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1 Introduction

Three-dimensional (3d) O(N) symmetric φ4 models are some of the most studied examples
of non-integrable theories with interesting RG flows. As well-known, by tuning the mass
parameter these theories flow in the IR to a notable class of interacting conformal field
theories. Since in the IR these theories are strongly coupled, their exact RG flow is not
known, though a lot can be said using a variety of techniques.

The appearance of a second-order transition is under perturbative analytic control
within the ε-expansion [1] for ε � 1, and is natural to expect it to hold until ε = 1 (or
ε = 2 for N = 1), given the numerical evidence coming from Borel resummation techniques
(assuming the series are Borel resummable). The qualitative form of the perturbative RG
flow of O(N) models in the ε-expansion in mass independent schemes is straightforward.
Form2 > 0 the theory is in the unbroken phase with a single gapped vacuum, the transition
to a gapless phase occurs precisely at m2 = 0, and for m2 < 0 the theory is either gapped
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(N = 1) or gapless (N > 1), with O(N) symmetry spontaneously broken. Crucially, we
can directly study the critical theory at m2 = 0 because of the absence of IR divergences
within the ε expansion. The gapless phase can also be accessed, for 2 < d < 4, using large
N techniques.

Both large N and ε-expansion techniques are however not enough if one wants to ana-
lyze the theory at finite N within a non-perturbative definition of the theory, that requires
to work with fixed integer dimensions. At fixed dimension, IR divergences force us to work
away from criticality with m2 6= 0. In this case the gapless theory is defined when the phys-
ical mass gapM2 (and not m2) vanishes. In a physical renormalization scheme, the gapless
phase can in fact be reached starting from m2 > 0 by Borel resumming the perturbative se-
ries [2]. This has been at the base of several works for the extraction of critical exponents us-
ing resummation techniques, see e.g. [3]. This is on a more firm footing with respect to the ε-
expansion, but it still cannot be considered a non-perturbative set-up, because the physical
renormalization scheme is only reached working order by order in perturbation theory [4].

In order to study the theory in a framework that can be compared with purely non-
perturbative methods, it is useful to work at fixed integer dimension and in “minimal”
renormalization schemes where divergences are removed without the need of possibly in-
verting infinite perturbative series.1 In d = 2 several papers have indeed shown that the
gapless phase can be reached in this way using lattice [8–11], Hamiltonian truncation [12–
14]2 and Borel resummation [5, 19] methods.

The aim of this paper is to extend to 3d Euclidean O(N) φ4 models the study of the
2d φ4 theory of ref. [5], where the unbroken phase was analyzed using Borel resummation
techniques of the perturbative series. We will not discuss in detail the properties of the
critical theory, but rather focus more on how the phase diagram of the theory quantitatively
depends on the choice of the minimal renormalization scheme and the appearance of self-
dualities.

Renormalization scheme dependence is typically studied within perturbation theory,
where couplings in different schemes are assumed to be related by an analytic mapping.
Within this approximation a phase diagram is invariant under coupling reparametrizations.
For instance, given a scheme where a theory has fixed point g∗ with β(g∗) = 0, a change
of scheme of the kind g′ = g′(g) gives

β′(g′) = dg′

dg
β(g) . (1.1)

If the change of scheme is analytic, at g′∗ we would have β′(g′∗) = 0 and in particular the
number of critical points would be in one to one correspondence in the two schemes. But
this is no longer true if we relax the assumption of analyticity of the coupling parametriza-

1In fact, it is not a coincidence that the Borel resummability proofs of [4, 5] (see also refs. [6, 7]) apply
only in such renormalization schemes.

2Hamiltonian truncations based on light-cone quantization have also been used [15, 16] but they require
a non-trivial transformation to get mapped to the minimal covariant schemes we will discuss [17, 18].
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tion, since now dg′/dg can have zeros or singularities on its own.3 This will be the case in
our paper, where finite, non-perturbative, change of schemes are found and studied. How-
ever, we will not look for zeroes of resummed β-functions, but rather directly for points in
parameter space where the mass gap M2 vanishes.

We start in section 2 by setting the stage and defining the class of renormalization
schemes we will consider, parametrized by the variable κ. By exploiting the super renor-
malizability of the theory, we show that 3d O(N) models (in fact, we will consider at the
same time both d = 2 and d = 3) admit two descriptions, equivalent to all orders in per-
turbation theory, related by a strong-weak duality relation (within the same phase of the
theory), closely related to a duality found by Chang and Magruder long ago [20, 21]. Due
to the Borel summability of the perturbative expansion, the relation is expected to hold
at the non-perturbative level, at least in infinite volume on Rd, the case we will consider.
Interestingly enough, the mass scale in the strong branch can be interpreted as a formal
RG invariant dynamically generated mass scale of the theory in the weak branch.

The connection with the dualities found by Chang and Magruder, and the correspond-
ing expected phase diagram for N = 1, is described in section 3, see figure 2. Using the
results of section 2, we analyze in section 4 the exact analytic dependence of the critical
couplings in the weak and strong branches as a function of the renormalization scheme
parameter κ, for any N . This is given by (4.1) and is expressed in terms of the Lambert
functionW . As κ is varied in d = 3, the two critical couplings change and move in opposite
directions in the real coupling constant plane, until they merge at a given value κ = κ∗,
after which they move into the complex plane in complex conjugate pairs, see figure 3.
When this happens, the phase transition is no longer visible from the classically unbroken
phase, if one restricts to real parameters in the Lagrangian. On the other hand, the phase
transition is always visible if one starts from the classically broken phase (m2 < 0), where
a single critical coupling is expected for any value of κ. Based on these results, we spec-
ulate on a possible minimal analyticity structure of the O(N) Schwinger functions in the
complex mass plane, see figure 4. In subsection 4.1, as a by-product of our analysis, we
show how the non-perturbative mass gap at large N in 2d φ4 theories can be seen as the
analytic continuation of the perturbative one in the classically unbroken phase.

In section 5 we report our numerical results based on Borel resummations. As in our
previous papers, we focus our attention on the 0- and 2-point functions. In subsection 5.1 we
discuss how we obtained the perturbative coefficients up to order eight of the vacuum energy
density Λ and of the mass gap M2 and how they are related in different renormalization
schemes.4 In subsection 5.2 we show the absence of a gapless phase for certain values of
κ < κ∗, and provide evidence for the self-duality of the O(N) models by comparing the

3This is why we do generally care of higher order scheme-dependent terms of β-functions when studying
the perturbative RG behavior of theories. Knowing the mere existence of a scheme where such terms vanish,
and perturbative β-functions are saturated by one (or two) loop terms is useless, if we do not know the
actual map g′ = g′(g).

4We define the mass gap M2 as the zero of the Fourier transform of the inverse 2-point function (cor-
responding to the long-distance euclidean correlation length) and not as the pole of the propagator, as in
our previous papers [4, 5, 19].
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values obtained for Λ and M2 in the weak branch and (part of) the strong branch close
to the self-dual point, see e.g. figure 7.5 In subsection 5.3 we determine how the critical
coupling in the weak branch moves as the renormalization scheme is varied, confirming
the theoretical expectations, and we compare the values of the critical coupling with those
obtained in the literature using lattice methods for N = 1, 2, 4 [23–25]. The results are in
fair agreement, but with large uncertainties, due to the low accuracy of our resummations.
We conclude in section 6. Four appendices complete the paper. In appendix A we review
some properties of the Lambert function W , which appears repeatedly in our analysis. In
appendix B we compute Λ,M2 and the zero momentum 4-point function for massive O(N)
models in d dimensions at the first non-trivial order in the large N limit. In appendix C
we report the details of the vacuum energy renormalization in 3d O(N) models. Finally in
appendix D we report the explicit form of the perturbative coefficients of Λ and M2 up to
the eighth order in the coupling.

2 Renormalization scheme dependence and self-dualities

In QFT the parameters entering the classical action, such as masses and coupling constants,
do not correspond to physical observables and are generally divergent. In the process of
renormalization they get replaced by their renormalized and finite counterparts. The pre-
cise definition of the renormalized parameters depends on the details of how we decide to
renormalize the theory, i.e. from a renormalization scheme. For definiteness, consider a di-
mensionless coupling g. If g and g′ denote the renormalized coupling in two renormalization
schemes, in perturbation theory we have

g′ ∼ g +
∞∑
n=2

ang
n , (2.1)

where an are coefficients that can be determined order by order for parametrically small
couplings. We write the ∼ sign and not an equality because the series above, depending on
the schemes involved, can be convergent or divergent asymptotic. The two renormalization
schemes can be qualitatively different, i.e. g could correspond to a physical coupling and
g′ to its minimally subtracted MS version in dimensional regularization, or they can be
variants within the same family, say if g is taken in MS. In both cases (2.1) applies, though
the exact resummed change of scheme g′ = g′(g) could be completely different in the two
cases, in particular their analyticity properties. In renormalizable theories it is generally
hard to go beyond (2.1), because the process of renormalization occurs to all orders in
perturbation theory. On the other hand, super-renormalizable theories require a finite
number of subtractions and therefore provide a playground for theories where we can hope
to go beyond (2.1) and find the exact form of the finite change of scheme g′ = g′(g). We
will do that in what follows for quartic O(N)-invariant scalar theories in d = 2 and d = 3
dimensions for a one-parameter family of renormalization schemes within the same family

5Evidence for a finite volume version of the self-duality of the 3d N = 1 φ4 model has been recently
provided using Hamiltonian truncation methods [22].
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(like MS vs MS). The euclidean action of the theories read

S =
∫
ddx

[1
2(∂µφi)2 + 1

2m
2
0φ

2
i + λ0(φ2

i )2 + ρ0

]
, i = 1, . . . , N . (2.2)

As well-known, for d < 4 only the mass term and the vacuum energy term require renor-
malization, the quartic coupling and the field φ being finite. We consider dimensional
regularization and define the renormalized mass and coupling in d = 2 or d = 3 as

m2
0 = m2 + δm2 , λ0 = µελ , ρ0 = µ−ε(ρ+ δρ) , d = n− ε , n = 2, 3 . (2.3)

Note that λ has mass dimension 2 and 1 in d = 2 and d = 3, respectively. The introduction
of an RG scale µ might confuse the reader. In fact, there are no large log’s to be resummed
in perturbation theory and consequently no need to introduce a further mass scale µ in the
problem. The natural choice would be to simply set µ = m in (2.3). However, changing µ→
µ e−κ/2, where κ is an arbitrary real parameter, is equivalent to change the counterterms
δm2 and δρ in (2.3) and hence is a convenient way to introduce a simple one-parameter class
of renormalization schemes.6 That said, all the considerations below could be derived using
e.g. cut-off regularization at fixed dimension, but at the price of having more complicated
expressions in d = 3.

Let us assume that m2 > 0, so that we are in the classically unbroken phase of the
theory. To all orders in perturbation theory the β functions are easily determined since
there are no contributions to βλ and only one to βm2 in both d = 2 and d = 3, given
respectively by the first and second diagrams in figure 11 of appendix C. One has7

βλ = 0 , βm2 = 2bd−1λ
d−1 , d = 2, 3, (2.4)

where
b1 = −N + 2

π
, b2 = N + 2

π2 . (2.5)

If we denote by m2 the squared mass parameter in the original scheme, in the scheme
where µ→ µ e−κ/2 we get a squared mass parameter m′2 equal to

m′2(µ) = m2(µ) + λd−1bd−1κ . (2.6)

Using the running of the mass term, this can be written more explicitly as

m2 + λd−1bd−1 log µ2

m2 = m′2 + λd−1bd−1 log µ2

m′2
− λd−1bd−1κ , (2.7)

where m2(µ2 = m2) ≡ m2, m′2(µ2 = m′2) ≡ m′2. The relation (2.7) can be further
rewritten as

fd(x) = fd(x′) + κ , (2.8)
6In 4d a relation of this kind with κ = log(4π) − γE links the MS and MS schemes.
7We do not report here the β function for the vacuum energy, which for d = 3 can be found in (C.3),

since it does not play any role in the analysis that follows. The vacuum energy will be neglected until
section 5.
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where

fd(x) ≡ log x+ (−1)dx , x ≡ 1
N + 2

(
π

g

)d−1
, g ≡ λ

m4−d . (2.9)

Note that g is the dimensionless loopwise expansion parameter while the variable x (in
units of λ) is proportional to the squared mass term in both d = 2 and d = 3 dimensions.
We can use (2.8) to find an exact change of scheme x′ = x′(x).

Consider first the d = 2 case. Solving for x′ we get for any κ the unique solution

x′ = W0
(
xex−κ

)
, (2.10)

whereW0 is the principal branch of the Lambert function W . This function will repeatedly
appear in our considerations, so we refer the reader to appendix A for its definition and
a brief summary of some of its properties. This solution agrees with the one obtained in
perturbation theory by expanding g′ for small g:

g′ = g + (N + 2)κ
π

g2 + (N + 2)2κ(κ− 1)
π2 g3 + . . . (2.11)

Instead of expanding W for large values of its argument, that involves iterative logs, one
can alternatively expand for small κ, by noting that at order n in perturbation theory the
change of scheme involves a polynomial of degree n − 1 in κ. Defining y = x − κ, we are
left with the expansion of W (yey + κey) for small κ. The Taylor expansion around κ = 0
can be performed using (A.6) and the fact that by definition W (yey) = y. We get

x′ = x− κ+
∞∑
n=1

κn

n!
pn(x− κ)

(1 + x− κ)2n−1 . (2.12)

Expanding this relation for large values of x finally reproduces, to all orders in perturbation
theory, the perturbative change of scheme given in (2.11). We can use this formula to argue
about the nature of the perturbative series associated to the change of scheme and its radius
of convergence. This can be easily determined in a “double scaling” limit where8

|κ| → ∞ , x→∞ ,
x

|κ|
≡ α = fixed . (2.13)

For large y we have
pn(y) = (−1)n−1(n− 1)!yn−1 +O(yn−2), (2.14)

from which we get

α′ ≈ α− η − 1
|κ|

∞∑
n=1

1
n

(1− ηα)−n ≈ α− η + 1
|κ|

log
(

α

α− η

)
, (2.15)

where η ≡ sign(κ). The series giving rise to the log converges for α > 2 for κ > 0 and
α > 0 for κ < 0. Note that (2.15) could be obtained more easily by using (A.4), though the
above procedure simplifies the connection with the perturbative expansion of the change

8A scaling of this kind has been already considered in [4] where the same class of 1-parameter family of
renormalization schemes has been analyzed.
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of scheme. The series is convergent also at finite κ, with a radius that depends on κ. The
expansion of (2.12) for large x is of the form

x′ = x− κ+ κ
∞∑
n=1

qn(κ)
xn

, (2.16)

where qn are polynomials of degree n−1 in κ. The coefficients of the monomials entering qn
alternate in sign and indicate that the convergence properties of the series are better when
κ > 0. We have not determined the exact radius of convergence R(κ) of the series (2.16)
but we have checked that R(κ) ∼ 1/|κ|, in line with the analysis above.

It is well-known that the N = 1 φ4 theory has a second-order phase transition at a
critical value of the (inverse) coupling xc in the same universality class of the d = 2 Ising
model.9 The dependence of xc on the renormalization scheme has been studied in [4],
where it has numerically been found how xc depends on κ. Given xc(κ = 0) ≡ xc, the
exact relation (2.10) allows us to find the analytic form of the dependence of the critical
coupling on the renormalization scheme:

xc(κ) = W0(xcexc−κ) . (2.17)

For κ→ −∞, we have
xc(κ) ≈ |κ|+ xc , (2.18)

and the fixed point coupling approaches the Gaussian one, while in the opposite limit
κ→∞,

xc(κ) ≈ xcexc e−κ (2.19)

the coupling goes to infinity exponentially in κ. We have verified that (2.17) reproduces
the results of figure 3 of [4], see figure 1. As the renormalization scheme is varied, we
always find a fixed point and hence the phase transition is “visible” from the (classically)
unbroken phase in d = 2 for any choice of κ.

Let us now consider the more interesting case of d = 3, where the apparently innocuous
sign difference between d = 2 and d = 3 in (2.9) completely changes the picture. Solving
for x′, for any κ we now get two solutions

x′w = −W−1
(
− xe−x−κ

)
, x′s = −W0

(
− xe−x−κ

)
, (2.20)

where x′w > 1 and x′s < 1, associated to the two different branches W−1 and W0 of the
Lambert function, see appendix A. We label the two branches as weak (w) and strong (s)
branches. The solution that agrees with the one obtained in perturbation theory is obtained
by expanding W−1 for x→ +∞, which corresponds to xe−x → 0+. Using (A.5), we get

x′w ≈ x+ κ+ . . . (2.21)
9For N = 2 vortices appear and the theory has a Berezinskii-Kosterlitz-Thouless transition [26–28]. For

N ≥ 3 the theories are gapped and no transition occurs. See [29] for a recent analysis of 2d O(N) models
for continuous values of N between −2 and 2.
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Figure 1. In green the critical coupling gc of the N = 1 φ4 theory in d = 2, determined as
M(gc) = 0 using conformal mapping for several renormalization schemes parametrized by κ [4], in
red the analytic curve for gc(κ) from (2.17) given as value of reference gc(κ = 0).

The perturbative change of scheme is obtained by proceeding as before and can be written
in the form of (2.12), with the obvious replacement x→ −x. The other non-perturbative
solution is obtained by expanding W0 for x→ +∞ and gives

x′s ≈ xe−x−κ . (2.22)

Two solutions occur also for κ = 0 and indicate that O(N) vector models in d = 3 admit
two “dual” descriptions in the classically unbroken phase. They are related as follows:

xs = −W0(−xwe−xw) , or xw = −W−1(−xse−xs) , (2.23)

for xw > 1 and xs < 1. In terms of mass scales the first relation in (2.23) gives

lim
m→∞

m2
s ≈ m2e

− π2m2
(N+2)λ2 , (2.24)

where m2
w ≡ m2. Interestingly enough, (2.24) can be interpreted as the “dynamically

generated” RG invariant scale

Λ2
RG = µ2e

− π2
(N+2)g2(µ) , (2.25)

that arises from the β-function for g2:

βg2 = −2(N + 2)
π2 (g2)2 . (2.26)

By taking µ = m, g(m) = λ/m, we see that ΛRG coincides with the weak coupling
limit (2.24) of ms. The strong and weak branch fuse at the self-dual point

xSD = 1 ⇒ gSD = π√
N + 2

, (d = 3). (2.27)

In the large N limit with λ → 0, N → ∞, and λN = fixed, the two-loop term in (2.7)
drops out and correspondingly the function f(x) trivializes. No self-duality survives in this
large-N limit.
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A similar analysis can be done for m2 < 0, namely in the classically broken phase,
but now the value of N matters. For N > 1 in d = 2 the Coleman-Mermin-Wagner
theorem [30, 31] forbids the appearance of Goldstone bosons, so the theory is always non-
perturbatively gapped and we cannot expect to be able to deduce strongly coupled effects
by merely looking at perturbative counterterms. This is in agreement with the fact that
for N > 1 in d = 2 Borel summability is not guaranteed [5]. For N > 1 in d = 3 a
continuous symmetry is spontaneously broken and massless Goldstone bosons appear. The
relation (2.7), based on the presence in the theory of a single O(N)-invariant mass scale, no
longer holds and a more refined analysis is required (see also footnote 11). For simplicity,
in what follows we focus on the case N = 1, for which we expect that the analysis made
above for m2 > 0 also holds for m2 < 0.10 We denote the parameters in the broken phase
with a tilde and continue to keep generic N in the formulas, with the understanding that
N = 1. The β-functions (2.4) still apply, but we now have

m̃2(µ2 = m̃2) = −1
2m̃

2 , (2.28)

where −m̃2/4 is the renormalized mass term in the action, such that the particle excitation
has squared mass m̃2 > 0. In the broken phase (2.8) reads

f̃d(x̃) = f̃d(x̃′) + κ̃ , (2.29)

where

f̃d(x̃) ≡ log x̃− (−1)dx̃ , x̃ ≡ 1
2(N + 2)

(
π

g̃

)d−1
, g̃ ≡ λ

m̃4−d . (2.30)

We see that, as far as the scheme dependence is concerned, the d = 2 and d = 3 theories
in the broken phase behave respectively like the d = 3 and d = 2 theories in the unbroken
phase! The whole analysis made before applies with this replacement. In particular, we
conclude that the d = 2 N = 1 theory admits a self-duality in the broken phase. The
strong and weak branch fuse at the self-dual point

x̃SD = 1 ⇒ g̃SD = π

2(N + 2) , (d = 2). (2.31)

3 Connection with Chang and Magruder dualities

We have seen in section 2 how to perform an exact change of renormalization schemes
within the same phase of the theory. However, classically unbroken and broken phases are
simply characterized by the sign of the squared mass term and since the latter is in fact
divergent, we should be able to push further our change of schemes (for N = 1) and to
relate one phase to another, passing through infinite coupling (m2 = 0). The relation (2.6)
still applies and, in light of (2.28), reads now

log(x/2) + (−1)dx = log x̃− (−1)dx̃+ κ , (3.1)
10However, the situation simplifies at large N , where we can see the non-perturbatively generated mass

gap from an analytic continuation in the coupling space, see subsection 4.1.
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in terms of the variables defined in (2.9) and (2.30). The relation (3.1) states that a theory
in the broken phase with negative squared mass term −m̃2/2 is equivalent to a theory in the
unbroken phase with squared mass term m2 (with the same λ) provided the two mass scales
are related as in (3.1). The theories are “dual” because they can be seen as the same theory
where the mass term is renormalized differently. For κ = 0 in d = 2, the relation (3.1)
coincides with Chang duality [20], originally derived using a normal ordering prescription.
In d = 3 relation (3.1) gives rise to a duality first discussed by Magruder [21].11 The original
derivation of [21] made use of cut-off regularization and a different renormalization scheme
(without the need of introducing a RG scale µ), where an extra term proportional to

√
x

appeared on both sides of (3.1) due to a divergence induced by the one-loop tadpole-like
diagram. The presence of such term hinders an analytic solution of the duality relation
and it obscures the close analogy between the d = 2 and the d = 3 cases. This divergence
depends on the renormalization scheme and is set to zero in minimal subtraction schemes
based on dimensional regularization. Note that no duality occurs for non-integer d, since
the log terms in (3.1) can only appear for integer dimensions.

For κ = 0 and at fixed x (x̃), the solutions in x̃ (x) of (3.1) are

x̃w = −W−1(−ωxex) , x̃s = −W0(−ωxex) , x = W0

(
x̃

ω
e−x̃

)
(d = 2) , (3.2)

x̃ = W0(xωe−x) , xs = −W0

(
− x̃

ω
ex̃
)
, xw = −W−1

(
− x̃

ω
ex̃
)

(d = 3) , (3.3)

with ω = 1/2. Note that (3.2) and (3.3) are related by the map

x↔ x̃ , ω ↔ 1
ω
, (3.4)

which is again a manifestation of the interplay between unbroken and broken phases in
d = 2 and d = 3. In d = 2, at fixed x, the two solutions in (3.2) are real for xex/2 < 1/e,
i.e. for (setting N = 1)

g ≥ gI ≡
π

3W0(2/e) ≈ 2.26 , (d = 2) . (3.5)

In d = 3, at fixed x̃, the two solutions in (3.3) are real for 2x̃ex̃ < 1/e, i.e. for (setting
N = 1)

g̃ ≥ g̃I ≡
(

π2

6W0(1/(2e))

)1/2
≈ 3.23 , (d = 3) . (3.6)

11Magruder actually wrote down a duality for arbitrary N by adding O(N) group theoretical factors to
the N = 1 case, as if the symmetry would be linearly realized, see (3.17) of [21]. For instance, the term
proportional to Λ − µ on the right hand side of the counterterm (3.16) in [21] would naturally arise if all
particles in the one-loop tadpole-like diagram responsible for the linear divergence had mass µ2. Massless
particles would induce IR divergences in the sunset diagram contribution, proportional to log(µ/Λ) in
(3.16). Due to the derivative interactions of Goldstone bosons, we expect that IR divergences cancel, but
in a non-trivial way in a linear parametrization in terms of the field-components of φi. A duality might still
hold for N > 1 but establishing it requires to understand how to map operators in a theory from a phase
to another, where a global symmetry is linearly or non-linearly realized, respectively.
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d = 2
<latexit sha1_base64="pFPXvroAkoahNpFJpVCNv1VZvvM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoBehoAePFe0HtKFsNpt26WYTdidCKf0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBKYdB1v53C2vrG5lZxu7Szu7d/UD48apkk04w3WSIT3Qmo4VIo3kSBkndSzWkcSN4ORjczv/3EtRGJesRxyv2YDpSIBKNopYfwutYvV9yqOwdZJV5OKpCj0S9/9cKEZTFXyCQ1puu5KfoTqlEwyaelXmZ4StmIDnjXUkVjbvzJ/NQpObNKSKJE21JI5urviQmNjRnHge2MKQ7NsjcT//O6GUZX/kSoNEOu2GJRlEmCCZn9TUKhOUM5toQyLeythA2ppgxtOiUbgrf88ipp1aqeW/XuLyr12zyOIpzAKZyDB5dQhztoQBMYDOAZXuHNkc6L8+58LFoLTj5zDH/gfP4Au52NbQ==</latexit><latexit sha1_base64="pFPXvroAkoahNpFJpVCNv1VZvvM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoBehoAePFe0HtKFsNpt26WYTdidCKf0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBKYdB1v53C2vrG5lZxu7Szu7d/UD48apkk04w3WSIT3Qmo4VIo3kSBkndSzWkcSN4ORjczv/3EtRGJesRxyv2YDpSIBKNopYfwutYvV9yqOwdZJV5OKpCj0S9/9cKEZTFXyCQ1puu5KfoTqlEwyaelXmZ4StmIDnjXUkVjbvzJ/NQpObNKSKJE21JI5urviQmNjRnHge2MKQ7NsjcT//O6GUZX/kSoNEOu2GJRlEmCCZn9TUKhOUM5toQyLeythA2ppgxtOiUbgrf88ipp1aqeW/XuLyr12zyOIpzAKZyDB5dQhztoQBMYDOAZXuHNkc6L8+58LFoLTj5zDH/gfP4Au52NbQ==</latexit><latexit sha1_base64="pFPXvroAkoahNpFJpVCNv1VZvvM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoBehoAePFe0HtKFsNpt26WYTdidCKf0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBKYdB1v53C2vrG5lZxu7Szu7d/UD48apkk04w3WSIT3Qmo4VIo3kSBkndSzWkcSN4ORjczv/3EtRGJesRxyv2YDpSIBKNopYfwutYvV9yqOwdZJV5OKpCj0S9/9cKEZTFXyCQ1puu5KfoTqlEwyaelXmZ4StmIDnjXUkVjbvzJ/NQpObNKSKJE21JI5urviQmNjRnHge2MKQ7NsjcT//O6GUZX/kSoNEOu2GJRlEmCCZn9TUKhOUM5toQyLeythA2ppgxtOiUbgrf88ipp1aqeW/XuLyr12zyOIpzAKZyDB5dQhztoQBMYDOAZXuHNkc6L8+58LFoLTj5zDH/gfP4Au52NbQ==</latexit><latexit sha1_base64="pFPXvroAkoahNpFJpVCNv1VZvvM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoBehoAePFe0HtKFsNpt26WYTdidCKf0JXjwo4tVf5M1/47bNQVsfDDzem2FmXpBKYdB1v53C2vrG5lZxu7Szu7d/UD48apkk04w3WSIT3Qmo4VIo3kSBkndSzWkcSN4ORjczv/3EtRGJesRxyv2YDpSIBKNopYfwutYvV9yqOwdZJV5OKpCj0S9/9cKEZTFXyCQ1puu5KfoTqlEwyaelXmZ4StmIDnjXUkVjbvzJ/NQpObNKSKJE21JI5urviQmNjRnHge2MKQ7NsjcT//O6GUZX/kSoNEOu2GJRlEmCCZn9TUKhOUM5toQyLeythA2ppgxtOiUbgrf88ipp1aqeW/XuLyr12zyOIpzAKZyDB5dQhztoQBMYDOAZXuHNkc6L8+58LFoLTj5zDH/gfP4Au52NbQ==</latexit>

xc
<latexit sha1_base64="rT72T1xjF2M6cHHCOKFSJzcTAfo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYNpCG8pmO2mXbjZhdyOW0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfj25nffkSleSIfzCTFIKZDySPOqLGS/9TP2bRfrbl1dw6ySryC1KBAs1/96g0SlsUoDRNU667npibIqTKcCZxWepnGlLIxHWLXUklj1EE+P3ZKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj86nYELzll1dJ66LuuXXv/rLWuCniKMMJnMI5eHAFDbiDJvjAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBGxuO2g==</latexit><latexit sha1_base64="rT72T1xjF2M6cHHCOKFSJzcTAfo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYNpCG8pmO2mXbjZhdyOW0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfj25nffkSleSIfzCTFIKZDySPOqLGS/9TP2bRfrbl1dw6ySryC1KBAs1/96g0SlsUoDRNU667npibIqTKcCZxWepnGlLIxHWLXUklj1EE+P3ZKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj86nYELzll1dJ66LuuXXv/rLWuCniKMMJnMI5eHAFDbiDJvjAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBGxuO2g==</latexit><latexit sha1_base64="rT72T1xjF2M6cHHCOKFSJzcTAfo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYNpCG8pmO2mXbjZhdyOW0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfj25nffkSleSIfzCTFIKZDySPOqLGS/9TP2bRfrbl1dw6ySryC1KBAs1/96g0SlsUoDRNU667npibIqTKcCZxWepnGlLIxHWLXUklj1EE+P3ZKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj86nYELzll1dJ66LuuXXv/rLWuCniKMMJnMI5eHAFDbiDJvjAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBGxuO2g==</latexit><latexit sha1_base64="rT72T1xjF2M6cHHCOKFSJzcTAfo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYNpCG8pmO2mXbjZhdyOW0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfj25nffkSleSIfzCTFIKZDySPOqLGS/9TP2bRfrbl1dw6ySryC1KBAs1/96g0SlsUoDRNU667npibIqTKcCZxWepnGlLIxHWLXUklj1EE+P3ZKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjL7nAy4QmbExBLKFLe3EjaiijJj86nYELzll1dJ66LuuXXv/rLWuCniKMMJnMI5eHAFDbiDJvjAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBGxuO2g==</latexit>

�ex(s)
c

<latexit sha1_base64="tzQkRp+f2VxyeDsl6fv1NGaWTsY=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWAR6sKSiKArKbhxWcE+oI1hMrlph04ezEzUErLxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xEs6ksqxvY2FxaXlltbRWXt/Y3No2d3ZbMk4FhSaNeSw6HpHAWQRNxRSHTiKAhB6Htje8GvvtexCSxdGtGiXghKQfsYBRorTkmvsnvQfmg2LcB/zoZjS/y6ryOHfNilWzJsDzxC5IBRVouOZXz49pGkKkKCdSdm0rUU5GhGKUQ17upRISQoekD11NIxKCdLLJAzk+0oqPg1joihSeqL8nMhJKOQo93RkSNZCz3lj8z+umKrhwMhYlqYKIThcFKccqxuM0sM8EUMVHmhAqmL4V0wERhCqdWVmHYM++PE9apzXbqtk3Z5X6ZRFHCR2gQ1RFNjpHdXSNGqiJKMrRM3pFb8aT8WK8Gx/T1gWjmNlDf2B8/gBgf5Y9</latexit><latexit sha1_base64="tzQkRp+f2VxyeDsl6fv1NGaWTsY=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWAR6sKSiKArKbhxWcE+oI1hMrlph04ezEzUErLxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xEs6ksqxvY2FxaXlltbRWXt/Y3No2d3ZbMk4FhSaNeSw6HpHAWQRNxRSHTiKAhB6Htje8GvvtexCSxdGtGiXghKQfsYBRorTkmvsnvQfmg2LcB/zoZjS/y6ryOHfNilWzJsDzxC5IBRVouOZXz49pGkKkKCdSdm0rUU5GhGKUQ17upRISQoekD11NIxKCdLLJAzk+0oqPg1joihSeqL8nMhJKOQo93RkSNZCz3lj8z+umKrhwMhYlqYKIThcFKccqxuM0sM8EUMVHmhAqmL4V0wERhCqdWVmHYM++PE9apzXbqtk3Z5X6ZRFHCR2gQ1RFNjpHdXSNGqiJKMrRM3pFb8aT8WK8Gx/T1gWjmNlDf2B8/gBgf5Y9</latexit><latexit sha1_base64="tzQkRp+f2VxyeDsl6fv1NGaWTsY=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWAR6sKSiKArKbhxWcE+oI1hMrlph04ezEzUErLxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xEs6ksqxvY2FxaXlltbRWXt/Y3No2d3ZbMk4FhSaNeSw6HpHAWQRNxRSHTiKAhB6Htje8GvvtexCSxdGtGiXghKQfsYBRorTkmvsnvQfmg2LcB/zoZjS/y6ryOHfNilWzJsDzxC5IBRVouOZXz49pGkKkKCdSdm0rUU5GhGKUQ17upRISQoekD11NIxKCdLLJAzk+0oqPg1joihSeqL8nMhJKOQo93RkSNZCz3lj8z+umKrhwMhYlqYKIThcFKccqxuM0sM8EUMVHmhAqmL4V0wERhCqdWVmHYM++PE9apzXbqtk3Z5X6ZRFHCR2gQ1RFNjpHdXSNGqiJKMrRM3pFb8aT8WK8Gx/T1gWjmNlDf2B8/gBgf5Y9</latexit><latexit sha1_base64="tzQkRp+f2VxyeDsl6fv1NGaWTsY=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWAR6sKSiKArKbhxWcE+oI1hMrlph04ezEzUErLxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xEs6ksqxvY2FxaXlltbRWXt/Y3No2d3ZbMk4FhSaNeSw6HpHAWQRNxRSHTiKAhB6Htje8GvvtexCSxdGtGiXghKQfsYBRorTkmvsnvQfmg2LcB/zoZjS/y6ryOHfNilWzJsDzxC5IBRVouOZXz49pGkKkKCdSdm0rUU5GhGKUQ17upRISQoekD11NIxKCdLLJAzk+0oqPg1joihSeqL8nMhJKOQo93RkSNZCz3lj8z+umKrhwMhYlqYKIThcFKccqxuM0sM8EUMVHmhAqmL4V0wERhCqdWVmHYM++PE9apzXbqtk3Z5X6ZRFHCR2gQ1RFNjpHdXSNGqiJKMrRM3pFb8aT8WK8Gx/T1gWjmNlDf2B8/gBgf5Y9</latexit>

�ex(w)
c

<latexit sha1_base64="lU0BnNlD++XfqNUPpLgmQf71ROw=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBeWRARdScGNywr2AW0Mk8lNO3TyYGZiLSEbf8WNC0Xc+hnu/Bunj4W2HrhwOOde7r3HSziTyrK+jcLS8srqWnG9tLG5tb1j7u41ZZwKCg0a81i0PSKBswgaiikO7UQACT0OLW9wPfZbDyAki6M7NUrACUkvYgGjRGnJNQ9Ou0Pmg2LcB/zoZjS/zyrDk9w1y1bVmgAvEntGymiGumt+df2YpiFEinIiZce2EuVkRChGOeSlbiohIXRAetDRNCIhSCebPJDjY634OIiFrkjhifp7IiOhlKPQ050hUX05743F/7xOqoJLJ2NRkiqI6HRRkHKsYjxOA/tMAFV8pAmhgulbMe0TQajSmZV0CPb8y4ukeVa1rap9e16uXc3iKKJDdIQqyEYXqIZuUB01EEU5ekav6M14Ml6Md+Nj2lowZjP76A+Mzx9ml5ZB</latexit><latexit sha1_base64="lU0BnNlD++XfqNUPpLgmQf71ROw=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBeWRARdScGNywr2AW0Mk8lNO3TyYGZiLSEbf8WNC0Xc+hnu/Bunj4W2HrhwOOde7r3HSziTyrK+jcLS8srqWnG9tLG5tb1j7u41ZZwKCg0a81i0PSKBswgaiikO7UQACT0OLW9wPfZbDyAki6M7NUrACUkvYgGjRGnJNQ9Ou0Pmg2LcB/zoZjS/zyrDk9w1y1bVmgAvEntGymiGumt+df2YpiFEinIiZce2EuVkRChGOeSlbiohIXRAetDRNCIhSCebPJDjY634OIiFrkjhifp7IiOhlKPQ050hUX05743F/7xOqoJLJ2NRkiqI6HRRkHKsYjxOA/tMAFV8pAmhgulbMe0TQajSmZV0CPb8y4ukeVa1rap9e16uXc3iKKJDdIQqyEYXqIZuUB01EEU5ekav6M14Ml6Md+Nj2lowZjP76A+Mzx9ml5ZB</latexit><latexit sha1_base64="lU0BnNlD++XfqNUPpLgmQf71ROw=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBeWRARdScGNywr2AW0Mk8lNO3TyYGZiLSEbf8WNC0Xc+hnu/Bunj4W2HrhwOOde7r3HSziTyrK+jcLS8srqWnG9tLG5tb1j7u41ZZwKCg0a81i0PSKBswgaiikO7UQACT0OLW9wPfZbDyAki6M7NUrACUkvYgGjRGnJNQ9Ou0Pmg2LcB/zoZjS/zyrDk9w1y1bVmgAvEntGymiGumt+df2YpiFEinIiZce2EuVkRChGOeSlbiohIXRAetDRNCIhSCebPJDjY634OIiFrkjhifp7IiOhlKPQ050hUX05743F/7xOqoJLJ2NRkiqI6HRRkHKsYjxOA/tMAFV8pAmhgulbMe0TQajSmZV0CPb8y4ukeVa1rap9e16uXc3iKKJDdIQqyEYXqIZuUB01EEU5ekav6M14Ml6Md+Nj2lowZjP76A+Mzx9ml5ZB</latexit><latexit sha1_base64="lU0BnNlD++XfqNUPpLgmQf71ROw=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBeWRARdScGNywr2AW0Mk8lNO3TyYGZiLSEbf8WNC0Xc+hnu/Bunj4W2HrhwOOde7r3HSziTyrK+jcLS8srqWnG9tLG5tb1j7u41ZZwKCg0a81i0PSKBswgaiikO7UQACT0OLW9wPfZbDyAki6M7NUrACUkvYgGjRGnJNQ9Ou0Pmg2LcB/zoZjS/zyrDk9w1y1bVmgAvEntGymiGumt+df2YpiFEinIiZce2EuVkRChGOeSlbiohIXRAetDRNCIhSCebPJDjY634OIiFrkjhifp7IiOhlKPQ050hUX05743F/7xOqoJLJ2NRkiqI6HRRkHKsYjxOA/tMAFV8pAmhgulbMe0TQajSmZV0CPb8y4ukeVa1rap9e16uXc3iKKJDdIQqyEYXqIZuUB01EEU5ekav6M14Ml6Md+Nj2lowZjP76A+Mzx9ml5ZB</latexit>

�exSD
<latexit sha1_base64="MSCDz+wvaFMfm+EetQPPizXrXtM=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCG0sigq6koAuXFe0DmhAmk5t26OTBzEQtIW78FTcuFHHrX7jzb5w+Ftp64MLhnHu59x4/5Uwqy/o25uYXFpeWSyvl1bX1jU1za7spk0xQaNCEJ6LtEwmcxdBQTHFopwJI5HNo+f2Lod+6AyFZEt+qQQpuRLoxCxklSkueuXvk3LMAFOMB4Acvzx0R4ZvLovDMilW1RsCzxJ6QCpqg7plfTpDQLIJYUU6k7NhWqtycCMUoh6LsZBJSQvukCx1NYxKBdPPRBwU+0EqAw0ToihUeqb8nchJJOYh83RkR1ZPT3lD8z+tkKjxzcxanmYKYjheFGccqwcM4cMAEUMUHmhAqmL4V0x4RhCodWlmHYE+/PEuax1XbqtrXJ5Xa+SSOEtpD++gQ2egU1dAVqqMGougRPaNX9GY8GS/Gu/Exbp0zJjM76A+Mzx8zYpa0</latexit><latexit sha1_base64="MSCDz+wvaFMfm+EetQPPizXrXtM=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCG0sigq6koAuXFe0DmhAmk5t26OTBzEQtIW78FTcuFHHrX7jzb5w+Ftp64MLhnHu59x4/5Uwqy/o25uYXFpeWSyvl1bX1jU1za7spk0xQaNCEJ6LtEwmcxdBQTHFopwJI5HNo+f2Lod+6AyFZEt+qQQpuRLoxCxklSkueuXvk3LMAFOMB4Acvzx0R4ZvLovDMilW1RsCzxJ6QCpqg7plfTpDQLIJYUU6k7NhWqtycCMUoh6LsZBJSQvukCx1NYxKBdPPRBwU+0EqAw0ToihUeqb8nchJJOYh83RkR1ZPT3lD8z+tkKjxzcxanmYKYjheFGccqwcM4cMAEUMUHmhAqmL4V0x4RhCodWlmHYE+/PEuax1XbqtrXJ5Xa+SSOEtpD++gQ2egU1dAVqqMGougRPaNX9GY8GS/Gu/Exbp0zJjM76A+Mzx8zYpa0</latexit><latexit sha1_base64="MSCDz+wvaFMfm+EetQPPizXrXtM=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCG0sigq6koAuXFe0DmhAmk5t26OTBzEQtIW78FTcuFHHrX7jzb5w+Ftp64MLhnHu59x4/5Uwqy/o25uYXFpeWSyvl1bX1jU1za7spk0xQaNCEJ6LtEwmcxdBQTHFopwJI5HNo+f2Lod+6AyFZEt+qQQpuRLoxCxklSkueuXvk3LMAFOMB4Acvzx0R4ZvLovDMilW1RsCzxJ6QCpqg7plfTpDQLIJYUU6k7NhWqtycCMUoh6LsZBJSQvukCx1NYxKBdPPRBwU+0EqAw0ToihUeqb8nchJJOYh83RkR1ZPT3lD8z+tkKjxzcxanmYKYjheFGccqwcM4cMAEUMUHmhAqmL4V0x4RhCodWlmHYE+/PEuax1XbqtrXJ5Xa+SSOEtpD++gQ2egU1dAVqqMGougRPaNX9GY8GS/Gu/Exbp0zJjM76A+Mzx8zYpa0</latexit><latexit sha1_base64="MSCDz+wvaFMfm+EetQPPizXrXtM=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCG0sigq6koAuXFe0DmhAmk5t26OTBzEQtIW78FTcuFHHrX7jzb5w+Ftp64MLhnHu59x4/5Uwqy/o25uYXFpeWSyvl1bX1jU1za7spk0xQaNCEJ6LtEwmcxdBQTHFopwJI5HNo+f2Lod+6AyFZEt+qQQpuRLoxCxklSkueuXvk3LMAFOMB4Acvzx0R4ZvLovDMilW1RsCzxJ6QCpqg7plfTpDQLIJYUU6k7NhWqtycCMUoh6LsZBJSQvukCx1NYxKBdPPRBwU+0EqAw0ToihUeqb8nchJJOYh83RkR1ZPT3lD8z+tkKjxzcxanmYKYjheFGccqwcM4cMAEUMUHmhAqmL4V0x4RhCodWlmHYE+/PEuax1XbqtrXJ5Xa+SSOEtpD++gQ2egU1dAVqqMGougRPaNX9GY8GS/Gu/Exbp0zJjM76A+Mzx8zYpa0</latexit>

0

UnbrokenUnbroken BrokenBroken

xSD
<latexit sha1_base64="pnON88dh59E/0ug+T9LfAOCujJo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMU9OCxov2AJpTNdtMu3d2E3Y1YQv6GFw+KePXPePPfuG1z0NYHA4/3ZpiZFyacaeO6305pZXVtfaO8Wdna3tndq+4ftHWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJx9dTv/NIlWaxfDCThAYCDyWLGMHGSv5TP8t8JdD9TZ73qzW37s6AlolXkBoUaParX/4gJqmg0hCOte55bmKCDCvDCKd5xU81TTAZ4yHtWSqxoDrIZjfn6MQqAxTFypY0aKb+nsiw0HoiQtspsBnpRW8q/uf1UhNdBhmTSWqoJPNFUcqRidE0ADRgihLDJ5Zgopi9FZERVpgYG1PFhuAtvrxM2md1z617d+e1xlURRxmO4BhOwYMLaMAtNKEFBBJ4hld4c1LnxXl3PuatJaeYOYQ/cD5/AAkikac=</latexit><latexit sha1_base64="pnON88dh59E/0ug+T9LfAOCujJo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMU9OCxov2AJpTNdtMu3d2E3Y1YQv6GFw+KePXPePPfuG1z0NYHA4/3ZpiZFyacaeO6305pZXVtfaO8Wdna3tndq+4ftHWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJx9dTv/NIlWaxfDCThAYCDyWLGMHGSv5TP8t8JdD9TZ73qzW37s6AlolXkBoUaParX/4gJqmg0hCOte55bmKCDCvDCKd5xU81TTAZ4yHtWSqxoDrIZjfn6MQqAxTFypY0aKb+nsiw0HoiQtspsBnpRW8q/uf1UhNdBhmTSWqoJPNFUcqRidE0ADRgihLDJ5Zgopi9FZERVpgYG1PFhuAtvrxM2md1z617d+e1xlURRxmO4BhOwYMLaMAtNKEFBBJ4hld4c1LnxXl3PuatJaeYOYQ/cD5/AAkikac=</latexit><latexit sha1_base64="pnON88dh59E/0ug+T9LfAOCujJo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMU9OCxov2AJpTNdtMu3d2E3Y1YQv6GFw+KePXPePPfuG1z0NYHA4/3ZpiZFyacaeO6305pZXVtfaO8Wdna3tndq+4ftHWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJx9dTv/NIlWaxfDCThAYCDyWLGMHGSv5TP8t8JdD9TZ73qzW37s6AlolXkBoUaParX/4gJqmg0hCOte55bmKCDCvDCKd5xU81TTAZ4yHtWSqxoDrIZjfn6MQqAxTFypY0aKb+nsiw0HoiQtspsBnpRW8q/uf1UhNdBhmTSWqoJPNFUcqRidE0ADRgihLDJ5Zgopi9FZERVpgYG1PFhuAtvrxM2md1z617d+e1xlURRxmO4BhOwYMLaMAtNKEFBBJ4hld4c1LnxXl3PuatJaeYOYQ/cD5/AAkikac=</latexit><latexit sha1_base64="pnON88dh59E/0ug+T9LfAOCujJo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMU9OCxov2AJpTNdtMu3d2E3Y1YQv6GFw+KePXPePPfuG1z0NYHA4/3ZpiZFyacaeO6305pZXVtfaO8Wdna3tndq+4ftHWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJx9dTv/NIlWaxfDCThAYCDyWLGMHGSv5TP8t8JdD9TZ73qzW37s6AlolXkBoUaParX/4gJqmg0hCOte55bmKCDCvDCKd5xU81TTAZ4yHtWSqxoDrIZjfn6MQqAxTFypY0aKb+nsiw0HoiQtspsBnpRW8q/uf1UhNdBhmTSWqoJPNFUcqRidE0ADRgihLDJ5Zgopi9FZERVpgYG1PFhuAtvrxM2md1z617d+e1xlURRxmO4BhOwYMLaMAtNKEFBBJ4hld4c1LnxXl3PuatJaeYOYQ/cD5/AAkikac=</latexit>

�exc
<latexit sha1_base64="De3Z6f/OdPpguin6HwUeaWBh61k=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwYklE0JMUvHisYD+gDWGzmbRLN5uwu7GW2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmBSlnSjvOt7Wyura+sVnaKm/v7O7t25WDlkoySaFJE57ITkAUcCagqZnm0EklkDjg0A6GN1O//QBSsUTc63EKXkz6gkWMEm0k366c9UYsBM14CPjRz+nEt6tOzZkBLxO3IFVUoOHbX70woVkMQlNOlOq6Tqq9nEjNKIdJuZcpSAkdkj50DRUkBuXls9Mn+MQoIY4SaUpoPFN/T+QkVmocB6YzJnqgFr2p+J/XzXR05eVMpJkGQeeLooxjneBpDjhkEqjmY0MIlczciumASEK1SatsQnAXX14mrfOa69Tcu4tq/bqIo4SO0DE6RS66RHV0ixqoiSgaoWf0it6sJ+vFerc+5q0rVjFziP7A+vwBJR6T5w==</latexit><latexit sha1_base64="De3Z6f/OdPpguin6HwUeaWBh61k=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwYklE0JMUvHisYD+gDWGzmbRLN5uwu7GW2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmBSlnSjvOt7Wyura+sVnaKm/v7O7t25WDlkoySaFJE57ITkAUcCagqZnm0EklkDjg0A6GN1O//QBSsUTc63EKXkz6gkWMEm0k366c9UYsBM14CPjRz+nEt6tOzZkBLxO3IFVUoOHbX70woVkMQlNOlOq6Tqq9nEjNKIdJuZcpSAkdkj50DRUkBuXls9Mn+MQoIY4SaUpoPFN/T+QkVmocB6YzJnqgFr2p+J/XzXR05eVMpJkGQeeLooxjneBpDjhkEqjmY0MIlczciumASEK1SatsQnAXX14mrfOa69Tcu4tq/bqIo4SO0DE6RS66RHV0ixqoiSgaoWf0it6sJ+vFerc+5q0rVjFziP7A+vwBJR6T5w==</latexit><latexit sha1_base64="De3Z6f/OdPpguin6HwUeaWBh61k=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwYklE0JMUvHisYD+gDWGzmbRLN5uwu7GW2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmBSlnSjvOt7Wyura+sVnaKm/v7O7t25WDlkoySaFJE57ITkAUcCagqZnm0EklkDjg0A6GN1O//QBSsUTc63EKXkz6gkWMEm0k366c9UYsBM14CPjRz+nEt6tOzZkBLxO3IFVUoOHbX70woVkMQlNOlOq6Tqq9nEjNKIdJuZcpSAkdkj50DRUkBuXls9Mn+MQoIY4SaUpoPFN/T+QkVmocB6YzJnqgFr2p+J/XzXR05eVMpJkGQeeLooxjneBpDjhkEqjmY0MIlczciumASEK1SatsQnAXX14mrfOa69Tcu4tq/bqIo4SO0DE6RS66RHV0ixqoiSgaoWf0it6sJ+vFerc+5q0rVjFziP7A+vwBJR6T5w==</latexit><latexit sha1_base64="De3Z6f/OdPpguin6HwUeaWBh61k=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwYklE0JMUvHisYD+gDWGzmbRLN5uwu7GW2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmBSlnSjvOt7Wyura+sVnaKm/v7O7t25WDlkoySaFJE57ITkAUcCagqZnm0EklkDjg0A6GN1O//QBSsUTc63EKXkz6gkWMEm0k366c9UYsBM14CPjRz+nEt6tOzZkBLxO3IFVUoOHbX70woVkMQlNOlOq6Tqq9nEjNKIdJuZcpSAkdkj50DRUkBuXls9Mn+MQoIY4SaUpoPFN/T+QkVmocB6YzJnqgFr2p+J/XzXR05eVMpJkGQeeLooxjneBpDjhkEqjmY0MIlczciumASEK1SatsQnAXX14mrfOa69Tcu4tq/bqIo4SO0DE6RS66RHV0ixqoiSgaoWf0it6sJ+vFerc+5q0rVjFziP7A+vwBJR6T5w==</latexit>

d = 3
<latexit sha1_base64="LfFFA21XBsowW2NFUreoN/OuEpM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0ItQ0IPHivYD2lA2m2m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHmfM2qs9BBen/fKFbfqzkCWiZeTCuSo98pf3TBmaYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkxCoh6cfKljRkpv6eyGik9TgKbGdEzVAvelPxP6+Tmv6Vn3GZpAYlmy/qp4KYmEz/JiFXyIwYW0KZ4vZWwoZUUWZsOiUbgrf48jJpnlU9t+rdX1Rqt3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBvSGNbg==</latexit><latexit sha1_base64="LfFFA21XBsowW2NFUreoN/OuEpM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0ItQ0IPHivYD2lA2m2m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHmfM2qs9BBen/fKFbfqzkCWiZeTCuSo98pf3TBmaYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkxCoh6cfKljRkpv6eyGik9TgKbGdEzVAvelPxP6+Tmv6Vn3GZpAYlmy/qp4KYmEz/JiFXyIwYW0KZ4vZWwoZUUWZsOiUbgrf48jJpnlU9t+rdX1Rqt3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBvSGNbg==</latexit><latexit sha1_base64="LfFFA21XBsowW2NFUreoN/OuEpM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0ItQ0IPHivYD2lA2m2m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHmfM2qs9BBen/fKFbfqzkCWiZeTCuSo98pf3TBmaYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkxCoh6cfKljRkpv6eyGik9TgKbGdEzVAvelPxP6+Tmv6Vn3GZpAYlmy/qp4KYmEz/JiFXyIwYW0KZ4vZWwoZUUWZsOiUbgrf48jJpnlU9t+rdX1Rqt3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBvSGNbg==</latexit><latexit sha1_base64="LfFFA21XBsowW2NFUreoN/OuEpM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0ItQ0IPHivYD2lA2m2m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHmfM2qs9BBen/fKFbfqzkCWiZeTCuSo98pf3TBmaYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkxCoh6cfKljRkpv6eyGik9TgKbGdEzVAvelPxP6+Tmv6Vn3GZpAYlmy/qp4KYmEz/JiFXyIwYW0KZ4vZWwoZUUWZsOiUbgrf48jJpnlU9t+rdX1Rqt3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBvSGNbg==</latexit>

x(w)
c

<latexit sha1_base64="+njAWOTjIQUPvNRG8bL1FQVJ3NM=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquCHqSghePFewHbNeSTbNtaDZZkqxalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aGmZKkKbRHKpOiHWlDNBm4YZTjuJojgOOW2Ho+up336gSjMp7sw4oUGMB4JFjGBjJf+pl5HJfVZ9PJ30yhW35s6AlomXkwrkaPTKX92+JGlMhSEca+17bmKCDCvDCKeTUjfVNMFkhAfUt1TgmOogm508QSdW6aNIKlvCoJn6eyLDsdbjOLSdMTZDvehNxf88PzXRZZAxkaSGCjJfFKUcGYmm/6M+U5QYPrYEE8XsrYgMscLE2JRKNgRv8eVl0jqreW7Nuz2v1K/yOIpwBMdQBQ8uoA430IAmEJDwDK/w5hjnxXl3PuatBSefOYQ/cD5/AEDykTQ=</latexit><latexit sha1_base64="+njAWOTjIQUPvNRG8bL1FQVJ3NM=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquCHqSghePFewHbNeSTbNtaDZZkqxalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aGmZKkKbRHKpOiHWlDNBm4YZTjuJojgOOW2Ho+up336gSjMp7sw4oUGMB4JFjGBjJf+pl5HJfVZ9PJ30yhW35s6AlomXkwrkaPTKX92+JGlMhSEca+17bmKCDCvDCKeTUjfVNMFkhAfUt1TgmOogm508QSdW6aNIKlvCoJn6eyLDsdbjOLSdMTZDvehNxf88PzXRZZAxkaSGCjJfFKUcGYmm/6M+U5QYPrYEE8XsrYgMscLE2JRKNgRv8eVl0jqreW7Nuz2v1K/yOIpwBMdQBQ8uoA430IAmEJDwDK/w5hjnxXl3PuatBSefOYQ/cD5/AEDykTQ=</latexit><latexit sha1_base64="+njAWOTjIQUPvNRG8bL1FQVJ3NM=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquCHqSghePFewHbNeSTbNtaDZZkqxalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aGmZKkKbRHKpOiHWlDNBm4YZTjuJojgOOW2Ho+up336gSjMp7sw4oUGMB4JFjGBjJf+pl5HJfVZ9PJ30yhW35s6AlomXkwrkaPTKX92+JGlMhSEca+17bmKCDCvDCKeTUjfVNMFkhAfUt1TgmOogm508QSdW6aNIKlvCoJn6eyLDsdbjOLSdMTZDvehNxf88PzXRZZAxkaSGCjJfFKUcGYmm/6M+U5QYPrYEE8XsrYgMscLE2JRKNgRv8eVl0jqreW7Nuz2v1K/yOIpwBMdQBQ8uoA430IAmEJDwDK/w5hjnxXl3PuatBSefOYQ/cD5/AEDykTQ=</latexit><latexit sha1_base64="+njAWOTjIQUPvNRG8bL1FQVJ3NM=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquCHqSghePFewHbNeSTbNtaDZZkqxalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0w408Z1v53Cyura+kZxs7S1vbO7V94/aGmZKkKbRHKpOiHWlDNBm4YZTjuJojgOOW2Ho+up336gSjMp7sw4oUGMB4JFjGBjJf+pl5HJfVZ9PJ30yhW35s6AlomXkwrkaPTKX92+JGlMhSEca+17bmKCDCvDCKeTUjfVNMFkhAfUt1TgmOogm508QSdW6aNIKlvCoJn6eyLDsdbjOLSdMTZDvehNxf88PzXRZZAxkaSGCjJfFKUcGYmm/6M+U5QYPrYEE8XsrYgMscLE2JRKNgRv8eVl0jqreW7Nuz2v1K/yOIpwBMdQBQ8uoA430IAmEJDwDK/w5hjnxXl3PuatBSefOYQ/cD5/AEDykTQ=</latexit>

x(s)
c

<latexit sha1_base64="huYCdHzO84yVHu2MHV180UAn3qk=">AAAB8nicbVBNS8NAEN34WetX1aOXxSLUS0lE0JMUvHisYD8gjWWz3bRLN7thdyKWkJ/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz321lZXVvf2Cxtlbd3dvf2KweHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc30z9ziPThit5D5OEBTEZSh5xSsBK/lM/o/lDVjNneb9SdevuDHiZeAWpogLNfuWrN1A0jZkEKogxvucmEGREA6eC5eVealhC6JgMmW+pJDEzQTY7OcenVhngSGlbEvBM/T2RkdiYSRzazpjAyCx6U/E/z08hugoyLpMUmKTzRVEqMCg8/R8PuGYUxMQSQjW3t2I6IppQsCmVbQje4svLpH1e99y6d3dRbVwXcZTQMTpBNeShS9RAt6iJWogihZ7RK3pzwHlx3p2PeeuKU8wcoT9wPn8AOtqRMA==</latexit><latexit sha1_base64="huYCdHzO84yVHu2MHV180UAn3qk=">AAAB8nicbVBNS8NAEN34WetX1aOXxSLUS0lE0JMUvHisYD8gjWWz3bRLN7thdyKWkJ/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz321lZXVvf2Cxtlbd3dvf2KweHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc30z9ziPThit5D5OEBTEZSh5xSsBK/lM/o/lDVjNneb9SdevuDHiZeAWpogLNfuWrN1A0jZkEKogxvucmEGREA6eC5eVealhC6JgMmW+pJDEzQTY7OcenVhngSGlbEvBM/T2RkdiYSRzazpjAyCx6U/E/z08hugoyLpMUmKTzRVEqMCg8/R8PuGYUxMQSQjW3t2I6IppQsCmVbQje4svLpH1e99y6d3dRbVwXcZTQMTpBNeShS9RAt6iJWogihZ7RK3pzwHlx3p2PeeuKU8wcoT9wPn8AOtqRMA==</latexit><latexit sha1_base64="huYCdHzO84yVHu2MHV180UAn3qk=">AAAB8nicbVBNS8NAEN34WetX1aOXxSLUS0lE0JMUvHisYD8gjWWz3bRLN7thdyKWkJ/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz321lZXVvf2Cxtlbd3dvf2KweHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc30z9ziPThit5D5OEBTEZSh5xSsBK/lM/o/lDVjNneb9SdevuDHiZeAWpogLNfuWrN1A0jZkEKogxvucmEGREA6eC5eVealhC6JgMmW+pJDEzQTY7OcenVhngSGlbEvBM/T2RkdiYSRzazpjAyCx6U/E/z08hugoyLpMUmKTzRVEqMCg8/R8PuGYUxMQSQjW3t2I6IppQsCmVbQje4svLpH1e99y6d3dRbVwXcZTQMTpBNeShS9RAt6iJWogihZ7RK3pzwHlx3p2PeeuKU8wcoT9wPn8AOtqRMA==</latexit><latexit sha1_base64="huYCdHzO84yVHu2MHV180UAn3qk=">AAAB8nicbVBNS8NAEN34WetX1aOXxSLUS0lE0JMUvHisYD8gjWWz3bRLN7thdyKWkJ/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz321lZXVvf2Cxtlbd3dvf2KweHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc30z9ziPThit5D5OEBTEZSh5xSsBK/lM/o/lDVjNneb9SdevuDHiZeAWpogLNfuWrN1A0jZkEKogxvucmEGREA6eC5eVealhC6JgMmW+pJDEzQTY7OcenVhngSGlbEvBM/T2RkdiYSRzazpjAyCx6U/E/z08hugoyLpMUmKTzRVEqMCg8/R8PuGYUxMQSQjW3t2I6IppQsCmVbQje4svLpH1e99y6d3dRbVwXcZTQMTpBNeShS9RAt6iJWogihZ7RK3pzwHlx3p2PeeuKU8wcoT9wPn8AOtqRMA==</latexit>

�exI
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Figure 2. Phase structure of the N = 1 φ4 theory according to the Chang-Magruder dualities in
d = 2 and d = 3, in schemes where respectively xc < xI and x̃c < x̃I, as a function of the parameter
x (proportional to the squared mass).

Depending on the value of the coupling, the theories admit one or three equivalent descrip-
tions. We summarize the phase structure in figure 2. In d = 2 the theory admits only
one description in the classically unbroken phase for x > xI, where xI is the map of the
self-dual point x̃SD by means of (3.1). The region 0 < x < xI can instead be mapped to
0 < x̃ < x̃SD and x̃ > x̃SD, so three descriptions are possible, one in the classically un-
broken and two in the classically broken phases. Within our class of schemes the position
of the self-dual coupling is invariant while the positions of the critical couplings, denoted
by xc, x̃(w)

c and x̃
(s)
c with obvious notation, depend on the renormalization schemes and

are related, as discussed in the next section. In the schemes where xc > xI in d = 2, the
unbroken region around x̃SD disappears and the phase transition is accessible only from
the unbroken phase. In d = 3 the structure is the same after the substitutions x↔ x̃ and
inverting the role of broken and unbroken phases.

4 Fixed points annihilation and analyticity domain

It is well-known that d = 3 O(N) quartic models undergo a second-order phase transition
for any value of N . So, how could one trust the existence of a strong-weak duality in
these theories based on perturbative treatments around the (classically) unbroken phase?
In particular, where is the broken phase? We will now address these questions.

Suppose that in a given renormalization scheme the d = 3 O(N) models have a phase
transition for o(1) real values of x(w)

c and x(s)
c in the weak and strong branches, respectively.

The existence of such schemes will be proved in section 5. Using (2.20) we can determine
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Figure 3. Positions in the complex x plane of the critical values of the weak (x(w)
c blue line) and

strong (x(s)
c red line) branches as the renormalization scheme κ is varied. The black dot corresponds

to the self-dual point xSD = 1 where the critical points merge.

how the fixed points move when we change renormalization scheme:

x(w)
c (κ) = −W−1

(
− x(w)

c e−x
(w)
c −κ

)
,

x(s)
c (κ) = −W0

(
− x(s)

c e−x
(s)
c −κ

)
, (4.1)

where x(w)
c ≡ x

(w)
c (κ = 0), x(s)

c ≡ x
(s)
c (κ = 0).12 For κ > 0, as κ increases, x(w)

c (κ) and
x

(s)
c (κ) respectively increases and decreases, moving far apart. On the other hand, for κ < 0,

as |κ| increases x(w)
c (κ) and x(s)

c (κ) respectively decreases and increases, approaching each
other, until they merge when the argument of the two branches of the Lambert function
equal −1/e, namely at the self-dual point

x(w)
c (κ∗) = x(s)

c (κ∗) = xSD = 1 , κ∗ = 1 + log(xce−xc) . (4.2)

For κ slightly smaller than κ∗, x(w)
c and x

(s)
c move in the imaginary axis in a complex

conjugate pair. As κ decreases they move backwards in an approximate parabolic trajectory
and then they move towards |x| → ∞ in parallel along the negative real axis with Im x

(w)
c →

π, Im x
(s)
c → −π, see figure 3. More precisely, for κ→ −∞, we have

x(w)
c (κ) ≈ −|κ|+ iπ , x(s)

c (κ) ≈ −|κ| − iπ , (4.3)

and both critical couplings approach the free theory, while for κ→∞ we have

x(w)
c (κ) ≈ κ+ x(w)

c , x(s)
c (κ) ≈ x(s)

c e−x
(s)
c e−κ . (4.4)

This implies that for κ < κ∗ the phase transition cannot be seen in d = 3 O(N) theories
when starting from the classically unbroken phase, with real values of the coupling. In these
schemes we can then hope to have access to the strong-weak duality starting from pertur-
bative considerations, without encountering non-analyticities associated with phase tran-
sitions. Note that this is independent of the Magruder duality and hence apply for any N .

12Note that the parameter κ in (4.1) is shifted by a constant with respect to the κ defined in section 5.
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Figure 4. Conjectured minimal singularity structure of observables as analytic functions of the
coupling x (proportional to m2) for O(N) vector theories in d = 3 for κ > κ∗ (left) and κ < κ∗
(right).

A few studies of the 2d and 3d φ4 theories have been performed away from criticality,
and there was no consensus on the appearance of first/second-order phase transitions when
m2 > 0. Studies using the Gaussian effective potential were either inconclusive on the
appearance of a phase transition [32] or found a phase transition that could be first or
second-order [33]. Ref. [34] studied the φ4 theory at finite volume using Monte Carlo and
finite states truncations, and found no phase transition for m2 > 0. We see that this
problem was in fact a red herring, since the appearance of the phase transition (more
precisely a gapless phase for real values of the coupling) for m2 > 0 is a renormalization
scheme-dependent question.

We can speculate about the analyticity properties of generic observables F (x) as an-
alytic functions of x, see figure 4.13 We expect that F (x) should have a branch-cut sin-
gularity at infinity, which corresponds to the usual branch-cut associated to perturbative
asymptotic expansions around free theories. Self-duality implies that the origin should also
be a singular branch-point. In the assumption of maximal analyticity, the branch-cut at
infinity and the one at the origin are continuously connected. This branch-cut is depicted
by red circles in figure 4. In addition to that, we expect further branch-cut singularities in
correspondence of the critical values x(w)

c and x(s)
c , either on the real line or in the complex

plane, depending on the choice of renormalization scheme. For N > 1 we do not really
know the analytic structure in the classically broken phase (Re x < 0). Assuming again
maximal analyticity, we might have a single critical value on the real line at −x̃c for any
κ, as expected in the N = 1 case. The further branch-cuts associated to x(w)

c , x(s)
c and

−x̃c are depicted by black crossed lines in figure 4. These are the minimal singularities
that we expect in the complex x plane, but of course others could be present. It would be
extremely interesting to understand if the analyticity properties of observables, together
with perturbative data and the self-duality condition F (xw) = F (xs) might allow for an
exact solution for the O(N) models.

13A relevant class of observables are Schwinger n-point functions smeared with Schwarzian test functions.
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4.1 Large N non-perturbative mass gap in d = 2

It is well-known that the appearance of a non-perturbative mass gap can be derived at
leading order in a 1/N large N expansion in d = 2 O(N) vector models [35]. We will see
here how such a mass gap can be interpreted to arise from an analytic continuation of the
squared mass from positive to negative values. By introducing a Hubbard-Stratonovich
(HS) field σ(x) we can rewrite S as in (B.5). Neglecting the vacuum energy and the
counterterm δ̂m2, sub-leading in o(N−1), we have

Ŝ =
∫
ddx

[1
2(∂µφi)2 + 1

2m
2φ2

i −
1
2σ

2 + 1
2 f̂σφ

2
i + σδT

]
. (4.5)

Note that m2 in (4.5) can be positive or negative. If we integrate out the scalar fields φi
we get an effective potential for σ. Its extremum is given in the MS scheme by

σ = −m
2

f̂
+ Nf̂

8π W (M2) , (4.6)

where
M2 = πµ2

λ̂
e
πm2(µ)

λ̂ (4.7)

and λ̂ is fixed in the large N limit, see (B.2). Note that M is an RG-invariant scale with
respect to the large N limit of the β-function in (2.4). In particular, we can set µ2 = |m|2.
The value of m2(µ2 = |m|2) corresponds by definition to the classical mass term in the
action. In the classically unbroken case, we have m2 > 0 and (4.6) boils down to σ = 0,
since W (xex) = x by definition and the two terms in (4.6) cancels each other (8λ̂ = Nf̂2).
As expected, the HS field gets no VEV in the unbroken case and the gap in the theory
is determined by the classical mass term m. On the other hand, in the classically broken
phase m2 < 0 and the Lambert function does not “trivialize”. Correspondingly the HS
field gets a VEV, the classical m2 term in (4.5) is cancelled by the first term in (4.6) and
we are left with a positive non-perturbative mass term equal to

m2
np = λ̂

π
W (M2) . (4.8)

In the parametric weakly coupled limit λ̂/|m2| → 0, we have

m2
np ≈ |m2| e−

π|m2|
λ̂ . (4.9)

Both the perturbative and non-perturbative mass gaps arise from (4.6). We can then also
interpret the non-perturbative mass gap as the analytic continuation of the perturbative
one from m2 > 0 to m2 < 0, passing through infinite coupling.14 Interestingly enough, the
non-perturbative scale (4.9) can also be deduced from IR renormalons that would appear
in a perturbative expansion around the “naive” vacuum σ = 0 [37].

14A mass gap seen as analytic continuation past infinity in the large N limit of non-linear O(N) sigma
models has been suggested in [36].
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5 Numerical results in d = 3 O(N) models

We report in this section the results obtained by resumming the perturbative series for the
vacuum energy and the mass gap defined as

Λ ≡ Γ(0) , M2 ≡ Γ(2)(p = 0) , (5.1)

as a function of the coupling g in 3d O(N) vector models. We confirm the theoretical expec-
tations made in the previous sections. In particular, we provide evidence for the self-duality
of these models and determine how the critical coupling gc depends on the renormalization
scheme. We used, as in our previous works, two independent methods for the resumma-
tion: conformal mapping and reconstruction of the Borel function via Padé approximants
(in the following denoted for short conformal-Borel and Padé-Borel respectively). We do
not report the details of the numerical implementation, which can be found in [5].15 The
parameters needed to perform the conformal mapping in 3d O(N) models are well-known
and can be found e.g. in [38]. In all our results we find agreement between conformal-Borel
and Padé-Borel methods, typically with slightly smaller uncertainties in the first one, and
a consistent convergence of the results as the number of loops used in the resummation is
increased. For this reason, in order to avoid clutter in the figures, we have decided to only
plot quantities computed using conformal-Borel to the maximum available order.

5.1 Perturbative coefficients up to g8

We have computed the perturbative expansion of the zero-point function and the two-point
function at zero external momentum up to order g8. The computation has been performed
numerically in momentum space using various simplifications introduced in [39–41]. In the
following we summarize the principal aspects of the computation.

Choice of the scheme. Since we compute loop integrals numerically, a direct use of
dimensional regularization is unfeasible. It is instead convenient to regularize divergences
without introducing a regulator, subtracting to integrands of Feynman diagrams their
values at a given fixed momentum, as proposed long ago by Zimmermann [42]. In this
intermediate scheme (labeled with the subscript I) the mass counterterm δm2

I not only
removes the divergence coming from the sunset-diagram (here chosen in such a way that
the sunset diagram is regularized to be exactly zero at p = 0) but it cancels also the
one-loop tadpole-like diagram:

δm2
I = −

(
+ p=0

)
. (5.2)

15Padé approximants with poles on the positive real axis of the Borel variable were excluded in [5]. These
are now included taking the Cauchy principal value and adding to the error estimate the residue at the pole.
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Renormalization of higher order diagrams is then trivially implemented by substituting
every tadpole and sunset subdiagram by its regularized counterpart:

reg
= 0 , (5.3)

reg

p = −λ2N + 2
π2

[
2− log

(
1 + p2

9m2
I

)
− 6mI

|p|
arctan

( |p|
3mI

)]
. (5.4)

All the diagrams involving tadpoles are set to zero, greatly reducing the number of inte-
grals to compute. The vacuum energy counterterm in this scheme is chosen such that all
contributions up to o(g3

I ) vanish.

Simplification of the integrands and numerical computation. In order to improve
the efficiency of the numerical integration we performed some analytical simplifications on
the integrands that allowed us to greatly reduce the cost of the integrals for every diagram.
In particular, we substituted the one-loop subdiagrams within the main diagram with
two, three, and four external legs with their analytical expression [39, 40]. Other simple
subdiagrams that can be substituted are

reg

= −λ3 (N + 2)2

mIπ3 log
(4

3

)
, = 48λ3 5N + 22

π2mI |p|
arctan

( |p|
3mI

)
, (5.5)

where in the first diagram we used the regularized sunset subdiagram of (5.4) and in the
second diagram there is zero net momentum flow from the top vertex. Furthermore, by
switching to spherical coordinates some of the integrals over angular variables can be per-
formed analytically. We have then numerically integrated each diagram using the Monte
Carlo VEGAS algorithm [43] from the python module vegas and later combined all the re-
sults with their corresponding O(N) symmetry factors. As a sanity check, we compared the
large N limit of the perturbative expressions for Λ and M2 so obtained with those directly
computed using large N techniques and found total agreement within the accuracy of the
numerical evaluation of Feynman diagrams. We report in appendix B the computation of
Λ and M2 at the first non-trivial order in the large N limit. As a further check, we have
computed the series of dΓ(2)/dp2(p = 0) and Γ(4)(p = 0) up to order g8

I . In this way, as
explained in section 6.1 of [5], we can determine the series expansion of the β-function and
of the critical exponent η in the physical scheme of [2] and have verified that they match
with those appearing in the literature, known up to order g7 and g6 respectively [44]. We
hope to come back to the analysis of the critical theory in the scheme of [2] in a future work.

Mapping to the MS scheme. As a last step we have switched to the MS scheme
by perturbatively reexpanding m2

I(m2) in powers of λ. The matching of the schemes is
obtained by imposing the relation

m2
I + δm2

I = m2 + δm2 , (5.6)
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Figure 5. The vacuum energy Λ and the mass gap M2 as a function of the coupling constant g
obtained by ordinary perturbation theory up to g7 and g8 (dotted grey and black lines), optimal
truncation (red dotted line) and conformal-Borel resummation (blue line).

with m2 and δm2 in the MS scheme and we write δm2
I = −Σ1 − Σ2a(0). The explicit

expressions for Σ1, Σ2a and δm2 can be found in the appendix C. We get

m2
I = m2 − λmI

N + 2
π

+ λ2N + 2
π2

(
log 9m2

I

m2 − 1
)
. (5.7)

By iteratively substituting mI in the right-hand side we then find the sought expansion.
The first three orders are

m2
I =m2

[
1−gN+2

π
+g2 (N+2)(N+4log3)

2π2 −g3 (N+2)2(N+6+8log3)
8π3 +o

(
g4
)]
.

(5.8)
The vacuum energy is divergent up to order g3 and needs to be regularized by a vacuum
energy counterterm δρ. The computation of diagrams up to o(g3) in the MS scheme is
presented in appendix C. The final Taylor expansion up to order g8 of both Λ and M2 in
the MS scheme is reported in appendix D. We can now derive the series for Λ andM2 for the
whole one-parameter class of renormalization schemes presented in section 2. We identify
κ = 0 with the MS scheme above. Starting from this, it is straightforward to compute the
perturbative series in a generic scheme parametrized by κ by using the expansion of (2.20).
We refrain to write the whole lengthy series for Λ and M2 as a function of N and κ. For
illustration, we just report below the terms up to o(g2) in both series:

M2

m2 = 1− gN + 2
π

+ g2 (N + 2)(N + 4 log 3− 2κ)
2π2 + . . . , (5.9)

Λ− ρ
m3 = − N

12π + g
N(N + 2)

16π2 − g2N(N + 2)
8π3

(
N + 2

4 − 3 + 4 log 2− κ
)

+ . . . .

For simplicity of notation the dependence on κ of the parameters m2, g and ρ has been
left implicit in (5.9). Note that the series above could equivalently be interpreted as the
series in the MS scheme with κ = 0, but with parameters m2 and ρ evaluated at the scale
κ = log(µ2/m2). In this way, a sanity check of the validity of the change of scheme is
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Figure 6. The vacuum energy Λ and the mass gap M2 as a function of the coupling constant g
for different values of N in the scheme κ = 0. The results shown correspond to conformal-Borel
resummation.

obtained by demanding that both M2 and Λ satisfy the Callan-Symanzik equations(
µ∂µ + βm2∂m2

)
M2 = 0 ,(

µ∂µ + βm2∂m2 + βρ∂ρ
)
Λ = 0 ,

(5.10)

with βm2 and βρ given by (2.4) and (C.3), respectively. We always normalize the vacuum
energy as ρ(κ = 0) = ρ(m) = 0. This implies that in computing Λ in a scheme with κ 6= 0
the parameter ρ(κ) is non-vanishing and should be taken into account.

5.2 Self-duality

We report here the results obtained by numerical Borel resummation of the perturbative
series for Λ and M2 for different values of N and provide evidence for the self-duality of
3d O(N) vector models. We start by showing the need of resumming the perturbative
series in the region of couplings of interest. To this purpose, we compare in figure 5 Λ
and M2 as a function of the coupling g computed using the perturbative seven and eight
loop results, optimal truncation, and Borel resummations. We take N = 1 and choose the
renormalization scheme κ = 0, where M2 does not vanish for real values of g. A similar
analysis applies for other values of N . In both figures it is clear that perturbation theory
breaks down before gSD = π/

√
3 at a value of g ≈ 1 for Λ and g ≈ 0.6 for M2, and we

observe that these values slightly decrease while increasing N . Therefore resummation
techniques are required in order to study the self-duality.

As discussed in the previous sections, for κ < κ∗ the phase transition is expected to
be not visible from the unbroken phase. We show in figure 6 Λ and M2 as a function
of the coupling g at κ = 0 computed for different values of N and using conformal-Borel
resummation. The right panel in figure 6 clearly shows that M2(g) is always positive, with
the curve M2(g) developing a minimum around g = 0.6 and then continuing to increase
for larger values of g, as shown in figure 8 for N = 1; this confirms the absence of a gapless
phase. We can determine κ∗(N) by computing the critical coupling for a value of κ where
the transition occurs and then use the map to determine the values of κ∗(N) where the
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Figure 7. The shifted vacuum energy Λ = Λ− ρ(λ) (with ρ defined as in (C.3)) and the mass gap
M2 as a function of 1√

x
=
√
N+2
π g, for N = 1, 2, 3. The error bands and the central values (dashed

lines) are obtained using conformal-Borel resummation. For any N the self-dual point is at x = 1.
The points correspond to values obtained in the weak branch and mapped in the strong branch
using the duality map (2.23). The vertical segment drawn on each band denotes the theoretical
disk of analyticity: beyond that value the curves have been drawn in gray. To avoid overlapping of
the curves we have applied an offset of ∆(M2/λ2) = (N − 1)/10 to the data in the right panel. In
both panels κ = 5/2.

two critical points merge. Taking as reference value κ = 5, we get for the first values of N
κ∗(1) = 3.5(2), κ∗(2) = 3.3(2), κ∗(3) = 3.2(2) and κ∗(4) = 3.1(3).

Let us now focus on the region κ < κ∗, where M2 vanishes for complex values of
the coupling, and discuss the self-duality. First of all let us explain why we can probe
self-duality using resummations of the perturbative series. The complex points where M2

vanish are generally expected to be non-analytic points for Schwinger functions. Given
a quantity F (g) admitting a Borel resummable asymptotic expansion around g = 0, the
region in the complex g plane where the Borel reconstruction of the function is guaranteed
to reproduce the original function is given by a disk [45] with a radius which is determined
by the first singularities of F (g) in the positive half-plane. In our case the complex critical
points are further away from the origin than the self-dual point. This implies that the disk
of minimal analyticity extends beyond the latter and allows us to explore (part of) the
strong branch when κ < κ∗.

If self-duality is assumed, we can extract useful information on the asymptotic behavior
of an observable F (g) at strong coupling g → ∞. Let F (g) be an observable with mass
dimension n. After an appropriate rescaling we can write its Taylor expansion in the weak
branch as

F (g) ∼ mngk0f(g) , f(g) = 1 +
∞∑
k=1

ckg
k , g = λ

m4−d , (5.11)

where k0 ≥ 0 is the first non-vanishing order in perturbation theory. The ∼ is used because
the series is only formal (asymptotic). We consider both the d = 2 and d = 3 cases together,
and for simplicity drop the tildes in d = 2 on the couplings. Self-duality implies

F (gw) = F (gs) ⇒ g
k0− n

4−d
w f(gw) = g

k0− n
4−d

s f(gs) . (5.12)
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In the limit gw → 0, we obtain the scaling at strong coupling from (2.24) as

g−1
w ∼ (log gs)

1
d−1 , (5.13)

which plugged into (5.12) gives

lim
g→∞

f(g) ∼ g−k0+ n
4−d (log g)α , α = 1

d− 1

(
n

4− d − k0

)
. (5.14)

Therefore the scaling of the observable F (g) as g →∞ is

F (g) ∼ mngs (log g)α , s = n

4− d . (5.15)

Note that in general observables do not admit an analytic strongly coupled asymptotic
Taylor expansion around infinity, due to the appearance of the logs.16

We want to test the self-duality, so the scaling (5.15) will not be assumed. As a first
indirect test of the duality, we find that the parameter s, which is fixed by the optimiza-
tion procedure in our conformal-Borel resummations [5], is always close to the theoretical
prediction (5.15) for both Λ and M2. Analogously, with the Padé-Borel resummations we
find that the best approximants [p, q] satisfy the relation p− q = s.

We show in figure 7 the vacuum energy Λ and the mass gapM2 as a function of 1/
√
x for

different values of N at κ = 5/2. In order to take into account the vacuum energy shift, nec-
essary to map it from the weak to the strong branch, we report the quantity Λ = Λ−ρ(λ),
where ρ is defined in (C.3). In this way, Λ should have an extremum at the self-dual point
which, in the variable x, is at x = 1 for any value of N . The black points in the figure corre-
spond to values obtained in the weak branch and mapped in the strong branch using (2.23).
The vertical segment drawn on each band denotes the disk of analyticity beyond which
Borel resummation is not guaranteed to work. Beyond that value, the curves have been
drawn in gray. Figure 7 gives us good evidence for the self-duality. Note in particular how
x = 1 is to a very good accuracy an extremum of both Λ andM2, as expected. Interestingly
enough, the agreement persists well beyond the disk of analyticity for both Λ and M2.

5.3 Scheme dependence of critical couplings

In this subsection we determine how the critical coupling gc depends on the renormalization
scheme. We show in the left panel of figure 8 M2 as a function of g for N = 1 and different
values of κ. As expected, the phase transition is not always visible and by increasing the
value of κ two zeros appear. While the value of the first is in principle reliable and should
be identified with the weak critical coupling g(w)

c , the same cannot be said for the second,
since it is reached after the theory has passed a phase transition. Being g = g

(w)
c a non-

analytic point, Borel resummation is not guaranteed for g > g
(w)
c . For this reason we can

16Non-analytic expansions involving logarithms of the coupling have been invoked to cure IR divergences
that appear with massless particles in 2d and 3d [46]. Interestingly enough, we see here how these log’s
automatically arise from the duality.
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Figure 8. (Left) The mass gapM2/m2 forN = 1 at three different values of κ. (Right) The position
of the critical coupling xc(κ) in the complex x plane as κ is varied for N = 1. The blue bands are
computed with conformal-Borel, the dashed black line is the analytic expectation from (4.1).

only focus on the region where g ≤ g
(w)
c .17 The accuracy of the numerical resummations

depends on κ and only a limited range of optimal values of κ (when the phase transition
occurs) is expected. Indeed, as κ decreases, the two critical couplings approach each other,
and a general instability in the resummation procedure is expected and in fact does occur.
On the other hand, if κ increases, although the value of g(w)

c decreases, we are effectively
in presence of large logs that spoil the validity of the perturbative expansion, as already
noted in [4]. We choose as optimal reference scheme κ = 5 for any N .18

In the right panel of figure 8 we plot the position of gc in the complex g-plane as κ
is varied and compare it with the analytic prediction given by (4.1). The movement of
gc as κ varies is in fair agreement with the theoretical prediction, but it shows a small
disagreement. This discrepancy reflects a systematic slow convergence and low accuracy
in the resummations for κ > κ∗. In order to quantify it, we can compare the values of gc
defined as the zero ofM2 and equivalently as the zero of the function L(g) = (∂g logM2)−1.
The function L is useful because it can be used to extract the critical exponent ν. For
example at κ = 5, N = 1, we find g(M2)

c (κ = 5) = 0.898(5) and g(L)
c (κ = 5) = 0.944(16).

The two values are not in agreement and indicate the presence of a systematic error which
is not captured by our error estimate. Similarly the accuracy in the determination of ν is
significantly lower than that found in the literature (see e.g. [3]) in the scheme of [2]. This
lack of accuracy might be due to the presence of the self-duality and an analytic structure
for observables more difficult to reconstruct numerically.

17It is however interesting to see that the analytic continuation of the Borel resummed mass gap M2 for
g > g

(w)
c has a further zero, as expected from the self-duality of the theory (see the purple band in the left

panel of figure 8). The numerical accuracy of the resummation does not in any case allow us to determine
the second zero accurately enough to possibly test if it is equal to g(s)

c .
18The range of optimal values of κ has a mild dependence onN , which can be neglected for low values of N .
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Method N = 1 N = 2 N = 4
Lattice MC 1.0670(17) [25] 0.9509(5) [23] 0.8238(26) [25]
This work 1.08(3) 0.94(2) 0.80(2)

Table 1. Comparison of the (weak) critical coupling gMC
c with the results of Lattice Monte Carlo

computations, for 3d O(N) models with N = 1, 2, 4.

The value of gc in O(N) vector models has been computed in the past for N = 2 and
N = 1, 4 in [23, 24] and [25] respectively, using Lattice Monte Carlo methods. Very recently
Hamiltonian truncation methods have been developed to study the N = 1 theory [22, 47]. A
comparison with our results is however still not available, because in [22] the extrapolation
to infinite volume has not be taken and in [47] the use of light-cone quantization requires
to work out the non-trivial map to pass to a covariant quantization. For this reason we
restrict our comparison with the earlier results [23–25]. These works report the value of gc
in MS at the scale µ = 8λ, which we denote by gMC

c . A direct computation at that scale
is not possible, since our perturbative series will involve logarithms of g. However, we can
access this value by using the exact one-loop running of gc(κ). We get

(gMC
c )−2 = g−2

c (κ)− N + 2
π2 log

(
eκ

64g2
c (κ)

)
. (5.16)

The right hand side of (5.16) should be independent of κ, but numerically a dependence on
κ remains. We have computed g(M2)

c and g(L)
c for a set of values of κ ∈ [5, 6], mapped them

with (5.16) and then taken an average value as our final estimate. In table 1 we compare
these values of gMC

c with those given by [23–25]. The values are in agreement, but with
large errors on our side.

6 Conclusions

In this paper we have discussed the phase diagram of 3d O(N) φ4 models using perturbation
theory around the Gaussian fixed point. In particular, we have reassessed the strong-weak
Magruder duality in the classically unbroken phase and studied its renormalization scheme
dependence. Starting from the weak branch in perturbation theory, for certain schemes we
encounter a critical coupling where the theory is gapless and a second-order phase transition
takes place. On the other hand, for other choices of schemes the theory is gapped and a pair
of complex conjugate critical couplings appear. In this case the weak and strong branches
are no longer separated by a phase transition (for real values of masses and couplings) and
we can access the strong branch from the Gaussian fixed point. The phase transition is
then no longer visible from the classically unbroken phase if one restricts to real parameters
in the Lagrangian. We have numerically verified these considerations by Borel resumming
the perturbative series of the 3d O(N) models for the vacuum energy and for the mass gap.

The merging of critical points is reminiscent of the fixed point annihilation advocated
in [48] as a mechanism for loss of conformality in QFT, see also [49–51]. The fixed point an-
nihilation described in those papers occur when parameters (such as the number of fields)
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in a family of critical theories are varied and so differ from the merging found in this pa-
per, which is within a given theory when the renormalization scheme is varied.19 We see
that merging of fixed points and complex CFTs (i.e. the two CFTs we would have at the
two complex conjugate complex values x(w)

c (κ) and x
(s)
c (κ) for κ < κ∗) do not necessar-

ily indicate an actual walking or first-order phase transition, but can be artefacts of the
specific renormalization scheme chosen. In our case the complex CFTs should eventually
correspond to the usual O(N) symmetric CFTs, because they merely arise from a coupling
constant redefinition. It would be interesting however to better establish the correspon-
dence, because it is not obvious if (and how) the CFT data of the two complex CFTs are
in fact identical to those of the ordinary unitary O(N) symmetric CFTs. The appearance
and disappearance of fixed points makes also clear that a phase diagram of a theory is not
universally determined, but it depends on the renormalization scheme. For example, we
see that according to figure 2 in the N = 1 case the number of critical points that occur
in the entire range of the real squared mass parameter is either three or one, depending
on the renormalization scheme. The universal presence of a second-order phase transition
could be argued from the fact that this number modulo two is always one.20

The accuracy of our Borel resummations is worse than the one found in [5] for the 2d
φ4 theory, in contrast to what happens in the scheme of [2], where results in 3d are more
accurate than the ones in 2d. We suspect that this might be due to the presence of the
self-duality in the classically unbroken phase, which gives rise to two fixed points and an
analytic structure for observables more difficult to reconstruct numerically.

There are several open questions that deserve further study. Two-dimensional lattice
spin systems with Z2 symmetry features Kramers-Wannier (KW) duality [53] relating the
disordered and ordered phases. Being the φ4 theory the long-distance effective description
of a Z2 lattice spin system, it is reasonable to expect that KW duality persists when taking
the continuum limit. The continuum version of KW duality is defined starting from the
critical theory, i.e. the 2d Ising CFT point. It is natural to conjecture that KW duality
is closely related to Chang duality, and it would be interesting to find the precise map
between the two. In particular, it would be nice to see how (if any) at finite volume a
proper definition of Chang duality requires the presence of Z2 gauge fields, like KW does,
see e.g. section 2 of [54]. Similarly, it would be interesting to see if there is a connection
between Magruder duality of 3d φ4 theory and the continuum limit of the duality of a 3d
Ising system with a Z2 lattice gauge theory (see e.g. [55]).

Chang and Magruder dualities are crucially based on the super-renormalizability prop-
erties of φ4 theories in d = 2 and d = 3. One can then try to derive similar dualities from
more general super-renormalizable theories. The dualities so obtained would be in general
only valid to all orders in perturbation theory, but not non-perturbatively. In order to hope
to have exact dualities, one should argue for the absence or decoupling of non-perturbative
effects, like in the 2d N = 1 and 3d O(N) φ4 models in infinite volume studied in this

19Note however that a renormalization scheme dependence on the position of the critical points always
occurs. It would be interesting to study more carefully the interplay between the position of fixed points
determined by the parameters of the theory and by the renormalization scheme dependence of its couplings.

20It would be nice to understand if this is associated to an index, in the spirit of [52].
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paper. It is an interesting open question if there exists a generalization of this duality
when gauge fields are added. In particular, it would be interesting to see if a would-be
Chang/Magruder-like duality of a gauged version of the 3d O(2) model can provide a “UV
completion” for particle-vortex duality [56].
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A The Lambert W function

Most of the results of this paper feature the Lambert function, so it is useful to review here
some of its properties. We refer the reader to [57] for more details. The Lambert function
is the function W (x) that is obtained by inverting the relation

wew = x . (A.1)

For large values of w it behaves like the log function, but it deviates from it for small
values. For x > 0, W (x) is monotonic, while for x < 0 it is double-valued, see figure 9.
Over the reals, W (x) has non-trivial support for x ∈ [−1/e,∞). As analytic complex
function, W (z) has an infinite number of branches, parametrized by an integer k. Only
two branches, denoted by W0 and W−1, have real sections over x, see figure 9. In all other
branches Wk(z), with k 6= −1, 0, take complex values. The function W0(z) is analytic at
z = 0 and it admits there the series expansion

W0(z) =
∞∑
n=1

(−n)n−1

n! zn . (A.2)

The series above has a convergence radius equal to 1/e. At z = −1/e W0 has a branch-cut
singularity, where it branches into W1 and W−1. Aside from W0, all Wk have a branch-cut
at the origin and a logarithmic singularity at infinity. In particular, for any branch, we have

lim
z→∞

Wk(z) ≈ log z + 2iπk +O(log log z) , (A.3)

and in particular for real x

lim
x→∞

W0(x) ≈ log x− log log x+O
( log log x

log x

)
. (A.4)

We will be mostly considering the branches k = −1 and k = 0. A useful formula is

lim
x→0−

W−1(x) = log(−x) +O(log(− log(−x))) . (A.5)
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Figure 9. The two branches of the Lambert function that take real values over x. The black dot
corresponds to the branching point x = −1/e.

Another useful formula for W is the following:

dnW (x)
dxn

= e−nW (x)pn(W )
(1 +W (x))2n−1 , n ≥ 1 , (A.6)

where pn are polynomials of degree n− 1 in W , defined by the recursion relation

pn+1(x) = −(nx+ 3n− 1)pn(x) + (1 + x)p′n(x) , p1(x) = 1 . (A.7)

It is worth recalling a few QFT works where the Lambert W -function has appeared: in [58]
it has been shown that the two-loop QCD beta-function can exactly be solved in terms of
W and studied the analyticity properties of the solution. In [59] it has been shown that an
infinite subset of diagrams in the 4d SUSY massless Wess-Zumino model can be resummed
and leads to a beta-function and field anomalous dimension in terms of W . A solution for
the 2-point function for a non-commutative version of the 2d φ4 theory in terms of W was
found in [60]. More recently [61] found that a subset of diagrams for the field anomalous
dimensions in 4d massless Yukawa theory can be computed to all orders using a trunca-
tion of the Schwinger-Dyson equations. The ansatz for the trans-series associated with the
known perturbative coefficients can be expressed in terms of W.

B Large N

Large N techniques are typically used in O(N) models by taking m2 = 0 and by going
directly at the critical point, avoiding the problem of IR divergences. In this way one can ex-
tract physical quantities such as scaling dimensions of the CFT operators, see e.g. section 2
of [62] for a clear and concise review. In contrast, in this appendix we consider large N of the
massive O(N) models, in line with the analysis in the main text. In particular, we compute
the vacuum energy Λ = Γ(0) and the mass gapM2 = Γ(2)(p = 0) at the first non-trivial lead-
ing order in large N and to all orders in the coupling λ. Although the diagrams surviving in
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the large N limit are a small subset of the total and are not the hardest to determine, a com-
parison with large N has been useful as a sanity check of the accuracy of the numerical eval-
uation of Feynman diagrams. We report here once again the euclidean action of the theory

S =
∫
ddx

[1
2(∂µφi)2 + 1

2m
2
0φ

2
i + λ(φ2

i )2 + ρ0

]
, i = 1, . . . , N , (B.1)

and we consider the large N -limit

N →∞ , λ→ 0 , with λ̂ ≡ Nλ = fixed . (B.2)

We define the renormalized parameters

m2
0 = m2 + δm2 , ρ0 = ρ+ δρ , (B.3)

where

δm2 = δm2
(0) + 1

N
δm2

(1) + o(N−2) , δρ = Nδρ(−1) + δρ(0) + o(N−1) , (B.4)

and we choose a renormalization scheme where the vacuum energy counterterm δρ and the
mass counterterm δm2 exactly cancel the contributions in Λ and M2 up to order λd/(4−d)

and λ2/(4−d), respectively.21 Introducing a Hubbard-Stratonovich auxiliary field σ(x), we
can rewrite S as

Ŝ =
∫
ddx

[1
2(∂µφi)2 + 1

2(m2 + δ̂m2)φ2
i −

1
2σ

2 + 1
2 f̂σφ

2
i + σδT + ρ+ δ̂ρ

]
. (B.5)

If we integrate out σ we recover the action (B.1) provided we identify22

f̂ = 2
√

2λ , δ̂ρ = δρ− δ2
T

2 , f̂ δT + δ̂m2 = δm2 . (B.6)

There is an arbitrariness in splitting the mass counterterm δm2 in terms of δT and δ̂m2.
We choose

f̂ δT = δm2
(0) , δ̂m2 = 1

N
δm2

(1) , (B.7)

so that the tadpole counterterm δT for σ completely cancels the radiatively induced tadpole
at o(N0). Let us first consider the 2-point function 〈φi(−p)φj(p)〉 = Γ(2)

ij (p2) ≡ δijΓ(2)(p2).
Since Γ(2)

ij is 1PI with respect to the φi, but not with respect to σ, Feynman diagrams
reducible when cutting a σ-propagator should be considered. At o(N0) and o(λ̂) only one
diagram contributes. In the chosen renormalization scheme its contribution is canceled
by δT . The cancellation of tadpole-like graphs at o(N0) persists to all orders in λ̂, so no

21This is the generalization for any d < 4 of what we denoted intermediate scheme in section 5.1 of the
main text. We have omitted in this appendix the subscript I to avoid clutter.

22The Gaussian integral in σ is computed by analytic continuation from pure imaginary values, where
the path integral converges.
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(a) (b) (c) (d)

Figure 10. Contributions of o(N−1) to the two-point function 〈φi(−p)φj(p)〉. The counterterm
depicted in (c) and (d) corresponds to δ̂m2.

contribution whatsoever arises at o(N0) in Γ(2)(p2). We now compute the 〈σσ〉 propagator
at o(N0). The relevant 1PI diagram is

p

p + q

q

= 4λ̂
∫
ddq

(2π)d
1

q2 +m2
1

(p+ q)2 +m2 ≡ λ̂Πd(p2) , (B.8)

where we used wavy lines for the field σ along with the usual solid lines for the vector field
φi. For d < 4 the loop integral converges. The resummation of the bubbles leads to the
exact o(N0) propagator, which will be denoted by a double wavy line:

p

≡ −
∞∑
n=0

(−λ̂Πd(p2))n = − 1
1 + λ̂Πd(p2)

. (B.9)

We are now ready to study Γ(2) at o(N−1). At this order 3 diagrams and the δm2
(1)

counterterm contribute, see figure 10. Note that we also have o(N−1) corrections to the σ
propagator, but these can enter in Γ(2) at this order only through tadpole graphs, and hence
they vanish. The divergences in graph (a) arising from n = 0 (d < 3) or n = 1 (3 ≤ d < 4)
insertions of Πd in the expansion of the resummed propagator are cancelled by the mass
counterterm, so (a) + (d) is finite. Similar considerations apply for the graphs (b) + (c).
We do not report the expressions for these graphs, that can be derived by standard manip-
ulations. Let us now consider the vacuum energy. In the chosen renormalization scheme,
the o(N) contributions to the vacuum energy are exactly canceled.23 So the leading finite
contribution arises at o(N0) and is given by a one-loop vacuum diagram of the exact o(N0)

23It is easy to see that the o(N) counterterm δρ(−1) in (B.4) precisely cancels the term δ2
T /2 in (B.6),

which is also of order o(N), so that the counterterm δ̂ρ is o(N0).
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σ-propagator. Collecting the results above, we finally get

Λ = 1
2

∫
ddq

(2π)d log
(
1 + λ̂Πd(q2)

)
+ δ , (B.10)

M2 = m2 + 8λ̂
N

∫
ddq

(2π)d
∞∑
n=2

λ̂n
(−Πd(q2))n

q2 +m2 + (b) + (c) + o(N−2) , (B.11)

Γ(4)(p = 0) = −24λ̂
N

1
1 + λ̂Πd(0)

+ o(N−2) . (B.12)

We have also reported the leading order expression of the 4-point 1PI function Γ(4), which
is o(N−1), and is trivially given by tree level diagrams only. There is no need to keep track
of the form of the counterterm δ appearing in (B.10), because in our scheme it is equal
and opposite to the first divergent terms arising from the loop integral when expanded in
powers of λ̂. The form of Πd(q2) and more explicit expressions for M2 will be given below
for the specific d = 2 and d = 3 cases. In what follows it will be useful to use dimensionless
quantities and rewrite

λ̂Πd(q2) ≡ ĝ Ud(y), ĝ ≡ λ̂

m4−d , y ≡ q2

4m2 . (B.13)

B.1 d = 2

We specialize here to the d = 2 case. Working out the contributions from graphs (b) + (c)
in figure 10, we obtain the following expression for M2:

M2

m2 = 1− 8ĝ
πN

∫ ∞
0
dy

∞∑
n=1

(−ĝ U2(y))n
( 1

1 + 4y −
ĝ

1 + ĝ
π

V2(y)
)

+ o(N−2) , (B.14)

where

U2(y) = 1
π

log(√y +
√

1 + y)√
y(1 + y)

, V2(y) ≡ 1
4π

√
y(y + 1) + arctanh

(√
y

1+y

)
√
y(1 + y)3/2 . (B.15)

We report below the numerical values for the first coefficients in an expansion in ĝ of Λ
and M2:

Λ = −0.016961ĝ2 + 0.0015425ĝ3 − 0.00023173ĝ4 + o(ĝ5) + o(N−1) ,
M2

m2 = 1 + 1
N

(
ĝ(−0.47497ĝ2 + 0.23046ĝ3 − 0.090670ĝ4 + o(ĝ5)

)
+ o(N−2) ,

Γ(4)(0)
m2 = −24ĝ

N

1
1 + ĝ

π

+ o(N−2) . (B.16)

It is known that generally the large order behavior of the large N coupling expansion, at
given order in N , is convergent. The above results are in agreement with this expectation.
From a numerical exploration we find that the series in ĝ for Λ at o(N0) and Γ(2) at o(N−1)
are convergent, with a radius of convergence equal to π. This is in agreement with the
radius of convergence of Γ(4) that is manifest from its analytic form at o(N−1).
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Σ1 Σ2a(k) Σ2b

4λ(N + 2) −32λ2(N + 2) −16λ2(N + 2)2

Figure 11. The two-point diagrams up to 2 loops together with the multiplicity factors.

B.2 d = 3

Proceeding as above for the d = 3 case, we get the following expression for M2:

M2

m2 =1−
ĝ3 log

(4
3
)

Nπ3(1+ ĝ
2π )

+ 2ĝ
Nπ2

∫ ∞
0
dy
√
y
∞∑
n=2

(−ĝU3(y))n
( 8

4y+1−
ĝ

π(1+ ĝ
2π )

1
y+1

)
+o(N−2),

(B.17)
where the function U3(y) is given by

U3(y) = 1
4π

arccot
( 1

2y
)

y
. (B.18)

The numerical values for the first coefficients in an expansion in ĝ read

Λ = −0.000073108ĝ4 + 3.4816× 10−6ĝ5 + o(ĝ6) + o(N−1) ,
M2

m2 = 1 + 1
N

(
0.023840ĝ3 − 0.0053959ĝ4 + o(ĝ5)

)
+ o(N−2) ,

Γ(4)(0)
m

= −24ĝ
N

1
1 + ĝ

2π
+ o(N−2) . (B.19)

Like in the d = 2 case, the series in ĝ for Λ at o(N0) and Γ(2) at o(N−1) are convergent, with
a radius of convergence equal to 2π. This is in agreement with the radius of convergence
of Γ(4) that is manifest from its analytic form at o(N−1).

C Vacuum energy renormalization in d = 3

In the following we derive the counterterm for the vacuum energy in the MS scheme needed
to establish the duality of the theory.

First, we recall the determination of the mass counterterm δm2. Within dimensional
regularization only the sunset diagram has a pole in ε = d− 3 and contributes to the mass
counterterm δm2. Below we give the explicit expressions for the three diagrams in figure 11:

Σ1 = −λmN + 2
π

,

Σ2a(k) = −λ2N + 2
π2

[
1
ε

+ 3 + log µ2

9m2 − log
(

1 + k2

9m2

)
− 6m
|k|

arctan
( |k|

3m

)]
,

Σ2b = λ2 (N + 2)2

2π2 .
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Υ0 Υ1 Υ2a Υ2b Υ2c

N/2 λN(N + 2) −4λ2N(N + 2)2 −4λ2N(N + 2) N/2

Υ3a Υ3b Υ3c Υ3d Υ3e

16λ3N(N + 2)3 32
3 λ

3N(N + 2)3 64λ3N(N + 2)2 −2λN(N + 2) 32
3 λ

3N(N+2)(N+8)

Figure 12. The zero-point diagrams up to 4 loops together with the multiplicity factors. The filled
black squares represent factors of δm2.

Hence we find

δm2 = λ2

ε

N + 2
π2 . (C.1)

Secondly, we turn to the determination of the vacuum energy counterterm δρ. Since the
divergences in the vacuum energy can be found up to four loops we have explicitly computed
the diagrams in figure 12 within dimensional regularization and we report their values
below. The contributions at order zero and one are finite within dimensional regularization
and give

Υ0 = −m3 N

12π , Υ1 = λm2N(N + 2)
16π2 .

At order two we find two diagrams giving 1/ε poles that cancel out:

Υ2a = −λ2m
N(N + 2)2

32π3 ,

Υ2b = λ2m
N(N + 2)

8π3

[
1
ε
− 3

2 log m
2

µ2 + 4− 5 log 2
]
,

Υ2c = −λ2m
N(N + 2)

8π3

[
1
ε
− 1

2 log m
2

µ2 + 1− log 2
]
.

At order three the poles given by the diagrams Υ3c and Υ3d cancel out, leaving one divergent
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contribution from Υ3e only:

Υ3a = λ3N(N + 2)3

64π4 .

Υ3b = −λ3N(N + 2)3

192π4 ,

Υ3c = −λ3N(N + 2)2

16π4

(
1
ε
− 2 log m

2

µ2 + 2− 6 log 2
)
,

Υ3d = λ3N(N + 2)2

16π4

[
1
ε
− log m

2

µ2 + 1− 2 log 2
]
,

Υ3e = λ3N(N + 2)(N + 8)
384π2

(
1
ε
− 2 log m

2

µ2 + 1− 2 log 2− 42ζ(3)
π2

)
.

Therefore the counterterm δρ is determined as

δρ = −λ
3

ε

N(N + 2)(N + 8)
384π2 , (C.2)

which implies

βρ = −4λ3N(N + 2)(N + 8)
384π2 , ρ(µ) = ρ(m) + λ3N(N + 2)(N + 8)

384π2 2 log m
2

µ2 . (C.3)

The self-duality is then obtained by mapping the parameters between the theory at the
scale m and the theory at the scale m̃. In other words we find the scale µ = m̃ such that
m2(m̃) = m̃2. From (C.3) we find the constant contribution to the vacuum energy ρ(m̃)
that one has to take into account in order to completely match the two theories.

D Series coefficients for Λ and M2

In this appendix we report the coefficients for the series expansion of the vacuum energy Λ
and of the mass gap M2 in the MS scheme (i.e. at µ = m or equivalently κ = 0) obtained
as explained in section 5.1. The numerical coefficients appearing without error have been
computed to a higher accuracy and have been truncated here to nine relevant digits.
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Λ−ρ
m3 =− N

12π+gN(N+2)
16π2 −g2N(N+2)

8π3

(
N+2

4 −3+4log2
)

−g3N(N+2)
384π4

[
(N+8)

(
42ζ(3)−π2+2π2 log2

)
−24(N+2)(4log2−1)−4(N+2)2]

−g4
[

0.01030303(80±14)N+0.00737580(23±10)N2+0.001384239(45±16)N3

+0.000148813598N4+ N5

512π5

]
+g5

[
0.0017438(5±8)N−7.9(7±9)×10−6N2−0.0005433(15±31)N3

−0.00004632(08±26)N4+2.68116618×10−6N5
]

−g6
[

0.0034810(7±8)N+0.0020412(1±9)N2+0.0000299(7±4)N3−0.0000603(41±10)N4

−6.34(6±8)×10−7N5−
(
3.31589818×10−7)N6− N7

12288π7

]
(D.1)

+g7
[
0.0046384(0±9)N+0.003119(02±11)N2+0.0002951(2±6)N3−0.0000433(97±17)N4

+5.82(75±22)×10−6N5+5.99(86±13)×10−7N6−3.20181996×10−8N7
]

−g8
[

0.00705(0±7)N+0.00497(6±9)N2+0.00050(6±4)N3−0.00012(47±10)N4

−4.(67±11)×10−6N5+1.31(4±7)×10−6N6−2.5(19±11)×10−8N7

+1.846631(00±33)×10−9N8+ N9

131072π9

]
.

M2

m2 =1−gN+2
π

+g2 (N+2)(N+4log3)
2π2 +g3

[
0.254293918+0.0394597748N−0.0519064757N2− N3

8π3

]
−g4

[
0.3078241(2±5)+0.1706010(23±33)N+0.00128178(4±5)N2−0.00353134874N3

]
+g5

[
0.383625(87±23)+0.249106(00±22)N+0.0219413(0±8)N2

−0.00299454(5±9)N3+0.000230093158N4+ N5

128π5

]
−g6

[
0.557150(5±8)+0.38254(40±10)N+0.038154(1±5)N2−0.007604(05±12)N3

−0.0002343(00±11)N4+0.0000550745909N5
]

(D.2)

+g7
[

0.97639(2±5)+0.73243(8±7)N+0.10656(30±35)N2−0.001202(74±10)N4

−0.010582(1±8)N3+0.00009681(5±7)N5−1.93299923(26±35)×10−6N6− N7

1024π7

]
−g8

[
1.9235(06±21)+1.5462(72±32)N+0.2816(17±19)N2−0.01295(5±6)N3−0.003382(5±9)N4

+0.0002399(6±7)N5+9.18(54±28)×10−6N6−1.08546706(47±15)×10−6N7
]
.

Recall that we have normalized the vacuum energy by taking ρ = ρ(m) = 0.
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