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where the first uncertainty is statistical, the second systematic and the third is due to the knowledge of

The Ag — AFKYK~ 7~ decay is observed for the first time using a data sample of proton-proton
collisions at centre-of-mass energies of /s =7 and 8 TeV collected by the LHCb detector, corresponding
to an integrated luminosity of 3fb~!. The ratio of branching fractions between the Ag — AFKTK= 7~
and the AY — AFD; decays is measured to be

=(9.26 £ 0.29 + 0.46 £ 0.26) x 1072,

the Dy — K*K~m~ branching fraction. No structure on the invariant mass distribution of the AFK™
system is found, consistent with no open-charm pentaquark signature.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the last two decades, a wealth of information has been
accumulated on the decays of hadrons containing b quarks [1].
Measurements of their decay rates and properties have been used
to test the Cabibbo-Kobayashi-Maskawa mechanism [2,3] describ-
ing weak interactions within the Standard Model, and to examine
various theoretical approaches, such as the heavy quark effective
theory [4] and the factorization hypothesis [5-8]. Although many
b-hadron decays have been observed with their branching frac-
tions measured, a large number of them remains either unob-
served or poorly measured, most notably decays of Ag, Ep and
£, baryons. In the last years, the LHCb experiment has observed

many new Ag decays to final states such as A}mw~wtm~ [9],
AFm=pp [10], AZD; [11], Xe1pK™, Xe2pK~ [12], ¥(2S)pK ™~ and
Jmta—pK— [13]1

In this Letter, the first observation of the Ag — AFKTK 7~
decay (referred to hereafter as signal channel) is reported, along
with a measurement of its branching fraction relative to that of
the Ag — AT D; decay (normalisation channel). The analysis uses
a data sample of proton-proton (pp) collisions at centre-of-mass
energies of /s =7 and 8TeV collected by the LHCb experiment,
corresponding to an integrated luminosity of 3fb~!. The obser-
vation of the A) — AFKTK~7~ decay provides a laboratory to
search for open-charm pentaquarks with valence quark content

1 The charge-conjugate process is implied throughout this Letter.
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Fig. 1. Feynman diagram of the leading contribution to the Ag — AFKTK= 7~ sig-
nal decay.

csuud that could decay strongly to the AZK™ final state. These
states are a natural extension of the three narrow pentaquark can-
didates with quark content ccuud observed in Ag — JArpK~— de-
cays [14], with the ¢ quark replaced by an s quark. The recent
discovery of a DK~ structure in B~ — D~ DK~ decays [15,16],
consistent with open-charm tetraquarks, also motivates the search
for open-charm pentaquarks.

Fig. 1 shows the leading diagram contributing to the signal de-
cay. Contributions to the companion K*K~m~ system could be
through intermediate a; mesons, such as the a1(1260)~ state,
which is found to dominate in B — D®K*0K~ decays [17]. De-
cays of 0 — Arm~ or even E2 — AFK~ could also contribute
to the signal.

0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
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2. Detector and simulation

The LHCb detector [18,19] is a single-arm forward spectrom-
eter covering the pseudorapidity range 2 < n < 5, designed for
the study of particles containing b or ¢ quarks. The detector in-
cludes a high-precision tracking system consisting of a silicon-strip
vertex (VELO) detector surrounding the pp interaction region, a
large-area silicon-strip detector located upstream of a dipole mag-
net with a bending power of about 4Tm, and three stations of
silicon-strip detectors and straw drift tubes placed downstream
of the magnet. The tracking system provides a measurement of
the momentum, p, of charged particles with a relative uncertainty
that varies from 0.5% at low momentum to 1.0% at 200 GeV|c.
The minimum distance of a track to a primary pp collision ver-
tex (PV), the impact parameter (IP), is measured with a reso-
lution of (15 + 29/pt) um, where pr is the component of the
momentum transverse to the beam, in GeV|c. Different types of
charged hadrons are distinguished using information from two
ring-imaging Cherenkov detectors. Photons, electrons and hadrons
are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic and a hadronic
calorimeter (HCAL). Muons are identified by a system composed of
alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger based on
signal information only. The trigger consists of a hardware stage,
based on information from the calorimeter system, followed by a
software stage, which applies a full event reconstruction [20]. At
the hardware trigger stage, referred to as LO trigger in the fol-
lowing, the A} — AfKTK-7~ and A?— A}D; candidates are
required to include a hadron having high transverse energy de-
posited in the calorimeters. The transverse energy threshold is
3.5GeV. The software trigger, also named high-level trigger (HLT),
requires a two-, three- or four-track vertex with a significant dis-
placement from any PV. At least one charged particle must have
a large transverse momentum and be inconsistent with originat-
ing from any PV. A multivariate algorithm [21] is used for the
identification of displaced vertices consistent with the decay of a
b-hadron.

Simulation is used to model the effects of the detector ac-
ceptance and the selection requirements, to validate the fit mod-
els and to evaluate efficiencies. In the simulation, pp collisions
are generated using PyTHIA 8 [22] with a specific LHCb con-
figuration [23]. Decays of unstable particles are described by
EVIGEN [24], in which final-state radiation is generated using
PHoOTOS [25]. The interaction of the generated particles with the
detector, and its response, are implemented using the GEANT4
toolkit [26] as described in Ref. [27].

3. Event selection

Candidate A and Dy hadrons are reconstructed through their
decays to the pK—z+ and K* K~ 7~ final states, respectively. The
offline candidate selection is performed by applying a loose pres-
election, followed by a multivariate analysis (MVA) to further sup-
press combinatorial background originating from random combina-
tions. To reduce systematic uncertainties on the ratio of efficiencies
between the signal and the normalisation channels, the selection
criteria of A} candidates are identical between the two channels.

A good-quality track with pp > 100MeV/c and p > 1GeV/c is
required for each final-state particle. Protons and antiprotons are
required to have a momentum greater than 10GeV/c to improve
their identification. All final-state particles are also required to be
inconsistent with originating from any PV by requiring a large
X, where x2 is defined as the difference in the x? of a given
PV fit with and without the track under consideration. Each A7
baryon candidate is required to have at least one decay product
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with pr > 500MeV/c and p > 5GeV/c, a good-quality vertex (i.e.
small xZ,), and invariant mass within +15MeV/c? of the known
AZF mass [1]. For the AF candidates, the sum of transverse mo-
menta of their decay products must exceed 1.8 GeV/c. The selection
criteria for D; candidates are similar to those of A} candidates.
The K*K~ 7~ invariant mass is required to be within £35 MeV/c?
from the known D meson mass.

The signal channel is reconstructed by combining AF, K™, K~
and m~ candidates, while the normalisation channel is recon-
structed by combining a AF with a D; candidate. The combi-
nations above form Ag candidates, which are required to have a
small xftx and Xlzp, and a decay time with respect to its asso-
ciated PV greater than 0.2 ps. The associated PV is the one that
gives the smallest XI%, where the xl% denotes the IP significance
of candidate’s trajectory returned by the kinematical fit. The an-
gle between the Ag momentum and the vector pointing from
the associated PV to the Ag decay vertex, 6p, is required to be
smaller than 11 mrad. The AE candidate is also required to have
at least one final-state particle with pt > 1.7 GeV/c, and its decay
vertex significantly displaced from any PV. The latter is achieved
by requiring the significance of the flight distance between the Ag
decay vertex and any PV to be larger than 4. Final-state tracks of
signal and normalisation candidates must pass stringent particle-
identification requirements based on the information from RICH
detectors, calorimeter system and muon stations. To reject tracks
that share the same segment in the VELO detector, any two tracks
with the same charge used to form the Ag candidate are required
to have an opening angle larger than 0.5 mrad. A kinematic fit [28]
of the decay chain constrains the Ag candidate to originate from
the associated PV and the A7 candidate invariant mass to its
known value [1].

The A? candidate could originate from B® — DYKTK-7~
or B — DFfK*K~m~ decays, where a pion or kaon in D* —
Ktn=nt or Df(DT) — KTK~7™ decays is misidentified as a
proton. These background contributions are vetoed if the invari-
ant masses of the Al and Ag candidates, evaluated by replacing
the proton by either the pion or kaon mass hypothesis, are within
+15MeVjc? of the known D*(D{) mass and +25MeV/c? of the
known B°(B?) mass [1]. These vetoes are applied to both the sig-
nal and the normalisation channels. For the signal decay, additional
vetoes are applied if the invariant mass of the K*7~ or KT K~ 7~
companion tracks falls within £30 MeV]c? of the D° or D; known
mass, respectively [1].

Reconstructed candidates are further required to pass an MVA
output threshold based upon a multilayer perceptron (MLP) fil-
ter [29], designed to reject the combinatorial background. The
MLP classifier is trained using a signal sample of simulated Ag —
AFKTK~m~ decays tuned on data to reproduce correctly the Ag
production kinematics based on the pt and y distributions and a
background sample taken from the upper sideband of the Ag in-
variant mass spectrum in the range of 5.75 - 7 GeV/c2. A four-body
phase-space simulation is used for the signal sample to keep the
MLP efficiency as uniform as possible, as including intermediate
resonances in the simulation could potentially lead to small MLP
efficiencies for less represented phase-space regions. The lower
sideband is not used to avoid potential background contributions
from partially reconstructed decays. The MLP input includes the
following variables: pr sum of the A} decay products, minimal
X{ among the AS decay products, minimal pr and minimal x2
among the kaons originating directly from the Ag decay, pt and
X of the 7~ from the A) decay, pr sum of all 7 and K origi-
nating directly from the AJ) decay, xZ, of the A candidate, x2
of the flight distance between the Ag decay vertex and the associ-
ated PV, cosép, x? probability of the Ag candidate vertex fit, and
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and (b) Ag — AF Dy candidates. Fit projections are overlaid as a blue solid line. For (a), the red solid line

represents the signal component, the blue dashed line is the background due to random combinations, and the violet dotted line is the contribution from Ag — XFKYK m~
decays. For (b), the red solid line is the normalization channel component, the violet dotted line is the Ag — AF D}~ background, the green dashed-dotted line is the
contribution from Ag — AFKtK~m~ decays, and the blue dashed line represents combinatorial background.

the difference of longitudinal position between the AT and the Ag
decay vertices.

The MLP response obtained from the training is also applied
to the normalisation channel sample. The optimal thresholds on
the MLP response are obtained for the signal and normalisation
channels separately by maximising a figure-of-merit, defined as
S/+/S + B, where S and B are the expected signal and background
yields for Ag candidates within a £2.50 mass window around the
known Ag mass [1], where o is the mass resolution corresponding
to about 12 MeV/c2. Both S and B are determined by multiplying
the initial yields of signal and background with the corresponding
MLP selection efficiencies estimated from simulation and sideband
data, respectively. The initial signal and background yields are ob-
tained from a preliminary fit to the preselected data sample before
the MLP requirement applied, where the signal Ag peak is already
seen in the ATKTK -~ invariant mass distribution. The optimal
point corresponds to a signal efficiency of 90% and a background
rejection of 85%. About 0.6% events in the signal channel contain
multiple candidates, only one candidate is retained by a random
selection.

4. Signal yields and search for intermediate states

The yields in both the signal and normalisation channels are
determined from an unbinned extended maximum-likelihood fit
to the corresponding invariant mass spectra of the ATKT K~ 7w~
system. The signal component is modelled by a sum of two
Crystal Ball functions [30] with a common mean of the Gaus-
sian cores, with tail parameters fixed to the values obtained
from simulation. For both the signal and normalisation chan-
nels, the combinatorial background is described by an exponen-
tial function, whose parameters are varied freely and allowed to
be different between the signal and normalisation channels. For
the signal channel, a significant contribution from Ag - XI[—>
Ajr[o]K*K*Jr* decays is present in the lower invariant mass re-
gion, which has the same final state as the 770 is not reconstructed.
The shape of this background is obtained from a simulation of
Ag — X:(2455)T KT K~ ~ decays. For the normalisation channel,
the Ag — AFD¥ decay may be reconstructed as Ag — AFDy
due to photon emission in the D}~ decay. The shape of this back-
ground is obtained from simulated Ag — AFD¥™ decays. The sig-
nal decay can also contribute to the normalisation channel forming
a background under the Dy mass peak. This background contribu-
tion is estimated from the D; sidebands of the normalisation data
sample, where the width of the sideband is chosen to be the same
as that of the Dy mass window used in the normalisation channel
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Fig. 3. Invariant mass distributions of A} K* candidates in the A) — AFK+K~ 7~
signal channel for the simulation (red line) and the background-subtracted data
(blue points with error bars).

selection. The invariant mass distributions for the signal and nor-
malisation channels are shown in Fig. 2 with the fit projects over-
laid. The signal yields are obtained to be N(AgJ — AFKTK 7)) =
3400 4+ 80 and N(Ag — AFD7[KTK~m~]) = 2550 + 60, respec-
tively, where the uncertainties are statistical only.

An open-charm pentaquark state could be revealed as a struc-
ture in the invariant mass distribution of the AFK™ system,
shown in Fig. 3 for data and simulation. The data distribution is
background subtracted through the sPlot weighting technique [31],
using the AT KTK~x~ invariant mass as discriminating variable.
No structure is observed. A full amplitude analysis is needed to es-
timate the limit of the pentaquark contribution, which is beyond
the scope of this Letter.

Instead, a rich structure of known hadron contributions is vis-
ible in the background-subtracted invariant mass distributions of
the A7 ~, K*w~ and K*K~ 7w~ systems, shown in Fig. 4. The
%:(2455)° and X(2520)° resonances are visible in the A} 7~ dis-
tribution. A large K*(892)° resonance is observed in the K*z~
projection. In the K¥K~7~ system, a broad peaking structure at
about 1.5 GeVc? is also observed. A similar structure is also seen
in B— D®K*0K— decays by the Belle experiment [17], and is ex-
plained as the tail contribution of the a;(1260)~ resonance.

5. Branching fraction ratio and efficiencies
The ratio of the branching fractions of the A) — AFKTK~7~

decay including resonance contributions with respect to the nor-
malisation channel is determined by
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The red dashed vertical lines indicate the veto mass intervals for D® mesons in the K+~ distribution, and Dy

B(A) — AFKTK—77)
B(A) - AL DY)

N(A) - AFKTK=7™)
N(AO — AFTD;[KTK—m— ])
€tot(A) = AFDS[KTK=77])

€ot(A) > ATKTK—77)

(1)

x B(Dy — KtK~ 7 ™),

where B stands for the branching fraction of the corresponding de-
cay. The signal and normalisation yields are reported in Sec. 4. The
total efficiencies €y of the signal and the normalisation channels
are determined by the product

€tot = €acc X €sel X €19 X EHIT X €PID, (2)

where €,.c accounts for the LHCb geometrical acceptance, € is
the efficiency of reconstructing and selecting a candidate within
the acceptance, €19 is the LO trigger efficiency for the selected
candidates, eyr is the HLT efficiency for the selected candi-
dates passing the LO trigger requirement, and €epjp is the particle-
identification (PID) efficiency for the selected candidates that sur-
vive all trigger requirements. All efficiencies except for €9 and
epp are determined from simulation, and the (pt, y) distributions
of the simulated Ag baryons are weighted to match that of data,
where y is the rapidity of the candidate. The weights are obtained
using the normalisation channel and applied to the signal decay.

To take into account the resonance contributions to the sig-
nal decay channel, the simulation uses a mixture of three de-
cay modes: A) — Afa;(1260)~(— K*°K~), ATK*°K~ and non-
resonant four-body phase space. The fractions are determined
by fitting the two-dimensional data distribution of K*7~ and
K*TK~m~ invariant masses.

in the K* K=z~ distribution.

The LO efficiency of each hadron is computed using samples
of well identified pions and kaons from D° — K~z decays and
protons from A — pm~ decays [32]. The efficiency is calculated in
bins of transverse energy for the particles incident on the HCAL
surface, separately for its inner and outer regions. The PID effi-
ciency is determined by the calibration samples of D** — D%(—
K-t and A — pr~ decays and is evaluated as a function
of track momentum, track pseudorapidity and event multiplicity,
where the latter is represented by the number of the reconstructed
tracks in the event.

The ratio between the total efficiencies for the signal and nor-
malisation channels in Eq. (1), is determined to be 0.78 =+ 0.02,
where the uncertainty accounts only for the size of the simula-
tion sample. The value differs from unity primarily due to different
selection efficiencies on the MVA responses for the signal and nor-
malisation channels.

External inputs are used for the branching fractions B(D; —
KtK~m~) = (5.39 + 0.15) x 1072 [1] and B(Ag — AFD;) =
(1.10 £ 0.10) x 10~2 [11]. In the latter case, while the value is
measured by the LHCb collaboration [11], its uncertainty is dom-
inated by the branching fraction of B? — D*Dg decays, and is
essentially uncorrelated with the present measurement.

6. Systematic uncertainties

All systematic uncertainties on the measurement of the ratio of
branching fractions are listed in Table 1. The total uncertainty is
determined from the sum of all contributions in quadrature. The
dominant uncertainty is related to the resonance structure that is
not perfectly modelled by the simulation.

Uncertainties due to the fit model are considered. For the back-
ground due to random combinations of final-state particles in both
the signal and normalisation channels, the exponential function is
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Table 1
Summary of systematic uncertainties on the ratio of branching fractions.

Source Uncertainty (%)
Combinatorial background 0.9
Shape of A) — T} K+K~7~ contribution 0.3
AY — AFK*K~7~ background in normalisation channel 0.8
Signal fit model 0.5
Simulation sample size 25
PID efficiency 0.4
Trigger efficiency 0.1
(pr, y) weight 0.8
Track multiplicity weight 0.8
A7 Dalitz structure 14
Mixture fraction in simulation 0.2
Resonance structure 3.6
Multiple candidates 0.3
MVA selection 0.5
Total 4.9

replaced by a second-order polynomial function. From the com-
parison to the default result, the relative uncertainty on the ratio
of branching fractions is 0.9%. In the signal channel, the uncer-
tainty due to the A) — XFK+K~7~ background contribution is
assessed by performing the fit with a widened mass region, result-
ing in a relative uncertainty of 0.3%. For the normalisation channel,
changing the yield of the A? — AfK*K~7~ contribution within
its uncertainty results in a relative 0.8% variation.

The systematic uncertainty due to the model for both signal and
normalisation channels, is studied by changing to a single Hypatia
function [33], where the mean and width parameters are left free
while all other parameters are taken from simulation. This results
in a relative uncertainty of 0.5%.

The uncertainties on the ratio of efficiencies are evaluated. The
uncertainty due to the finite simulation sample size is evaluated
from the expected efficiency variation in bins of pr and y of the
A} candidate as

Oc = \/Zéi(l —éi)NiWi/ZNiWi , (3)

for each bin i, where N; is the number of generated events, w;
is a correction weight, and ¢; is the candidate efficiency. The nor-
malisation of the weights is chosen such that the denominator is
equal to total number of generated events without the weighting.
The relative uncertainty is found to be 2.5%.

Pseudoexperiments are used to evaluate the systematic effects
due to uncertainties on the weights or efficiencies in different
bins. For a given source, many pseudoexperiments are generated,
in which each produces a new set of weights or efficiencies ac-
cording to the central values and uncertainties following Gaussian
distributions. The efficiency ratio between the signal and normali-
sation channels is recomputed. The resulting efficiency ratios from
many pseudoexperiments of this source produce a Gaussian distri-
bution centering at the baseline value. The standard deviation of
the Gaussian distribution is taken as absolute uncertainty on the
efficiency ratio for the given source. The procedure is applied to
obtain the systematic uncertainty related to the PID and trigger ef-
ficiencies and to (pr, y) and track multiplicity weighting.

The tracking efficiency returned by the simulation is calibrated
using a data-driven method [34]. The uncertainty on the calibra-
tion sample size is propagated to the efficiency ratio using pseudo-
experiments, resulting in a systematic uncertainty of 0.8%. Because
the final states for signal and normalisation modes are identical,
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possible data-simulation differences in hadron interactions with
the detector material are assumed to be negligible.

The agreement between data and simulation for the A} —
pK~m* channel is tested by comparing the Dalitz structure.
The signal simulation sample is weighted in the m(pK~) versus
m(K—m+) plane to match the distribution of the background-
subtracted data. The uncertainty related to the limited sample size
used for obtaining these weights is 1.1%, obtained from pseudo-
experiments. The uncertainty related to the choice of binning is
0.8%, determined by using an alternative binning. A total of 1.4% is
assigned as systematic uncertainty.

The contributions of the Ag decays through the mixture of the
three decay modes are considered when generating the simulated
events of the signal channel, and their fractions are obtained by fit-
ting the two-dimensional distribution of the K™ K~7~ and K* 7~
systems in the background-subtracted signal data. The fractions are
changed according to the statistical uncertainty of the fit result,
yielding 0.2% of relative uncertainty.

The simulation does not fully model the resonance structure,
e.g. the contribution of E? resonances, which is clearly seen in
the A}m~ invariant mass distribution, as illustrated in Fig. 4.
By weighting the simulation to match the m(AFz ™) distribution
in the data, a 1.3% variation of the ratio of branching fractions
is found and assigned as systematic uncertainty. Besides, differ-
ences between background-subtracted data and simulated signal
events are also observed in the invariant mass distributions of the
AFKTK~ and KtK~ systems. To account for this discrepancy,
the simulated sample is weighted according to the ATKTK~ or
K+ K~ mass distribution of background-subtracted data, and the
ratio of branching fractions is reevaluated. The two procedures re-
turn changes of 2.6% and 2.0%, respectively. The three values are
added in quadrature to account for the uncertainty due to reso-
nance structure.

Simulation does not account well for multiple candidates,
which is found to be about 0.6% of the data sample in the signal
channel. Half of this fraction is assigned as systematic uncertainty
due to the random choice to retain only one candidate.

The MVA selection criteria are optimized separately for the sig-
nal and normalisation channels. As an alternative choice, the MVA
selection of the normalisation channel is fixed to be the same as
that of the signal channel to test the robustness of the MVA selec-
tion. The relative variation of the branching fraction ratio is 0.5%,
which is assigned as systematic uncertainty.

7. Results and summary

The first observation of the AY — AFKTK~7~ decay is pre-
sented, and the branching fraction is determined using the Ag —
AFD; decay as a normalisation channel. The relative branching
fraction is measured to be

B(A) - AFKYK=m7)

G ——— = (9.26 £0.29 + 0.46 £ 0.26) x 1072,
B(AY— AZ D)

where the first uncertainty is statistical, the second systematic, and
the third is due to the knowledge of the Dy — KK~ 7~ branch-
ing fraction [1]. Using this ratio, the A) — AFK*K~7~ branching
fraction is determined to be

B(AY — AFKTK~7w~) = (1.02+0.03 +0.05+0.10) x 107,

where the third term includes the uncertainty on the branching
fraction of the Ag — A}FD;g decay [1]. The invariant mass distri-
bution of the ATK™ system is inspected for possible structure due
to open-charm pentaquarks, and no contribution is observed.
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