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The Λ0
b → Λ+

c K + K −π− decay is observed for the first time using a data sample of proton-proton 
collisions at centre-of-mass energies of 

√
s = 7 and 8 TeV collected by the LHCb detector, corresponding 

to an integrated luminosity of 3fb−1. The ratio of branching fractions between the Λ0
b → Λ+

c K + K −π−
and the Λ0

b → Λ+
c D−

s decays is measured to be

B(Λ0
b → Λ+

c K + K −π−)

B(Λ0
b → Λ+

c D−
s )

= (9.26 ± 0.29 ± 0.46 ± 0.26) × 10−2,

where the first uncertainty is statistical, the second systematic and the third is due to the knowledge of 
the D−

s → K + K −π− branching fraction. No structure on the invariant mass distribution of the Λ+
c K +

system is found, consistent with no open-charm pentaquark signature.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the last two decades, a wealth of information has been 
accumulated on the decays of hadrons containing b quarks [1]. 
Measurements of their decay rates and properties have been used 
to test the Cabibbo-Kobayashi-Maskawa mechanism [2,3] describ-
ing weak interactions within the Standard Model, and to examine 
various theoretical approaches, such as the heavy quark effective 
theory [4] and the factorization hypothesis [5–8]. Although many 
b-hadron decays have been observed with their branching frac-
tions measured, a large number of them remains either unob-
served or poorly measured, most notably decays of Λ0

b , Ξb and 
Ω−

b baryons. In the last years, the LHCb experiment has observed 
many new Λ0

b decays to final states such as Λ+
c π−π+π− [9], 

Λ+
c π− pp [10], Λ+

c D−
s [11], χc1 pK − , χc2 pK − [12], ψ(2S)pK − and 

J/ ψπ+π− pK − [13].1

In this Letter, the first observation of the Λ0
b → Λ+

c K +K −π−
decay (referred to hereafter as signal channel) is reported, along 
with a measurement of its branching fraction relative to that of 
the Λ0

b → Λ+
c D−

s decay (normalisation channel). The analysis uses 
a data sample of proton-proton (pp) collisions at centre-of-mass 
energies of 

√
s = 7 and 8 TeV collected by the LHCb experiment, 

corresponding to an integrated luminosity of 3 fb−1. The obser-
vation of the Λ0

b → Λ+
c K +K −π− decay provides a laboratory to 

search for open-charm pentaquarks with valence quark content 

1 The charge-conjugate process is implied throughout this Letter.

Fig. 1. Feynman diagram of the leading contribution to the Λ0
b → Λ+

c K + K −π− sig-
nal decay.

cs̄uud that could decay strongly to the Λ+
c K + final state. These 

states are a natural extension of the three narrow pentaquark can-
didates with quark content cc̄uud observed in Λ0

b → J/ ψ pK − de-
cays [14], with the c̄ quark replaced by an s̄ quark. The recent 
discovery of a D+K − structure in B− → D−D+K − decays [15,16], 
consistent with open-charm tetraquarks, also motivates the search 
for open-charm pentaquarks.

Fig. 1 shows the leading diagram contributing to the signal de-
cay. Contributions to the companion K +K −π− system could be 
through intermediate a−

1 mesons, such as the a1(1260)− state, 
which is found to dominate in B → D(∗) K ∗0 K − decays [17]. De-
cays of Σ0

c → Λ+
c π− or even Ξ0

c → Λ+
c K − could also contribute 

to the signal.

https://doi.org/10.1016/j.physletb.2021.136172
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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2. Detector and simulation

The LHCb detector [18,19] is a single-arm forward spectrom-
eter covering the pseudorapidity range 2 < η < 5, designed for 
the study of particles containing b or c quarks. The detector in-
cludes a high-precision tracking system consisting of a silicon-strip 
vertex (VELO) detector surrounding the pp interaction region, a 
large-area silicon-strip detector located upstream of a dipole mag-
net with a bending power of about 4 Tm, and three stations of 
silicon-strip detectors and straw drift tubes placed downstream 
of the magnet. The tracking system provides a measurement of 
the momentum, p, of charged particles with a relative uncertainty 
that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. 
The minimum distance of a track to a primary pp collision ver-
tex (PV), the impact parameter (IP), is measured with a reso-
lution of (15 + 29/pT) μm, where pT is the component of the 
momentum transverse to the beam, in GeV/c. Different types of 
charged hadrons are distinguished using information from two 
ring-imaging Cherenkov detectors. Photons, electrons and hadrons 
are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic and a hadronic 
calorimeter (HCAL). Muons are identified by a system composed of 
alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger based on 
signal information only. The trigger consists of a hardware stage, 
based on information from the calorimeter system, followed by a 
software stage, which applies a full event reconstruction [20]. At 
the hardware trigger stage, referred to as L0 trigger in the fol-
lowing, the Λ0

b → Λ+
c K +K −π− and Λ0

b → Λ+
c D−

s candidates are 
required to include a hadron having high transverse energy de-
posited in the calorimeters. The transverse energy threshold is 
3.5 GeV. The software trigger, also named high-level trigger (HLT), 
requires a two-, three- or four-track vertex with a significant dis-
placement from any PV. At least one charged particle must have 
a large transverse momentum and be inconsistent with originat-
ing from any PV. A multivariate algorithm [21] is used for the 
identification of displaced vertices consistent with the decay of a 
b-hadron.

Simulation is used to model the effects of the detector ac-
ceptance and the selection requirements, to validate the fit mod-
els and to evaluate efficiencies. In the simulation, pp collisions 
are generated using Pythia 8 [22] with a specific LHCb con-
figuration [23]. Decays of unstable particles are described by 
EvtGen [24], in which final-state radiation is generated using 
Photos [25]. The interaction of the generated particles with the 
detector, and its response, are implemented using the Geant4

toolkit [26] as described in Ref. [27].

3. Event selection

Candidate Λ+
c and D−

s hadrons are reconstructed through their 
decays to the pK −π+ and K +K −π− final states, respectively. The 
offline candidate selection is performed by applying a loose pres-
election, followed by a multivariate analysis (MVA) to further sup-
press combinatorial background originating from random combina-
tions. To reduce systematic uncertainties on the ratio of efficiencies 
between the signal and the normalisation channels, the selection 
criteria of Λ+

c candidates are identical between the two channels.
A good-quality track with pT > 100 MeV/c and p > 1 GeV/c is 

required for each final-state particle. Protons and antiprotons are 
required to have a momentum greater than 10 GeV/c to improve 
their identification. All final-state particles are also required to be 
inconsistent with originating from any PV by requiring a large 
χ2

IP, where χ2
IP is defined as the difference in the χ2 of a given 

PV fit with and without the track under consideration. Each Λ+
c

baryon candidate is required to have at least one decay product 

with pT > 500 MeV/c and p > 5 GeV/c, a good-quality vertex (i.e.
small χ2

vtx), and invariant mass within ±15 MeV/c2 of the known 
Λ+

c mass [1]. For the Λ+
c candidates, the sum of transverse mo-

menta of their decay products must exceed 1.8 GeV/c. The selection 
criteria for D−

s candidates are similar to those of Λ+
c candidates. 

The K +K −π− invariant mass is required to be within ±35 MeV/c2

from the known D−
s meson mass.

The signal channel is reconstructed by combining Λ+
c , K + , K −

and π− candidates, while the normalisation channel is recon-
structed by combining a Λ+

c with a D−
s candidate. The combi-

nations above form Λ0
b candidates, which are required to have a 

small χ2
vtx and χ2

IP, and a decay time with respect to its asso-
ciated PV greater than 0.2 ps. The associated PV is the one that 
gives the smallest χ2

IP, where the χ2
IP denotes the IP significance 

of candidate’s trajectory returned by the kinematical fit. The an-
gle between the Λ0

b momentum and the vector pointing from 
the associated PV to the Λ0

b decay vertex, θp , is required to be 
smaller than 11 mrad. The Λ0

b candidate is also required to have 
at least one final-state particle with pT > 1.7 GeV/c, and its decay 
vertex significantly displaced from any PV. The latter is achieved 
by requiring the significance of the flight distance between the Λ0

b
decay vertex and any PV to be larger than 4. Final-state tracks of 
signal and normalisation candidates must pass stringent particle-
identification requirements based on the information from RICH 
detectors, calorimeter system and muon stations. To reject tracks 
that share the same segment in the VELO detector, any two tracks 
with the same charge used to form the Λ0

b candidate are required 
to have an opening angle larger than 0.5 mrad. A kinematic fit [28]
of the decay chain constrains the Λ0

b candidate to originate from 
the associated PV and the Λ+

c candidate invariant mass to its 
known value [1].

The Λ0
b candidate could originate from B0 → D+K +K −π−

or B0
s → D+

s K +K −π− decays, where a pion or kaon in D+ →
K +π−π+ or D+

s (D+) → K +K −π+ decays is misidentified as a 
proton. These background contributions are vetoed if the invari-
ant masses of the Λ+

c and Λ0
b candidates, evaluated by replacing 

the proton by either the pion or kaon mass hypothesis, are within 
±15 MeV/c2 of the known D+(D+

s ) mass and ±25 MeV/c2 of the 
known B0(B0

s ) mass [1]. These vetoes are applied to both the sig-
nal and the normalisation channels. For the signal decay, additional 
vetoes are applied if the invariant mass of the K +π− or K +K −π−
companion tracks falls within ±30 MeV/c2 of the D0 or D−

s known 
mass, respectively [1].

Reconstructed candidates are further required to pass an MVA 
output threshold based upon a multilayer perceptron (MLP) fil-
ter [29], designed to reject the combinatorial background. The 
MLP classifier is trained using a signal sample of simulated Λ0

b →
Λ+

c K +K −π− decays tuned on data to reproduce correctly the Λ0
b

production kinematics based on the pT and y distributions and a 
background sample taken from the upper sideband of the Λ0

b in-
variant mass spectrum in the range of 5.75 – 7 GeV/c2. A four-body 
phase-space simulation is used for the signal sample to keep the 
MLP efficiency as uniform as possible, as including intermediate 
resonances in the simulation could potentially lead to small MLP 
efficiencies for less represented phase-space regions. The lower 
sideband is not used to avoid potential background contributions 
from partially reconstructed decays. The MLP input includes the 
following variables: pT sum of the Λ+

c decay products, minimal 
χ2

IP among the Λ+
c decay products, minimal pT and minimal χ2

IP
among the kaons originating directly from the Λ0

b decay, pT and 
χ2

IP of the π− from the Λ0
b decay, pT sum of all π and K origi-

nating directly from the Λ0
b decay, χ2

vtx of the Λ+
c candidate, χ2

of the flight distance between the Λ0
b decay vertex and the associ-

ated PV, cos θp , χ2 probability of the Λ0
b candidate vertex fit, and 

2
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Fig. 2. Invariant mass distribution of (a) Λ0
b → Λ+

c K + K −π− and (b) Λ0
b → Λ+

c D−
s candidates. Fit projections are overlaid as a blue solid line. For (a), the red solid line 

represents the signal component, the blue dashed line is the background due to random combinations, and the violet dotted line is the contribution from Λ0
b → Σ+

c K + K −π−
decays. For (b), the red solid line is the normalization channel component, the violet dotted line is the Λ0

b → Λ+
c D∗−

s background, the green dashed-dotted line is the 
contribution from Λ0

b → Λ+
c K + K −π− decays, and the blue dashed line represents combinatorial background.

the difference of longitudinal position between the Λ+
c and the Λ0

b
decay vertices.

The MLP response obtained from the training is also applied 
to the normalisation channel sample. The optimal thresholds on 
the MLP response are obtained for the signal and normalisation 
channels separately by maximising a figure-of-merit, defined as 
S/

√
S + B , where S and B are the expected signal and background 

yields for Λ0
b candidates within a ±2.5 σ mass window around the 

known Λ0
b mass [1], where σ is the mass resolution corresponding 

to about 12 MeV/c2. Both S and B are determined by multiplying 
the initial yields of signal and background with the corresponding 
MLP selection efficiencies estimated from simulation and sideband 
data, respectively. The initial signal and background yields are ob-
tained from a preliminary fit to the preselected data sample before 
the MLP requirement applied, where the signal Λ0

b peak is already 
seen in the Λ+

c K +K −π− invariant mass distribution. The optimal 
point corresponds to a signal efficiency of 90% and a background 
rejection of 85%. About 0.6% events in the signal channel contain 
multiple candidates, only one candidate is retained by a random 
selection.

4. Signal yields and search for intermediate states

The yields in both the signal and normalisation channels are 
determined from an unbinned extended maximum-likelihood fit 
to the corresponding invariant mass spectra of the Λ+

c K + K −π−
system. The signal component is modelled by a sum of two 
Crystal Ball functions [30] with a common mean of the Gaus-
sian cores, with tail parameters fixed to the values obtained 
from simulation. For both the signal and normalisation chan-
nels, the combinatorial background is described by an exponen-
tial function, whose parameters are varied freely and allowed to 
be different between the signal and normalisation channels. For 
the signal channel, a significant contribution from Λ0

b → Σ+
c [→

Λ+
c π0]K +K −π− decays is present in the lower invariant mass re-

gion, which has the same final state as the π0 is not reconstructed. 
The shape of this background is obtained from a simulation of 
Λ0

b → Σc(2455)+ K +K −π− decays. For the normalisation channel, 
the Λ0

b → Λ+
c D∗−

s decay may be reconstructed as Λ0
b → Λ+

c D−
s

due to photon emission in the D∗−
s decay. The shape of this back-

ground is obtained from simulated Λ0
b → Λ+

c D∗−
s decays. The sig-

nal decay can also contribute to the normalisation channel forming 
a background under the D−

s mass peak. This background contribu-
tion is estimated from the D−

s sidebands of the normalisation data 
sample, where the width of the sideband is chosen to be the same 
as that of the D−

s mass window used in the normalisation channel 

Fig. 3. Invariant mass distributions of Λ+
c K + candidates in the Λ0

b → Λ+
c K + K −π−

signal channel for the simulation (red line) and the background-subtracted data 
(blue points with error bars).

selection. The invariant mass distributions for the signal and nor-
malisation channels are shown in Fig. 2 with the fit projects over-
laid. The signal yields are obtained to be N(Λ0

b → Λ+
c K +K −π−) =

3 400 ± 80 and N(Λ0
b → Λ+

c D−
s [K +K −π−]) = 2 550 ± 60, respec-

tively, where the uncertainties are statistical only.
An open-charm pentaquark state could be revealed as a struc-

ture in the invariant mass distribution of the Λ+
c K + system, 

shown in Fig. 3 for data and simulation. The data distribution is 
background subtracted through the sPlot weighting technique [31], 
using the Λ+

c K + K −π− invariant mass as discriminating variable. 
No structure is observed. A full amplitude analysis is needed to es-
timate the limit of the pentaquark contribution, which is beyond 
the scope of this Letter.

Instead, a rich structure of known hadron contributions is vis-
ible in the background-subtracted invariant mass distributions of 
the Λ+

c π− , K +π− and K +K −π− systems, shown in Fig. 4. The 
Σc(2455)0 and Σc(2520)0 resonances are visible in the Λ+

c π− dis-
tribution. A large K ∗(892)0 resonance is observed in the K +π−
projection. In the K +K −π− system, a broad peaking structure at 
about 1.5 GeV/c2 is also observed. A similar structure is also seen 
in B → D(∗) K ∗0 K − decays by the Belle experiment [17], and is ex-
plained as the tail contribution of the a1(1260)− resonance.

5. Branching fraction ratio and efficiencies

The ratio of the branching fractions of the Λ0
b → Λ+

c K +K −π−
decay including resonance contributions with respect to the nor-
malisation channel is determined by

3



JID:PLB AID:136172 /SCO Doctopic: Experiments [m5G; v1.303] P.4 (1-10)

LHCb Collaboration Physics Letters B ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 4. Invariant mass distributions of (a) the Λ+
c π− , (b) K +π− , and (c) K + K −π− systems in the Λ0

b → Λ+
c K + K −π− signal channel, for the background-subtracted data. 

The red dashed vertical lines indicate the veto mass intervals for D0 mesons in the K +π− distribution, and D−
s in the K + K −π− distribution.

B(Λ0
b → Λ+

c K +K −π−)

B(Λ0
b → Λ+

c D−
s )

= N(Λ0
b → Λ+

c K +K −π−)

N(Λ0
b → Λ+

c D−
s [K +K −π−]) × (1)

εtot(Λ
0
b → Λ+

c D−
s [K +K −π−])

εtot(Λ
0
b → Λ+

c K +K −π−)
× B(D−

s → K +K −π−),

where B stands for the branching fraction of the corresponding de-
cay. The signal and normalisation yields are reported in Sec. 4. The 
total efficiencies εtot of the signal and the normalisation channels 
are determined by the product

εtot = εacc × εsel × εL0 × εHLT × εPID, (2)

where εacc accounts for the LHCb geometrical acceptance, εsel is 
the efficiency of reconstructing and selecting a candidate within 
the acceptance, εL0 is the L0 trigger efficiency for the selected 
candidates, εHLT is the HLT efficiency for the selected candi-
dates passing the L0 trigger requirement, and εPID is the particle-
identification (PID) efficiency for the selected candidates that sur-
vive all trigger requirements. All efficiencies except for εL0 and 
εPID are determined from simulation, and the (pT, y) distributions 
of the simulated Λ0

b baryons are weighted to match that of data, 
where y is the rapidity of the candidate. The weights are obtained 
using the normalisation channel and applied to the signal decay.

To take into account the resonance contributions to the sig-
nal decay channel, the simulation uses a mixture of three de-
cay modes: Λ0

b → Λ+
c a1(1260)−(→ K ∗0 K −), Λ+

c K ∗0 K − and non-
resonant four-body phase space. The fractions are determined 
by fitting the two-dimensional data distribution of K +π− and 
K +K −π− invariant masses.

The L0 efficiency of each hadron is computed using samples 
of well identified pions and kaons from D0 → K −π+ decays and 
protons from Λ → pπ− decays [32]. The efficiency is calculated in 
bins of transverse energy for the particles incident on the HCAL 
surface, separately for its inner and outer regions. The PID effi-
ciency is determined by the calibration samples of D∗+ → D0(→
K −π+)π+ and Λ → pπ− decays and is evaluated as a function 
of track momentum, track pseudorapidity and event multiplicity, 
where the latter is represented by the number of the reconstructed 
tracks in the event.

The ratio between the total efficiencies for the signal and nor-
malisation channels in Eq. (1), is determined to be 0.78 ± 0.02, 
where the uncertainty accounts only for the size of the simula-
tion sample. The value differs from unity primarily due to different 
selection efficiencies on the MVA responses for the signal and nor-
malisation channels.

External inputs are used for the branching fractions B(D−
s →

K +K −π−) = (5.39 ± 0.15) × 10−2 [1] and B(Λ0
b → Λ+

c D−
s ) =

(1.10 ± 0.10) × 10−2 [11]. In the latter case, while the value is 
measured by the LHCb collaboration [11], its uncertainty is dom-
inated by the branching fraction of B0 → D+D−

s decays, and is 
essentially uncorrelated with the present measurement.

6. Systematic uncertainties

All systematic uncertainties on the measurement of the ratio of 
branching fractions are listed in Table 1. The total uncertainty is 
determined from the sum of all contributions in quadrature. The 
dominant uncertainty is related to the resonance structure that is 
not perfectly modelled by the simulation.

Uncertainties due to the fit model are considered. For the back-
ground due to random combinations of final-state particles in both 
the signal and normalisation channels, the exponential function is 
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Table 1
Summary of systematic uncertainties on the ratio of branching fractions.

Source Uncertainty (%)

Combinatorial background 0.9

Shape of Λ0
b → Σ+

c K + K −π− contribution 0.3

Λ0
b → Λ+

c K + K −π− background in normalisation channel 0.8

Signal fit model 0.5

Simulation sample size 2.5

PID efficiency 0.4

Trigger efficiency 0.1

(pT, y) weight 0.8

Track multiplicity weight 0.8

Λ+
c Dalitz structure 1.4

Mixture fraction in simulation 0.2

Resonance structure 3.6

Multiple candidates 0.3

MVA selection 0.5

Total 4.9

replaced by a second-order polynomial function. From the com-
parison to the default result, the relative uncertainty on the ratio 
of branching fractions is 0.9%. In the signal channel, the uncer-
tainty due to the Λ0

b → Σ+
c K +K −π− background contribution is 

assessed by performing the fit with a widened mass region, result-
ing in a relative uncertainty of 0.3%. For the normalisation channel, 
changing the yield of the Λ0

b → Λ+
c K +K −π− contribution within 

its uncertainty results in a relative 0.8% variation.
The systematic uncertainty due to the model for both signal and 

normalisation channels, is studied by changing to a single Hypatia 
function [33], where the mean and width parameters are left free 
while all other parameters are taken from simulation. This results 
in a relative uncertainty of 0.5%.

The uncertainties on the ratio of efficiencies are evaluated. The 
uncertainty due to the finite simulation sample size is evaluated 
from the expected efficiency variation in bins of pT and y of the 
Λ0

b candidate as

σε =
√∑

i

εi(1 − εi)Ni wi

/∑
i

Ni wi , (3)

for each bin i, where Ni is the number of generated events, wi

is a correction weight, and εi is the candidate efficiency. The nor-
malisation of the weights is chosen such that the denominator is 
equal to total number of generated events without the weighting. 
The relative uncertainty is found to be 2.5%.

Pseudoexperiments are used to evaluate the systematic effects 
due to uncertainties on the weights or efficiencies in different 
bins. For a given source, many pseudoexperiments are generated, 
in which each produces a new set of weights or efficiencies ac-
cording to the central values and uncertainties following Gaussian 
distributions. The efficiency ratio between the signal and normali-
sation channels is recomputed. The resulting efficiency ratios from 
many pseudoexperiments of this source produce a Gaussian distri-
bution centering at the baseline value. The standard deviation of 
the Gaussian distribution is taken as absolute uncertainty on the 
efficiency ratio for the given source. The procedure is applied to 
obtain the systematic uncertainty related to the PID and trigger ef-
ficiencies and to (pT, y) and track multiplicity weighting.

The tracking efficiency returned by the simulation is calibrated 
using a data-driven method [34]. The uncertainty on the calibra-
tion sample size is propagated to the efficiency ratio using pseudo-
experiments, resulting in a systematic uncertainty of 0.8%. Because 
the final states for signal and normalisation modes are identical, 

possible data-simulation differences in hadron interactions with 
the detector material are assumed to be negligible.

The agreement between data and simulation for the Λ+
c →

pK −π+ channel is tested by comparing the Dalitz structure. 
The signal simulation sample is weighted in the m(pK −) versus 
m(K −π+) plane to match the distribution of the background-
subtracted data. The uncertainty related to the limited sample size 
used for obtaining these weights is 1.1%, obtained from pseudo-
experiments. The uncertainty related to the choice of binning is 
0.8%, determined by using an alternative binning. A total of 1.4% is 
assigned as systematic uncertainty.

The contributions of the Λ0
b decays through the mixture of the 

three decay modes are considered when generating the simulated 
events of the signal channel, and their fractions are obtained by fit-
ting the two-dimensional distribution of the K + K −π− and K +π−
systems in the background-subtracted signal data. The fractions are 
changed according to the statistical uncertainty of the fit result, 
yielding 0.2% of relative uncertainty.

The simulation does not fully model the resonance structure, 
e.g. the contribution of Σ0

c resonances, which is clearly seen in 
the Λ+

c π− invariant mass distribution, as illustrated in Fig. 4. 
By weighting the simulation to match the m(Λ+

c π−) distribution 
in the data, a 1.3% variation of the ratio of branching fractions 
is found and assigned as systematic uncertainty. Besides, differ-
ences between background-subtracted data and simulated signal 
events are also observed in the invariant mass distributions of the 
Λ+

c K + K − and K + K − systems. To account for this discrepancy, 
the simulated sample is weighted according to the Λ+

c K + K − or 
K + K − mass distribution of background-subtracted data, and the 
ratio of branching fractions is reevaluated. The two procedures re-
turn changes of 2.6% and 2.0%, respectively. The three values are 
added in quadrature to account for the uncertainty due to reso-
nance structure.

Simulation does not account well for multiple candidates, 
which is found to be about 0.6% of the data sample in the signal 
channel. Half of this fraction is assigned as systematic uncertainty 
due to the random choice to retain only one candidate.

The MVA selection criteria are optimized separately for the sig-
nal and normalisation channels. As an alternative choice, the MVA 
selection of the normalisation channel is fixed to be the same as 
that of the signal channel to test the robustness of the MVA selec-
tion. The relative variation of the branching fraction ratio is 0.5%, 
which is assigned as systematic uncertainty.

7. Results and summary

The first observation of the Λ0
b → Λ+

c K +K −π− decay is pre-
sented, and the branching fraction is determined using the Λ0

b →
Λ+

c D−
s decay as a normalisation channel. The relative branching 

fraction is measured to be

B(Λ0
b → Λ+

c K +K −π−)

B(Λ0
b → Λ+

c D−
s )

= (9.26 ± 0.29 ± 0.46 ± 0.26) × 10−2,

where the first uncertainty is statistical, the second systematic, and 
the third is due to the knowledge of the D−

s → K +K −π− branch-
ing fraction [1]. Using this ratio, the Λ0

b → Λ+
c K +K −π− branching 

fraction is determined to be

B(Λ0
b → Λ+

c K +K −π−) = (1.02 ± 0.03 ± 0.05 ± 0.10) × 10−3,

where the third term includes the uncertainty on the branching 
fraction of the Λ0

b → Λ+
c D−

s decay [1]. The invariant mass distri-
bution of the Λ+

c K + system is inspected for possible structure due 
to open-charm pentaquarks, and no contribution is observed.

5
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