d—4
oc/ dcos @ (1 — cos? 9) > 5(1 —cosh), (G.1)
-1

which contributes to (Discp%)QQDQ. The dashed lines correspond to cuts and the circled
subgraph is the problematic three-point vertex. Here, 6 is the angle between internal
particles 1 and 3 in the diagram.

The first problem with this expression is that the limit d — 4 is not smooth. For
d > 4 the integral is zero, for d = 4 it is finite, and for d < 4 it is divergent. In [23] it
was argued that one should use the d > 4 result and set all such graphs to zero. Indeed,
such an approach seems to work in the examples considered in [23]. However, it may give
results for the cut graphs that are inconsistent with the discontinuities, as discussed below
egs. (6.74) and (6.80). An alternative to using dimensional regularization is to give the
internal lines a small mass myez and take the limit mye; — 0. Although masses are not
great regulators in general, particularly in gauge theories where they can violate gauge
invariance, for the Feynman integrals we consider in this paper they always seems to give
results for the cuts consistent with the discontinuities.

The second problem is that, even if a graph or sum of graphs is IR finite in d = 4, the
delta function of the angle between the two particles may need to be evaluated at one of the
endpoints of the limits of integration. Such expressions are not generally well-defined, and
more careful analysis is needed. As we will show, this ultimately results in a combinatorial
factor of % compared to the naive expectation of setting fil 0(1 — cos@)dcosf to 1, where
L — 1 is the number of massless three point vertices in the cut diagram.

To see how the combinatorial factor arises, we calculate the L-loop triangle:

C1 Ca

kr,

for s

The incoming particle is massive with p? = m?, and we cut the massless propagators with
momentum ki,...,kr, p — k1, and ko — k1,...,kr — kr—1. Naively, using the covariant
cutting rules, one would put all the cut particles on-shell and the diagram above would be
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given by

Tt [ T n) ()0 (1) 2016 (1) © () 20) 6 [k 0 (1)

x(27)6 [(k1—k2)*| © (K= k9) - (2m)& [ (k1 —kr)*| © (KD, —k] ) .

(G.3)

We label the angle between k; and k; by 0; ;, define w; = k:ZQ, and denote the angle between
k1 and the z-axis as 6. In the center of mass frame of p, the above expression can be
written

, a3k a3k
T =il / L ;M G ;% (27) <m2 - 2mw1) (27) & [~ 2wty (1 — cos B 9)]

X -+ (2m) 6 [—2wr—1wr (1 —cosOr_1,1)] O (w1 > w2 > -+ > wp,) .

(G.4)

Extracting the Jacobian factors results in

/ dwy / 1dw2 . /L_2 de_l/ L_lde5 (wl_m>
wr—1 Jo 2

/ dcosG/ dcosbrp-- / dcosby, 5, 0(1 —cosbya) -6 (1 — CoS ekL—lakL> . (G.5)
-1 -1 -1

This integral is ambiguous, since the delta functions of the angles are evaluated at the
integration endpoints. To evaluate it properly, we must go back to the TOPT expression
for the corresponding diagram, where we have a handle on how to make sense of these
products of delta functions. Namely, we know that they arise when using the relation

1 1
I - — 2mid(E). .
&%(EHE E—z’e) mio(E) (G.6)

Thus, when we encounter a delta function that is evaluated at an integration endpoint,
this implies we have used the distributional identity in eq. (G.6) too early. For massless
three-point vertices, we should instead use the expression

1 1 15
_ — 9 G.7
E+ic E—ic ‘B2 e (G-7)

and only take the limit ¢ — 0 after all the integrals have been evaluated. To shorten our

equations, we define the expression that appears on the right-hand side of eq. (G.7) as
1

0° = T w2—8&-62

Two loops. For extra clarity, we now show how the correct combinatoric factor results

in the two-loop case. The L-loop case is worked out analogously afterwards; it involves the

same ideas but with longer expressions. The two-loop TOPT diagram is given by

. d3ky ke 11
T =i / (27)% 2wy / (27)% 2w 21 2w1 9 (2m) 0% (m = 2uon) (2m) 07 (m — w1 —wp — wi-2)
(G.8)
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with wi_o = \/ w% + w% — 2wiwz cos By 2. We have already imposed three-momentum con-
servation. We perform the azimuthal integrals, and change variables from cos 612 to wi—_2
to get

-9 w1 +w:
T:(27:)2T1/dw1/d0089/dw2/ 1 2‘1@1726SE (m — 2w1) 6% (M — w1 —wz —w1-2) .

w1 —w2y
(G.9)
We now use that
/55(x)dx _! / ﬁdm _! arctan (:) (G.10)
T) x T
to write
2
T:ZQ/dCOSG/de/dwl(S‘E(m—le)
(2m)” 21 “1 (G.11)
1

m — 2wq m — 2w — 2wo
X — |arctan | —— | —arctan [ ——— .
™ € €

We can plug in wy = 5 everywhere except at singular points, to get

1 -2 —2
T = —/dcost?/dwz/dwlée (m — 2w) [arctan <mw1) — arctan< w2)} .
2673 € €
(G.12)

Since L arctan (%) = 76° (z), we get

o0 —2 —2
/ dwy 0% (m — 2w1) {arctan (mm) — arctan ( w2)]
0 € £
0 2

_ _ 2
_1 [(arctan (QO) — arctan( 2w2>) ] -z , (G.13)
2 € € 0 2

where we have taken the limit ¢ — 0" when writing the last equation. The factor of % in

this equation, arising from the integral over the product of arctan and a §° function, has
the same origin as the % factor in the L-loop case. The combinatorial factor arises because
the 6°s in eq. (G.9) only have support on the endpoint of the sequential delta function. We
plug this into eq. (G.12) to get

Z'Q
T = m/dcos@/dwg. (G14)

Comparing to the L = 2 case of eq. (G.5), we learn that we must multiply the right hand
side of f_ll d(1—cosb2) 29 by a combinatorial factor of % Although this factor of %
could potentially be justified in the two-loop case by claiming that the delta function in
eq. (G.5) is only integrated up to its endpoint, and hence should be evaluated to give %,

that argument does not generalize to the L-loop case, where we will see that we encounter

1

a combinatorial factor of % rather than 5L
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L loops. The L-loop TOPT diagram is given by

- z.L/ d*ky 'k, 11 L (2m) 6 (m — 201)
(2m) 2w (2m)° 2wp, 2w1 2w12 2w(p_1)—L '

X (2m) 0% (m — w) —we —wi—2) (2m) 6° (M — w1 — w3 — wW1—2 — Wa_3) (G.15)

X oo (2m) 6° (m—wl — WL — w12 _"‘_W(L—l)fL) ;
where

Wi—j = \/wf + wjz — 2w;w; cos by j . (G.16)
Preforming the azimuthal integrals gives
L [e’e] w1 WL —1
= 22LZ(27T)L /0 w1dwy /0 wodws - - ~/0 deWLwllwll_g e © 11) .
X /_11 olcosé?/_l1 dcosfia--- /_11 dcosOy, k0 (m— 2wy) (G.17)
X 0% (M —w) —wy —wi—2)0° (M — w] — w3 — wij—9 — wa_3)
- 0f (m—wl —wp — w12 _"'_W(Lfl)fL) :

We change variables from the cos0; ;1 variables to zy, -,z with z; = Wi (i41)- The

Jacobian for each ¢ is given by
Ow - wiw -
J; = hihiv1 — [ ki , (G.18)
0cos bt Whi—kit1

L 1 d w1 wL—2 dwr_ WL—1
= ZiL/ cos@/ wl/ ) / wL 1/ dwr, 6 (m — 2wn)
22L (2m)" J—1 0 wr—1 Jo

w1+tws2 w2+w3
></ dx10° (m—wl—wg—xl)/ dz26° (m — w1 — wg — 21 — T2)

SO

W1 —w?2 w2 —Ww3
wr—1twr,
></ drp16°(m—w) —wp —x1 — 29— -+ —Tp_1) .
Wr—-1—wr,

(G.19)

Shifting the integrals gives

L 1 d zo wr-2 dwr wL—1
- i L/ dcose/ xo/ dwy / wr, 1/ dioy 6 (wo_m>
22L+1 (2m)™ J 1 0 wr—1 Jo 2

w2+To w2tw3+x1
X / dz16° (m —we — xg — 21) / dxy20° (m — w3 — 9 — 21,2)
—w2+T0o w2—w3+x1

wr—1twr+21, L2 c
X / dl‘LL,l(S (m—UJL — X0 _551,L71) )
WL —1—WL+T1,L—2

(G.20)

where z1; = x1 +--- + x; and xgp = w;. We now have a product of delta functions where
each is evaluated at the endpoint of the previous one. To handle this more carefully, we
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use the §¢ distributions. In particular, we investigate the expression

[e%¢] m wo+T0
7 = / dxod® (xo — ) / dx16°(m — we — g — 1)
0 2 —wa+xo

w2 tw3z+x1
/ diUl’che(m — W3 —To — 1‘172)X
w2—w3+x1

wr—1twr+T1, L2 .
. / dx1,1,-16°(m — wr, — xo — x1,0-1)F (z0, 21,12, ..., X1,1-1),
Wr—1—WL+T1,L—2

(G.21)

where F' is a test function, which we take to be a smooth function of compact support. We
aim to compute the € — 0T limit of this integral. We use the fact that if = a + ey, then

dy
0(x —a)de = ————.
o= )
Using this formula repeatedly, we find
+2“"2 _|_2‘"73 +2""7L
7 [ 9w /yo c dyr /y1 . dypr2 '/3’1’“2 ‘ dy1,L—1
—5e T(L+y5) Jyo T(1+y7) Jy m(1+ 9%2) Y1,L-2 m(1+ y%,Lq)

X F(m/2+ eyo,m/2 —wa + €ey1,m/2 —ws +ey12,...,m/2 —wr +ey1.—1). (G.22)

Since the function F' is smooth, we can series expand it around € = 0. We keep only the
zeroth-order terms in the expansion; the higher-order terms do not contribute in the limit
e— 0T,

If w; vanishes, then the integral over y; ;_1 vanishes, as the upper and lower integration
limits are coincident. If all of the w; all strictly positive, then the upper integration limits
all become +o00 in the € — 07 limit. Hence, we obtain

lim Z=F(m/2,m/2 —ws,...,m/2 —wr)

e—0+
o /OO dyo /°° dyy /°° dyi1,2 /°° dy1,1.—1
—oo M1+ 45) Jyo T(1+u7) Jyy m(1+yi,) v T(1+yip )

(G.23)

Performing the integrals one by one, we get an arctan function raised to a power each time,
just as in eq. (G.13). The result after performing L — 1 integrations is

lim Z=F(m/2,m/2 —wa,...,m/2 —wr)

e—0t (G 24)
I dyo L—1 '
—1L1/ — 2arct .
x (=1) oo 2T (L= 1)l (14 y(%) (m arctan (yo))
The last integral evaluates to
lim Z=F(m/2,m/2 —wa,...,m/2 —wr)
e—0t (G 25)
1 & 1 ‘
L L
X (—1) |:2L_L‘7]'L (7'(' — 2arctan (yo)) . = ﬁ
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Making use of this in eq. (G.20), we get

i L 1 m/2 wr,— wr,—
7= [ deost | d“’Q.../“d”L—l/“de. (G.26)
(8m)” L'm J—1 0 ) 0 wr-1 Jo

In particular, this result has an extra factor of % compared to what one would get by

evaluating each of the delta functions to 1. Although we can compute these integrals in
TOPT, it is harder to find this combinatorial factor using covariant Feynman rules.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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