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Although tensor models are serious candidates for a theory of quantum gravity, a connection with
classical spacetimes has been elusive thus far. I aim to fill this gap by proposing a neat connection between
tensor theory and Euclidean gravity at the classical level. The main departure from the usual approach is the
use of Schur invariants (instead of monomial invariants) as manifold partners. Classical spacetime features
can be identified naturally on the tensor side in this new setup. A notion of locality is shown to emerge
through Ward identities, where proximity between spacetime points translates into vicinity between Young
diagram corners.
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I. INTRODUCTION

One of the most fascinating challenges of physics today
is to understand the quantum nature of spacetime. In
contrast to other theories which were developed in parallel
with experiments, like quantum mechanics, the develop-
ment of quantum gravity has to rely only on mathematical
consistency due to the high energy experiments that would
be required in order to test it in the lab. A necessary check
for any quantum gravity theory is the recovery of Einstein
gravity at the classical limit.
We still lack a unified framework for quantum gravity.

However, several approaches have brought important
insights from different perspectives. Known approaches
to quantum gravity are string theory, noncommutative
geometry, holography, spacetime triangulations, canonical
quantum gravity, and tensor theories. One of these, if not a
new option, will likely prevail in the future. It will probably
be the one that offers a friendlier picture or permits more
accurate calculations. As a comment, I must say that I do
not find any conflict in the diversity of the current spectrum
of (sometimes overlapping) theories. At the end of the day,
the success of a physical model to make predictions relies
mostly on the consideration of the relevant degrees of
freedom for the given phenomenon, and mathematics is
rich enough to allocate those into separate frameworks.
An exciting feature of tensor theories is the idea of

“spacetime emergence”. Spacetime is not assumed a priori,

but it is expected to appear combinatorially. Tensor models
are expected to give a discretized (combinatorial) descrip-
tion of the Euclidean quantum gravity partition function

Z ¼
Z

dg e−IE½g�: ð1:1Þ

The usual approach to quantum gravity from tensor models,
and the line I will follow in this paper, is precisely the
discretization of Eq. (1.1). However, there are recent
developments, with interesting results, where, by means
of the connection between tensor and matrix theories, they
apply holographic results and techniques to make contact
with gravity; see, for instance, [1]. Perhaps these two
strategies, tensors as tools for discretization and holo-
graphic tensors, are not so different. As an example, the
c ¼ 1 string was motivated by summing over surfaces,
but in the end there is an AdS=CFT–like duality between
matrix quantum mechanics and noncritical strings.
The idea of describing spacetime by means of tensor

models comes historically from the remarkable success of
matrix theories in describing two-dimensional gravity [2] at
the sector where the matrix size, N, is large. However, the
first tensor models that were proposed [3–5] were patho-
logical at large N, so the subject faded from discussion.
In 2009, with the arrival of color tensor models [6,7],
the situation changed. A well-defined 1=N expansion was
found [8–10], the subject was revitalized [11–22], and since
then tensor models have become firm candidates for a
theory of quantum gravity. The interested reader can find
more comprehensive bibliographic information in [23] and
the references therein.
A precise connection between tensor invariants and

piecewise linear (PL) manifolds has been established.
Invariants in tensor models are linear combinations of
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monomials made of n copies of a tensor T which are
contracted with n copies of its complex conjugate T̄ in a
certain way. There is a natural map between these mono-
mials and PL manifolds: each pattern of contraction is
interpreted as dictating how to glue simplices along their
faces to build the manifold. Monomial invariants are, so to
say, the skeletons of PL manifolds. Remarkably enough,
providing suitable identifications, it has been proven that
the dynamics of tensor models reproduces the dynamics
of triangulations driven by the Regge calculus [24].
Specifically, the amplitude of each tensor invariant appear-
ing as a Wick contraction in the computation of an
expectation value is associated with the amplitude of the
corresponding triangulation related to the Regge action.
This result, together with the known fact that Regge
discretizations lead to Einstein gravity at the continuum
limit, establishes a solid connection between tensor models
and gravity. Let us remember that this connection involves
some gauge fixing on the gravity side since the triangu-
lations must be equilateral.
Despite the success of the combinatorial description of

PL manifolds, the classical limit and the description of
backgrounds by tensor models has been elusive thus far.
The purpose of this paper is to fill this gap. The main point
of departure of the paper from the usual setup is the
consideration of a different set of invariants as partners of
classical backgrounds. Using representation theory argu-
ments, a basis of invariants for any values of n and N, the
restricted Schur basis, has been found [12,13,15,20]. There
is a prominent set of invariants, the Schur invariants, which
are easily constructed from characters of the symmetric
group and related to the restricted Schur basis by simple
linear combinations. Schur invariants are the candidates I
propose for background partners. I will justify this choice in
Sec. III A by showing how, in the presence of a large Schur
invariant, the three-point function factorizes, meaning that
any density matrix describing multiparticle states turns
diagonal.
Schur invariants are linear combinations of monomials

weighed by characters. They are labeled by d Young
diagrams with n boxes each and a maximum of N rows.
So, from the standard point of view (that is, with the
identification of monomials with PL manifolds), classical
backgrounds (Schur invariants) occur in our setup as a
collective behavior of quantum contributions (monomial
invariants).
The first problem we face with the new set of invariants

is that we do not know at first how to relate them to
manifolds. Remember that as we leave monomials we lose
the prescription to identify patterns of contraction with
simplicial tilings. This is a central question and marks the
starting point of the paper. In order to establish a connection
between Schur invariants and manifolds, I equate the
partition functions of Euclidean gravity and tensor theory
at a saddle point. This equation must be thought of as an

ansatz. Using generic actions for both theories and some
mathematical treatment, I obtain Eq. (4.14), which tells us
that, at the classical level, the curvature of the (discrete)
manifold at each point is given by the expectation value of a
corresponding Schur invariant. Furthermore, for Einstein
gravity, the expectation value must be computed with the
free tensor action. Notice that the connection between
tensor theory and gravity that we propose does not involve
any gauge fixing.
A notion of locality arises in our setup via the Ward

identities. Ward identities in tensor models involve the
action of two operators, cut and join, defined in Eqs. (4.3)
and (4.4), respectively. Locality is linked to the cut action,
which hits on invariants as a derivative. That the action of
the cut operator over Schur invariants produces all Schur
invariants coming from the original with one box deleted in
each label [see (E10)] is crucial for a notion of locality in
tensor models. This enables us to map the corners of the d
Young diagrams of a given Schur invariant to a grid of
“physical” discrete spacetime points in a way that nearby
points in the grid are nearby corners in the Young diagrams.
Another insight we have from the use of Schur invariants

in relation with classical backgrounds is that the limits
n;N → ∞ are not independent. This happens because the
asymptotic Young diagrams must be limit shapes [25];
otherwise Schur invariants do not have a well-defined
asymptotic limit.1 This fact, together with restriction of the
number of rows in each diagram to at most N, tells us that n
must grow as N2. One could wonder about the role (if any)
that the melonic sector will have in this picture. The answer
is that for large invariants of size n ∼ N2 the melonic
contribution to any expectation value is negligible.2 Thus,
melon invariants, although leading for short invariants, play
no role in our proposal for classical backgrounds.3 Physical
quantities in general relativity should have a tensorial
counterpart in the appropriate limit. If we think of asymp-
totically flat spacetimes, for simplicity, the Arnowitt-Deser-
Misner (ADM) mass is a charge associated with the whole
geometry. But what is the ADM mass in the tensor world?
Using general arguments, I claim that the ADM mass must
be proportional to n=N2, which is a fixed quantity for a
given Schur invariant and remains finite at n;N → ∞.
The paper is organized as follows. Section II provides a

brief introduction to tensor models: invariants, the restricted

1This is related to inductive definition and the representation
theory of S∞. See the classical results by Thoma in [26] or a
didactic review by Okounkov [27].

2Here the same discussion is applied as in [28] for invariants
with n ∼ N (parallel to the original arguments in tensor models
in [29]), where it was shown that for such large invariants the
contribution of nonmelonic diagrams, being so numerous, over-
whelms the entire sum.

3Along the same lines, see [1], where, using holographic
arguments, it is claimed that the melonic sector does not lead to
an emergent geometry.
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Schur basis, Schur invariants, the action, the partition
function, and Gaussian correlators. It also sets the notation
that I will be using later. In Sec. III, I start by verifying the
correspondence between large Schur invariants and
classical backgrounds. I show how, in the presence of a
large Schur invariant, three-point functions factorize. This
fact is interpreted as the large Schur invariant behaving as a
classical background, where multiparticle states are seen as
independent excitations. Afterward, in Sec. III B, I put into
contact both theories, tensor and gravity, by equating the
respective partition functions at the saddle point in
Eq. (3.31). The main result of the section is Eq. (3.40),
where the on-shell Hilbert-Einstein action is computed
using the Gaussian correlator of the corresponding tensor
invariant. Locality is tackled in Sec. IV. In that section it is
shown how the use of the Ward identities in tensor models
permits us to write Gaussian correlators as correlators
involving the cut operator as in Eq. (4.5). This is crucial
for the emergence of a notion of locality in tensor models:
hitting as a derivative, the cut operator acts on Schur
invariants deleting a corner box in each of the invariant’s
labels. Those distinguished corners can be mapped to the
grid, which, on the gravity side, is discretized space. The
most important result of Sec. IV, and perhaps of the paper,
is Eq. (4.14). Finally, in Sec. IV C, I propose a tensor
quantity which seems reasonable to relate to the ADMmass
of spacetimes.

II. TENSOR MODELS

In this section, I review known facts about tensor models
and set the notation. I also define the invariants which will
play a role in the partition function and will be relevant
in this paper. More information can be found in the
Appendixes and in the references provided.

A. Invariants

The basic object of color tensor models is the tensor T of
order d and size N. The tensor T is a box of Nd complex
numbers whose components transform under the gauge
group UðNÞ×d as

Tj1j2…jd ¼
X

i1;…;id

U1ðNÞi1j1 � � �UdðNÞidjdTi1i2…id ; ð2:1Þ

where, with UiðNÞ, I am emphasizing that each component
transforms under a different copy of UðNÞ. The complex
conjugate is a contravariant tensor that transforms as

T̄j1j2…jd ¼
X

i1;…;id

Ū1ðNÞj1i1 � � � ŪdðNÞjdid T̄i1i2…id : ð2:2Þ

Invariants under UðNÞ×d are made of n copies of T and n
copies of T̄ as we contract all the indices of the tensors by
pairs ðT; T̄Þ respecting the index position. So, first indices

contract only with first indices, and so on. Any possible
invariant can be obtained as a linear combination of the
elements of the set

�
Oα1…αd ¼

Yn
p¼1

Tip
1
ip
2
…ipd

T̄i
α1ðpÞ
1

i
α2ðpÞ
2

…i
αdðpÞ
d jðα1…αdÞ ∈ Sdn

�
;

ð2:3Þ

where subscripts and superscripts have been assigned to
indices in order to specify the location of the component
and the slot that each tensor occupies in the string of n
copies. As the notation in tensor theory quickly proliferates,
for practical reasons I will reduce it as much as possible by
omitting indices whenever they are not strictly necessary.
The set (2.3) has often been called the permutation basis in
the literature; see [11].

B. Notation

In addition to the usual notation for tensor models, I will
adopt a vector notation for d-tuples

α⃗ ¼ ðα1;…; αdÞ; αi ∈ Sn;

μ⃗ ¼ ðμ1;…; μdÞ; μi ⊢ n; ð2:4Þ

where αi are permutations from the symmetric group Sn.
Thus, α⃗ is an element of the group Sdn. The symbol “⊢”
represents partition, so μ ⊢ n indicates that μ is a partition
of n. Remember that partitions of n label irreducible
representations of Sn. This way, μ⃗ is a collection of d
partitions of n, which labels an irreducible representation
of Sdn. The number of cycles of a given permutation will
be written as CðαÞ. If it is applied to a collection of
permutations, then

Cðα⃗Þ ¼
X
i

CðαiÞ: ð2:5Þ

The product of two elements of Sdn and a diagonal product
of an element of Sn with an element of Sdn will be written as

α⃗ · β⃗ ¼ ðα1β1;…; αdβdÞ and α⃗ · σ ¼ ðα1σ;…; αdσÞ;
ð2:6Þ

respectively. This vector notation applies to every math-
ematical object found in this paper. For instance, central
objects in this work are the characters of the symmetric
group, denoted as χμðαÞ when it is the character of the
irreducible representation Γμ of the permutation α. Then,
following the logic of the vector notation, we will write for
a product of characters

χμ⃗ðα⃗Þ ¼ χμ1ðα1Þ � � � χμdðαdÞ: ð2:7Þ

BACKGROUNDS FROM TENSOR MODELS: A PROPOSAL PHYS. REV. D 103, 066010 (2021)

066010-3



Quantities like the Littlewood-Richardson coefficients
which, in terms of characters of the symmetric group,
can be expressed as

Cλ
μν ¼

1

n!m!

X
σ∈Sn

X
τ∈Sm

χμðσÞχνðτÞχλðσ∘τÞ;

μ ⊢ m; ν ⊢ n; λ ⊢ nþm; ð2:8Þ

where the product σ∘τ indicates that the permutations are
disjoint, are also subjected to vector notation. So,

Cλ⃗
μ⃗ ν⃗ ¼ Cλ1

μ1ν1 � � �Cλd
μdνd ; μi ⊢ m;

νi ⊢ n; λi ⊢ nþm: ð2:9Þ

For dimensions of the representations of the symmetric
group and the unitary group I will write, respectively,

dμ⃗ ¼ dμ1 � � � dμ1 and

Dimμ⃗ðNÞ ¼ Dimμ1ðNÞ � � �DimμdðNÞ: ð2:10Þ

It is well known that the dimensions of the representations
of the symmetric group as well as the representations of the
unitary group can be computed combinatorially. They read

dμ ¼
n!

Hooksμ
ð2:11Þ

and

DimλðNÞ ¼ 1

n!
fλðNÞdλ; ð2:12Þ

respectively, where

fλðNÞ ¼
Y

ði;jÞ∈λ
ðN þ j − iÞ: ð2:13Þ

We will also write

fμ⃗ðNÞ ¼ fμ1ðNÞ � � � fμdðNÞ: ð2:14Þ

Quantities like the Kronecker coefficients will be written in
vector shorthand notation as well. So, I will write

gμ⃗ ¼ gμ1…μd ¼
1

n!

X
σ∈Sn

χμ1ðσÞ � � � χμdðσÞ: ð2:15Þ

Trace and Schur operators will be denoted as

Oα⃗ ¼ Oα1…αd ; Oμ⃗;ij ¼ Oμ1…μd;ij: ð2:16Þ

In this paper, I will generally use prime greek letters to
represent objects related to n − 1 elements. I find it
especially convenient when dealing with the cut operation.

There, I will call α0 the permutation of n − 1 elements that
results from α after deleting the letter “n.” The same logic
will be used for Young diagrams, where the notation μ0↗μ
means that the diagram μ0 ⊢ n − 1 is obtained from μ after
deleting one corner box. This notation will be extended
vectorially; thus,

μ⃗0↗μ⃗; ð2:17Þ

will refer to a d-tuple of diagrams μ⃗0 that is obtained from
the d-tuple μ⃗ after deleting one corner box in each μi.

C. Restricted Schur basis and Schur invariants

Despite the name, the elements of the set (2.3), although
they span the space of invariants, do not form a basis. They
overexpress the space of invariants. This is not merely
because of the obvious equivalence

Oτ·α⃗·σ ¼ Oα⃗; ð2:18Þ

a redundancy that may be removed by considering only
double coset representatives, but also because the elements
of Eq. (2.3) are not linearly independent for n > N. Using
arguments of representation theory, the exact number of
invariants for given N and n was found4 [12,13,15,20] and
the natural basis adapted to the counting, the restricted
Schur basis, was constructed5; see Appendix A 2 for
details. It is the set

fOμ⃗;ijj μi ⊢ n; lðμiÞ ≤ N; i; j ¼ 1;…; gμ⃗g: ð2:19Þ

The condition lðμiÞ ≤ N forces each Young diagram μi to
have a maximum of N rows. The elements of the basis can
be written as

Oμ⃗;ij ¼
X
α⃗∈Sdn

Fμ⃗;ijðα⃗ÞOα⃗ ð2:20Þ

for suitable complex double coset invariant functions
Fμ⃗;ijðα⃗Þ which fulfill the convolution algebra

Fμ⃗;ij � Fν⃗;klðα⃗Þ ¼ δμ⃗ ν⃗δjkFμ⃗;ilðα⃗Þ: ð2:21Þ

The functions Fμ⃗;ijðα⃗Þ are projectors with the labels μ⃗ and
intertwiners with the labels ij. For reasons that will become
clear later, in this paper we will be interested in a subset of

4See also [30,31] for the counting of invariants in tensor
theories with an orthogonal gauge group.

5Analogous bases of operators have been constructed in matrix
models, first [32] for a single matrix model, and later [33,34] for
multimatrix models. See also [35,36] for other multimatrix model
bases.
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invariants which we will call Schur invariants,6 and which
are defined as

Oμ⃗ ≡
Xgμ⃗
i¼1

Oμ⃗;ii: ð2:22Þ

Schur invariants are built out of projectors [see Eq. (A10)]
and can be constructed explicitly. They are

Oμ⃗ ¼
1

n!d−1
X
α⃗∈Sdn

dμ⃗χμ⃗ðα⃗ÞOα⃗: ð2:23Þ

Note that the normalization of the invariants Oμ⃗ differs
from the usual choices, as in [21]. The reason for this is that
with the normalization of Eq. (2.23), the invariants corre-
spond to true projectors in the space of coset invariant
functions. See Appendix A 1 for details.

D. Action, partition function, and correlators

The partition function of the theory is

Z½λ� ¼
Z

dT dT̄ exp

�
−
Nd−1

2
S½T; T̄�

�
: ð2:24Þ

The letter λ encodes the couplings of all the interacting
terms. The factor Nd−1 in front of the action makes the
model asymptotically free as N → ∞ [38].
The most general action, which includes all the invariant

operators of the theory, is

S½T; T̄� ¼ T · T̄ þ 1

Nd−1

X
μ⃗;ij

λμ⃗;ijOμ⃗;ij: ð2:25Þ

In this paper, we will be considering the sector of Schur
invariants, so the action we will use is

S½T; T̄� ¼ T · T̄ þ 1

Nd−1

X
μ⃗

λμ⃗Oμ⃗: ð2:26Þ

With Eq. (2.24), the two-point function for the free theory
of single tensors reads

hTi1…id T̄
j1…jdi0 ¼

1

Nd−1 δ
j1
i1
� � � δjdid ; ð2:27Þ

where the subscript “0” indicates a Gaussian average, with
no subscript indicating that the average involves the full
action (2.26). The correlator of the trace operators made of
2n tensors is

hOα⃗i0 ¼
1

Nnðd−1Þ
X
σ∈Sn

NCðα⃗·σÞ; ð2:28Þ

with the definition of the number of cycles given in
Eq. (2.5). Applying the formula

NCðσÞ ¼
X
μ⊢n

χμðσÞDimμðNÞ ð2:29Þ

and the orthogonality of characters, it is straightforward to
see that the Gaussian average of Schur invariants Oμ⃗ is

hOμ⃗i0 ¼
n!

Nnðd−1Þ Dimμ⃗ðNÞgμ⃗ ¼
1

n!d−1
1

Nnðd−1Þ fμ⃗ðNÞdμ⃗gμ⃗;
ð2:30Þ

where fμ⃗ðNÞ has been given in Eq. (2.14) with Eq. (2.13)
and gμ⃗ are the Kronecker coefficients defined in Eq. (2.15).

III. CONNECTION WITH GRAVITY
AT THE SADDLE POINT

Via triangulations, a close relation has been established
between tensor models and gravity. Every invariant built on
2n (dþ 1) tensors can be associated with a triangulation
with 2n d-simplices where the pattern of contraction of the
indices encodes the details of the triangulation. The Wick
contractions of observables built on a 2n tensor of order d
can be interpreted as invariants of order dþ 1, which may
be associated with triangulations made of 2n d-simplices.
Remarkably, it has been proven [24] that, provided the
appropriate identifications, the statistics of tensor models
match those of triangulations driven by Regge calculus,
what establishes a solid connection between tensor models
and gravity at the level of partition functions.
It is not easy to find the tensor sector that corresponds to

the continuum limit for gravity, that is, classical gravity. It
will happen at large N, and there is a common belief that it
should be at a fixed point of a certain renormalization flow;
see [39] and the references therein. This way, classical
gravity would be sitting at a universality class where any
detail of a specific triangulation would be irrelevant, as it
should be. Then, we recover the necessary symmetry under
diffeomorphisms of classical gravity.7 The big question is
whether tensor invariants could also, in some large limit
of n and N, encode a background, a classical solution of
gravity. The main goal of this paper is to propose a
collection of invariants (Schur invariants) which can be
associated with backgrounds, as well as to establish a
precise relation between them.

6Also called permutation centralizer algebras (see [37]) and
Kronecker tensorial character (see [21]) in the literature.

7Different triangulations reduce to different coordinate systems
at the continuum limit of Regge calculus.
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A. Schur invariants and backgrounds

I claim that Schur invariants correspond to backgrounds.
This claim is supported by the factorization of the three-
point function at large n, N in the presence of a Schur
invariant. Let us define

⟪Oα⃗⟫μ⃗ ≡ hOα⃗Oμ⃗i0
hOμ⃗i0

; ð3:1Þ

where μ⃗ labels a Schur invariant with μi ⊢ n and Oα⃗ is an
invariant made of a few (order 1) tensors. Thus, Oα⃗ will be
interpreted as an excitation of the background Oμ⃗. For the
classical behavior of the background, we need to prove that,
for large n, N,

⟪Oα⃗Oβ⃗⟫μ⃗ ≈ ⟪Oα⃗⟫μ⃗⟪Oβ⃗⟫μ⃗: ð3:2Þ

Condition (3.2) assures the independence of the states Oα⃗

and Oβ⃗ when they happen in the large “environment” Oμ⃗.
Consequently, the density matrix of any “multiparticle”
state turns diagonal. For this reason, I will assume that if the
condition (3.2) holds for any Oα⃗ and Oβ⃗, then Oμ⃗ is a
background and Oα⃗ and Oβ⃗ should be thought of as
excitations of Oμ⃗. For simplicity I am also going to
consider Oα⃗ and Oβ⃗ Schur invariants with numbers of
tensor copies n1 and n2, respectively, where n1; n2 ≪ n. So,
one should think ofOα⃗ andOβ⃗ as (Schur) excitations ofOμ⃗.
With the definition of Schur invariants (2.23) and their

averages (2.30) and applying (B1) for the product of two
Schur invariants, we have

hOα⃗Oβ⃗Oμ⃗i0 ¼
n!n1!n2!

ðnþ n1 þ n2Þ!d
dα⃗dβ⃗dμ⃗

Nðnþn1þn2Þðd−1Þ

×
X

λi⊢nþn1þn2

fλ⃗gλ⃗C
λ⃗
μ⃗ α⃗ β⃗

ð3:3Þ

and

hOα⃗Oμ⃗i0hOβ⃗Oμ⃗i0
hOμ⃗i0

¼ n!dn!n1!n2!
ðnþ n1Þ!dðnþ n2Þ!d

dα⃗dβ⃗dμ⃗

Nðnþn1þn2Þðd−1Þ

×
X

λ0
i
⊢nþn1

λ00
i
⊢nþn2

fλ⃗0fλ⃗00

fμ⃗

gλ⃗0gλ⃗00

gμ⃗
Cλ⃗0
μ⃗ α⃗C

λ⃗00

μ⃗ β⃗
; ð3:4Þ

where all the quantities involved have been defined in
Sec. II B.
As commented above, to claim that Oμ⃗ is a background

we must prove that Eqs. (3.3) and (3.4) are equal at
n;N → ∞. A rigorous proof of this statement in full
generality is challenging because of the difficulties one
encounters when dealing with the Kronecker coefficients.

However, I will offer a check, valid for some configurations
μ⃗, that clearly supports the statement.
The key property which lies under the factorization of

Eq. (3.3) into Eq. (3.4) is the factorization of normalized
characters of the symmetric group at large n.8 That is,

χ̄μðσ1∘σ2Þ ¼ χ̄μðσ1Þχ̄μðσ2Þ þ oð1=nÞ; ð3:5Þ

where the normalized character is defined as

χ̄λðσÞ≡ χλðσÞ
dλ

: ð3:6Þ

The property (3.5) come from the explicit form of the
characters for large n found by Biane [40],

χ̄λðσÞ ¼ CσðwÞn−jσj=2 þOðn−jσj=2−1Þ; λ ⊢ n; ð3:7Þ

where jσj is the minimal number of transpositions neces-
sary to generate σ and w is the limit shape that the partition
λ approaches. The crucial fact in formula (3.7) is that
Cσ∘τðwÞ ¼ CσðwÞCτðwÞ; that is, the function factorizes
whenever σ and τ are disjoint permutations. It is also of
special note that CσðwÞ depends only on the limit shape w
and not on the particular partition λ, a fact that I will
use later.
Because of (3.5), the Littlewood-Richardson numbers

adopt the useful form

Cλ
μν ¼

1

n!n1!

X
σ∈Sn

σ1∈Sn1

χλðσ∘σ1ÞχμðσÞχνðσ1Þ ∼ 1

dλ
dλ=μdλ=ν ð3:8Þ

and

Cλ
μνρ ¼

1

n!n1!n2!

X
σ∈Sn

σ1∈Sn1
σ2∈Sn2

χλðσ∘σ1∘σ2ÞχμðσÞχνðσ1Þχρðσ2Þ

∼
1

d2λ
dλ=μdλ=νdλ=ρ; ð3:9Þ

where

dλ=μ ¼
1

n!

X
σ∈Sn

χλðσÞχμðσÞ; λ ⊢ nþ n1; μ ⊢ n: ð3:10Þ

The number dλ=μ is called the relative dimension. It is the
number of times that the representation Γμ is subduced
from Γλ when the group is restricted from Snþn1 to Sn.
The number dλ=μ also counts the paths that join the
partition λ and the partition μ in the Young graph or,
equivalently, the number of partially labeled Young

8See [40].
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diagrams between λ and μ. Of course, this number will be 0
if μ is not subduced by λ. Usually, the computation of
Littlewood-Richardson (LR) numbers, although it can be
done combinatorially, is much more complicated than in
Eq. (3.8) and involves a precise relation between partitions
μ and ν besides their individual relation with λ. However, as
seen in (3.8), this contribution is subleading at large n.
Let us see how Eq. (3.3) approaches Eq. (3.4) at large n,

N. The first thing to notice is that the prefactors in front of
their respective sums are equal at large n, so I will not
worry about them in the following. We now have

X
λi⊢nþn1þn2

Cλ⃗
μ⃗ α⃗ β⃗

fλ⃗gλ⃗ ≈
X

λi⊢nþn1þn2

dλ⃗=μ⃗
dλ⃗=α⃗
dλ⃗

dλ⃗=β⃗
dλ⃗

fλ⃗gλ⃗ ð3:11Þ

≈
X

τ0
i
;λ0
i
⊢nþn1

τ00
i
;λ00
i
⊢nþn2

λ⃗ðλ⃗0 ;λ⃗00Þ

dλ⃗00=μ⃗dλ⃗0=μ⃗
dλ⃗=τ⃗0dτ⃗0

dλ⃗

dτ⃗0=α⃗
dτ⃗0

dλ⃗=τ⃗00dτ⃗00

dλ⃗

dτ⃗00=β⃗
dτ⃗00

fλ⃗gλ⃗

ð3:12Þ

≈
X

τ0
i
;λ0
i
⊢nþn1

τ00
i
;λ00
i
⊢nþn2

λ⃗ðλ⃗0 ;λ⃗00Þ

dλ⃗00=μ⃗dλ⃗0=μ⃗
dλ⃗=τ⃗0dτ⃗0

dλ⃗

dτ⃗0=α⃗
dτ⃗0

dλ⃗=τ⃗00dτ⃗00

dλ⃗

dτ⃗00=β⃗
dτ⃗00

fλ⃗0fλ⃗00

fμ⃗

gλ⃗0gλ⃗00

gμ⃗

ð3:13Þ

≈
X

τ0
i
;λ0
i
⊢nþn1

τ00
i
;λ00
i
⊢nþn2

λ⃗ðλ⃗0 ;λ⃗00Þ

dλ⃗00=μ⃗dλ⃗0=μ⃗
dλ⃗=τ⃗0dτ⃗0

dλ⃗

dλ⃗0=α⃗
dλ⃗0

dλ⃗=τ⃗00dτ⃗00

dλ⃗

dλ⃗00=β⃗
dλ⃗00

fλ⃗0fλ⃗00

fμ⃗

gλ⃗0gλ⃗00

gμ⃗

ð3:14Þ

¼
X

λ0
i
⊢nþn1

λ00
i
⊢nþn2

dλ⃗00=μ⃗dλ⃗0=μ⃗
dλ⃗0=α⃗
dλ⃗0

dλ⃗00=β⃗
dλ⃗00

fλ⃗0fλ⃗00

fμ⃗

gλ⃗0gλ⃗00

gμ⃗
ð3:15Þ

≈
X

λ0
i
⊢nþn1

λ00
i
⊢nþn2

Cλ⃗0
μ⃗ α⃗C

λ⃗00

μ⃗ β⃗

fλ⃗0fλ⃗00

fμ⃗

gλ⃗0gλ⃗00

gμ⃗
; ð3:16Þ

and then

hOα⃗Oβ⃗Oμ⃗i0 ≈
hOα⃗Oμ⃗i0hOβ⃗Oμ⃗i0

hOμ⃗i0
; ð3:17Þ

where the equality is reached at the limit n → ∞.
Let us explain the approaches taken in

Eqs. (3.11)–(3.16).
In Eq. (3.11), I have used Eq. (3.9) to convert, at large n,

the LR numbers into the dimension and relative dimensions
of the irreducible representations associated with the Young
graph, the branching graph of the symmetric groups.

In Eq. (3.12), I have used the chain property9 of the
Young graph

dλ=α ¼
X
τ⊢n00

dλ=τdτ=α; λ ⊢ n α ⊢ n0; ð3:18Þ

which is valid for all n ≥ n00 ≥ n0.
I have also approached the relative dimensions for large

partitions. Given the Young diagrams λ ⊢ nþ n1 þ n2 and
μ ⊢ n, the relative dimension for large n is well approxi-
mated by ðn1 þ n2Þ!, and analogously for λ0 ⊢ nþ n1 and
λ00 ⊢ nþ n2. So,

dλ=μ ≈
ðn1 þ n2Þ!
n1!n2!

dλ0=μdλ00=μ: ð3:19Þ

In order to turn a sum over λ into a sum over λ0 and λ00, we
connect them as follows. The Young diagram λ0 is obtained
from μ by adding n1 boxes. We mark the corners of μwhere
these boxes are added. We do the same for λ00, which is
obtained from μ with the addition of n2 boxes. Now we
construct λðλ0; λ00Þ by adding n1 þ n2 boxes to μ in the
indicated corners. Be aware that to each λ corresponds
ðn1þn2

n1
Þ different choices of λ0 and λ00. So, the sum over λ0

and λ00 overcounts the sum over λ by the factor ðn1þn2
n1

Þ. This
combinatoric number should divide the sum (3.12), but it
exactly cancels the prefactor in Eq. (3.19) and, conse-
quently, no extra factors appear in Eq. (3.12).
In Eq. (3.13), I used Eq. (2.13) and the correspondence

λðλ0; λ00Þ described in the previous paragraph to write

fλ ¼
fλ0fλ00

fμ
: ð3:20Þ

For the Kronecker coefficients, the approach is taken under
the assumption that the states labeled by μ⃗ are typical states,
so the limit shapes are close to the Plancherel curve, where
the highest dimension for representations is reached and
Kronecker coefficients are also maximal [42]. The word
“typical” refers to the Plancherel measure

P½λ� ¼ d2λ
n!

;
1

n!

X
λ⊢n

d2λ ¼ 1; ð3:21Þ

which is naturally associated with the branching graph of
the symmetric group. Related to this measure, the proba-
bility that we pick the Plancherel curve as the limit shape as
n → ∞ is 1.
The value of the Kronecker coefficients for order 3

tensors when the limit shape is close to the Plancherel
curve is

9See [41].
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gμ1μ2μ3 ≈
ffiffiffiffiffi
n!

p
expð−apnÞ; μi ⊢ n; ap ≥ 0; ð3:22Þ

where the equality is reached when all the partitions
approach the Plancherel limit shape. This justifies

gλ⃗ ≈
gλ⃗0gλ⃗00

gμ⃗
; ð3:23Þ

which was used in Eq. (3.13). As commented above, the
approach of Kronecker coefficients (3.23) is modest since it
is restricted to limit shapes close to the Plancherel curve.
I claim that the factorization of the three-point function
(3.17) occurs for any limit shape, so a definite proof has to
involve a generalization of Eq. (3.23) valid for generic limit
shapes.
In Eq. (3.14), the only changes I introduce are

dτ⃗0=α⃗
dτ⃗0

→
dλ⃗0=α⃗
dλ⃗0

and
dτ⃗00=β⃗
dτ⃗00

→
dλ⃗00=β⃗
dλ⃗00

: ð3:24Þ

Be aware that, from Eq. (3.10), we see that

dτ0=α
dτ0

¼ 1

n1!

X
σ∈Sn1

χ̄τ0 ðσÞχαðσÞ

≈
1

n1!

X
σ∈Sn1

CσðwÞn−jσj=2χαðσÞ

≈
1

n1!

X
σ∈Sn1

χ̄λ0 ðσÞχαðσÞ ¼
dλ0=α
dλ0

: ð3:25Þ

The key point in Eq. (3.25) is that both τ0 and λ0 differ in n1
boxes from μ, and they have the same limit shape w, which
is assured as long as n1 ≪ n.
Finally, in Eq. (3.15), I used the stochastic property of

the relative dimensions [41], by means of which

X
τ0

dλ=τ0dτ0

dλ
¼ 1 ∀ λ: ð3:26Þ

Note that the factorization of the three-point function
(3.17) is a very nontrivial statement. The factorization
properties of characters at large n play a crucial role in this
approach. The product of Schur invariants involves LR
numbers, whose approximation (3.8) at large n is at the core
of the proof. As I said, Schur invariants are perhaps not the
only ones that are entitled to partner backgrounds, but I
cannot easily think of other invariants that fulfill Eq. (3.17)
and that can be proven to do so.

B. Path integral ansatz

Although it is not clear—and certainly not proven in
this article—that Schur invariants are the only large states
which can be traded as backgrounds, we find it convenient

to restrict ourselves to this subspace of invariants. The
reason is twofold: on the one hand, I have just proven in
Eq. (3.17) that they behave appropriately at large n, and, on
the other hand, that they are easier to operate with since we
can construct them explicitly.
In the following I am going to be loyal to two ideas:
(1) I will take seriously the idea that tensor models

encode quantum gravity. This is a reasonable
assumption given the success of tensor models in
describing discretized quantum gravity via triangu-
lations.

(2) I will associate a background to a Schur operatorOμ⃗.
This is analogous to the usual association trace
invariant ↔ PL manifold. However, as opposed to
the triangulation scheme, it is not obvious how to
make the association Schur operator↔ PL manifold
a priori.

As said above, the interacting terms I will be consid-
ering in the action are Schur invariants. Thus, the action
will be

S½T; T̄� ¼ T · T̄ þ 1

Nd−1

X
μ⃗

λμ⃗Oμ⃗: ð3:27Þ

Therefore, the partition function of the tensor model I am
considering is Eq. (2.24) with Eq. (3.27). In my proposal,
the partition function of the tensor model should be
equated to the partition function of gravity, so one would
like to schematically write

Z½λ� ¼ Zg½κ� ¼
Z

dg expð−Sκ½g�Þ; ð3:28Þ

where κ is a label for the higher derivative terms of
the gravity action. In order to make sense of Eq. (3.28),
let us examine the region near a solution of the gravity
equations, that is, near a background. In view of the
correspondence between Schur invariants and back-
grounds, and with a slight abuse of notation, let us refer
to the background as μ⃗ when it is associated with the
tensor invariant Oμ⃗. Accordingly, I will write S½μ⃗� for
the on-shell gravity action on the background μ⃗.
Near this background, the gravity path integral can be
well approximated as

Zg½κ� ¼ e−Sκ ½μ⃗�: ð3:29Þ

On the tensor side of the equality (3.28), we can write

Z½λ� ¼
�
exp

�X
μ⃗

λμ⃗Oμ⃗

��
0

; ð3:30Þ

where the subscript 0 reminds us that the average is
Gaussian. Note that in Eq. (3.30) there is no Schur
invariant chosen: the sum is over all of them. In order
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to match the saddle point approach of Eq. (3.29) to its
tensor counterpart, we have to impose a certain “projec-
tion” of Z½λ� onto Oμ⃗. I will write

Pμ⃗ðZ½λ�Þ ¼ e−Sκ ½μ⃗�: ð3:31Þ

For the purpose of finding such a projection, let us
remember that since N must be large to make contact
with classical gravity and because tensor models are
asymptotically free [38], the couplings λμ⃗ðNÞ must be
small and a Taylor expansion on them is expected to be
accurate with a few terms. So, let us Taylor expand
Eq. (3.30). We will have

Z½λ� ¼
X
n≥0

1

n!

��X
ν⃗

λν⃗Oν⃗

�
n
�

0

: ð3:32Þ

The first terms of this expansion read

Z½λ� ¼ 1þ
X
ν⃗

λν⃗hOν⃗i0 þ
1

2

X
ν⃗1;ν⃗2

λν⃗1λν⃗2hOν⃗1Oν⃗2i0 þ � � � :

ð3:33Þ

The projection of Z½λ� onto Oμ⃗ is straightforward at
the sight of Eq. (3.33). The product of two Schur
operators with 2n1 and 2n2 tensors is again a Schur
operator

Oν⃗1Oν⃗2 ¼
X
μ⃗

aμ⃗ν⃗1ν⃗2Oμ⃗; ð3:34Þ

where Oμ⃗ is made of 2n ¼ 2n1 þ 2n2 tensors and aμ⃗ν⃗1ν⃗2 is
proportional to the product of Littlewood-Richardson

numbers Cμ⃗
ν⃗1ν⃗2

; see Appendix B. Higher order terms in

the expansion are similar and involve coefficients Cμ⃗
ν⃗1ν⃗2ν⃗3

,

Cμ⃗
ν⃗1ν⃗2ν⃗3ν⃗4

, and so on. Thus, the natural projection of the
expansion (3.33) onto Oμ⃗ reads

Pμ⃗ðZ½λ�Þ ¼ 1þ λμ⃗hOμ⃗i0 þ
X
ν⃗1;ν⃗2

λν⃗1λν⃗2a
μ⃗
ν⃗1ν⃗2

hOμ⃗i0 þ � � �

¼ 1þ hOμ⃗i0
�
λμ⃗ þ

X
ν⃗1;ν⃗2

λν⃗1λν⃗2a
μ⃗
ν⃗1ν⃗2

þ � � �
�
:

ð3:35Þ

Similarly, we can Taylor expand Eq. (3.29) with respect
to the coefficients of the higher derivative terms.
For instance, in four dimensions, the most general
quadratic, covariant, parity-invariant, metric-compatible,
and torsion-free action is [43]

SF1;F2;F3
½g� ¼

Z
d4x

1

2

ffiffiffi
g

p ðM2
pRþ RF1ð□ÞR

þ RabF2ð□ÞRab þ RabcdF3ð□ÞRabcdÞ;
ð3:36Þ

with

Fið□Þ ¼
X∞
n¼0

fin
□

n

M2n ; □ ¼ gab∇a∇b; ð3:37Þ

where M ≤ Mp is a certain mass scale that cannot be too
small so that the Einstein action is still accurate for the
current observations. The proposed prescription for the
gravity side is to first evaluate the action at the back-
ground μ, and then perform the Taylor expansion of e−Sκ ½μ⃗�

with respect to the coefficients fin
M2n. The result can be

reorganized as

e−Sκ ½μ⃗� ¼ 1þ γ1S1½μ⃗� þ γ2S2½μ⃗� þ � � � ; ð3:38Þ

where S1½μ⃗� is the Hilbert-Einstein action evaluated at μ⃗,
S2½μ⃗� will be the action of the terms quadratic in
curvatures evaluated at μ⃗, and so on. The coefficients γ
in Eq. (3.38) depend on products of the functions fi and
on the scale. The dependence on the scale is

γ1 ¼ −
M2

p

2
; γi ∼M2−2i; i ≥ 2: ð3:39Þ

Now we equate Eq. (3.35) with Eq. (3.38). At leading
order, we have

hOμ⃗i0 ¼ SHE½μ⃗� : ð3:40Þ

IV. WARD IDENTITIES OF TENSOR MODELS
AND LOCALITY

Ward identities arise in tensor models associated with the
change of integration variables in the partition function.
That is with the change T → T þ δT and T̄ → T̄ þ δT̄
given by

Ti1;…;id → Ti1;…;id þ
δO

δTi1;…;id
;

T̄i1;…;id → T̄i1;…;id þ
δO

δT̄i1;…;id

; ð4:1Þ

where O is a gauge-invariant operator. Using these trans-
formations, it is found that the symmetries of the action
translate into a tower of identities among averages; see
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[14,44,45]. For an action given by Eq. (3.27), these
identities may be written as10

Nd−1jOjhOi ¼
X
O0

λO0 hfO;O0gi þ hΔOi; ð4:2Þ

where jOj ¼ n for an invariant made of 2n tensors, the sum
is over all invariants O0 present in the action (Schur
invariants), and the averages are taken with the full action.
I have denoted

ΔO ¼ δ2O½T�
δTi1…idδT̄

i1…id
; ð4:3Þ

fO;O0g ¼ δO½T�
δTi1…id

δO0½T�
δT̄i1…id

; ð4:4Þ

which are the cut and join operators, respectively, defined
in [14]. Similar operators, with different names, appear in
the literature. For instance, in [1], these operators are called
ω and Ω, respectively.
For Gaussian averages, Eq. (4.2) turns into

hOi0 ¼
1

nNd−1 hΔOi0: ð4:5Þ

We now apply Eq. (4.5) to Eq. (3.40) and obtain

1

nNd−1 hΔOμ⃗i0 ¼ SHE½μ⃗�: ð4:6Þ

In the next subsection, I will show that an emergence of
spacetime and a notion of locality are already present
in Eq. (4.6).

A. The spacetime grid

It is proven in Appendix E that

ΔOμ⃗ ¼
X
μ⃗0↗μ⃗

Cðμ⃗; μ⃗0ÞOμ⃗0 ; with

Cðμ⃗; μ⃗0Þ ¼ n3
gμ⃗
gμ⃗0↑μ⃗

X
μ⃗0↗μ⃗

Dimμ⃗ðNÞ
Dimμ⃗0 ðNÞ ; ð4:7Þ

where μ⃗0↗μ⃗ indicates the collection of d partitions of n − 1
elements that appear as we delete one of the corners of each
of the d partitions of n elements μ⃗. The are as many μ⃗0’s in
the expansion (4.7) as the product of the number of corners
of the d partitions in μ⃗. Since each partition μi has at mostN
parts, its number of corners is at most equal to N. Let us
associate with each corner cjðμiÞ the number of the row it
appears at. For instance,

ð4:8Þ

With this association every μ⃗0 of μ⃗0↗μ⃗ is mapped to a
d-tuple made by choosing the value of the deleted corner
in each diagram μi. Let us see an example. Consider, for
d ¼ 3 and n ¼ 5,

ð4:9Þ

where we have already labeled the corners. Then one of the
subduced μ⃗0’s is

ð4:10Þ

and another is

ð4:11Þ

Let us consider a Nd grid parametrized by r⃗ with
ri ¼ 1;…; N. With the above prescription, each μ⃗0 can
be mapped to a point in the grid

μ⃗0↗μ⃗ ↦ r⃗: ð4:12Þ

Since the number of corners of each μi is always less than
or equal to N, in general, not all the points in the grid get
occupied, but the map is injective. Thus, given a label μ⃗,
there is no point in the grid that is mapped to two different
μ⃗0’s. Now with this map any sum

P
μ⃗0↗μ⃗, and specifically

Eq. (4.7), can be understood as a sum over the grid. For
that, the function Cðμ⃗; μ⃗0Þ must be interpolated so that it
takes values all over the grid. On the rhs of Eq. (4.6), we
have a sum over the entire volume of spacetime which, by
splitting each coordinate into N parts, can be discretized
and turned into the sum10See [45], Eq. (2.2).
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Z
V
ddxR

ffiffiffi
g

p
→

X
r⃗∈grid

Rðr⃗Þ: ð4:13Þ

Equation (4.6) turns into an equality between two sums
over the grid. The equation is automatically fulfilled if we
identify the summands on both sides of the equation. In this
case, we obtain

1

nNd−1 Cðr⃗ÞhOr⃗i0 ¼ Rðr⃗Þ; ð4:14Þ

where, on the lhs, we have already performed the map
μ⃗0 → r⃗. Equation (4.14) provides a prescription for the
emergence of a background in tensor models.

B. Locality

One of the nice features of the picture proposed in
Eq. (4.14) is the emergence of a sense of locality in tensor
models. Nearby points in the grid correspond to nearby
corners in the Young diagrams μ⃗. The quantity on the lhs of
Eq. (4.14) varies from one point to the grid to another
according to the “corner distance” in the Young diagrams,
which for adjacent corners is minimal. It will be infini-
tesimal when we take the continuum limit. If we want to
reconstruct a background from a tensor model, this fact
translates, via Eq. (4.14), into a smooth curvature and thus a
regular manifold. In short, the main message of Eq. (4.14)
is the fact that the sense of locality in tensor models is
related to nearby corners in the Young diagrams which
label Schur invariants. A similar idea of locality was
already suggested in the context of holography in [46]
and recently developed in [47].

C. ADM mass

For tensor models with matter, we have a variety of
backgrounds. Regular manifolds, with nonsingular curva-
ture, will relate to balanced Young diagrams. Remember
that balanced diagrams, or limit shapes, are the ones which
label regular irreducible representations of S∞ [26]. Those
diagrams can be constructed inductively by adding boxes
and rescaling, in a way such that in the limit n → ∞ we
obtain a monotonic function enclosing a nonzero area with
the axis. Thus, μ⃗ → ðf1;…; fdÞ. The nonzero area con-
dition, together with the fact that no Young diagram
exceeds N rows, leads to the conclusion that n ∼ N2,
which is also the relation found in holography for the
states that relate to new geometries. Thus, in the classical
limit with N; n → ∞, the relevant quantity will be

ρ ¼ n
N2

∈ Rþ; ð4:15Þ

and we expect all nonzero nondivergent classical quantities
to depend on n and N only through ρ.

Let us consider asymptotically flat spacetimes. It is
known that those spaces admit an ADM mass, that is, a
masslike charge associated with the entire spacetime. It is
natural to wonder what this charge is in the tensorial
description and whether or not we can read it off from the
labels of Schur operators.
The positive number ρ is an intrinsic quantity of Schur

operators and ranges from 0 to∞. It is related to the energy
of the state produced as the Schur operator acts on the
vacuum state. Indeed, the energy of the Schur states must
grow linearly with n, as it does for the harmonic oscil-
lator,11 recovering the vacuum for n ¼ 0. These consid-
erations make ρ a good candidate for the ADM mass of the
associated geometry. Thus, I propose that the ADM mass
be given by the quantity

MADM ¼ Cρ; ð4:16Þ

where C does not depend on either n or N. Note that
for n ¼ 0 we have a flat spacetime. Using Eq. (4.16) and
suitable configurations μ⃗ compatible with black hole
geometries (likely based on symmetry arguments), it would
be interesting to compute the Bekenstein-Hawking entropy
and compare it to the direct counting of (tensor) micro-
states. This would provide a valuable check of this
proposal. The task does not seem easy, however, since it
involves counting the number of invariants Oμ⃗;ij compat-
ible with the symmetries that, in the end, translates into
counting sums of Kronecker coefficients. I will consider
this in a future work.

V. SUMMARY AND OUTLOOK

In this paper I have provided a picture of emergent
spacetime by making a connection between tensor models
at the largeN and n limit and classical gravity. In contrast to
the usual correspondence between permutation invariants
and triangulations, in this proposal Schur invariants take a
prominent role and are mapped to backgrounds. At the
heart of this proposal is the reorganization of the space of
invariants into a basis driven by representation theory, the
restricted Schur basis, which is found to be suitable for the
connection with gravity at the large N and n limit.
Without a background it is hard to make any sense of

locality. Thus, it is always challenging for a background
independent theory of gravity to incorporate local theories
which, at the end of the day, are the ones that describe
most of the physics phenomena we are able to test. In my

11One can take the analogy with the harmonic oscillator
further. The tensor model can be understood as a collection of
Nd identical harmonic oscillators, one for each component of the
tensor. Then each component acts as the creation operator and its
conjugate as the annihilation operator when acting on the vacuum
state. With this picture, an invariant made of n tensors acting on
the vacuum produces a sum of excited states, all with excitation
number dn.
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proposal, by the use of Ward identities, I am able to offer a
natural sense of locality in the tensor invariant which
encode backgrounds: two points in the grid are close if
the corners of the Young diagrams they are mapped to are
close. This way, the corner distance in the Young diagrams
that label the Schur invariants in the tensor model translates
into physical distance in gravity.
There are a number of lines I would find interesting

to explore in future works. The correspondence between
tensorial and gravitational quantities is still incomplete.
More examples will provide a more detailed picture of the
interrelation between the two theories. For instance, it
would be very interesting to reproduce the black hole
entropy in the tensor picture by counting the tensor states
compatible with the Schwarzschild geometry. Besides, the
tensor theory (and the full gravity theory) are not deter-
mined in this paper since the couplings of the different
interaction terms in the action are not fixed. They could be
fixed by a sensible renormalization flow equation [48].
Interestingly, a Wetterich type equation has already been
proposed in tensor models [39], where the sector corre-
sponding to gravity sits at a fixed point of the flow. This
way, universality is expected to wipe out all the spurious
details of the discretizations.
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APPENDIX A: RESTRICTED SCHUR BASIS
AND SCHUR INVARIANTS

1. Schur invariants

Since the observables are built on n indistinguishable
copies of T and T̄, it is straightforward to see that operators
in Eq. (2.3) enjoy the symmetry of shuffling the copies of T
and T̄ independently, so one must consider

Oα⃗ ∼Oσ·α⃗·τ; σ; τ ∈ Sn: ðA1Þ

A generic observable is a linear combination of generators
Oα⃗, so it can be written as

Of ¼
X
α⃗

fðα⃗ÞOα⃗; ðA2Þ

where f∶Sdn → C.
Owing to the symmetry (A1), a basis of observables

is given by a basis of complex functions fðα⃗Þ with the
property

fðσ · α⃗ · τÞ ¼ fðα⃗Þ; σ; τ ∈ Sn; ðA3Þ

which will be called from now on double coset invariant
(DCI) functions.
Note that the problem is analogous to finding class

functions of a symmetric group, functions with the property
χðσασ−1Þ ¼ χðαÞ. The last functions are the well-known
characters of the symmetric group. The task, in order to
obtain a basis of observables, is therefore to find a basis of
double coset functions.
The usual convolution algebra of functions of the

symmetric group can be extended to the double coset
invariant functions as

hðα⃗Þ ¼ f � gðα⃗Þ ¼
X
β⃗∈Sdn

fðβ⃗Þgðβ⃗−1 · α⃗Þ: ðA4Þ

It is easy to see that hð ⃗σατÞ ¼ hðα⃗Þ, so Eq. (A4) defines an
algebra of double coset functions. This algebra is non-
commutative, but it is associative and it has the unit
function

f � δDCIðα⃗Þ ¼ δDCI � fðα⃗Þ ¼ fðα⃗Þ: ðA5Þ

The unit element δDCI is constructed by means of the delta
function of the symmetric group δðσÞ, which is 0 unless σ is
the identity, in which case it is 1. Thus,

δDCIðα⃗Þ ¼
X
σ∈Sn

δðα⃗ · σÞ; ðA6Þ

which is double coset invariant, and it is 0 unless
α⃗ ¼ ðτ;…; τÞ for any τ ∈ Sn. Using the identity

δðσÞ ¼ 1

n!

X
μ⊢n

dμχμðσÞ; ðA7Þ

we can also set the unit element δDCIðα⃗Þ in terms of
characters of the symmetric group as

δDCIðα⃗Þ ¼
1

n!d
X
μ⃗

X
σ∈Sn

dμ⃗χμ⃗ðα⃗ · σÞ: ðA8Þ

The expansion of the unit function (A8) indicates that the
function defined as

Pμ⃗ðα⃗Þ ¼
1

n!d
X
σ∈Sn

dμ⃗χμ⃗ðα⃗ · σÞ ðA9Þ

projects onto the subspace of operators labeled μ⃗.
It is easy to see that the Schur invariantsOμ⃗ are driven by

projectors. That is,

Oμ⃗ ¼
Xgμ⃗
i¼1

Oμ⃗;ii ¼
X
α⃗

Pμ⃗ðα⃗ÞOα⃗: ðA10Þ
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Schur invariants form a distinguished sector of the
restricted Schur basis and play a predominant role in this
paper as partners of backgrounds.

2. Restricted Schur basis and correlators

With the Schur basis of DCI functions

I ¼ fFμ⃗;ijðα⃗Þj μi ⊢ n; lðμiÞ ≤ N; i; j ¼ 1;…; gμ⃗g;
ðA11Þ

the convolution algebra (A4) can be written as

Fμ⃗;ij � Fν⃗;klðα⃗Þ ¼ δμ⃗ ν⃗δjkFμ⃗;ilðα⃗Þ: ðA12Þ

Since DCI fucntions act naturally on trace operators to
produce operator invariants, the algebra (A12) induces an
algebra in the space of invariant operators. The algebra
(A12) is also compatible with the involution

F̄μ⃗;ijðα⃗Þ ¼ Fμ⃗;jiðα⃗−1Þ: ðA13Þ

Let us define the matrix ðMμ⃗ðα⃗ÞÞij of size gμ⃗ × gμ⃗ which
contains the function Fμ⃗;ijðα⃗Þ at the site ðijÞ. Note that a
unitary transformation with Uðgμ⃗Þ acting on Mμ⃗ðα⃗Þ as
Uðgμ⃗ÞijðMμ⃗ðα⃗ÞÞjkU−1ðgμ⃗Þkl does not alter the convolution
structure (A12). In view of Eq. (A13) it is easy to see that
Mμ⃗ð1⃗Þ is self-adjoint. This means that by rearranging the

basis with a unitary transformation we can make Mμ⃗ð1⃗Þ
diagonal, that is, Fμ⃗;jið1⃗Þ ∝ δij. The proportionality con-
stant must be consistent with the normalization of the
invariants Oμ⃗, defined in Eq. (2.23), and their Gaussian
averages (2.30). They read

Fμ⃗;jið1⃗Þ ¼ δij
dμ⃗

n!d−1
: ðA14Þ

Thus, our basis of DCI functions will fulfill (A14). A basis
of invariant operators fOμ⃗;ijg is obtained by acting with
each element of Eq. (A11) on trace invariants as

Oμ⃗;ij ¼
X
α⃗

Fμ⃗;jiðα⃗ÞOα⃗: ðA15Þ

Now let us compute the expectation value of the elements
of the basis (A11). Using Eq. (2.28), we find that the
Gaussian averages of the elements of the restricted Schur
basis read

hOμ⃗;iji0¼
X
α⃗

Fμ⃗;ijðα⃗ÞhOα⃗i0

¼ 1

Nnðd−1Þ
X
α⃗

X
σ∈Sn

Fμ⃗;ijðα⃗ÞNCðα⃗·σÞ

¼ 1

Nnðd−1Þ
X
α⃗;ν⃗

X
σ∈Sn

Fμ⃗;ijðα⃗Þχν⃗ðα⃗ ·σÞDimν⃗ðNÞ

¼ n!d

Nnðd−1Þ
X
ν⃗;α⃗

Fμ⃗;ijðα⃗Þ
	
1

n!d
X
σ

dν⃗χν⃗ðα⃗ ·σÞ


Dimν⃗ðNÞ

dν⃗

¼ n!d

Nnðd−1Þ
X
ν⃗;α⃗

Fμ⃗;ijðα⃗ÞPν⃗ðα⃗Þ
Dimν⃗ðNÞ

dν⃗

¼ n!d

Nnðd−1ÞFμ⃗;ijð1⃗Þ
Dimμ⃗ðNÞ

dμ⃗

¼δij
n!

Nnðd−1ÞDimμ⃗ðNÞ; ðA16Þ

which is consistent with the averages of Shur invariants
(2.30) and proves that the constant of proportionality in
Eq. (A14) was chosen appropriately.

APPENDIX B: PRODUCT OF TWO SCHUR
OPERATORS

The product of two Schur operators, one with 2n tensors
and the other with 2m tensors, is

Oμ⃗Oν⃗ ¼
1

ðn!m!Þd−1
X
α⃗∈Sdn

X
β⃗∈Sdm

dμ⃗dν⃗χμ⃗ðα⃗Þχν⃗ðβ⃗ÞOα⃗Oβ⃗

¼ dμ⃗dν⃗
ðn!m!Þd−1

X
α⃗∈Sdn

X
β⃗∈Sdm

χμ⃗ðα⃗Þχν⃗ðβ⃗ÞOα⃗∘β⃗

¼ dμ⃗dν⃗
ðn!m!Þd−1

X
α⃗∈Sdn

X
β⃗∈Sdm

χμ⃗ðα⃗Þχν⃗ðβ⃗Þ

×
X
λi⊢nþm
ρ⃗∈Sdnþm

1

ðnþmÞ!d χλ⃗ðα⃗∘β⃗Þχλ⃗ðρ⃗ÞOρ⃗

¼ dμ⃗dν⃗
ðn!m!Þd−1

X
α⃗∈Sdn

X
β⃗∈Sdm

χμ⃗ðα⃗Þχν⃗ðβ⃗Þ

×
X

λi⊢nþm

1

ðnþmÞ!dλ⃗
χλ⃗ðα⃗∘β⃗ÞOλ⃗

¼ n!m!

ðnþmÞ!
X

λi⊢nþm

dμ⃗dν⃗
dλ⃗

Cλ⃗
μ⃗ ν⃗Oλ⃗; ðB1Þ

where we have used the Littlewood-Richardson co-
efficients and the products of them defined in Eqs. (2.8)
and (2.9).
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APPENDIX C: CASIMIR OPERATORS ACTING
ON IRREDUCIBLE REPRESENTATIONS

In order to compute the action of cut operators on Schur
invariants Oμ⃗, it is necessary to know how certain Casimir
operators of the group algebraCðSnÞ act on representations.
It is known that a Casimir operator12 acting on an
irreducible representation of Sn results in a multiple of
the identity of that irreducible representation. That is,

ΓμðCσÞ ¼ CðμÞΓμðσÞ; μ ⊢ n; σ ∈ Sn; ðC1Þ

where C is a Casimir of CðSnÞ and CðμÞ is a number. Let us
see some examples. Consider the Casimir CðSnÞ built as a
sum of all transpositions,

T 2ðnÞ ¼
Xn
i<j

ðijÞ: ðC2Þ

Now, according to (C1),

ΓμðT 2ðnÞσÞ ¼ T2ðμÞΓμðσÞ; μ ⊢ n; σ ∈ Sn: ðC3Þ

In order to find out the value of T2ðμÞ, we make σ ¼ 1 and
take traces in Eq. (C3). So,

χμðT 2ðnÞÞ ¼ T2ðμÞχμð1Þ ¼ T2ðμÞdμ: ðC4Þ

The lhs of Eq. (C4) is the sum of ðn
2
Þ characters of Γμ

evaluated on a transposition. Using the Murnaghan-
Nakayama rule, it is easy to find that the character of
any two-cycle element is

χμððijÞÞ ¼
dμ
ðn
2
Þ
XlðμÞ
i¼1

�
μiðμi − 1Þ

2
−
μtiðμti − 1Þ

2

�
; ðC5Þ

where μi is the length of row i and the superscript t
indicates the transposed diagram. Inserting Eq. (C5) into
Eq. (C4), we find that

T2ðμÞ ¼
XlðμÞ
i¼1

�
μiðμi − 1Þ

2
−
μtiðμti − 1Þ

2

�
: ðC6Þ

For our purposes it will be useful to find the action of the
Jucys-Murphy element

J n ¼ ðn1Þ þ ðn2Þ þ…ðnn − 1Þ; ðC7Þ

which is a Casimir of CðSn−1Þ onto irreducible representa-
tions of Sn−1. Specifically, we will need to compute
χμðσ0J nÞ, where μ ⊢ n but σ0 ∈ Sn−1. First, we realize

that the Jucys-Murphy element is a sum of two Casimir
operators

J n ¼ T 2ðnÞ − T 2ðn − 1Þ: ðC8Þ

Both T 2ðnÞ and T 2ðn − 1Þ commute with all the elements
of CðSn−1Þ. We compute

χμðJ nσ
0Þ ¼ χμðT 2ðnÞσ0Þ − χμðT 2ðn − 1Þσ0Þ: ðC9Þ

Remember that if σ0 ∈ Sn−1,

Γμðσ0Þ ¼ ⨁
μ0↗μ

Γμ0 ðσ0Þ: ðC10Þ

The operator T 2ðn − 1Þ acts on each irreducible represen-
tation of the direct sum. Applying Eq. (C6), we obtain

χμðJ nσ
0Þ ¼

X
μ0↗μ

Jðμ; μ0Þχμ0 ðσ0Þ; ðC11Þ

where Jðμ; μ0Þ is the content of the (corner) box which
must be deleted from diagram μ to obtain diagram μ0. The
content of the box in position ði; jÞ (that is, the box at row i
and column j) is simply j − i. An example of a Young
diagram where the content of the boxes have been spelled
out is

ðC12Þ

APPENDIX D: CASIMIR OPERATORS ON THE
DIAGONAL ACTION

With the notation we have been using, a diagonal action
on a product of irreducible representations is defined as

σ · Γμ⃗ðα⃗Þ ¼ Γμ⃗ðα⃗ · σÞ: ðD1Þ

As usual, when an action is defined on a vector space it
automatically splits the space into subspaces, which are
irreducible representations of the group. The quantities that
appear in this paper involve sums like

X
σ∈Sn

Γμ⃗ðα⃗ · σÞ: ðD2Þ

The object (D2) is indeed an irreducible representation
of the diagonal action; specifically, it is the symmetric
representation (n) of the diagonal action. As in the case of
nondiagonal actions, a Casimir operator acting on it will
result in a multiple of the identity. For instance,

12Casimir operators are elements which belong to the center of
CðSnÞ; that is, they commute with every element of CðSnÞ.
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X
σ∈Sn

Γμ⃗ðα⃗ · σT 2ðnÞÞ ¼ Tðμ⃗Þ
X
σ∈Sn

Γμ⃗ðα⃗ · σÞ: ðD3Þ

Taking traces and α⃗ ¼ 1⃗, we see that

X
σ∈Sn

χμ⃗ðσT 2ðnÞÞ ¼ Tðμ⃗Þ
X
σ∈Sn

χμ⃗ðσÞ; ðD4Þ

from which we find that

Tðμ⃗Þ ¼
�
n
2

�
: ðD5Þ

In this paper we need to compute the more involved
quantity

P
σ0∈Sn−1 Γμ⃗ðσ0J nÞ. As before, we will be using

the fact that

Γμ⃗ðσ0Þ ¼ ⨁
μ⃗0↗μ⃗

Γμ⃗0 ðσ0Þ: ðD6Þ

First, note that, by simply splitting the terms in the sum,
we have

X
σ0∈Sn−1

Γμ⃗ðJ nσ
0Þ ¼

X
σ∈Sn

Γμ⃗ðσÞ −
X

σ0∈Sn−1

Γμ⃗ðσ0Þ: ðD7Þ

Now, since J n is a Casimir of CðSn−1Þ, its action on an
irreducible representation is proportional to the identity, so

X
σ0∈Sn−1

Γμ⃗ðJ nσ
0Þ ¼ Jðμ⃗Þ

X
σ0∈Sn−1

Γμ⃗ðσ0Þ: ðD8Þ

Taking traces in Eqs. (D7) and (D8), we find that

ðJðμ⃗Þ þ 1Þ
X

σ0∈Sn−1

χμ⃗ðσ0Þ ¼
X
σ∈Sn

χμ⃗ðσÞ: ðD9Þ

Let us call

gμ⃗0↑μ⃗ ≡
X
μ⃗0↗μ⃗

gμ⃗0 ¼
1

ðn − 1Þ!
X

σ0∈Sn−1

χμ⃗ðσ0Þ: ðD10Þ

Then

X
σ0∈Sn−1

χμ⃗ðσ0Þ ¼
X

σ0∈Sn−1
μ⃗0↗μ⃗

χμ⃗0 ðσ0Þ ¼ ðn − 1Þ!gμ⃗0↑μ⃗ ðD11Þ

and

Jðμ⃗Þ ¼ n
gμ⃗
gμ⃗0↑μ⃗

− 1: ðD12Þ

It is easy to prove that Eq. (D12) agrees with the
prescription given above for the case of only one
representation,

X
σ0∈Sn−1

ΓμðJ nσ
0Þ ¼ JðμÞ

X
σ0∈Sn−1

Γμðσ0Þ; ðD13Þ

where gμ ¼ δμðnÞ and gμ0↑μ ¼ 1. In this case

Jðμ ¼ ðnÞÞ ¼ n − 1; Jðμ ¼ ðn − 1; 1ÞÞ ¼ −1; ðD14Þ

and zero in the rest of the cases, as the prescription of the
content of the boxes indicates. Using Eq. (D12), we see
from Eq. (D7) that

X
σ∈Sn

Γμ⃗ðσÞ ¼ n
gμ⃗
gμ⃗0↑μ⃗

X
σ0∈Sn−1

Γμ⃗ðσ0Þ; ðD15Þ

which is the result that we are using in Appendix E.

APPENDIX E: CUT OPERATORS ACTING ON
SCHUR INVARIANTS

The cut operator defined in [14] reads

ΔO ¼ δ2O½T�
δTi1…idδT̄

i1…id
: ðE1Þ

In this Appendix, to simplify notation, we are going to
consider tensors with three indices, what means that d ¼ 3
in what follows. The general case can be straightforwardly
recovered. The cut operator acts on Schur invariants as

ΔOμ⃗ ¼
1

n!d
Xn
r;s¼1

α;α2 ;α3 ;σ∈Sn

dμ⃗χμ⃗ðα⃗ · σÞδiα1ðsÞir
δ
jα2ðsÞ
jr

δ
kα3ðsÞ
kr

× Ti1j1k1 � � �∧
r

Tinjnkn T̄
iα1ð1Þjα2ð1Þkα3ð1Þ � � �∧

s

T̄iαðnÞjα2ðnÞkα3ðnÞ :

ðE2Þ

Performing the changes

α̃i ¼ ð n r Þαið n s Þ; ðE3Þ

taking into account that

X
σ∈Sn

χμ⃗ð ⃗α̃ · σÞ ¼
X
σ∈Sn

χμ⃗ðα⃗ · σÞ; ðE4Þ

and relabeling the permutations, we arrive at
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ΔOμ⃗ ¼
n2

n!d
X
α⃗;σ

dμ⃗χμ⃗ðα⃗ · σÞδiα1ðnÞin
δ
jα2ðnÞ
jn

δ
kα3ðnÞ
kn

Ti1j1k1 � � � × Tin−1jn−1kn−1 T̄
iα1ð1Þjα2ð1Þkα3ð1Þ � � � T̄iα1ðn−1Þjα2ðn−1Þkα3ðn−1Þ : ðE5Þ

First, we apply the result (D15) in the Appendix. The diagonal sum over σ ∈ Sn turns into a sum over σ0 ∈ Sn−1, producing a
global factor. We obtain

ΔOμ⃗ ¼
n3

n!d
gμ⃗
gμ⃗0↑μ⃗

X
α⃗;σ0

dμ⃗χμ⃗ðα⃗ · σ0Þδiα1ðnÞin
δ
jα2ðnÞ
jn

δ
kα3ðnÞ
kn

× Ti1j1k1 � � �Tin−1jn−1kn−1 T̄
iα1ð1Þjα2ð1Þkα3ð1Þ � � � T̄iα1ðn−1Þjα2ðn−1Þkα3ðn−1Þ : ðE6Þ

The next step is to write the elements α1, α2, α3 ∈ Sn as elements of Sn−1 composed with a transposition. Note that the
decomposition

α ¼ ðsnÞα0; α ∈ Sn; α0 ∈ Sn−1; s ¼ 1;…; n; ðE7Þ

where α0 does not involve n, is unique. All permutations α ∈ Sn are obtained without repetition as we run over α0 ∈ Sn−1
and s ¼ 1;…; n in Eq. (E7). With the parametrization (E7) αðnÞ ¼ s, and αðnÞ ¼ n only when s ¼ n. Besides, if written in
disjoint cycles notation, the permutation α0 is obtained from α by simply deleting the “letter” n.
Now let us decompose each sum over αi in Eq. (E6) into the sum over α0i and the sum over J nα

0
i. This splitting has a

purpose. Note that

δ
iα1ðnÞ
in

δ
jα2ðnÞ
jn

δ
kα3ðnÞ
kn

Ti1j1k1 � � �Tin−1jn−1kn−1 T̄
iα1ð1Þjα2ð1Þkα3ð1Þ � � � T̄iα1ðn−1Þjα2ðn−1Þkα3ðn−1Þ ¼ NaOα⃗0 ;

where a is the number of α’s for which αiðnÞ ¼ n. This is implemented in Eq. (E6) as

ΔOμ⃗ ¼
n3

n!d
gμ⃗
gμ⃗0↑μ⃗

X
α⃗0;σ0

dμ⃗
Y3
k¼1

½Nχμkðα0kσ0Þ þ χμkðJ nα
0
kσ

0Þ�Oα0 : ðE8Þ

Applying Eq. (C11) and the fact that

χμðα0Þ ¼
X
μ0↗μ

χμ0 ðα0Þ; ðE9Þ

we can write

ΔOμ⃗ ¼
n3

n!d
gμ⃗
gμ⃗0↑μ⃗

X
α⃗0;σ0

X
μ⃗0↗μ⃗

dμ⃗χμ⃗0 ðα⃗0σ0Þ
Y3
k¼1

½N þ Jðμk; μ0kÞ�Oα⃗0

¼ n3ðn − 1Þ!d
n!d

gμ⃗
gμ⃗0↑μ⃗

X
μ⃗0↗μ⃗

dμ⃗
dμ⃗0

Y3
k¼1

½N þ Jðμk; μ0kÞ�Oμ⃗0

¼ n3
gμ⃗
gμ⃗0↑μ⃗

X
μ⃗0↗μ⃗

Dimμ⃗ðNÞ
Dimμ⃗0 ðNÞOμ⃗0 ; ðE10Þ

where, on the last line of Eq. (E10), we have applied

N þ Jðμk; μ0kÞ ¼
fμk
fμ0k

¼ n
Dimμ⃗ðNÞ
Dimμ⃗0 ðNÞ

dμ0k
dμk

: ðE11Þ

Note that the factor n3 on the last line of Eq. (E10) is general and valid for a tensor of any order. The result (E10) is proof
that the cut operator is closed when acting on Schur invariants Oμ⃗.
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