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G.E. Păvălaş o, C. Pellegrino u,aq,ar, M. Perrin-Terrin g, P. Piattelli l, C. Pieterse s, C. Poirè f, 
V. Popa o, T. Pradier a, N. Randazzo am, S. Reck e, G. Riccobene l, F. Salesa Greus s, 
D.F.E. Samtleben n,af, A. Sánchez-Losa v, M. Sanguineti d,y, P. Sapienza l, J. Schnabel e, 
J. Schumann e, F. Schüssler ao, M. Spurio u,aa,∗, Th. Stolarczyk ao, M. Taiuti d,y, Y. Tayalati k, 
T. Thakore s, S.J. Tingay ae, B. Vallage ao,h, V. Van Elewyck h,ah, F. Versari u,aa,h,∗, S. Viola l, 
D. Vivolo ap,as, J. Wilms ai, A. Zegarelli q,r, J.D. Zornoza s, J. Zúñiga s

a Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
b Université de Haute Alsace, F-68200 Mulhouse, France
c Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, 08800 Vilanova i la Geltrú, Barcelona, Spain
d INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
e Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
f Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1, 46730 Gandia, Spain
g Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
h Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France
i Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
j National Center for Energy Sciences and Nuclear Techniques, B.P. 1382, R. P. 10001 Rabat, Morocco
k University Mohammed V in Rabat, Faculty of Sciences, 4 av. Ibn Battouta, B.P. 1014, R.P. 10000 Rabat, Morocco
l INFN - Laboratori Nazionali del Sud (LNS), Via S. Sofia 62, 95123 Catania, Italy
m University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda 6000, Morocco
n Nikhef, Science Park, Amsterdam, the Netherlands
o Institute of Space Science, RO-077125 Bucharest, Măgurele, Romania
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This letter presents a combined measurement of the energy spectra of atmospheric νe and νμ in the 
energy range between ∼100 GeV and ∼50 TeV with the ANTARES neutrino telescope. The analysis uses 
3012 days of detector livetime in the period 2007–2017, and selects 1016 neutrinos interacting in (or 
close to) the instrumented volume of the detector, yielding shower-like events (mainly from νe + νe

charged current plus all neutrino neutral current interactions) and starting track events (mainly from 
νμ + νμ charged current interactions). The contamination by atmospheric muons in the final sample is 
suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted 
Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and 
muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 
100 GeV, are limited to experiments in polar ice and, for νμ, to Super-Kamiokande.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Atmospheric neutrinos are secondary particles produced by cos-
mic ray (CR) primaries interacting in the Earth’s atmosphere. Due 
to the need of very large detectors, only a few measurements of 
the differential flux exist, namely from the AMANDA [1,2], IceCube 
[3–7] and Super-Kamiokande [8] Collaborations, and a historical 
measurement from the Frejus Collaboration [9]. The ANTARES Col-
laboration has reported a measurement of the atmospheric νμ

energy spectrum in [10].
Different theoretical frameworks are available to estimate at-

mospheric neutrino fluxes [11–14]. At energies from 100 GeV to 
1 PeV, the main sources of νμ are semi-leptonic and three-body 
decays of charged kaons, while the contributions from pion and 
muon decays dominate below 100 GeV. This conventional neutrino 
flux tends towards a power law �c

ν ∝ E−γC R −1
ν , where γC R is the 

spectral index of the primary CRs.
Above 100 GeV and up to some tens of TeV, atmospheric νe ’s 

come mostly from decays of neutral and charged kaons, and have 
the same spectral index of conventional νμ . Below 100 GeV, νe are 
predominantly produced by muon decays. The νμ/νe flux ratio is 
∼2 in the GeV range and increases with energy, reaching a factor 
of ∼20 at 1 TeV.
2

At high energies, equal fluxes of νμ and νe are produced by the 
decays of charged and neutral D-mesons. Because of the very short 
lifetime of these mesons, the resulting flux is called prompt neu-
trino flux [15,16] and its energy spectrum, �p

ν ∝ E−γC R
ν , follows the 

primary spectrum up to very high energies. The transition from 
the region in the spectrum dominated by conventional neutrinos 
to prompt neutrinos is expected to occur at Eν ∼ 1 PeV for νμ

and around Eν ∼30 TeV for νe . As a rule of thumb, the primary 
CR energy is about 20 times higher than the energy of the sec-
ondary neutrino. Uncertainties on the conventional flux models at 
neutrino energies above 1 TeV are mainly due to a poor knowledge 
of primary CR energy spectrum and composition, and of hadronic 
interactions, in particular of strange quark production mechanisms 
[11]. For a recent, detailed description of the hadronic interactions 
leading to inclusive lepton fluxes, refer to [17].

Finally, ντ production in the atmosphere is rare: this is domi-
nated by the decay D+

s → τ+ντ , followed by τ decay. As oscilla-
tion effects for atmospheric ν ’s are negligible above ∼100 GeV, the 
contribution from tau neutrinos is not considered in this analysis.

This letter describes a strategy to select shower-like and start-
ing track events (§2) over the background of atmospheric muons 
(§3). The distributions of observed events are unfolded (§4) to ob-
tain the energy spectra of both atmospheric νμ and νe , taking into 
account the detector acceptance (§5). The results are compared 

http://creativecommons.org/licenses/by/4.0/
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with those obtained by other experiments (§6). The ANTARES tele-
scope is not able to distinguish between neutrino and antineutrino 
events. Hence, the unfolded spectra are the sum of νe + νe and of 
νμ + νμ , averaged over the zenith region 90◦–180◦ .

2. The ANTARES detector and neutrino reconstruction algorithms

The ANTARES telescope [18] is a deep-sea Cherenkov neutrino 
detector, located 40 km offshore Toulon, France, in the Mediter-
ranean Sea. The detector comprises a three dimensional array of 
885 optical modules [19], each one housing a 10-inch photomul-
tiplier tube (PMT). The optical modules are distributed along 12 
vertical strings anchored to the sea floor at distances of about 70 
m from each other and at a depth of about 2500 m. The detection 
of light from upward going charged particles is optimised with the 
PMTs facing 45◦ downward. Particles above the Cherenkov thresh-
old induce a coherent radiation emitted in a cone with a character-
istic angle θC � 42◦ in water. For high-energy muons (Eμ > 1 TeV), 
the contribution of the energy losses due to radiative processes in-
creases linearly with Eμ , and the resulting electromagnetic show-
ers produce additional light. Completed in 2008, the telescope 
aims primarily at the detection of neutrino-induced through-going 
muons.

The signals induced in the PMT by detected photons are re-
ferred to as hits [20]. The position, time, and collected charge of 
the hits are used to reconstruct the direction and energy of events 
induced by neutrino interactions and atmospheric muons. Trigger 
conditions based on combinations of local coincidences are applied 
to identify signals due to physics events over the environmental 
light background due to 40K decays and bioluminescence [21]. For 
astronomy studies, atmospheric muons and atmospheric neutrinos 
constitute the main source of background.

This analysis focuses on events induced by neutrinos whose 
interaction vertices are contained inside (or close to) the instru-
mented detector volume. These events include:
• νe charged current (CC) interactions producing electromagnetic 
and hadronic cascades, and neutral current (NC) interactions of 
neutrinos of all flavours inducing hadronic cascades. Due to the 
radiation and nuclear interaction lengths in water, the cascades ex-
tend up to a maximum distance of ∼10 m from the interaction 
vertex, much shorter than the distance between detector strings. 
These events are thus almost point-like at the scale of the detector 
and are referred to as shower-like events in the following.
• νμ CC interactions, with a hadronic cascade near the vertex and 
a starting muon. Most of these muons are minimum ionising parti-
cles, and can travel in water about 4 m per GeV of energy, inducing 
Cherenkov light over large distances with respect to the interac-
tion vertex position. These events with a cascade and a track are 
referred to as starting track events in the following.

All neutrino candidates used in this letter are selected with an 
algorithm (denoted in the following as TANTRA) devoted to recon-
struct events with interaction vertex inside, or close to, the in-
strumented volume. The initial reconstructed data sample is dom-
inated by downward going atmospheric muons, exceeding by a 
factor 104 the expected signal of shower-like and starting track 
events. As detailed in [22], the TANTRA likelihood-based method 
allows reconstructing the vertex coordinates, the neutrino direc-
tion, and the neutrino energy, yielding a parameter (a modified 
χ2-like quantity) associated to the quality of the fit that is de-
noted as Mest . When the background of atmospheric muons is 
suppressed, and in dependence of the reconstruction quality Mest , 
the neutrino vertex position is determined with a precision up 
to ∼1 m; the neutrino direction is estimated with a median an-
gular resolution of ∼3◦ for a E−2

ν energy spectrum in the range 
1–1000 TeV. Under these assumptions, the uncertainty on the re-
constructed neutrino energy can be as low as ∼10% for νe .
3

If arriving in the detector an atmospheric muon, or a muon 
produced in a neutrino CC interaction with vertex far from the in-
strumented volume, induces a long sequence of hits characteristic 
of a long track. The track reconstruction algorithm used in off-line 
ANTARES analyses is called AAFit [23] and it is based on a likeli-
hood fit that exploits a detailed parametrisation of the probability 
density function for the time of the hits. The algorithm provides 
the track direction with its estimated angular uncertainty and a 
proxy for the muon energy loss, which can be used to estimate the 
parent neutrino energy. The reconstruction quality is determined 
by a parameter, referred to as �, which is based on the maximum 
value of the likelihood fit and the number of degrees of freedom 
of the fit. The AAFit method is described in [23] and in this analy-
sis it is mainly used to remove the largest fraction of atmospheric 
muons in the data sample. These events are downward going and 
can be significantly suppressed by a combination of cuts based on 
the reconstructed track direction and the � quality parameter, as 
described in [24].

Finally, to improve the rejection of downward going atmo-
spheric muon events, this analysis uses an auxiliary algorithm de-
noted as GridFit [25]. GridFit searches for tracks in 500 different 
directions covering the full solid angle. The number of hits com-
patible with a muon track coming from each direction is evaluated 
and a likelihood fit is performed. The outcomes of the AAFit and 
GridFit methods are used in the event selection in order to define 
cuts allowing to remove (within the available statistic of simulated 
events) the contamination of atmospheric muons, as detailed in 
the following section.

All ANTARES analyses follow a blinding policy to avoid possible 
biases. The cuts and the selection criteria are studied and opti-
mised on a sample of Monte Carlo (MC) simulated events and only 
at the end of the full selection chain, these cuts are applied to 
data. A small sample containing 10% of the real data uniformly 
distributed over livetime is used to verify the agreement with MC 
events along the selection.

The simulation chain [26] starts with the generation of the 
event and comprises the generation of Cherenkov light, the inclu-
sion of the environmental optical background extracted from real 
data, and the digitisation of the PMT signals following a run-by-
run strategy. This strategy accounts for seasonal variations related 
to biological activities and for inefficiencies due to the ageing of 
the PMTs and to biofouling [27].

At the end of the full simulation chain, a set of MC files is 
available for each run of real data, stored in the same format. Sim-
ulated files are processed with the same reconstruction algorithms 
and analysis procedures used for the corresponding data. Monte 
Carlo neutrino events have been generated in the energy range 
10 ≤ Eν ≤ 108 GeV, separately for νe , νμ and their antineutri-
nos, and for CC and NC processes. Details on the simulation chain, 
hadronic model for cross sections, interaction kinematics and par-
ton distribution functions are given in [26]. The same MC sample 
can be differently weighted to reproduce the conventional atmo-
spheric neutrinos, the prompt neutrinos and theoretical astrophys-
ical signals. In the present letter, the atmospheric νe and νμ fluxes 
are represented with the same models used in [28], namely, the 
conventional component follows the spectrum described in [12], 
extrapolated at higher energy as in [5], and the prompt contribu-
tion as calculated in [15]. The MC statistics for the atmospheric 
neutrino sample corresponds to more than two orders of magni-
tude than for real data.

Finally, for each data run, a file with simulated atmospheric 
muons (CRμ) is produced with the MUPAGE package [29,30]; in 
this case, the equivalent MC livetime corresponds to 1/3 of the real 
run livetime.
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Table 1
Number of events in different Monte Carlo samples surviving the prese-
lection and the cut on track quality parameter � (second column) and 
the final BDT cut (third column). The last row shows the number of data 
events in 3012 days of livetime. Cosmic neutrinos are the searched signal 
in neutrino telescopes; for this analysis they represent an additional back-
ground (see §4). The MC Cosmic ν expectation is computed assuming the 
flux estimated in [28].

Preselection 
+ � > −5.7

+BDT > 0.33

MC CRμ 136700 ∼3
MC Atmospheric νe CC 242 96
MC Atmospheric νe NC 22 9
MC Atmospheric νμ CC 3780 620
MC Atmospheric νμ NC 400 180
MC Cosmic ν 30.4 9.2

MC total 141200 917

Data (3012 days) 133676 1016

3. Event selection: signal and background

Data collected from 2007 until the end of 2017 have been used. 
Only runs without high bioluminescence level have been selected. 
The total livetime corresponds to 3012 days. The background is 
almost entirely due to CRμ’s: after trigger and reconstruction, the 
expected signal-to-background rate is ∼10−4. The background sup-
pression is organised in three different steps.

An initial preselection of shower-like and starting track events 
combines information from both TANTRA and AAFit reconstruction 
algorithms, according to the following four requirements:
i) the direction of the event as reconstructed by AAFit must be up-
ward going (i.e., zenith angle > 90◦), to reject the largest fraction 
of CRμ’s;
ii) the TANTRA’s reconstructed event interaction vertex must be 
contained in a cylindrical volume of axial radius of 300 m and 
height of 500 m, centred at the centre-of-gravity of the detector 
modules;
iii) the TANTRA estimated angular uncertainty on the event di-
rection must be < 30◦ and the quality parameter Mest < 1000, to 
remove poorly reconstructed events;
iv) upward going tracks with AAFit quality parameter � > −5.2
are discarded. This removes muons generated from neutrino in-
teractions outside the detector volume that could have survived 
previous cuts. These through-going events have already been used 
in the previous measurement of the νμ spectrum [10].

After this preselection, the MC signal is reduced by a factor 
of two with respect to the trigger and reconstruction level, with 
∼350 survived CRμ’s for each atmospheric neutrino candidate.

The second step, following [10,24,31], uses the AAFit quality 
parameter, �. The best compromise to suppress the largest per-
centage of background while keeping a large enough fraction of 
signal events is obtained by removing events with � ≤ −5.7. After 
this cut, 25% of the signal survives, with about 30 remaining back-
ground events for each atmospheric neutrino. Table 1 summarises 
the number of events passing the preselection and the � cut for 
each MC sample. The last row shows the events in the data sam-
ple, after unblinding.

The final classification of events as signal or background is per-
formed with a Boosted Decision Tree (BDT), defined on a multi-
dimensional parameter space. A BDT is an algorithm that belongs 
to the family of supervised machine learning techniques. To build 
the classification function, training samples are necessary. CRμ
events generated with MUPAGE constitute the background sam-
ple; CC+NC interactions of atmospheric νe are used as signal. The 
CC+NC interactions of νμ are not used for training the algorithm 
to reject background. This choice is motivated by the fact that the 
4

Fig. 1. BDT output for events passing the preselection + � cut. The histograms 
correspond to different MC samples: training CRμ (green), training atmospheric νe

(red), atmospheric νμ (blue). The νμ events are not used for BDT training. The green 
line corresponds to a Gaussian extrapolation of the CRμ histogram. Both νe and νμ

fluxes include conventional [12] and prompt neutrinos [15]. The magenta histogram 
is the expected contribution from diffuse cosmic ν ’s, as parameterised in [28]. The 
orange histogram is the sum of all MC contributions and the black crosses are real 
data (3012 days livetime), after unblinding. The BDT cut value is denoted with a 
black arrow.

νe flavour produces the cleanest case of shower-like events and it 
is the most difficult channel to measure in neutrino telescopes.

For each CRμ or νe event, the classifier is trained using the 
following 15 quantities. From the TANTRA algorithm, the recon-
structed 1) zenith angle and 2) azimuth angle in the local reference 
frame; 3) interaction vertex coordinates; 4) quality parameter esti-
mator, Mest ; 5) number of detector lines with at least one hit; 6) 
total number of hits used to reconstruct the event; 7) angular res-
olution associated to a shower-like event. From the AAFit track-like 
algorithm, the reconstructed 8) zenith angle and 9) azimuth angle 
in the local reference frame; 10) track length inside the detector 
volume; 11) quality parameter estimator, �; 12) angular resolu-
tion associated to a track-like event. From the GridFit track-like 
algorithm, 13) the quality parameter; 14) the CRμ veto parame-
ter, a likelihood variable based on time sequence and charge of the 
hits in different storeys of the detector, causally-connected under 
the assumption of a downward going, minimum ionising particle; 
15) the number of on-time hits, which assumes that the photons 
are produced at the Cherenkov angle and arrive at the PMT un-
scattered.

A ranking of the BDT input variables is derived by counting how 
often each variable is used to split decision tree nodes, and by 
weighting each split occurrence by its squared separation gain and 
by the number of events in the node [32]. None of the variables is 
found to be significantly dominant; the variable with the highest 
ranking is the TANTRA zenith angle (1) with score 0.12, followed 
with the GridFit quality (13) with score 0.10; in the last two po-
sitions, the estimators of the angular resolution from TANTRA (8), 
with score 0.04, and that from AAFit (12), with score 0.023.

As shown in Fig. 1, the BDT output is an excellent discrimina-
tor between events in the atmospheric νe and background CRμ
samples. The BDT distribution obtained from events induced by 
atmospheric νμ CC+NC interactions is also included in the plot. 
As expected, this distribution resembles that of the νe signal. The 
BDT condition >0.33 that removes all CRμ’s present in run-by-run 
MC events is chosen as selection criteria. An extrapolation of the 
BDT distribution tail, assuming a Gaussian shape, yields a conser-
vative extrapolation of (at most) ∼3 background events in the final 
sample, which are considered in the following. The discrepancy be-
tween data and CRμ for BDT< −0.2 is due to the uncertainties in 
the modelling of the bulk of atmospheric muons in a parameter-
space (i.e., direction, energy, muon bundle multiplicity) far from 
that of neutrino-induced events. The excess of events at large BDT 
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values is consistent with an overall normalisation of the MC atmo-
spheric neutrino flux.

The last column of Table 1 shows the number of events in the 
final sample, after BDT cut. The neutrino signal is reduced to ∼20% 
of that present in the previous step, while the background of at-
mospheric muons is removed from the generated MC sample. Only 
a maximum residual contamination of 3 events is estimated to sur-
vive in the data sample, figure obtained with an extrapolation of 
the BDT distribution. As expected, the neutrino signal is still dom-
inated by atmospheric νμ producing starting tracks: only ∼10% of 
the selected events originate from νe . At 1 TeV, the expected flux 
ratio is �νμ/�νe ∼20.

4. Unfolding procedure and detector acceptance

In order to derive from data the νe and νμ energy spectra, an 
unfolding method is used. The two true distributions are decon-
volved from the experimentally measured one, based on the best 
knowledge of the detector and on assumptions made on the inter-
action rates of the different neutrino flavours.

In counting experiments, events are grouped into certain re-
gions of phase-space, called bins. The main observable quantities 
in neutrino telescopes are the neutrino direction and energy, which 
are measured only with finite precision due to inevitable detector 
effects. Consequently, an event may be assigned to a wrong bin.

The outcome of the unfolding procedure, folded with the de-
tector acceptance and livetime, results in a spectrum that allows 
a direct comparison with other experiments. Two major classes 
of unfolding methods exist: algorithms based on matrix inversion 
or singular value decomposition, such as the TUnfold [33] algo-
rithm used in this analysis; algorithms based on iterative meth-
ods or on the use of Bayes’ theorem [34]. A Bayesian approach 
has been used, e.g., by the Super-Kamiokande experiment [8] and 
in our previous measurement of the νμ energy spectrum using 
through-going muons [10]. For an overview of the commonly used 
unfolding algorithms, see also [35,36].

The TUnfold algorithm [33] is a widely tested and validated al-
gorithm in the context of high-energy physics and it can handle 
one or more background sources. The algorithm allows to estimate 
the number of events in m bins of a true distribution x j , given an 
observed distribution of yi in n bins:

yi =
m∑

j=1

Aij · x j + bi, 1 ≤ i ≤ n , (1)

where each bin has a background contribution bi . Aij is a matrix 
of probabilities describing the migrations from bin j to any of the 
n bins. The method, interfaced to the ROOT analysis package [37], 
uses a least square method with Tikhonov regularisation [38] and 
a constraint to fix the total number of events. The least square 
minimisation requires a number of degrees of freedom such that 
n − m > 0, meaning that the data yi have to be measured in finer 
bins than extracted by the unfolding procedure.

The energy estimated by the TANTRA reconstruction algorithm, 
Ereco, is used to construct the distribution of yi . Events in Fig. 1
with BDT> 0.33 are atmospheric νμ or νe , with a contamination 
of less than a few per mill from CRμ and a ∼1% fraction of cosmic 
neutrinos; both samples are considered as background. The unfold-
ing method requires a (n × m) matrix for the νμ and νe energies, 
with n bins of Ereco and m bins of true energy Eν . Monte Carlo 
samples allow the construction of:
• Ae

ij , a (6 × 3) response matrix obtained with the simulated sam-
ples of νe CC+NC interactions;
• Aμ

i j , a (15 ×5) response matrix obtained with the simulated sam-
ples of νμ CC+NC interactions.
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Fig. 2. Distribution of Ereco with the binning used for the construction of 
the response matrix for the νμ sample (blue histogram). The red his-
togram, with the same binning, refers to the νe sample. The magenta 
histogram is the expected contribution from a cosmic neutrino flux, as 
estimated in [28], while the orange histogram includes the sum of all 
MC contributions. The black crosses correspond to real data. Events in the 
shaded region are used for unfolding.

The chosen number of bins in (Ereco, Eν ) for the two samples 
provides the highest stability in terms of unfolding results applied 
on MC samples with the same number of events as real data. In 
the unfolding procedure, the use of Ereco is limited to energies be-
tween ∼100 GeV and ∼50 TeV. The lower bound is determined 
by the fact that our reconstruction algorithm cannot reliably re-
construct neutrino energies below 100 GeV. Above 50 TeV, the 
event statistics are significantly reduced by the requirement of the 
containment of the interaction vertex within, or near to, the instru-
mented volume. In addition, cosmic neutrinos, whose flux suffers 
large uncertainties, start to be the dominant “background”.

Fig. 2 shows the distribution of Ereco for the νμ sample (blue) 
with the bin size used for the construction of the Aμ

i j matrix. For 
completeness, the distribution of Ereco for the νe sample (red) is 
superimposed, although the distribution used for the construction 
of the Ae

ij matrix has a different binning. The expected contribu-
tion in the sample of cosmic ν ’s of all flavours is also shown.

Concerning the background terms, it includes an extrapolated 
contribution of 3 track-like CRμ events. Based on the behaviour 
of atmospheric muons before the BDT cut, the bC Rμ

i terms are as-
sumed to affect only the νμ sample, and uniformly in the Ereco
range. The background from the cosmic neutrino flux (terms bc

i ), 
assuming equipartition (νe : νμ : ντ ) = (1 : 1 : 1), contributes about 
equivalently to the νμ and νe samples, following the Ereco distri-
bution shown in Fig. 2.

The unfolding procedure assumes that in the νμ distribution 
there are three background components corresponding to CR’s 
(bC Rμ

i ), 50% of cosmic neutrinos (bc
i /2), and the νe fraction (be

i ). 
In the νe distribution, there are two background components cor-
responding to 50% of cosmic neutrinos (bc

i /2) and the νμ fraction 
(bμ

i ). The algorithm assumes that 
∑

i(b
μ
i +be

i +bC Rμ
i +bc

i ) is equal 
to the total number of events. The events bμ

i and be
i are assumed 

to be produced with the fluxes given in [12], as in the default 
Monte Carlo simulation, with free normalisation. Possible varia-
tions in their spectral indexes are accounted for in the treatment 
of systematic effects (see §5).

Table 2 presents the information on the unfolded energy in 5 
(3) bins for the νμ (νe) sample. The first two columns contain the 
energy range of the corresponding bin and the weighted central 
value of the neutrino energy bin, calculated taking into account the 
steep decrease of the energy spectrum and the detector response. 
The third column shows the unfolded number of data events as 
obtained by the algorithm.
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Table 2
Column 1: bin width 	 log Eν ≡ (log10

Emin
ν

GeV – log10
Emax
ν

GeV ), where Eν is the unfolded 
neutrino energy. Column 2: the weighted centre of the bin, log Eν ≡ log10

〈Eν 〉
GeV . Col-

umn 3: the number of unfolded events assigned to the bin, Nevt . Column 4: the 
differential flux (times E2

ν ) computed in the centre of the bin, E2
ν�ν , in units of 

GeV cm−2 s−1 sr−1. Columns 5 and 6: the statistical and the total systematic un-
certainties, respectively.

	 log Eν log Eν Nevt E2
ν�ν stat. syst.

Atmospheric muon neutrinos
2.00–2.54 2.32 232 2.4 ×10−4 ±80% ±30%
2.54–3.08 2.82 348 6.8 ×10−5 ±10% ±15%
3.08–3.62 3.30 203 1.4 ×10−5 ±15% ±15%
3.62–4.16 3.80 58 2.2 ×10−6 ±40% ±20%
4.16–4.70 4.31 13 3.8 ×10−7 ±100% ±40%

Atmospheric electron neutrinos
1.9–2.8 2.48 113 1.2 ×10−5 ±30% ±20%
2.8–3.7 3.08 21.2 4.7 ×10−7 ±80% ±10%
3.7–4.6 3.9 1.4 1.7 ×10−8 +200%

−100% ±20%

5. The unfolded energy spectrum

To transform the unfolded number of events, Nevt , given in Ta-
ble 2 into a differential energy flux in the proper units (GeV−1

cm−2 s−1 sr−1), the following steps are required: i) divide each 
bin by the livetime of 3012 days, obtaining the event rate inte-
grated in the log10 of the neutrino energy over the bin; ii) divide 
by the width of the bin (0.54 for νμ and 0.9 for νe); then, trans-

form the dNevt

d log10 Eν
distribution into the dNevt

dEν
one; iii) divide by 

the integrated value of the observation solid angle, i.e., 2π sr; iv)

divide by the detector effective area, Aef f (Eν), averaged over the 
distribution of zenith angles, as reconstructed by the TANTRA al-
gorithm.

The effective area is the figure of merit for a neutrino telescope, 
representing the size of a 100% efficient hypothetical target that 
the detector offers to a certain simulated neutrino flux. It is calcu-
lated as

Aef f (Eν) = Nsel(Eν)

Ngen(Eν)
· V gen · ρN A · σ(Eν) · P Earth(Eν), (2)

where Nsel(Eν) and Ngen(Eν) are, respectively, the number of se-
lected and generated events of a given neutrino energy Eν in 
the generation volume V gen; ρ and N A are the matter density 
and the Avogadro’s number; σ(Eν ) is the neutrino cross section; 
P Earth(Eν) is the probability of the neutrino to traverse the Earth 
without being absorbed. Above 100 GeV, there are no corrections 
needed for oscillation effects. Fig. 3 shows the effective area ob-
tained from the selection of events described in this work.

The fourth column of Table 2 presents the differential flux ob-
tained with the overall procedure. The reported statistical error is 
determined by the TUnfold method.

The result of the unfolding process depends on the MC sim-
ulation via the construction of the response matrix. In turn, the 
simulation depends on a number of parameters with associated 
uncertainties. The effects inducing systematic uncertainties on the 
measurement of the νμ flux using through-going events have been 
extensively described in [10]. The same systematics affect both the 
νμ and νe samples in this analysis and the effects are estimated in 
dedicated MC simulation datasets (either for νμ and νe), by vary-
ing each time only one of the following parameters:
• Overall sensitivity of the optical modules, changed by +10% and 
−10%. This includes the uncertainty on the conversion of a photon 
into a photoelectron as well as the angular dependence of the light 
collection efficiency of each optical module.
• The uncertainties on water properties, by scaling up and down 
by 10% the absorption length of light in water with respect to the 
nominal value.
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Fig. 3. Effective area of the ANTARES neutrino telescope for the events with 
a vertex inside the instrumented volume and selected by the analysis cuts 
described in this work: νe CC+NC (red line), νμ CC+NC (blue line). The 
black solid line is the sum of all the interaction channels and neutrino 
flavours.

Fig. 4. Measured energy spectra of the atmospheric νe and νμ using 
shower-like and starting track events in the ANTARES neutrino telescope 
(black). The measurements by other experiments (Frejus [9], AMANDA-II 
[2], IceCube [6,7,4,5], and Super-Kamiokande [8]), as well as the previous 
νμ flux measurement using a different ANTARES data sample [10], are also 
reported. The vertical error bars include all statistical and systematic un-
certainties.

• The uncertainties related to the neutrino fluxes used in the 
default response matrix of the unfolding procedures, including a 
slope change of ±0.1 in the spectral index, independently for νe

and νμ .
Each modified MC sample was then used as pseudo-data to 

construct a new response matrix, used for unfolding. The deviation 
in the content of each Eν bin from the spectrum obtained with the 
default response matrix, Ae

ij or Aμ
i j , corresponds to the systematic 

uncertainty associated with the parameter variation. For each en-
ergy bin, the total uncertainty is computed as the quadratic sum 
of each contribution, and the resulting value is reported in the last 
column of Table 2.

6. Results and conclusions

Fig. 4 shows the (νe +νe) and (νμ +νμ) fluxes measured in this 
work, together with the results from previous experiments. Our 
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unfolded atmospheric neutrino spectra, whose statistical errors are 
largely dominant over the systematic ones, are 20%–25% below 
the most recent computations using the SIBYLL-2.3c hadronic in-
teraction model [17,39].

The measurement of the electron neutrino flux at high energy 
is challenging, because very large detectors are needed to collect 
sufficient statistics, and due to large systematic uncertainties. Each 
measurement of IceCube-DeepCore [4] and IceCube [5] relies on
about 200 interacting νe in the polar ice medium. The present 
measurement is performed in seawater, under completely differ-
ent environmental conditions and systematic uncertainties, yield-
ing consistent results with the ones obtained in polar ice. During 
a livetime of 3012 days, ∼130 νe interactions have been recon-
structed within the instrumented ANTARES volume. The statistics 
of the νe sample is not sufficient to test models above a few tens 
of TeV, where a significant cosmic flux is present and the transi-
tion from the conventional to the prompt flux is expected. Below 
100 GeV, the PMT density of the ANTARES detector is insufficient 
to reconstruct a significant number of events.

Concerning the unfolded νμ flux, our previous measurement 
[10] with a sample of ∼650 through-going events collected in 
855 days of livetime and generated by neutrino interactions exter-
nal to the instrumented volume almost superimposed the SIBYLL-
2.3c model. The present analysis relies on a totally independent 
data sample, provided by neutrinos whose reconstructed interac-
tion vertex is inside (or nearby) the instrumented volume of the 
detector. The νμ data sample, summing the Nevt events in Table 2, 
corresponds to ∼850 events. By scaling the relative livetimes, the 
number of events in this sample would be ∼1/3 of the through-
going muons reconstructed as in [10]. However, due to the superior 
energy estimate of these (semi)-contained events with respect to 
the through-going sample, the overall uncertainty on the measured 
flux is smaller with respect to our previous measurement in the 
central bins, reaching a precision equivalent to that obtained by 
the Super-Kamiokande Collaboration in [8]. The present unfolded 
νμ flux is more close to that of IceCube with 40 strings (2011) [6]
and is 20%–25% below both the flux reported in our previous mea-
surement and the one reported by IceCube using 59 strings (2015) 
[7], although consistent within errors.
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