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Abstract

This is the second part of a two-part work on the unified mathematical theory of gapped and gapless edges
of 2+1D topological orders. In Part I, we have developed the mathematical theory of chiral gapless edges.
In Part II, we study boundary-bulk relation and non-chiral gapless edges. In particular, we explain how the
notion of the center of an enriched monoidal category naturally emerges from the boundary-bulk relation.
After the study of 0+1D gapless walls, we give the complete boundary-bulk relation for 2+1D topological
orders with chiral gapless edges (including gapped edges) and 0d walls between edges. This relation is
stated precisely and proved rigorously as a monoidal equivalence, which generalizes the functoriality of
the usual Drinfeld center to an enriched setting. We also develop the mathematical theory of non-chiral
gapless edges and 0+1D walls, and explain how to gap out certain non-chiral 1+1D gapless edges and 0+1D
gapless walls categorically. In the end, we show that all anomaly-free 1+1D boundary-bulk rational CFT’s
can be recovered from 2d topological orders with chiral gapless edges via a dimensional reduction process.
This provides physical meanings to some mysterious connections between mathematical results in fusion
categories and those in rational CFT’s.
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1. Introduction

Throughout this paper, we use nd to denote the spatial dimension and n+1D to denote the
spacetime dimension, and we use TheoremP" to highlight a physical result and use Theorem to
represent a mathematically rigorous result.

This work is a continuation of Part I [49]. We assume that the readers have already read Part
I, in which the mathematical theory of chiral gapless edges of 2d topological orders (without
symmetries) is developed, and the main result is summarized by the following physical theorem.

TheoremP" 1.1 (/49]). 1d chiral gapped/gapless edges of an anomaly-free 2d topological order
(C, ¢) are mathematically described and classified by pairs (V, M) explained below:

1. 'V is the chiral symmetry, i.e. a unitary rational vertex operator algebra (VOA) such that the
category B := Mody of V-modules is a unitary modular tensor category (UMTC). When
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V =C, the edge is gapped and B = H, where H denotes the category of finite dimensional
Hilbert spaces.

2. BM is a B-enriched unitary fusion category canonically constructed from the pair (B, M),
where M is a UFC and a left fusion B-module (see Definition 2.3), and M is the underlying
category of the enriched category PM. More explicitly,

(a) objects x,y,z € BM are precisely those in M, and are topological edge excitations;
(b) the morphism spaces are given by the internal homs, i.e. homs((x, y) :=[x, y]B.

Moreover, we have a direct sum decomposition Bm = BM] D---b (BM,,, where each indecom-
posable direct summand M; of M is the category of boundary conditions of a modular-invariant

bulk CFT Al(jizlk. Forx,y e M, [x,x]s and [y, yls are boundary CFT’s ofAl(;zlk and [x, yls is

a 0D wall between them. The bulk CFT’s Al(al;x)lk and At(){lik are potentially different for i # j. The
space [x, ylg should also be viewed as the space of instantons between two edge excitations x
and y. When V = C, M = (C,Y¥M) is a gapped edge.

One of the consequences of above theorem is that all 1d chiral gapless edges are obtained
from fopological Wick rotations [49, Section 5.2]. It is physically absurd if this result does not
generalize to Od walls between edges. Inspired by this observation, we propose the following
correspondence, which plays the role of a guiding principle of this work.

Gapped-gapless Correspondence: All gapless edges and 0d walls between edges of 2d topo-
logical orders can be obtained from topological Wick rotations plus the information of local
quantum (i.e. chiral or non-chiral) symmetries.

Actually, some parts of our analysis do not use this principle but lead to results respecting this
principle. At the end of the day, all Od walls respect this principle. This is a low dimensional case
of a more general principle for gapless phases in all dimensions proposed in [49, Section 7]. It
provides a powerful tool and a guiding principle for the study of gapless phases in all dimensions
(see Section 7).

In this work, we develop the mathematical theory of 0+1D walls between two gapless edges,
boundary-bulk relation including 0+1D walls and that of non-chiral gapless edges. The main
physical results are a physical description of boundary-bulk relation for gapless edges as a center
functor (see Section 4), the classification of non-chiral gapless edges (see TheoremP" 5.9) and
that of 0+1D domain walls between two gapped/gapless edges (see TheoremP" 3.7, 5.19 and
5.23). The theory of non-chiral gapless edges provides a theoretic framework to study the purely
edge topological phase transitions (see Section 5.3). The main mathematical result that the center
functor is a symmetric monoidal equivalence (see Theorem 4.15), which gives the complete
mathematical description of the boundary-bulk relation for 2d topological orders unifying both
the gapped and gapless edges. The logic flow and the layout of this work are given below.

In Section 2, we review the boundary-bulk relation for gapped edges. In particular, in Sec-
tion 2.1, we review some basic mathematical notions, such as a closed module over a multi-fusion
category and a closed monoidal modules over a braided fusion category. In Section 2.2, we re-
view the mathematical theory of Od wall between gapped edges. In Section 2.3, we review the
boundary-bulk relation for gapped edges including Od walls. In Section 2.4, we review the the-
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ory of generalized Od defects and that of factorization homology. The anomaly-free condition
discussed there will be used in many places later.

In Section 3, we develop the mathematical theory of 0+1D walls between two chiral gapless
edges. We start with a careful analysis of observables on the world line of a 0+1D wall in Sec-
tion 3.1. This analysis shows that a natural construction of a 0+1D wall automatically respects
the Gapped-gapless Correspondence. In Section 3.2, we discuss more general constructions all
respecting the Gapped-gapless Correspondence. In particular, we show that a 1+1D chiral sym-
metry in a neighborhood of the world line and a 0+1D chiral symmetry on the world line are
both needed as defining data. Since there is no thermodynamics in 0d, we carefully distinguish
the spatial notion of a Od wall and the spacetime notion of a 0+1D wall (see Definition 3.2). All
0+1D walls are spatially equivalent to the unique 0d wall. In Section 3.3, using Gapped-gapless
Correspondence, we conclude that we have found the mathematical description and the classi-
fication of all 0+1D gapless walls between two chiral gapless edges. In Section 3.4, we discuss
how to fuse two 0+1D walls along a spatial direction and an anomaly associated to it, called
spatial fusion anomaly. In Section 3.5, we show that the spatial equivalence between two 0+1D
walls leads to a mathematical notion of a spatial equivalence between bimodules over enriched
multi-fusion categories and the associated spatial Morita theory. As a consequence, two chiral
gapless edges are spatially Morita equivalent if and only if they share the same bulk, and the
spatial Morita equivalence is precisely defined by a 0+1D gapless wall as a spatially invertible
bimodule.

After the preparation in Section 3, we are ready to give a complete boundary-bulk relation for
chiral gapless edges in Section 4. We warm up to the precise statement by first explaining how
the notion of the center of an enriched monoidal category naturally emerges from the physical
intuition of the relation between a 2d bulk and a 1d edge in Section 4.1 and 4.2. In Section 4.3, we
add 0+1D walls to the edge and 141D gapless walls to the bulk. In Section 4.4, we give our main
mathematical result (see Theorem 4.15). It says that assigning the data on the boundary to that in
the bulk by taking centers gives a well-defined functor, which is actually a monoidal equivalence.
This generalizes our earlier result of the functoriality of Drinfeld center in [46, Theorem 3.3.7].

In Section 5, we develop the mathematical theory of non-chiral gapless edges. The logic
flow there is parallel to that of chiral gapless edges. In particular, we provide a classification
of non-chiral gapless edges in Section 5.2, and discuss its significance in the study of purely
edge topological phase transitions in Section 5.3. Different from the chiral cases, two non-chiral
gapless edges can have very complicated 0+1D gapless walls. Mathematically, this corresponds
to the representation theories of non-chiral symmetries in different categories. We explain this in
Section 5.4.

In Section 6, we show how to use our theory to compute various physical processes. In par-
ticular, in Section 6.1, we show how to gap out non-chiral 0+1D walls; in Section 6.2, we show
how to fuse two gapless holes in a 2d topological order; in Section 6.3, we show how to recover
all 1+1D anomaly-free boundary-bulk CFT’s via a dimensional reduction process. At the same
time, we clarify some mysterious connections between mathematical results in fusion categories
and those in rational CFT’s.

In Section 7, we discuss two important lessons we have learned from this work and their
impacts on the study of higher dimensional gapped/gapless phases. In particular, we propose that
the theory of gapless edges of 2d topological orders developed in this work can be generalized to
the gapped/gapless boundaries of gapped/gapless phases of all dimensions.

Acknowledgment: LK and HZ are supported by the Science, Technology and Innovation Com-
mission of Shenzhen Municipality (Grant No. ZDSYS20170303165926217) and by Guangdong
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Provincial Key Laboratory (Grant No. 2019B121203002). LK is also supported by NSFC under
Grant No. 11971219 and by Guangdong Basic and Applied Basic Research Foundation under
Grant No. 2020B1515120100. HZ is supported by NSFC under Grant No. 11131008.

2. Boundary-bulk relation I: gapped edges

In this section, we review some basic mathematical notions and boundary-bulk relation for
gapped edges of 2d topological orders.

2.1. Basics of braided fusion categories

For a multi-fusion category P, we denote its tensor product by ®, its tensor unit by 1 and the
identity morphisms by 1, : p — p for p € P. A multi-fusion category is called indecomposable
if it is a not direct sum of two non-zero multi-fusion categories. A fusion category is a multi-
fusion category with a simple tensor unit. We use P™' to denote the same category as P but
equipped with the tensor product ®" defined by p ™ g := ¢ ® p; and use PP to denotes the
opposite category. The simplest fusion category is the category H of finite dimensional Hilbert
spaces. Deligne tensor product is denoted by X.

Definition 2.1. For two multi-fusion categories P and Q, a left P-module is a finite category X
equipped with a monoidal functor ¢ : P — Fun(X, X), where Fun(X, X) denotes the category
of functors from X to X; a right P-module is a left P™¥-module; a P-Q-bimodule is a left P X
Q™ -module. A (left, right, bi-)module is called closed if ¢ is also an equivalence.

Remark 2.2. For a left P-module X, for p € P, we often denote the endo-functor ¢ (p) : X — X
by p © —, where ® : P x X — X is a well-defined P-action on X. Two P-modules X and Y are
equivalent if there exists an equivalence between X and Y intertwining the P-actions.

For multi-fusion categories P, Q, R, an P-Q-bimodule X and a Q-R-bimodule Y, the rela-
tive tensor product X Xg Y is a well-defined P-R-bimodule. We have a well-defined symmetric
mononoidal category:

e MN\F: objects are indecomposable UMFC’s; morphisms are the equivalence classes of bi-
modules; the composition maps are defined by relative tensor products; the symmetric tensor
product is the Deligne tensor product.

For a braided fusion category C, we use € to denote the same fusion category but with the
braidings defined by the anti-braidings of C. The following notions have been introduced many
times in different contexts with different names (see for example [52,17,23,46,4,30]).

Definition 2.3. For two braided fusion categories A and B, a (multi-)fusion right B-module M is
a (multi-)fusion category equipped with a braided monoidal functor ¢ : B — 3(M); a (multi-
)fusion left A-module is a (multi-)fusion right A-module; a (multi-)fusion A-B-bimodule is a
(multi-)fusion right A X B-module. Such a (left, right, bi-)module is called closed if ¢y is also
an equivalence.

Given a multi-fusion right B-module M, by composing ¢¢ with the forgetful functor f:
3(M) = M, we obtain the following commutative diagram:

5
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B9 30M)
Sae=fognt lf
M

A functor B — M factoring through the forgetful functor f is called a central functor. The action
functor © : B x M — M defined by (a, m) — fyni(a) ® m is a monoidal functor.

Definition 2.4 (/46,30]). For a braided fusion category B and two right multi-fusion B-modules
M, N, a monoidal B-module functor F : M — N is a monoidal functor equipped with an iso-
morphism of monoidal functors F o fr >~ f : € — N rendering the following diagram

F(fa(b) @m) ——=Fm® fy(b))

Nl lw .1

ND) ® F(m)——F(m) ® fx(b)

commutative for b € B and m € M. M and N are said to be equivalent if F is also an equivalence.

For braided fusion categories A, B, C, a multi-fusion A-B-bimodule M and a multi-fusion
B-C-module N, the relative tensor product M Xy N is a well-defined multi-fusion A-C-
bimodule. By [46, Theorem 3.3.6.], we have a well-defined symmetric monoidal category:

e NBTFC: objects are non-degenerate braided fusion categories; morphisms are the equivalence
classes of closed multi-fusion bimodules; the composition maps are defined by relative tensor
products; the symmetric tensor product is the Deligne tensor product.

Definition 2.5. A B-enriched (multi-)fusion category is an enriched monoidal category B ob-
tained by the canonical construction from a pair (B, M), where B is a non-degenerate braided
fusion category and M is a (multi-)fusion left B-module.

Remark 2.6. The canonical construction of the enriched category M from a pair (B, M) is
well-known. In particular, the underlying category of M is M and the hom spaces of ZM is
defined by the internal homs [x, y]in B for x, y € M. It was proved in [53] that 2V has a natural
monoidal structure (see also [49, Theorem 5.3]).

For physical applications, we need add the unitarity. The above notions can all be generalized
to their unitary versions. In particular, we abbreviate a unitary multi-fusion category to UMFC,
and a unitary fusion category to UFC. A unitary non-degenerate braided fusion category has a
canonical spherical structure such that it becomes a unitary modular tensor category (UMTC)
[34]. In the unitary cases, all the functors are assumed to be unitary. Throughout this work, we
assume unitary for all physical discussion, but drop the unitarity assumption only when we state
certain precise mathematical results in Theorem 2.15 and Section 4.4.

2.2. Gapped edges and 0d walls

An anomaly-free 2d topological order (without symmetry) can be described by a pair (C, ¢)
(see [34, Appendix E] for a review), where € is a UMTC and c is the chiral central charge. The
pair (H, 0) describes the trivial 2d topological oder.

6



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384

UMTC’s: € = 3(£) = 3(M) = 3(N)

X Y

s = ———

UFC’s: £ M N

Fig. 1. This picture depicts a 2d topological order (C, 0) with three different gapped edges given by UFC’s £, M, N
separated by two 0d walls X and Y. The 2d bulk is oriented as the usual R2 with the normal direction pointing out of the
paper in readers’ direction. The arrows indicate the induced orientation on the edge.

TheoremP" 2.7. As illustrated in Fig. 1, we have the following results.

1. A gapped edge of a 2d topological order (C, 0) is described mathematically by a closed right
fusion C-module L.

2. Different gapped edges L, M, N (as UFC’s) share the same bulk (as their Drinfeld centers) if
and only if they are Morita equivalent [14].

A 2d topological order (C, 0) admitting gapped edges is called a non-chiral 2d topological order.
In these cases, the central functor f describes how excitations in the bulk are fused into those
on the edge, thus will be called the bulk-to-boundary map.

Remark 2.8. Unstable 1d topological orders naturally occur in dimensional reduction processes.
They can be described by an indecomposable UMFC [43,1].

Remark 2.9. By the folding trick, TheoremP" 2.7 implies that a gapped 1d wall between two
2d topological orders (A, ¢) and (B, c) (see the second picture in (2.4)) is described by a closed
fusion A-B-bimodule or a closed multi-fusion A-B-bimodule if we allow unstable gapped walls.

A 1d gapped edge £ of a 2d topological order should itself be viewed as an anomalous 1d
topological order, described mathematically by a UMFC L. Its anomaly is completely captured
by its bulk, which is described by the Drinfeld center 3(£). It is anomaly-free if 3(£) ~ H.

TheoremP" 2.10 (/43,1]). A 0d wall between two gapped edges £ and M (i.e. UFC’s) of the
same 2d topological order (C, ¢) as depicted in Fig. | is mathematically described by the unique
closed left L XRe M™ -bimodule X.

Remark 2.11. Physically, the £-M-bimodule structure on X is provided by the fusion of topo-
logical excitations in £ and M to X from two sides. The closedness condition is an anomaly-free
condition, which says that the 1d topological order £ K M™, obtained from the dimensional
reduction process depicted in Fig. 2 [20,38], should be nothing but the unique 1d bulk of X
given by Fun(X, X) (see [43,1] for more details). This condition determines X uniquely (up to
equivalences).

If we consider the entire 0+1D world line of the 0d wall, it makes no sense to specify a wall
excitation x € X because it can be changed to other excitations on the world line. But if we

7
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L
v
L Re M™ = Fun(X, X)
(X, x) e (X, x)
A
M
(a) (b)

Fig. 2. These two pictures depict a dimensional reduction process from (a) to (b).

want to specify a particular spatial slice of the 0+1D wall, we can further specify a distinguished
wall excitation x € X. This leads to a new description of the 0d wall as a pair (X, x), which is
useful in the calculation of global observables or factorization homology on space manifolds (see
Section 2.4).

Remark 2.12. Mathematically, such a pair (X, x) can be viewed as an Eg-algebra in the 2-
category of categories in the sense of Lurie [52]. In the same 2-category, a monoidal category
is an Ej-algebra; a braided monoidal category is an E»-algebra; a symmetric monoidal category
is an E3-algebra or Eo-algebra. Fun(X, X) is the Eg-center of (X, x); the Drinfeld center is an
E1-center; the Miiger center is an E-center.

Example 2.13. A topological excitation u € € in the 2d bulk (C, ¢) (resp. on a gapped edge £)
can be viewed as an anomalous 0d topological order, which can be mathematically described by
(C, u) (resp. (£, u)) in a spatial slice, where C (resp. £) is viewed as a finite unitary category by
forgetting its monoidal structures [43,1]. In these cases, the closed (or anomaly-free) condition
holds automatically, i.e.

CRoge O = Fun(@, €), £ ®3c) £ S Fun(L, £)
a&eggbea@)—@b, IRz eym—>1® —®m, 2.2)

both of which are special cases of a general formula (2.3). We discuss the anomaly-free condition
for general 0d defect junctions in Section 2.4.

2.3. Boundary-bulk relation for gapped edges

It turns out that the boundary-bulk relation discussed in the previous subsections is only the
first layer of a hierarchic structure. In this subsection, we drop the assumption of the unitarity.

A most general situation for the boundary-bulk relation is depicted in Fig. 3. The 0d gapped
defect labeled by X is a junction of three 1d gapped defects labeled by £, M, 3V (X). In this case,
X is an £-M-bimodule but not invertible in general. The 1d gapped wall labeled by 3V (X) is
a closed multi-fusion 3(£)-3(M)-bimodule (recall Remark 2.9). By the unique bulk principle
proposed in [43], the gapped 1d wall 3V (XX), which should be viewed as a 1d “relative bulk” of
X, is uniquely determined by X, £, M as follows:

8
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3M(0) 30Y) 30(z2)

3(L) 3(M) 3N 3(0)

d d d
L X M Y N Z O

Fig. 3. The picture illustrates the complete boundary-bulk relation, which is the physical meaning of Theorem 2.15. The
arrows indicate the orientation of the edges/walls and the order of the fusion product of topological excitations on the
edges/walls.

3 () = Fung i (X, X),

where Fungn (X, X) is the category of £-M-bimodule functors. Moreover, we should have a
canonical monoidal equivalence:

£ 832y 3D (X0) ®300) M™ =~ Fun(X, X)

which is a consequence of the formula (2.3).

Remark 2.14. Note that our convention of the left and right action in the definition of a fusion
bimodule is that if the orientation of the wall is the same (resp. the opposite) as the induced
orientation with respect to a bulk phase, then this bulk phase acts on the wall from right (resp.
left). We will use this convention throughout this work.

Now we consider the fusion of two gapped walls, say 3V (X) and 3V (Y). This fusion gives
a new gapped wall 3D (X) X 3(B) 3M Y) between 3(A) and 3(C). On the other hand, it should
also be viewed as the 1d “relative bulk” of a new 0d wall between A and € obtained by fusing X
and Y, i.e. X Xy Y. Hence, we should expect a monoidal equivalence:

Fuanv[(x, X) M3 ov0) FunM‘N(H, Y) ~ FunL‘N(X Kyt Y, XXy Y). 2.3)

This monoidal equivalence was rigorously proved in [46, Theorem 3.1.7.]. It simply says that the
assignment £ — 3(£) and X — 3V (X) is functorial. This functoriality, stated more precisely
in Theorem 2.15, provides a complete mathematical description of the boundary-bulk relation
for 2d topological orders with gapped edges.

Theorem 2.15. The functor 3 : ™MMF — NBTF! defined by
L 3(L) and X 3D(X) :=Fung (X, X)

is a well-defined fully faithful symmetric monoidal functor.

Remark 2.16. The above theorem was proved in [46, Theorem 3.3.7]. Its proof can be general-
ized to unitary cases using results in [21,22]. The physical meaning of Theorem 2.15 (as depicted
in Fig. 3) can be all realized by Levin-Wen type of lattice models [35].

One of the main goals of this work is to generalize above result to gapless edges (see Theo-
rem 4.15).
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2.4. Factorization homology on space manifolds

The integration of the local observables on space manifolds is achieved by the mathematical
theory of factorization homology [1] (see [2] for a recent mathematical review). In this subsec-
tion, we review some basic results that will be useful later.

Definition 2.17. A coefficient system A of an oriented disk-stratified 2-manifold ¥ (see [3]) is
an assignment of each i-cell to an i-dimensional topological order for i =0, 1, 2. A coefficient
system A is called anomaly-free if the following conditions are satisfied:

M My My
Ao

A A Y B . (2, ). (24)

Mis1 M,

1. each 2-cell is assigned to a UMTC A (or B, A;), or an anomaly-free 2d topological order
(A, ¢), where c is fixed for each connecting component of X, thus can be ignored;

2. each oriented 1-cell between two adjacent 2-cells (as illustrated in the second picture in (2.4))
is assigned to a closed multi-fusion A-B-bimodule M (or M;);

3. each O-cell as the one depicted in the third picture in (2.4) is assigned to a pair (X, x), where
X is a closed P-module for P := M, ng(Mm Mp Xy, -+ Ny, | M,) (recall TheoremP!
2.10) and x is an object in X.

Such a coefficient system describes a physical configuration of 0d, 1d, 2d topological orders
on X. Anomaly-free condition means that the corresponding physical configuration can be real-
ized by a 2-dimensional local Hamiltonian lattice model on 2. The “closed” condition determines
X uniquely. In other words, an anomaly-free Od defect is determined by the physics of its neigh-
borhood uniquely (up to the choices of the distinguished object x € X).

Remark 2.18. Note that if we flip the orientation of a 1-cell and replace its assignment M by
M at the same time, then the physics configuration remains the same. Therefore, it must define
an equivalent coefficient system.

The factorization homology of a coefficient system A on an oriented disk-stratified 2-manifold
3 is well-defined and is denoted by fz A.

Theorem 2.19 ([1]). If X is compact and A is anomaly-free, then f): A= M, uyx), where uy is
a distinguished object in H.

The physical meaning of uy is nothing but the space of ground states of the associated
physical configuration on X. This integral is well-defined on any submanifold of ¥ as well.
In particular, the integral over any open 2-disk like region D in X gives a pair (W, w), i.e.
f p A=W, w). The following result will be useful later.

Theorem 2.20 ([/]). By shrinking an open 2-disk like region D in X to a 0O-cell and assigning
f p A to this 0-cell, we obtain a coefficient system A’ on a new oriented disk-stratified 2-manifold

Y. The coefficient system A’ on X' is again anomaly-free.

10
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(Va, ) UARD) Vs, BY)

! A, c) » (B,c)

Myt e

[x,x"]a L] Oy yls

Fig. 4. This picture depicts the 1+1D world sheet of two chiral gapless edges (V 4, AX) and (Vg, BY) connected by a
0+1D gapless wall (i.e. the vertical black line). The complex coordinate z = +ix is given and determines the orientation
of the world sheet.

Example 2.21. Consider the following open 2-disk like region D on ¥ with an anomaly-free
coefficient system:

D (Y, y)

If [ p A= (W, w), then W is uniquely determined by § := J X7, (3" g K™) as the unique
closed left S-module. In other words, W is independent of other data: (X, x), M, (Y, ¥), N, (Z, 2),
L, C, but the distinguished object w € W depends on them. The physical meaning is that if we
view from far away, this open 2-disk like region can simply be viewed a Od defect junction,
defined by the pair (X, x), connecting three 1d defects labeled by J, J, K.

3. 0d walls between chiral gapless edges
In this section, we develop the theory of Od walls between two chiral gapless edges.
3.1. Observables on the world line of a 0d wall

Consider a 0d gapless wall between two chiral gapless edges as depicted in Fig. 4. The 2d
bulk topological order is (C, ¢). Two chiral gapless edges are (V4, A and (Vg, BY), where
both chiral symmetries (i.e. VOAs) V4 and Vg have the same central charge ¢ and Mody, =
A, Mody,, =B.If ¢ =0, then it is necessary that V4 = V3 = C. Throughout this work, we use
vertical planes in Figures to represent 14+1D world sheets of gapless edges/walls.

If m is a topological excitation living on the 0d wall, by fusing topological excitations in the
bulk and edges with m, we obtain different topological excitations. All such wall excitations can
be labeled by the objects in a category M, which is called the category of topological excitations.
Similar to the analysis of the observables on the 1+1D world sheet of a chiral gapless edge, using

11
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the same dimensional reduction trick as depicted in [49, Figure 5], by the “No-Go Theorem” [49,
Section 3.3], chiral fields on the 0+1D world line supported on m form 1D boundary CFT’s and
0D walls between them. Topological excitations can also be viewed as the boundary conditions
of these boundary CFT’s. Therefore, we can label these boundary CFT’s as A,, for a given
topological excitation m on the wall and a OD wall by M, , for two topological excitations
m, m'. The space M,, ,, consists of boundary condition changing operators and we have M, ,, =
A,,. These chiral fields can have OPE M,/ v @ My m' — Moy .

By fusing chiral fields in Uy = [1x,1x]4 and Up = [1y, 1y]g into the world line, we
obtain two natural maps ¢y : V4 — A, and (g : Vg — A, respectively. These maps clearly
preserve the operator product expansion (OPE). Hence, they are homomorphisms of open-string
VOA [27]. Let w4, 0, o be the Viraroso elements in V4, A,,, Vg, respectively. The minimal
requirement for a consistent boundary CFT is to satisfy the following condition:

e Conformal invariant boundary condition: (v A) L (o) < & (wp) are isomorphisms.

More generally, we require:

e V-invariant boundary condition: There is a VOA V embedded in V4, A,,, Vg rendering
the following diagrams commutative:

V
/f\ Vm e M. 3.1)

VAL>AmAVB

This VOA V is called the 1+1D chiral symmetry of the wall (defined in the neighborhood of the
world line), and is assumed to be a unitary rational VOA such that Mody is a UMTC. It is clear
that M, ,,» € Mody . The path independent embedding V < A,, becomes a canonical morphism
n : IMody — A called the identity morphism. The OPE of defect fields defines a composition
morphism in Mody :
Mm’,m” (2% Mm,m’ g Mm,m”v (32)

which is associative and unital as illustrated in the following commutative diagrams:

1
My i Qv My v My H®'”’m” m"” Qv My

@ll J/@ 3.3)
©
Mm’ m’ ®v Mm m’ Mm m'"
mm’®VMmm mm’®VMmm

V \ y \ (3.4)

Therefore, the chiral fields on the 0+1D world line of this wall form a category enriched in
Mody . Its underlying category is precisely the category M of topological excitations on the 0d
wall. The background category Mody, however, does not have a direct physical meaning because
it is not the correct choice of the background category as we will show next.

12
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It is easy to see that all M,, , are V4-Vg-bimodules, i.e. M,, ,» € Mody)y,|v,, Where
(Mody )y, vy is the category of V 4-Vg-bimodules in Mody . Note that a left V 4-module X is
automatically a right V 4-module with the right action defined by

cx,vy
XQyvVy——=VyQy X —> X.

Similarly, a right Vg-module Y is automatically a left Vg-module with the left action defined by

CVg,¥
Ve Ry Y —— Y Qy Vg.

Therefore, a V4-Vg-bimodule X in Mody is canonically a (V4 @y Vg)-(V.4 ®y Vg)-bimodule
in Mody. In the definition of this bimodule structure, whenever we exchange the order of
Va, X, Vg via braidings, the object V4 always stays on the top and Vg always stays at the
bottom.! Therefore, the category (Mody )y ,|v, has a fusion product defined by the relative ten-
sor product

X ®VA®VVB Y, VX,Y e (MOdv)VAWB.

The algebra V4 ®y Vg in Mody is not commutative unless Vg is in the centralizer of V4,
thus should be viewed as an open-string VOA extension of V. Moreover, since both V4 and
Vg are simple special symmetric f-Frobenius algebras (1-SSSFA, recall [49, Section 4.4]) in
Mody, V4 ®y Vg is a (not necessarily simple) symmetric special f-Frobenius algebra. As a
consequence, the category (Mody )y, vy, is an indecomposable UMFC.

First, notice that we have

homModv (lModV s Mm,m’) = hon’l(Modv)vAWB (Vgq®y Vg, Mm,m’)~ (3.5)

Therefore, the identity morphism id,, : IMod, — M, m defines a canonical V4-Vg-bimodule
map id,, : V4 ®y Vg — M, for m € M. Secondly, from Fig. 4, it is easy to see that the
composition morphism © defined in Eq. (3.2) should intertwine both the V 4-action and the Vg-
action. Therefore, it is a morphism in (Mody )y, |v,, . In other words, the chiral fields on the 0+1D
world line on the wall form a category enriched in (Mody)v ;v .

Note that these two different choices of background categories: Mody and (Mody)v vy
are gauge choices. They describe exactly the same physics because objects in (Mody )y, vy
can be viewed automatically as objects in Mody via the forgetful functor f: Mody )y, v, —
Mody . However, the new background category (Mody )y, v, has a direct physical meaning.
More precisely, it describes a fictional gapped wall between two fictional bulk phases (A, ¢) and
(B, ¢). This can be seen from a physical construction. Consider a 2d topological order (Mody, ¢).
By condensing two condensable algebras V4 and Vg in Mody, we obtain two new UMTC’s

(Modv)(‘),ﬂ =Mody, and (Modv)(‘)/ = Mody,,, respectively.
Two gapped walls, defined by UFC’s (Mody )y, |v and (Mody )y |y, are also produced during

these two condensation processes as shown in the first of the following pictures.

1 This braiding convention coincides with the one explained in [49, Figure 7], which was drawn in the opposite per-
spective of Fig. 4 in this work.

13
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(MOdV)VAW P= (MOdV)VAlV«B

fusing
MOdVA Mody \vé MOdVT‘ _— MOdVA MOdVB (36)

Modv)viv g

Then we fuse these two walls. We obtain a new wall

(Mody)v v RMod, Mody) v vg = Mody) v, vg

where the functor is defined by x Kmoq,, ¥ = X ®v y, and is an equivalence (see for example in
[46, Theorem 2.2.3]). Moreover, this equivalence is clearly a monoidal equivalence. Therefore,
P:=Mody)y, v, has a physical meaning as a gapped wall between two 2d topological orders
(A, ¢) and (B, ¢), thus a better choice of the background category. By [47, Theorem 3.3.6], P is
a closed multi-fusion Mody , -Mody,, -bimodule. This fact provides an evidence of the Gapped-
gapless Correspondence for 0d walls.

The key to the understanding of the enriched category describing the Od wall is to work out
the relation between P and M. The analysis is entirely similar to that in [49, Section 6.1]. We
will not repeat it here. Instead, we will take the advantage of what we have already shown. Since
all gapless edges can be obtained from topological Wick rotations, it is only reasonable if all
0d gapless walls can also be obtained from topological Wick rotations. This is precisely the
Gapped-gapless Correspondence stated in Section 1. As a consequence, the category M of wall
excitations is uniquely determined. More precisely, by Definition 2.17, the underlying category
M is uniquely determined by X, A, P, B, Y, C via the following canonical monoidal equivalence:

XXy PXRgY) M3 e) € = Fun(M, M). 3.7

Therefore, the 0d wall depicted in Fig. 4 can be characterized by a pair (V, 7 M).
3.2. General cases: 0d phases vs. 0+1D phases

For a fixed 1+1D chiral symmetry V, is P := (Mody)v,|v, the only choice for the back-
ground category? Note that we have shown that M, ,- € P, and all the identity morphisms
and composition morphisms are morphisms in P. Therefore, the only other possibilities are
subcategories of P, or equivalently, categories that map into P faithfully. By Gapped-gapless
Correspondence, these categories must be UMFC’s that are Morita equivalent to P. Such a cat-
egory is precisely given by Px|x for a (not necessarily simple) symmetric special f-Frobenius
algebra X in P. It is equipped with a forgetful functor f: Pxx — P, which is faithful. When
X =1p =V4 Qv Vg, Px;x =P. In general, X is an open-string VOA extension of V4 Qv V3.
Note that Py x realize all closed multi-fusion A-B-bimodule up to equivalences. Once we fix
the background category to be Px|x, the category of Od wall excitations is determined uniquely
by Gapped-gapless Correspondence and the anomaly-free condition in Definition 2.17.

Do different background categories Px|x and P produce different Od walls? For Q := Pxx
and an invertible Q-P-bimodule X := Px/1,,, we obtain a 0d wall defined by (V, (K Kp M)) as
illustrated in Fig. 5, in which X is depicted very close to M such that K X M should be viewed
as a single fictional defect junction in the figure and the category of Od wall excitations. We want
to compare (V, 2 (K Kp M)) with (V, TM).

14
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(Va, %) (V, %X =p M) Vs, PY)
t
(A, c) (B,¢)
x Q
m} 1
X
P

Fig. 5. This picture depicts the 0+1D world sheet of a 0d wall (V, 2 (X Xp M)). K is depicted as a fictional OD defect
placed very close to another fictional 0D defect M such that K X M should be viewed as a single fictional 0D defect
that defines the category of excitations of (V, Q(fK Xp M)).

1. We compare the boundary CFT’s on the wall (V, (K Kp M)) with those on (V, P M). Note
that "M =PM; @ --- & PM,,, where M; are the indecomposable components of M as a
left P-module. On the one hand, for 0 # m € M;, we have M; ~ P 1, and [m, m]p is
a boundary CFT on the 0+1D world sheet of (V,?M). On the other hand, X Kp M; ~
PX|im,m]p 18 an indecomposable Q-module. For x € X Xp M;, [x, x]g is a boundary CFT
on the 0+1D world sheet of (V, 2 (K Kgp M)). Regarding [x, x]g as an algebra in P via the
forgetful functor f: Pxx — P, one can easily show that [x, x]g and [m,m]p are Morita
equivalent. Therefore, the set of boundary CFT’s on (V, (K Kp M)) is a subset of those on
v, 7).

2. We compare the categories of wall excitations. They are obviously different. What causes
this difference? Recall that the previous notion of the chiral symmetry V is a 1+1D notion.
It is a VOA that is transparent in a neighborhood of the world line except at 0D defects.
Mathematically, it just means that a VOA is a conformal analogue of an E;-algebra (or a 2-
disk algebra) [52,3,2]. On the 0+1D world line of the wall, we can impose a new 0+1D chiral
symmetry, which is only transparent on the world line except at 0D defects, and is potentially
different from the chiral symmetry V. This 0+1D chiral symmetry should be given by an
observable algebra only defined on an open 1-disk. Mathematically, it is a conformal analogue
of an Ejp-algebra. In our case, it is nothing but an open-string VOA, or more precisely, a
symmetric special {-Frobenius algebra A in P. For a fixed 0+1D chiral symmetry A, it is clear
that a OD defect living on the world line must be an A-A-bimodule. For example, for (V, ﬂDJ\/[),
this 0+1D chiral symmetry is just V4 ®y Vg; for (V, QK Kp M)), it is X. Their difference
in the category of wall excitations is due to the fact that larger O+1D chiral symmetry allows
fewer wall excitations and fewer morphisms between wall excitations. Moreover, Fig. 5 shows
that one can change the 0+1D chiral symmetry by introducing a OD wall (e.g. K) on the world
line.

3. Although (V, (K Rp M)) and (V, PM) differ in their 0+1D chiral symmetry and wall ex-
citations, this difference is superficial from the usual condensed matter physics point of view
because there is no thermodynamics limit in Od. It means that changing the 0+1D chiral
symmetry, or equivalently, introducing OD fictional defects (e.g. K) onto the 0+1D world
line, does not trigger a real space phase transition. From this point of view, a Od wall or an
anomalous 0d phase should automatically include all possible 0+1D chiral symmetries and
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0D defects (e.g. K) on the world line, and (V, (K Xp M)) with (V, PM) should be viewed
as two gauge equivalent descriptions of the same 0d wall.

4. Consider gapped 0d walls between two 1d gapped edges. In TheoremP! 2.10, the background
category is fixed to H, as a consequence, the category of Od wall excitations is unique. We
show in Section 6.1, in certain length scale, not only it makes sense to talk about “a gappable
gapless 0d wall”, but also it has a precise categorical description. Gapping it out does not
trigger any Od phase transition because there is no thermodynamics limit in 0d. Since there
are precise mathematical descriptions before and after the gapping-out process, it is useful
to introduce a notion before the gapping and a notion of “gauge equivalence” between the
description of a 0d gapped wall and that of a gappable 0d gapless wall.

Remark 3.1. 1+1D and 0+1D chiral symmetries are both local quantum symmetries. We believe
that their relation presented here catches some general features of gapless phases of all dimen-
sions (see Section 7).

Similar phenomena also occur if we vary the chiral symmetry V. In general, there are more
than one VOA V rendering Diagram (3.1) commutative. It means that we can impose different
1+1D chiral symmetries on the Od wall. We denote them by V;,i = 1,2, - --. We obtain different
pairs (V;, Pi M;), where P; = (Mody;) v, v, and M; is uniquely determined. By the construction
of P (recall (3.6)), it is clear that P; is again a closed multi-fusion A-B-bimodules. Hence, P;
and P; are Morita equivalent. By introducing a 0D wall X; on the world line between P; and
P;, we break/change the chiral symmetry from V; to V;. Due to the lack of thermodynamics
limit in 0d, this breaking/changing of 1+1D chiral symmetries does not trigger a real space phase
transition.

Note that the usual notion of a phase in condensed matter physics is a spatial notion. From this
perspective, all possible (V;, Pi M;) and OD walls among them should be included in the complete
definition of the spatial notion of a Od phase. On the other hand, (V;, Pin;) and Vj, Piv ) for
i # j define two different sets of boundary CFT’s preserving different 0+1D chiral symmetries,
and can be obtained from two different topological Wick rotations. It becomes convenient, or
physically important, to introduce and carefully distinguish two concepts: a 0d phase (a spatial
notion) and a 0+1D phase (a spacetime notion).

Definition 3.2. There are two different notions associated to a gapless 0d wall or a potentially
anomalous Od gapless phase.

1. By a (potentially anomalous) “0+1D phase”, we mean a 0d defect in a physical system with
a fixed 141D chiral (resp. non-chiral) symmetry V defined in a 141D neighborhood of the
world line and a fixed 0+1D chiral (resp. non-chiral) symmetry X defined on the world line.

2. By a (potentially anomalous) “Od phase”, we mean a 0d defect in a physical system such
that all possible 1+1D (resp. 0+1D) chiral (or non-chiral) symmetries are realized in a neigh-
borhood of (resp. on) the world line. More precisely, two 0+1D phases are called spatially
equivalent if they can be transformed from one to the other by introducing a 0D defect (e.g.
X in Fig. 5) on the world line. Then a 0d phase (or wall) is just a spatial equivalence class of
0+1D phases (or walls).

In the context of this subsection, we can denote the O+1D walls constructed in this subsection
by (V, V, M), (V, X, 2(K ®p M)) and (V;, Vi, TiM;), respectively.
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Remark 3.3. We will introduce the notion of a non-chiral symmetry in Section 5.2. Above
definition also applies to the study of Od walls between two non-chiral gapless edges (see Sec-
tion 5.4).

Remark 3.4. The spatial equivalence leads us to the mathematical notion of a spatial equivalence
between two bimodules over enriched multi-fusion categories in Definition 3.23. In that context,
PM and 2 (K Kp M) are spatially equivalent 2 X-2Y-bimodules.

Remark 3.5. The subtle difference between the spatial and spacetime notions in Definition 3.2 is
unique in 0d, and disappears in higher dimensions. For example, introducing a 1-codimensional
wall on the 1+1D world sheet of a gapped or gapless edge triggers a real space phase transi-
tion.

Remark 3.6. Actually, the spatial equivalence class of a 0+1D wall is much more than the 0+1D
walls constructed in this subsection. For example, consider a 1+1D gapless phase defined by a
RCFT defined on a cylinder S' x R', where S! is the space manifold and R! is the time. Assume
that the size of ' is small. Physically, we know that if we shrink S' to a point, the spectrum of
the RCFT becomes gapped in this limit. Mathematically, by integrating the RCFT on the cylinder
(via factorization homology), we obtain a mathematical description of a 0+1D wall, which is still
gapless because this integration (or factorization homology) does not know the size of S'. But
this wall is gappable. Its gappability can be characterized by spatial equivalences as we will show
in Section 6.1. We denote it by (C, Y, 8¥), where C is the 1+1D local quantum symmetry and
Y is the 0+1D non-chiral symmetry. By attaching this gappable 0+1D wall to any one of 0+1D
chiral gapless walls constructed in this subsection, say (V, V, 7M), we get a new 0+1D gapless
wall (V, V,PM)R(C, Y, 8%). This type of 0+1D gapless walls is beyond previous constructions.
We would like to ignore such gappable 0+1D walls for our classification of 0+1D walls. Note
that Y is infinite dimensional and does not live in H. By requiring the 0+1D chiral symmetry
to be a symmetric special {-Frobenius algebra in (Mody )y, |v;, we ensure that the 0+1D wall
does not contain any gappable factors or parts. We will explain in details how to gap out a 0+1D
gappable gapless wall in Section 6.1.

3.3. Classtfication of 0+1D walls and examples

As a consequence of Definition 3.2 and Gapped-gapless Correspondence, we obtain the clas-
sification of 0+1D gapless walls without any gappable parts (see Remark 3.6) stated as a physical
theorem.

TheoremP" 3.7. All 0+1D gapless walls (without any gappable parts) between two chiral gap-
less edges (Vg4, ADC) and (Vg, B9) of the same 2d topological order (C, ¢) are mathematically
described and classified by triples (V, X, T M):

1. V is the 1+1D chiral symmetry (defined in the neighborhood of the world line of the wall),
i.e. a unitary rational VOA of central charge c, and X is the 0+1D chiral symmetry (defined
on the world line), i.e. a symmetric special T-Frobenius algebra X in Mody )y , |v5. They are
equipped with algebras homomorphisms between algebras in Mody rendering the following
diagram commutative:
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I
S
Ly

VaQv Vg,

where 1x is an algebraic homomorphism between two algebras in (Mody )y , |-
2. M is an enriched category defined by the canonical construction from the pair (P, M),
where

(a) the background category P is a closed multi-fusion A-B-bimodule defined by

P=(Mody) v, vs) x|x; (3.9)

(b) the underlying category M is the category of topological excitations in the 0d wall, and
is mathematically defined by a finite unitary category equipped with a unitary monoidal
equivalence:

(X' K4 PRy Y) R3¢y C = Fun(M, M), (3.10)

where (X™ W4 P Rg Y) is a closed multi-fusion right 3(C)-module. Note that M is
uniquely determined by the monoidal equivalence in (3.10) and has a canonical left P-
module structure defined by

P (X Ky PR Y) K3e) €~ Fun(M, M).

The space of chiral fields living on the world line between two wall excitations m, m’ € M
is given by My, v = [m, m’]p for m,m’ € M.

Moreover, all these 0+1D walls are spatially equivalent and define the same 0d wall. When
Vg =V =C, we must have V = C, and this 0d wall is gapped. For many purposes, it is
convenient to abbreviate the triple to ¥ M for simplicity (see Remark 3.9, 3.17, 3.10).

Remark 3.8. If we want to emphasize or study a particular spatial slice of the 0+1D wall, we can
specify a wall excitation m € M in the spatial slice, thus obtain a quadruple (V, X, "M, m).

Remark 3.9. If we naively apply topological Wick rotation, the background category P does
not have any direct physical meaning. It is necessary to set P = ((Mody)v v, ) x|x instead of
only requiring an equivalence. Strictly speaking, by requiring “=", we add the information of
(V,Vyq, Vg, X) to P. For this reason, we will sometimes abbreviate the triple (V, X, TJ\/[) to

PM for simplicity.
Remark 3.10. If we ignore V and X in (V, X, TJ\/[), it turns out that the pure categorical de-
scription P automatically covers all spatially equivalent 0+1D walls including those gappable

factors or parts discussed in Remark 3.6 (see Remark 3.24).

Example 3.11. We discuss a few special cases and examples of Theorem®" 3.7.
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1. When V4 = Vg = C, we have V = C, and X can be a finite direct sum of matrix algebras
and P = Mody (H). If, in addition, X = C, then we recover the gapped cases in TheoremP?
2.10.If X # C, then it is already beyond the usual description of a 0d wall in Theorem®" 2.10.

2. When V4 =V =V,if X =V, then (V, X, gDJ\/[) gives the trivial 0+1D wall in the gapless
edge (V, ADC); if X=a®a*+V fora € Mody, then (V, X, j)J\/E) gives a non-trivial 0+1D
wall. For example, when V4 = Vg =V is the minimal model unitary rational VOA Vig of
central charge ¢ = %, the UMTC Mody has three simple objects 1, i, o with fusion rule
o®oc=1®y.When X =0 Q0c*, (V, X, M) gives a non-trivial 0+1D wall.

3. If Vg < Vg and X =V = Vg, then we have P = Ay (i.e. the category of right X-modules
in A).

4. If V4 # C = Vg, then there is no 0d wall, i.e. no wall exists between a non-trivial chiral
gapless edges and a gapped edge.

Remark 3.12. 0d wall between gapless edges were also studied in [7]. It will be interesting to
explore how examples there fit into the mathematical theory developed here.

Given two chiral gapless edges (V,4,2X) and (Vg, BY) of the same 2d topological order
(C, ¢). It is physically obvious that there should exist at least one Od gapless wall between these
two edges. By TheoremP? 3.7, we obtain the following physical theorem, which should be re-
garded as a mathematical conjecture.

TheoremP" 3.13. Given two unitary rational VOA’s Vi and V> with the same central charge. If
the UMTC’s Mody, and Mody, are Witt equivalent, then V| and V> share a sub-VOA V, which
is also unitary and rational.

3.4. Spatial fusion anomalies

In Fig. 6, we depict three chiral gapless edges (V;, 2iX;), i = 1,2, 3 of a 2d topological order
(C, ¢). They are connected by two 0d gapless walls (Vq2, X, ?M) and (V3,7, QN). We would
like to study the spatial fusion of these two gapless walls.

Remark 3.14. According to the orientation of the edge, the spatial fusion is from right to left
(recall Remark 2.14). It is precisely our usual convention of the order of tensor product. It is also
helpful to look at Fig. 6 from the back. Using the following two canonical (monoidal) equiva-
lences

T&BZQzQﬁgT; J\/[ExrzeszN&sz,

we can also write the spatial fusion product from left to right (see (3.12)).

We first restrict ourselves to the special cases V = V1o = V23 and the spatial fusion preserves
the 1+1D chiral symmetry V. Similar to the discussion in [49, Section 6.3], the naive fusion of
observables on two world lines gives

[m, m']p @1y, 11,15, [1,7']0 € PR, Q,

which is defined by the coequalizer of the left and the right action of [1x,, 1x,]3,:
[m,m'1p Rz, [1x,, 1x,18, ¥z, [n,n'1qg = [m, m']lp R, [n,n]q. (3.1
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(Vi2, X, M) (Vas, Y, ON) (Vizs, X B3, Y, P22 2 (M =y, N))
VL,BX) Py (Va,B2X)  ¥Q (Vs ®3Xs) V1, #120) (V3,%32)
[m, m’]p [n,n']o [m®x, n,m’ Ry, n’']
[1x,,1x,]13, - : :
X1 Xy A3 X1 X3

..... R T -5 TSR s
(€0 (€0

Fig. 6. This picture illustrates the fusion of two 0d gapless walls (Vj3, X, (‘PJV[) and (V23,7, QN). This fusion is defined
by (3.12).

However, this naive fusion does not give the correct fusion in general. What happens is again a
quantum quenching process. This fusion of two 0d walls causes the fusion between the topolog-
ical excitations m € M and those in n € N according to the following fusion functor:

g xrev

MEN — M Ryrer N
m&nHm&xrzevn.

Therefore, the underlying category, or the category of topological excitations, of the resulting
0+1D wall is given by M &xrzev N. By the boundary-bulk relation (see Theorem 2.15), we obtain
that the background category of the resulting 0+1D wall has to be the UMFC P X3, Q. Fusing
topological excitations m € M and n € N causes a change of the microscopic physics so that it is
pushed away from an RG fixed point, but then must flow to a new RG fixed point. More precisely,
when two excitations are getting close, certain non-local operators acting on two excitations
are becoming local. As a consequence, local observables on the 0+1D world line supported on
m &xrzev n are more than the naive fusion of those on the world lines supported separately on m
and n. According to the Principle of Universality at RG fixed points, introduced in [49, Section
6.3], observables on the 0+1D world line supported on m &xrzev n at the new RG fixed point must
be the universal one, i.e. the internal hom [m &xgev n,m &xrzev n] € P Xz, Q. More generally,
at the new RG fixed point, the space of boundary-condition changing operators between two
boundary conditions m Xxcrev n and m' Borev n’ is given by the internal hom:

[m &xrzev n,m @xrzev n'le?® Mg, Q.
Therefore, in this case, we obtain the following fusion formula:
(V. X, P00 By, oy, (V. ¥ ON) o= (V, X R, ¥, PERD WM B N, (B.12)

where X Mg, Y is naturally a symmetric separable f-Frobenius algebra in (Mody )y, |v;, and we
have a natural unitary monoidal equivalence P Xg, Q 2~ ((Mody)v,|v;) X R, Y| XK, ¥ -

Example 3.15. We consider a special case of Fig. 6: (V3, B3 X3) = (Vy, 951361), V=Vi="Vy3
and (Vaz, Y, ON) = (Vy2, X*, 7" MOP), where X* is the dual symmetric separable {-Frobenius
algebra of X in (Mody)y,|y, and can be viewed as the tensor unit of P via the canonical
monoidal equivalence:

:])I‘CV — ((MOdV)V1|V2)X‘X)rev i) (MOdV)V2|V1)())(p*‘X*

20



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384

defined by x — x*. Actually, as Frobenius algebras in Mody, X* and X are isomorphic thus
defines the same 0+1D chiral symmetry. In this case, the spatial fusion of the two walls gives
vV, X, TM) &(szﬁzxz) V12, X*, :PMMOP) ~(V, X &32 X*, T®B2Trev (M @xaev MOP)),
(3.13)
where 7Bz, 7 M gx?v MOP) is a B1X;-B1;-bimodule (see Definition 3.18). Since the 0d

wall between (V;, B120) and (v, B1X) is unique, the wall after the spatial fusion should be spa-
tially equivalent to the trivial 0d wall (V1, Vi, B X1). We will explain the fact in Example 3.27.

In some interesting cases, [m,m']p Mg, [n,n'lq =~ [m &xrzev n,m erzev n']. For example,
when B =X =By =X =B3=X3=P=M=0Q =N =0C, all edges are the canonical
chiral gapless edges and two 0+1D gapless walls are the trivial walls. In this case, we have

[m, m']p ®llx, . 1x, s, [, nlo=m@m*@n @n*~m' ®n' ® (m@n)*
=[m &xrzev n,m' anev n'l. 3.14)

But in general, they are not isomorphic. Since [m &xrzev n,m &xrzev n’] is the universal one, we
always have the following commutative diagram:

[m Mocrev n,m' Rorev n']1 © (m Rogrev n)
%ol ev

(lm, m'lp Rz, [n,n'l0) © (m Ry, n) (lm, m"lp © m) Kyrev ([n,n'1o ©n Byrey 1.

)ev gxaev c{}’l
The morphism fy clearly coequalizing the two morphisms in (3.11). Therefore, we obtain a
canonical morphism

film,mp @, 1,1, 1,110 — [m By n,m" Rogev 0], (3.15)

which is not an isomorphism in general. It means that naive fusion of observables on the two
world lines of two 0d gapless wall (i.e. [m, m']p Kg, [1n, n']q) is not universal or at a renormal-
ization group (RG) fixed point. It will flow to a RG fixed point, which is universal and defined by
[m Xy, n,m' Ky, n’]. In some sense, this morphism f catches the information of the RG flow.
Interestingly, even in the general cases, for a special class of edges excitations (or excitations in
the trivial wall), f is an isomorphism (see [49, Remark 6.3]).

From another point of view, that f is not an isomorphism simply can be viewed as an indicator
that there are certain anomaly, called spatial fusion anomalies. Indeed, 1d gapless edges, together
with Od walls between them, are anomalous 1d phases when the bulk (C, ¢) is non-trivial. It is
possible that this spatial fusion anomaly vanishes for some special anomalous phases as shown
in the case discussed in the Eq. (3.14). But when the bulk phase (C, ¢) is the trivial 2d topological
order, the spatial fusion anomaly should definitely vanish. This is proved in [45, Theorem 4.5].

Remark 3.16. While spatial fusions are often anomalous, temporal fusions are often anomaly-
free, i.e. [m',m"]p Quu' m'1p M, m']p = [m, m"]p for simple m, m’, m"” € M; if all four internal

homs are non-zero.

In general, the 1+1D chiral symmetries on two gapless walls Vi, and V3 are potentially
different, i.e. Vi2 # V3. In this case, the spatial fusion of two walls causes the 1+1D chiral
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symmetries to break further down to a smaller VOA Vj53. To compute the spatial fusion, we
need further specify the fusion process. More precisely, we assume that this fusion is achieved
in two steps: first breaking both 1+1D chiral symmetries V12 and V>3 down to Vjp3 without
changing X and Y, then fusing according to (3.12). More explicitly, the first step gives:

Vi, X, PM) = (Vigz, X, VM) (Va3 Y, 2N) > (Vins, ¥, 9N,

where X and Y should be viewed as their images in (Mody,,;)v,|v, via two forgetful functors:

f f

(MOdV12 ) ViV, = (MOdV123 ) Vi|Vy < (MOdV23 ) ViVas
and P = ((Mody, ;) v, v,)x1x and Q' = (Modvy,,;)v,|v,) |y, and M', N’ are uniquely deter-
mined. The second step gives:

(Vizs. X, VM) By, 300c,) (Vizs, Y. CN) = (Vigs, X R, ¥, FE5 D 0 Ry N,

(3.16)

where X X, Y is naturally a symmetric separable {-Frobenius algebra in (Mody,,;)v;|v;.
Remark 3.17. The spatial fusion formula (3.16) also suggests that it introduces very little con-

fusion if we abbreviate the triple (V12, X, TJ\/[) to TM for simplicity unless there is a breaking
of 1+1D chiral symmetries.

3.5. Morita equivalence

The physical results in Section 3.1 and Section 3.4 lead us to a representation theory of en-
riched monoidal categories as we will sketch in this subsection. This theory will be developed in
details elsewhere.

Let A, B be UMTC’s and X, Y two indecomposable UMFC’s. Let AX and BY be the inde-
composable enriched unitary multi-fusion categories obtained from the canonical construction.

The time reversal of 2Y is defined by (BY)r¥ := g‘émv. The Deligne tensor product
Avx @yrev — AIZ@CX: X Yrev)

is again an indecomposable enriched unitary multi-fusion categories. We give the following
working definition of modules over an indecomposable enriched unitary multi-fusion category
first introduced in [55].

Definition 3.18. An enriched category ¥ M obtained from canonical construction is called

1. aleft *X-module if P is a multi-fusion left .A-module, and M is a left X' X 1 P-module such
that the P-module structure on M coincides with the following composed unitary monoidal
functor

P s YTV [ P &) XV K4 P ¢—M> Fung (M, M).

2. aright BY_module is a left (B%J)re"-module;
3. a AX-BY-bimodule is a left (PY)™ KA X-module.

The (left, right, bi-)bimodule M is called closed if ¢y is also an equivalence.
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Remark 3.19. If A and Y are two gapless edges of a 2d topological order, then M describe
a 0+1D gapless wall between two edges. Therefore, the following picture clarifies the physical
meaning of the notions in Definition 3.18:

Ax ’J’M 'Bld
A B (3.17)
<€ <
x M Y

Note that if TM is closed, then P must be a closed multi-fusion A-B-bimodule, i.e. ¢ : AKX
B — 3(P) is a braided equivalence. Note that we have also used the left-right convention in
Remark 2.14.%

Remark 3.20. We briefly clarify the notion of a left # X-module mathematically. All A-enriched
categories form a 2-category Cat™. The monoidal functor ® : A x A — A defines a pushforward
2-functor ®, : Cat*** — Cat™. As a consequence, Cat” is a monoidal 2-category with the
tensor product defined by

Cat? x Cat* 5 Catt*4 25 cat?.

An A-enriched monoidal category “*X is an algebra object in the monoidal 2-category Cat”. For
a multi-fusion left A-module P, Cat” is a naturally a left Cat*'-module. The enriched category
?M in Definition 3.18 is precisely a left AX-module in Cat”. We will provide more details
elsewhere.

Remark 3.21.If PM is a AX-BY-bimodule, then (TM)°P := P (M°P) is automatically a
By_Ax-bimodule.

The following mathematical definition echoes with the physical fusion formula (3.12).

Definition 3.22 (/55]). Let PM and 2N be a right BY_module and a left BH-module, respec-
tively. We define a relative tensor product Xz as follows:

MRy ON = PE2D (M Ky N).
When B = H, Y = H, it is just the Deligne tensor product X, i.e. PMRON = (ng)(M XIN).

There is a mathematical notion of a left “*X-module functor between two left #X-modules
PM and ON. It is just an enriched functor F : PM — 2N, ie. a I-morphism in CatA, such
that F intertwines the “1X-actions. It is called an “*X-module equivalence if F is an enriched
equivalence. In this case, we denote such an equivalence by M ~ 2N,

It is, however, not enough to describe spatial equivalences among 0+1D walls. We need a new
notion of a module functor between enriched categories with different background categories.

2 Physically, A acts on P from left, but X acts on M from right. It seems that neither of the two left-right conventions
is natural. This is due to the fact that we require A-acting on X from left in our canonical construction, which makes the
bulk and topological Wick rotation looks natural. If we only study the edge and ignore the bulk and topological Wick
rotation, by requiring a right A-action on X in a new “canonical construction”, we can flip the arrows in (3.17) such that
the left-right convention in Definition 3.18 looks natural.
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Ax By
A B
7 7
N ~
X N Y

Fig. 7. This pictures the physical intuition behind the notion of a spatial equivalence of bimodules (see Definition 3.23).

This new notion is given in Definition 3.23, the physical intuition behind which is depicted in
Fig. 7 (recall Fig. 5).

Definition 3.23 (/55]). For AX-2Y-bimodules ?M and 2N, a spatial *X-2Y-bimodule func-
tor from PM to 9N is a pair (&, F), where J is a closed left P Mz, Q*Y-module, and
F: M- FNRgNisa XXy PXgp Y-module functor. It is called a spatial equivalence if

. . . . sp
F is an equivalence. We denote such a spatial equivalence by PM AN,

Example 3.24. Recall Remark 3.6, when we roll up a 1+1D anomaly-free RCFT to a cylinder
S! x R! then shrink S! to a point, we obtain a gapped 0+1D phase. Mathematically, by integrat-
ing the RCFT over this cylinder, we obtain a gappable gapless 0+1D phase (C, Y, 8%), where the
enriched category 87 is a HH-HH-bimodule F'"uOCMINT for a finite unitary category M. Note
that M is a Fung (0, M)-H-bimodule. We have the following equivalences of bimodules:

F : M Rpyng vy M~ H and G : M Xg M°P ~ Fung (M, M).
It is clear that M°P is a closed H Xy Fung (M, M)V -bimodule. Therefore,

sp
(M, F) ; Funn QL0 5 Hy

defines a spatial equivalence of HH-HH-bimodules. This shows that the spatial equivalence is
capable of describing how to gap out a 0+1D gapless phase as we claimed in Remark 3.6 and
Remark 3.10. We will discuss more general situations in Section 6.1.

Example 3.25. This example is illustrated in Fig. 8 (a). Let By, B, be UMTC’s and P a
closed multi-fusion B{-By-bimodule. Then ¥P is a B1B;-B2B,-bimodule and PEPop ig a
3232-(31 B1-bimodule. Then we have the following B1B,-B1B,-bimodule equivalences:

(Trevﬂ)op) &BZ‘BZ T:P ~ g:revgngP(j;op IZ"Brzev .:P) ~ FunBl (P, P) FunB| (g)’ :P),

where we have used the canonical monoidal equivalence P Mg, P ~ Fung, (P, P) defined
by x Mg, y = x @ — ® y [55, Corollary 2.7]. It is clear that P°P is a closed B; M35
(P Mg, PV)*-module. Therefore, P°P, together with the canonical Bi-module equivalence:
F . PopP &F““TM @,y Fung (P, P) = PP, defines a spatial equivalence:

sp
(PP, F) : e PP pung (P, P) = Br(poP),
Therefore, we obtain

PP Ry, (VPP 2 B1(PP),
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(V1 V1,1 (2°P)) (V1 V1, 21y)
(V1,%1By) e (V1,%1B1) V1, ®12y) e (V1, ®12)
31 B1
fJC1 xl
..... LSRN USSR VR <

Fig. 8. Picture (a) and (b) illustrate the proofs in Example 3.25 and 3.27, respectively.

If B; =Mody, for VOA V;,i = 1,2, then (Vy, Vi, By (P°P)) defines a 0+1D gapless “relative
boundary” of the 1d gapped wall P X5, P™ (see Fig. 8 (a)).

Definition 3.26. An 1 X-BY-bimodule PM is called spatially invertible if there is a 2Y-AX-
bimodule 2N such that

PMBay ONZAX,  and  ONRay M By
as bimodules. Two enriched multi-fusion category X and BY are called spatially Morita equiv-

alent if there exists a spatially invertible -2 Y-bimodule.

Recall that if Y describes a 0d gapped wall between two gapped edges 8 and T (i.e. two
UFC’s), then Y is automatically an invertible S-T-bimodule with the inverse given by Y°P. This
remains to be true for a 0d wall between two chiral gapless edges. We explain this fact in the
following example.

Example 3.27. Recall Example 3.15. As illustrated in Fig. 8 (b), PP is clearly a closed left
B K3(n,) (P Rp, P)-module. By the property of factorization homology (recall Theo-
rem 2.20 and Example 2.21), we also have the following equivalence:

F 2 P Rpyny, (@, M By MP) S X,

as two left XY X3, Xi-modules. Therefore, we obtain the following spatial equivalence
:PM IZIBZ - :prevMop ~ FunfBl (P, P (M xxrzev Mop) g B xl )

. sp
Similarly, one can also show that PENOP K 1 PM ~ B2X,. In other words, the B1(;-B2,-

bimodule M is spatially invertible, and defines a spatial Morita equivalence between 1| and
B2X,. This implies that following spatial equivalence between 0+1D walls (recall (3.13)):

(V. X By X7, 75957 OV B MOP) = (V1. V1, P10,

If we discuss spatial equivalences, it is safe to abbreviate a triple (V, X, M) to M because the
1+1D and 0+1D chiral symmetries are not preserved under spatial equivalences.

Two 1d gapless edges are called spatially Morita equivalent if the associated enriched multi-
fusion categories are spatially Morita equivalent. Then Example 3.27 gives the following physical
theorem.
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TheoremP! 3.28. A 0+1D gapless wall between two 1d chiral gapless edges of the same 2d
topological order defines a spatial Morita equivalence between these two chiral gapless edges.

4. Boundary-bulk relation II: chiral gapless edges

In this section, we generalize the boundary-bulk relation for gapped edges to that for both
gapped and chiral gapless edges.

4.1. Bulk of a chiral gapless edge

Given a chiral gapless edge (V, 2X) of a bulk topological order (G, ¢), how can we under-
stand those bulk excitations in terms of those on the edge? Let us first look at the gapped cases.
When the edge is gapped, i.e. V = C, B = H, a bulk topological excitation is precisely an edge
excitation x € X that can be moved into the bulk.

1. An edge excitation that can be moved inside the bulk must be equipped with a half-braiding
with all edge excitations in X. More explicitly, a bulk excitation can be realized by an edge
excitation x, together with a family of isomorphisms

x®y&>y®x, Vy e X, 4.1)

such that the following diagrams

X ®y*>ﬂx’y Yy x
lfl lfl ¥/ € homax (v, 2) 2)
x®7- @x

are commutative. This family of isomorphisms By = {Bx,y}yex defines a natural isomor-
phism 8, _ : x ® — — — ® x, which is called a half-braiding. Therefore, the pair (x, Bx,—)
defines a bulk excitation.

2. Moreover, morphisms (or instantons) between two bulk excitations (x, 8x,—) and (y, By )
are precisely those morphisms (instantons) f € homqy (x, ¥) respecting the half-braiding, i.e.
rending the following diagrams commutative:

¥ @zt sk
f®1l ll@f VzeX. 4.3)
Y@ gy
All such pairs form a category, which is precisely the Drinfeld center 3(X) of X. The boundary-

bulk relation says that C >~ 3(X) as UMTC’s. We need generalize these arguments to the gapless
edge (V, By).

Now we consider a chiral gapless edge as depicted in Fig. 9 (a), where x is a bulk topological
excitation and y, z are two edge excitations. We should expect again that a bulk excitation can
be realized by an edge excitation, together with a “half-braiding”, a notion which will be made
precise below.
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(a) (b

Fig. 9. These two pictures depict observables on the world line supported on a topological excitation in the bulk can
be half-braided and fused with those on the world line supported on edge. Picture (a) illustrates the meaning of a half-
braiding, and the label idy of the green dotted line represents the canonical morphismidy : 1 — [x, X]fgﬁ and the vacuum
state in the boundary CFT [x, x]g; Picture (b) illustrate instantons (labeled by s) between x and y in the bulk and its
compatibility with the half-braidings. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

1. An edge excitation x € X can be moved into the bulk if it is equipped with a half-braiding,
which should consist of the following isomorphisms in X:

Biy:Xx®@y—>y®x, Yy eX. 4.4)

Moreover, they should satisfy a similar naturalness condition as in (4.2). Namely, By _ :
x ® — = — ® x should be a natural isomorphism between two endo-functor of X. But this
condition is not enough because hom« (y, z) contains only the vacuum channels of the whole
physical hom space [y, z]5.

Note that a half-braiding is an adiabatic process of moving the bulk excitation x around
an edge excitation y € X. This move automatically moves all observables on the world line
supported on x. What observables could live on this world line in the bulk? It has to be a
subspace of the boundary CFT [x, x]g. If this subspace is zero, then it is reasonable to say
that x is not equipped with any half-braiding. The minimal requirement for a non-zero edge
excitation x to move into the bulk is that the vacuum state in the boundary CFT [x, x]3
survives on the world line in the bulk. This vacuum state is characterized by the canonical
morphism idy : 13 — [x, x]s under the assumption that the chiral symmetry V = 15 is
preserved. This vacuum state can be fused into the space of observables on the world line
supported on the edge, say [y, z]5, along a path from the bulk to the edge. As illustrated in
Fig. 9 (a), it is clear that this fusion should be path independent. Namely, we can fuse it into
[v, z]p from left or first half-braid it to the right then fuse it from right without making any
difference. This leads to the following commutative diagram:

1®idy
[y, 2l —— 2 [y, 2] ® [x, x]p —2—> [y ®x, 2@ x]3

idx®1J/ l—Oﬂx,y 4.5)
ﬁx,zo_

[x,x]s ®[y.z]lB x®y,x®zls k®y z&x]s.
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The data (4.4) and the condition (4.5) give the precisely meaning of a “half-braiding” for a
gapless edge. Therefore, such a pair (x, B, —) should define a bulk excitation.

2. What about the instantons between two such bulk excitations, say (x, 8x,—) and (y, By, )?
Consider the situation depicted in Fig. 9 (b), where z is an edge excitation. Not all observables
in [x, y] are allowed to live in the bulk. We denote the maximal sub-object of [x, y]s that is
allowed to live in the bulk by ¢ : s < [x, y]g. Then fusing s with [z, z] from left should not
be different from first half-braiding it with [z, z]p then fusing it with [z, z]g from right. As a
consequence, we obtain the following commutative diagram:

s L [z, 2] ® [x, y]B [2®x,z2Q yls
t®idzl \L_Oﬂx,z (46)

[x,Y]ﬂs®[z,z]93$>[x®z,y®z]3L[x®z,z®y]g.

Example 4.1. In the case of canonical gapless edge, i.e. C = B, Bx =3B and [v,z]p =
Z ® y*, by restricting to the case y = 1, the commutative diagram (4.5) implies immediately,
Bx.— =cx,—,where ¢, _ 1 x ® — - — @ x is the braiding of UMTC B. Importantly, this already
means that (x, c:}x) for x € B are not allowed to live in the bulk! In other words, by promot-
ing homs (y, z) to [y, z]B, it chops off the B-factor in 3(B)=BK B entirely. By spelling out
the condition (4.6) explicitly in this case, we see immediately that s should be symmetric to all
z € B. Since the braidings in B are non-degenerate, it means that s can only be a direct sum of 1,
or equivalently, s € H. In other words, s can be identified with homs (1, [x, y]) ~ homs (x, y).
Thergfore, we have recovered the bulk UMTC B as the bulk of the canonical chiral gapless edge
(V, 7 B).

4.2. Bulk is the center of the edge

In this subsection, we translate the data (4.4) and the conditions (4.5) and (4.6) into the math-
ematical notion of a half-braiding and that of the center of an enriched monoidal category first
introduced in [47].

Let B be a braided multi-fusion category, and let X* be a B-enriched multi-fusion category.
We denote the underlying category of X% by X. The tensor product in X? is an enriched functor
®: X* x X* — X*. As a consequence, for x € X¥, both x ® —, — ® x : X* — X are enriched
functors. Using this language, the data (4.4) and condition (4.5) can be translated to the following
mathematical definition of a half-braiding for an enriched monoidal category.

Definition 4.2. A half-braiding for an object x € X is an enriched natural isomorphism
By  xQ®——> —Qx

between two enriched endo-functors of X* such that it defines a half-braiding in the underlying
monoidal category X, and the following diagram:

1®id

homy: (y, ) homs (v, 2) ® homy: (x, x) —Z=homy: (z ® x, y @ x)

idy ®1l loﬂx,y
ﬁx,zo_

homqy (x, x) ® hom~t (y, ) Lhomxn(x RV, x ®2) homy: (x ® y, z @ x),

@.7)
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is commutative for y, z € X.
Similarly, using (4.6), we obtain the definition of the center of xR,
Definition 4.3. The center of X¥ is a category 3(X?) enriched in B defined as follows:

e an object is a pair (x, Bx,—), where x € X and B, _ is a half-braiding for x;
° hom3<eﬁ)((x, Bx), (¥, By)) is the maximal subobject ¢ : s = homq: (x, y) rendering the fol-
lowing diagram commutative for any z € X:

id; ®¢ homxn(z’z)®h0mxu(x’y)&-h0mx:(Z ®X,Z®y)

L®idzl \L_Oﬂx,z
homags (x. y) ® homg: (2. 2) —Z> homags (x ® 2. ¥ ® 2) —22=" "> homa: (x ® 2.2 ® ¥);
4.8)

e the identity morphisms and the composition maps o are induced from those in X*.

Remark 4.4. The center 3(X") has an obvious monoidal structure induced from that of X* and
that of the ordinary Drinfeld center 3(X). The underlying category of 3(X?) is a full subcategory
of 3(X) [47, Proposition 4.3].

Let B be a UMTC and X be a left fusion B-module. We denote the centralizer of the image
of B by ¢x(B)'|3(x), which is an H-enriched category but can also be viewed as a B-enriched
monoidal category by identifying an object a € H with the object a ® 13 in B.

Theorem 4.5 ([47]). We have 3(2X) ~ ¢ (B)'| 3(x) as B-enriched braided monoidal cate-
gories.

As a consequence of above mathematical theorem, given a chiral gapless edge (V, 2X) of a
2d topological order (C, c¢), we have the following boundary-bulk relation:
-/
3 =B |30 ~C. (4.9)

In other words, the UFC X describes a gapped wall between two 2d topological orders (B, ¢) and
(C, ¢). It also means that all chiral gapless edges are obtained from a topological Wick rotation
as illustrated by the following pictures:

v, % %)

(C,0)
68 topological Wick rotation

(B.,0)

(4.10)

which was explained in details in [49, Section 5.2].

Remark 4.6. The isomorphisms in (4.9) simply prove a special case of a general “holographic
principle” or boundary-bulk relation: the bulk is the center of the boundary for topological orders
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(V3, B33) T (V2,B2p) 58 (V1,P11)

(B3, c1 +c2 +c3) (Ba,c1 +¢2)

S (B1, 1)

(By, c2)

(C3,c1 + 2 +c3) (C, 1 +2)

Fig. 10. This picture depicts three 2d topological orders (C;, ZZ:[ cg) fori =1,2,3, three 1d gapless edges and two
gapless walls (V;, 3!'DCJ-) for j =1,2,3,4,5 and two 0d gapless defects (V}43, S50) and (Vos3, (I‘J'O).

in all dimensions regardless of whether the boundary is gapped or gapless [44]. Note that the
boundary-bulk relation (4.9) automatically includes gapped edges (i.e. V = C, B = H) as special
cases. It turns out that it also holds for all non-chiral gapless edge as we will see later.

Theorem 4.7 ([55]). Two indecomposable enriched unitary multi-fusion categories *X and BY
are spatially Morita equivalent if and only if 3(*X) ~ 3(BY).

The physical meaning of above mathematical theorem can be reformulated as the following
physical theorem.

TheoremP" 4.8. Twwo 1+1D gapped or chiral gapless edges share the same bulk if and only if the
associated enriched unitary multi-fusion categories are spatially Morita equivalent.

4.3. Boundary-bulk relation for gapless edges

In this subsection, we consider more general Od defects up to spatial equivalences. Con-
sider the physical configuration depicted in Fig. 10. There are three 2d topological orders
(C1, 2), (Ca,c1 + ¢2), (C3,c1 + c2 + ¢3), which have chiral gapless edges (V;, B"fxi) for i =
1,2, 3, respectively, and are separated by two chiral gapless walls (V;, BiX;) for i =4, 5. More-
over, the normal directions of the two vertical rectangles labeled by (By, ¢2) and (Bs, c3) are
pointing towards the right. By our convention, we have unitary braided monoidal equivalences:

CORBLHC = 3(Xg),  C3XBsKECy=3(Xs).

There are two 0+1D gapless defects junctions given by $8g and 7 Tj. We have ignored the 1+1D
and 0+1D chiral symmetries because we only care about the spatial equivalence classes here.
These 0+1D defects are uniquely determined by their neighborhoods. We explain this fact in
details below.

1. 8 is a closed multi-fusion (B, X By)-B;-bimodule, and T is a closed multi-fusion (Bz X
Bs)-B,-bimodule, i.e. UMFC’s equipped with unitary braided monoidal equivalences:

¢s By RBLRB; = 3(8),  ¢g:B3NBs KBy — 3(7). (4.11)

2. 8 is a closed left X5 ®32®@2 (XY Mg, 8) ®a®31 Xi-module;
TJo is a closed left X5 &’)‘33&6—3 (X5 g T) ge_zﬁﬂz X,-module. In particular, we have the
following unitary monoidal equivalences:
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s, 1 X5 By, o= (X5 B, 8) Mg X1 — Fung(So. So).
¢ 1 X5 Ry e (X R, T) B, Xo = Funu(To, To).

3. Then enriched categories 880 and 7Ty are determined by the left S-module structure on 8
and the left T-module structure on Ty, respectively, as follows:

¢s
§ — 5 My iy (" B0, 8) B, X1 > Funn (S0, 80,

b7
T X5 By ey (05 My T) Mgy, X2 —> Funu(To, o).

Remark 4.9. There are many different ways to see that §g and Ty are uniquely determined by
their neighborhood. More precisely, by Theorem 2.15, we have the following different but equiv-
alent ways of characterizing 8o and Ty uniquely (up to equivalences)
e by the following unitary monoidal equivalences, respectively,
X5 B, 8 = Funy, o, (80.80), XY Ky T = Funxy s (0. To):
e by the following unitary monoidal equivalences, respectively,
xz_ev X B] i) Funxl ‘Srevxgz X» (S(), S()), xg—ev X BZ i) Fun'lej'revx,33 X3 ((I(), T()),
e by the following unitary monoidal equivalences, respectively,
xzev — Funxaevggzsx’%l Xy (80, 80), :X:gev — Funxgev®33 rJ-ng x> (‘IO, ‘I())
(4.12)

Remark 4.10. The unitary braided monoidal functor ¢, : By —> 3(X4) that defines the enriched
multi-fusion category B4, is isomorphic to the following functor:
By G RBLKC > 3(XF Mg, SKz, X1) = 3(Xa),

where the first “~” was explained in the proof of [46, Theorem 3.3.6.] and the second “~” is
determined by the invertible (X5 Mg, § Mg, X1)-X4-bimodule 8¢ (recall (4.12)) [15].

Conversely, one can also view the 1d gapless wall (V4, B4X4) as the 1d “relative bulk” of the
0+1D wall 88 on the edge. In this setting, we obtain a generalization the unique-bulk principle.
More precisely, by assuming all the data on the edge (not the data in the bulk), we will show that
the 1d “relative bulk” (V4, 24X(4) is uniquely determined by 0d wall S8 on the edge.

Definition 4.11. The 3V -center of the 21X;-21X,-bimodule $8, denoted by 3M(88y), is an
enriched unitary multi-fusion category

30 (Bs) =32 8030 35y,
which is defined by a triple (3;1)(580), 351)(580), F) via the canonical construction, and
1. 3V (38y) is the UMTC defined by
357 (580) = (BL R B1) Iy (4.13)
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3D(580) 3D(T70) 30 Uo)
3(P1%0) 3(P2) 3(P3) 3(P4s)
¥ T / T E T #
P1x, 8, Bax, T, BaXs uy, P

Fig. 11. The picture depicts the complete boundary-bulk relation, which can be summarized mathematically as fully
faithful functor. The arrows indicate the orientation of the edges or walls and the order of tensor product of topological
excitations on the edges or walls.

2. 39(88) is a UFC defined by
30380 := Funyem, s®y o, (S0, 80)™; (4.14)
3. F: 3;1) (88p) — 3(351) (380)) is a unitary braided monoidal functor defined by

30 (88p) = B M3 (880) B = 3(XFY R, S W, X1) = 331" (380)),

where the second “~~” is determined by the invertible (X5 Mg, § Mg, xl)-ag”(sso)m-
bimodule 8¢ (recall (4.14)) [15].

Then we can see that 24X4 can be determined by S8 as the 3(V-center 3(V(38y). Is the
chiral symmetry V4 also determined by SSO? Yes, indeed. Recall Remark 3.9, we have & =
((MOdvl|z4)vl IV,®&c Va) X |x - The relation between the 1+1D chiral symmetry Vij24 and the 0+1D
chiral symmetry X is given in Diagram (3.8). The VOA V, can be recovered as the commutant
of V, in V, ®c Va. For convenience, we can also denote (Vu, 734964) by 3(1)(580) and refer to it
as the 3(M-center of S8y.

As a consequence, we obtain a generalization of unique-bulk principle for 2d topological
orders with gapped and chiral gapless edges as illustrated in Fig. 11. Again this relation can be
stated as the functoriality of the center. We will make it precisely in Section 4.4.

4.4. Center functor is an monoidal equivalence

In this subsection, we obtain a mathematical theorem inspired from the boundary-bulk relation
of 2d topological orders with gapped and chiral gapless edges. In order to state and prove a
mathematically precise result, we drop the assumption of unitarity due to the lack of foundation
in the unitary cases. Only in this subsection, we choose the ground field to be algebraically closed
and of characteristic zero.

Definition 4.12. Let C and D be two non-degenerate braided fusion categories. A closed enriched
multi-fusion D-€ bimodule is an indecomposable enriched multi-fusion category 22X, together

with a braided monoidal equivalence ¢ : PRBXEC S 3(X), such that BY is obtained _from
the canonical construction with the left multi-fusion B-module structure on X defined by B —

DRBREC > 3(X).
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(Va®c Vs, 2P (Map N

(E,c1+c2+0c3)

Yex

% LA et

(@) (b)

Fig. 12. The picture (a) depicts two chiral gapless walls (V 4, ANM) and (Vg, B N). The vertical direction is the direction
of time. The picture (b) depicts the new 1d wall obtained after the fusion, where xp :=xXp p, yp := yXpg € MR pH N.
The arrows on the dotted lines are the orientation of the wall. It determines the order of the fusion product of wall
excitations.

Definition 4.13. Two such closed enriched multi-fusion D-C-bimodules X and B’ are called
equivalent if there are a braided monoidal equivalence f : B — B’ and a monoidal equivalence
g: X — X', and a given monoidal natural isomorphism y such that the following diagram

DRBRC—L=3000) >
1£1 8
DRFREC—-300) L~

is commutative up to y and the pair (g, y) defines a multi-fusion (D X B)-C-bimodule equiva-

lence between X and X’ (recall Definition 2.4).

Lemma 4.14. Let C, D, € be non-degenerate braided fusion categories. Let AX and g‘j be a
closed enriched multi-fusion E-D-bimodule and a closed enriched multi-fusion D-C-bimodule,
respectively. The following relative tensor product

AX Ry BY 1= ARB (X Ry Y)

is well-defined and is a closed enriched multi-fusion €-C-bimodule by Theorem 2.15. Its physical
meaning is illustrated in Fig. 12.

We introduce two categories "EMF and NBF" ! as follows (recall Remark 3.19):

e MEMT: Objects are indecomposable enriched multi-fusion categories “*X; morphisms in
homina ¢ MSV(ADC, 'By) are the spatial equivalence classes of BH-A X-bimodules (recall Def-
inition 3.18 and 3.23), the background category of which, as multi-fusion categories, are
indecomposable; the identity morphism in homin g ¢4 (X, 2 X) is the trivial bimodule “X;
the composition map is defined by the relative tensor product of bimodules (recall Defini-
tion 3.22).
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o NBFer—l: Objects are non-degenerate braided fusion categories ©, D, ---; morphisms
in homyeg gen—c (C, D) are the equivalence classes of closed enriched multi-fusion D-C-
bimodules (recall Definition 4.12); the identity morphism from € to € is given by C. The
composition map is defined by the relative tensor product of bimodules (see Lemma 4.14).

Both categories are symmetric monoidal with the tensor product defined by the Deligne tensor
product X (recall Definition 3.22).

The boundary-bulk relation of 2d topological orders with gapped and chiral gapless edges can
be stated as the following mathematical theorem.

Theorem 4.15. The functor 3 : MEMF — NBF=! which is defined by
AN 340 and  hominag ey (1K, PY) 3 TM - 30 (0w,
is a well-defined symmetric monoidal equivalence.
Proof. The essential surjectivity follows from 3(6(?) =~ @ for any UMTC C [47, Corollary 4.9].

The fully faithfulness follows from that of Drinfeld center Theorem 2.15 and the definition of a
spatial equivalence. The symmetric monoidalness is obvious. O

Remark 4.16. We conjecture that the complete boundary-bulk relation for nd topological orders
with gapped/gapless boundaries and higher codimensional gapped/gapless defects on the bound-
ary can also be stated as a symmetric monoidal equivalence of higher monoidal categories. This
generalizes a conjecture proposed in [43] for nd topological orders with only gapped boundaries
and gapped higher codimensional defects on the boundary.

5. Non-chiral gapless edges
In this section, we develop the mathematical theory of non-chiral gapless edges.
5.1. A construction of non-chiral gapless edge

In this subsection, we construction a non-chiral gapless edge from chiral gapless edges.

First, we recall a useful fusion formula of 1d chiral gapless walls in [49]. We illustrate two
1d chiral gapless walls before the fusion in Fig. 12 (a) and after the fusion in Fig. 12 (b). More
precisely, A, B, C, D, & are UMTC’s, and X is a closed fusion (€ X A)-D-bimodule, and Y
is a closed fusion (D X B)-&-bimodule.> The vertical direction is the direction of time. Two
vertical planes depict the 1+1D world sheets (or fictional bulk phases) of two chiral gapless walls
Vg, ADC) and (Vg, BH). Two VOA’s V4 and Vg have central charge ¢; and c3, respectively.
The spatial fusion of these two walls can be computed by the following formula:

(Va, ") B ey 1oy Vi, BY) = (V4 @c Vi, BB (X Rp Y)), (5.1)

which was explained in details in Section 6.3 in [49].

3" Our convention is that the fictional bulk phase A (or B) sits on the left side of the oriented wall (recall Remark 2.14).
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(V, A x) (V, Ixrev)

z=t+ix

(D, ¢1 +c2) (D, c1 +c2)

©,c| e .

(@) (b)

Fig. 13. These two pictures depict two physically equivalent 1d chiral gapless walls, which are equipped with the opposite
orientations.

Secondly, notice that flipping orientation is associated to changing chirality. Fig. 13 (a) depicts
a chiral gapless wall (V,X) with a chosen orientation, which is indicated by the complex
coordinate z =t + ix on the 1+1D world sheet, or equivalently, by the orientation of the spatial
dimension (i.e. x-axis or the arrows on the dotted line) because the orientation of time is fixed,
or equivalently, by the normal direction of the world sheet (pointing towards right in this case).
The underlying category X of X is the category of topological wall excitations, and the order
of the fusion product in X is determined by the orientation of the wall. The chiral central charge
of V4 is ¢2, and that of Vg is c3.

Without altering the physics, we can flip the orientation of this wall (i.e. flipping the direction
of x-axis) and, at the same time, change all the data according to Fig. 13 (b). As a consequence, a
point at z in the old coordinate becomes Z in the new coordinate; a chiral field 1/ (z) in V becomes
an anti-chiral field ¥ () in V; The chiral central charge c; of V becomes the anti-chiral central
charge ¢, of V, or equivalently, the chiral central charge —c; of V; X becomes X™". In summary,
we will say that a gapless wall defined by (V,AX) with a given orientation is entirely same as

the one defined by (V, 4 X™) but with the opposite orientation.

Thirdly, we start with two parallel and adjacent gapless walls with the opposite orientations,
then we change the orientation of one of the walls and the data on the wall according to Fig. 13,
at last, we apply the formula (5.1). This produces a non-chiral gapless wall or edge. We give
some examples below.

Example 5.1. We start with a bulk phase (€, ¢) with a chiral gapless edge (V, 2X), then flip
the arrow of a right semicircle of the edge, then folding the disk as illustrated in the following
pictures:
(Ve V, 8B (X ® Xrev))
v, %) V%)

A (€,0) \V/ (3(C), DA

(V,lTxrev) (C/He) =C
(5.2)
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One can see that, in the third picture, there are two edges of the same 2d bulk (3(C), ¢):

1. One is a non-chiral gapless edge given by (V ®c V, 73@@ X X));
2. the other one is a gapped edge given by C viewed as a UFC. Note that the boundary-bulk
relation still holds, i.e.

3(BEB (¢ YY) ~ 3(@) ~ CKE, (5.3)

and this non-chiral gapless edge is clearly gappable.

3. Interestingly, this process also creates two 0d gapless walls between these two different edges
in the third picture. It is clear that this Od wall can be described by (V, B X), in which B is the
trivial 2 X-2 X-bimodule (see the first picture in (5.2)), or equivalently, a BYB ([ X1eV)-C-
bimodule (see the third picture in (5.2)). By Theorem 4.7 and (5.3), we see that Bgg(f)C X
X"¥) and HE are spatial Morita equivalent with the spatially invertible bimodule given by
B, We will study this type of 0d walls in Section 5.4.

In general, let V;, and Vx be unitary rational VOA’s with central charge c¢;, and cg, respec-
tively, such that Mody, and Mody, are UMTC’s. The following pair

(Vi @ Ve, Mo Mok (Mody, BIMod'sy) ),

which defines a so-called the canonical non-chiral gapless edge of (Mody, ﬁl\_/lodvR, CL — CR).
We will call V. the chiral symmetry, Vg the anti-chiral symmetry, and Vi ®c V g the non-chiral
symmetry. When Vi ¢ Vg, the non-chiral gapless edge will be called heterotic.

5.2. Classtfication of non-chiral gapless edges

It turns out that V; ®c V g is not the most general non-chiral symmetry. The algebraic struc-
ture on Vr ®c Vg is not a VOA but a so-called full field algebra of central charges (cr, cr),
where ¢, (resp. cr) is called the chiral (resp. anti-chiral) central charge, or just a full field algebra
for simplicity [28,36]. Let V, and Vg be two (unitary) rational VOA’s of central charges c¢;, and
cr, respectively. We will be interested in the so-called full field algebras over V; ®c V g, which
is a certain full field algebra of central charge (cz,cg) containing V; ®c Vg as a subalgebra
(see [28, Definition 1.17] and texts below [28, Proposition 1.21]). The following theorem is a
partial result proved in [36, Theorem 4.15].

Theorem 5.2. A full field algebra (of central charges (cr, cr)) over Vi @c V g is equivalent to
a commutative algebra in Mody, XMody,.

In this work, by a non-chiral symmetry, we mean a unitary rational full field algebra. We
provide a working definition of this notion below.

Definition 5.3. A full field algebra W of central charges (cr, cg) is called unitary rational if
there exist two unitary rational VOA’s V; and Vx of central charges c; and cg, respectively,
such that Mody, and Mody, are UMTC’s, and W is a full field algebra over V;, ®¢ Vg, and, as
a commutative algebra in Mody, ®Mody,, it is connected and separable (i.e. condensable [38]).
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It is possible to give a direct definition of the notion of a module over a full field algebra W
such that the category Modw of W-modules is equivalent to (Mody, EModVR)%V, which denotes

the category of local W-modules in Mody, XMody,, . For the purpose of this work, we can simply
set Mody := (Mody, &ModvR)%V. This definition is independent of the choices of Vi and V.

Remark 5.4. A condensable algebra in Mody, XMody, is automatically equipped with a canon-
ical structure of a simple special symmetric T-Frobenius algebra (1-SSSFA) in Mody, KXMody,
(see for example [38]).

Let B := Mody for a unitary rational full field algebra W of central charge (cy, cg). Then
(B, ¢ — cg) defines a 2d topological order, and (W, 33) defines the canonical non-chiral gap-
less edge of (B, ¢ — cg) with a non-chiral symmetry W.

By fusing canonical non-chiral gapless edges with some gapped walls, we obtain more general
non-chiral gapless edges. Let X by a gapped wall between two 2d topological orders (B, c;, —cg)
and (C, ¢, — cg). Then the following fusion formula:

(W.2%x) = (W."B) Bz, c,—en (C. 1)

defines a non-chiral gapless edge of (C, c; — cg). All of these non-chiral gapless edges can also
be obtained from topological Wick rotations.

Sometimes, a non-chiral gapless edge can be gapped out. In this case, its bulk is a non-chiral
2d topological order. Non-chiral gapless edges of a non-chiral 2d topological order are always
gappable. We give some non-trivial examples.

Example 5.5. Let Is be the Ising UMTC given by Mody,,, where Vi is the well known Ising
VOA with the central charge ¢ = % It has three simple objects 1, v, o with the fusion rule given
byy ®v =1,y ®0c =0 and o ® 0 = 1@ 1. We have 3(Is) ~ Is X Is. Let Tor be the UMTC
describing the Z, 2d topological order. It has four simple objects 1, e, m, f with the fusion rule
givenbyeQe=m@m=fQ® f =1andm ®e = f. Itis known that Tor = 3(Rep(Z,)), where
Rep(Zy) is the category of finite dimensional representations of the group Z,. The Lagrangian
algebra B=1X1& ¢ Xy & 0 Ko in 3(Is) has a subalgebra

W=1R10y Ry, (5.4)

which is also condensable. By condensing W, we obtain precisely the Z, 2d topological order,
i.e. 3(Is)% ~ Tor [6,9]. The UFC (3(Is))w describes a gapped wall between (3(Is), 0) and
(Tor, 0). By fusing this gapped wall with the canonical non-chiral gapless edge of 3(Is), we
obtain a non-trivial non-chiral gapless edge of the toric code phase introduced in [9]:

(vis ®¢ V15, 39309)) Kz a9.0 GsHw = (Vis ®c Vis. 30 GAw) . 5:5)
By [46, Theorem 3.3.6], we see that the boundary-bulk relation still holds, i.e.

3™ (3(Is)) w) =~ Tor.

It is also worth pointing out that the partition function of the non-chiral gapless edge (i.e. that
of My 1) is given by |)(o(r)|2 + |X1(T)|2, which is not modular invariant because the edge is
2

anomalous as a gapless 1d phase. It is perhaps the first time to find a physical meaning of non-
modular-invariant partition functions.
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Example 5.6. W defined by (5.4) is automatically a unitary rational full field algebra over Vis ®c
V1s. We have Mody = 3(Is)0 ~ Tor. Therefore,

(W, Medwor) (5.6)

defines a canonical non-chiral gapless edge of the Z, 2d topological order (Tor, 0). In this
case, the partition function of the non-chiral gapless edge (i.e. that of My 1) is again given by
[x0(D)? + | x 1 (7)]2. But (5.6) and (5.5) describe different edges because the sets of topological

edge excitations (or equivalently, the non-chiral symmetries) are different.

Example 5.7. Recall that there are two gapped edges of Z, topological orders described by two
UFC’s Rep(Z>) and Vecg,, corresponding to condensing m-particles and e-particles, respec-
tively. Recall that

B=1X1oy Xy doXo (5.7)

is a Lagrangian algebra in 3(Is). It is a modular invariant full field algebra extending Vis X V.
We have Modp := 3(15)0 ~ H. Then we obtain two new non-chiral gapless edges of (Tor, 0)
defined by (B, M°d8Rep(Z,)) and (B, M08 Vecyz, ). Both of them can be factorized as follows:

(B, M9 Rep(Zy)) =~ (B, MU H) X (C, HRep(Z1)) = (B, MU H) K Rep(Z»), (5.8)
(B, M5 Vecy,) ~ (B, M4 H) X (C, HVecy,) = (B, MU H) K Vecy,,. (5.9)

Note that (B, M°48H) is a non-chiral gapless edge of the 2d trivial phase because 3(M°48H) =
3(H) = H, thus provides a mathematical description of an anomaly-free 1d gapless phase. There-
fore, both gapless edges (B, Modg Rep(Z;)) and (B, Modg Vecyz,,) are obtained by stacking the
anomaly-free 1d gapless phase (B, M°48H) with the gapped edges of Z; topological orders.

Example 5.8. By a topological Wick rotation, we obtain an edge of the trivial 2d topological
order, or equivalently, an anomaly-free 1d gapless phase, (Vis ®c Vs, ©WIs). It is different
from (B, M°d8H) in Example 5.7 in their non-chiral symmetries and the categories of topological
edge excitations. One can obtain the first one from the second one via a 1d phase transition, which
breaks the non-chiral symmetry from B to Vis ®c Vis.

Similar to chiral gapless edges, we would like to propose that all non-chiral gapless edges of
a 2d topological order can be obtained by fusing canonical non-chiral gapless edges with gapped
walls, or equivalently, by topological Wick rotations. Moreover, we expect that different pairs
(A, BX) describe different non-chiral gapless edges (see Section 5.3 for more discussion). As a
consequence, we obtain the following classification result stated as a physical Theorem.

TheoremP! 5.9. Non-chiral gapless edges of a 2d topological order (C, ¢) are mathematically
described and classified by pairs (W, BX), where

o W is the non-chiral symmetry, which is a unitary rational full field algebra with chiral central
charge cy, and the anti-chiral central charge cg such that c =cp — cg.

o BX is the enriched monoidal category defined by the pair (B, X) via the canonical construc-
tion, where B := Modw and X is a closed fusion B-C-bimodule.
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For the convenience of numerical computation, one can replace the pair (W, BX) by a new pair
(W, A), where A is a Lagrangian algebra in B X C.

Remark 5.10. The mathematical classification of non-chiral gapless walls is automatic by the
folding trick.

Remark 5.11. TheoremP" 5.9 automatically contains the classification of chiral gapless edges
(see [49, TheoremP" 6.7]) as special cases, in which W =V ®c Vg and Vg =C.

Theorem 5.12. By Theorem 4.5, a non-chiral gapless edge (W, BX) automatically satisfies the
boundary-bulk relation, i.e.

3¢ ~c
Definition 5.13. We introduce some basic notions related to non-chiral gapless edges.

1. A non-chiral gapless edge (W, BX) is called anomaly-free if the bulk is trivial, i.e. 3(2X) ~
H; it is called anomalous if otherwise. It is called rivial if (W, 2X) = (C, HH).
2. In general, a non-chiral gapless edges (W, 2X) can be factorized as a product:

Wy, B1oc) & - B (W, Brog).

If a non-chiral gapless edge can not be factorized as a product of two non-trivial edges, then
it is called primary. For a given non-chiral gapless edge, we call the product of all its primary
anomalous factors as its anomalous core.

3. A non-chiral gapless edge (W, BX) is called gappable® if it shares the same bulk with a
gapped edge. Mathematically, by Theorem 4.7, (W, 2X) is gappable if and only if BX is
spatially Morita equivalent to a unitary multi-fusion category.

Example 5.14. All gapless edges constructed in Example 5.5, 5.6 and 5.7 are anomalous and
gappable. The anomalous cores of (B, Modg Rep(Z5)) and (B, Modp Vecz,) in (5.8) and (5.9) are
given by Rep(Z,) and Vecg,, respectively.

Remark 5.15. It is clear that the most interesting part of the classification of all non-chiral gap-
less edges of a given 2d topological order lies in the classification of the anomalous cores of all
non-chiral gapless edges.

Recently, Ji and Wen proposed that the partition functions [1y, 1] of gapless edges of 2d
topological orders transform covariantly under the mapping class group SL(2, Z) according to
the S-,7-matrix of the bulk UMTC [31]. But this covariance does not hold in general. We give a
precise statement of this covariance.

TheoremP! 5.16. Ler (W, 2X) be a non-chiral gapless edge of a 2d topological order (C, c).
The partition functions A = [1¢, 1x]B of gapless edges of 2d topological orders transform co-

variantly under the mapping class group SL(2, 7)) according to the S-,T-matrices of the UMTC
Bg of local A-modules in B.

4 A chiral gapless edge is not gappable because its gaplessness is topologically protected.
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Fig. 14. These two pictures depict a physical description of purely edge phase transition via a topological Wick rotation.

Proof. This follows automatically from the Huang’s construction of the modular tensor category
from a rational VOA [25]. O

Example 5.17. We provide some counter examples of Ji and Wen’s proposal. Consider a confor-
mal embedding V C A of unitary rational VOA’s, e.g.

su(m), x su(n), C su(mn)y, sp(2m), x sp(2n),, C so(4mn)1,

so(m), X so(n)y, Cso(mn)y, so(m)g x su(2), C sp2m)y,---,

or any embedding of unitary rational full field algebras V C A. Then A can be viewed as a con-
densable algebra in B = Mody [33,26] and we have Mody = B%. Therefore, the two topological
orders (B, ¢) and (Modg, ¢) can be connected by a gapped wall given by B 4. By topological
Wick rotations, we obtain a chiral gapless edge of (B, ¢) defined by (B, M4 (B,)), in which
Miy,1 = A. In this case, the modular transformations of the partition function of My, = A coin-
cide with the S-,T-matrices of Mod,4 instead of those of the bulk UMTC B.

5.3. Purely edge phase transitions

We have mentioned that different pairs (W, BX) and (W, B ) should represent different
non-chiral gapless edges. It means that if we deform one edge by adding perturbations to get the
other one, we need go through at least one phase transition points. We do not have a physical
proof of this claim. Actually, as far as we know, there is no universal or model-independent
definition of a phase transition between two gapless phases. As we have already pointed out
for chiral gapless edges in [49], our mathematical theory of gapless edges actually provides
such definitions. These definitions can automatically be generalized to include non-chiral gapless
edges. More precisely, we propose that a 1+1D purely edge phase transition between two gapless
chiral (resp. non-chiral) edges can be defined either

1. as a process of changing or breaking chiral (resp. non-chiral) symmetries; or
2. as the topological Wick rotation of a 2d topological phase transition, which is defined by a

process of closing the gap, as illustrated in Fig. 14.

Remark 5.18. We do not know how to generalize the first definition to higher dimensional gap-
less phases because the replacement for chiral or non-chiral symmetries is not so clear in higher
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dimensions.” But the second definition can be automatically generalized to higher dimensions.
This provides a surprising and exciting implications to the study of higher dimensional gapless
phases.

Actually, the story about purely edge phase transitions between chiral gapless edges becomes
complete only when we include all non-chiral gapless edges because non-chiral gapless modes
should appear at the critical points even if the initial and final edges are either chiral or gapped.
For example, we can consider purely edge phase transitions between two gapped edges of a non-
chiral topological order (C, 0). At the critical point, the gap is closed and necessarily non-chiral.
Therefore,

the critical point of a purely edge topological phase transition is nothing but a gappable
non-chiral gapless edge, and should be mathematically described by a non-chiral symmetry
and an enriched fusion category, whose Drinfeld center coincides with the UMTC of the bulk.

For example, in [9], it was shown in great details via explicit lattice models that the non-chiral
gapless edges given in Example 5.5 and Example 5.6 precisely describe the critical points of
purely edge topological phase transitions between the two well-known gapped edges of the 2d
Z, topological order [5].

We believe that chiral gapless/gapped edges and certain non-gappable non-chiral gapless
edges are stable in the sense that they are RG fixed points. Other non-chiral gapless edges are
unstable. For example, gappable non-chiral gapless edges are all unstable because they can be
gapped. As a consequence, we should expect that the following result.

The critical point of a purely edge phase transition between two stable edges of a 2d topolog-
ical order defines an unstable non-chiral gapless edge, and should be mathematically described
by a non-chiral symmetry and an enriched fusion category, whose Drinfeld center coincides
with the UMTC of the bulk.

For a given 2d topological order, it is an important problem to work out the complete phase dia-
gram of all edges. A cell of the highest dimension in the phase diagram should represent a stable
edge, and a cell of codimension 1 should represent an unstable non-chiral gapless edge. If higher
codimensional cells exist, then it means that there are different levels of unstableness. This will
be really interesting. Note that the physical fact of the 2d bulk being an invariant (as the gravita-
tional anomaly) of the entire phase diagram is confirmed by the mathematical Theorem 5.12. We
hope to study the phase diagram in the future.

5.4. 0+1D gapless walls

In this subsection, we study 0+1D gapless walls between two non-chiral gapless edges. We
first illustrate three special types of 0+1D gapless walls in Fig. 15.

1. 0+1D walls between a non-chiral gapless edge/wall and a gapped edge/wall: for exam-
ple, in Fig. 15, (V, X, ﬂJJ\/[) defines a 0+1D wall between the 1+1D non-chiral gapless

5 We expect that an n-dimensional local quantum symmetries should be an analogue of an Ej, -algebra.
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Fig. 15. This picture depicts two chiral 0+1D walls connecting a gapped wall with two non-chiral gapless walls, the left
of which is obtained by folding the chiral gapless edge (Vg, ByYy in Fig. 4 backwards, and the right one is obtained
similarly.

wall (V4 Q¢ Vg, ANB (X K Ye)) and the 1+1D gapped wall C; and (V’, X/, P\’ de-
fines a 0+1D wall between the 1+1D gapped wall C and the 1+1D non-chiral gapless wall
(Var ®c Vi, VB8 (0 ) (9))).

2. If we spatially fuse two 0+1D gapless walls in Fig. 15, we obtain a 0+1D gapless wall

V, X, "M Bg ey (V, X, 7 M) = (Voc V, XK X', 77 MR M) (5.10)
between the following two 1d non-chiral gapless walls:
(Va®c Ve, MEBQARY™) and  (Va @c Vo, VEF QR GY™). (.11

3. (5.10) can also be viewed as a 0+1D gapless wall between the following two 1d non-chiral
gapless walls:

(Va®c Var, AQARQNY™) and (Vs &c Var, PXF YR Y))): (5.12)

Type-3 is relatively easier to understand because the chiral parts and the anti-chiral parts are
completely separated. Therefore, mathematical description follows from that of a 0+1D chiral
gapless wall between two 1+1D chiral gapless edges.

Type-2 is new. In general, there are more 0+1D gapless walls between the two 1+1D non-
chiral gapless walls in (5.11) than just (5.10). They can be classified by reducing the problem to
an old one. Indeed, by flipping the orientations of the anti-chiral parts of two non-chiral edges
in (5.13) and, at the same time, changing (V g, Byrevy and (Var, B'(Y)™) to (Vs, BY) and
Ve, B'Y), respectively, we see that a 0+1D gapless wall between two 1+1D non-chiral gapless
edges

(Va®c Ve, FBARY™) and (Vo @c Var, VP (0K ¥)™) (5.13)
is precisely a 0+1D chiral gapless wall between the following two chiral gapless walls

(Va®c Vo, " 8B (XKY)) and (Vg ®c Var, 224 YRX)). (5.14)
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Fig. 16. These pictures depict two 0+1D gapless walls.

Type-1 walls actually cover all 0+1D walls if we apply the folding trick in temporal direction.
In this context, there is no need to distinguish “chiral” and “non-chiral” for gapless 0+1D walls
because we can always view the boundary CFT’s on a 0+1D world line as chiral under the folding
trick.

Using both the folding tricks in temporal and spatial directions, we can reduce the problem
of classifying all 0+1D walls (without any gappable parts (see Remark 3.6)) to the classification
of all 0+1D gapless walls between a gapped edge XX = (C,H X) and a 1d non-chiral gapless edge
(W, Modwyy a5 depicted in Fig. 16 (a), where W is a unitary rational full field algebra over V; ®@c
V. In this case, we still have a 1+1D chiral symmetry V and a 0+1D chiral symmetry X. More
precisely, V is a unitary rational sub-VOA of V| and V;.° The full field algebra W can be viewed
as a condensable algebra in 3(Mody ) = Mody XMody . Note that Mody is a closed right fusion
3(Mody )-module. We denote the category of right W-modules in Mody by RModw (Mody ). If
we denote the image of W in Mody under the forgetful functor f: 3(Mody) — Mody by f(W),
which is an algebra in Mody, we have RModw (Mody) = (Mody )¢w), where (Mody )gw) is
the category of right f(W)-modules in Mody . It is clear that all 0D defects on the 0+1D world
line of the wall are objects in RModw (Mody ). Therefore, the 0+1D chiral symmetry X must be
a symmetric separable f-Frobenius algebra in RMody (Mody ). The relation between V and X
can be summarized by the commutative diagram in (5.15). By [12, Theorem 3.20], (Mody )gw)
is a closed right multi-fusion Modw -module, so is (Mody )¢w)) x|x -

TheoremP" 5.19. For a unitary rational non-trivial full field algebra W over Vi @c V3,
0+1D gapless walls (without any gappable parts (see Remark 3.6)) between a gapped edge
X = (C,9X) and a 1d non-chiral gapless edge (W,M°WY) of a 2d topological order (C,c),
as depicted in Fig. 16 (a), are mathematically described and classified by triples (V, X, TM),
where

1. V is the 1+1D chiral symmetry, i.e. a unitary rational VOA; X is the 0+1D chiral symme-

try, i.e. a symmetric separable T-Frobenius algebra in (Mody )¢w). They are equipped with
algebra homomorphisms in Mody rendering the following diagram commutative

6 If such V does not exist, then no 0+1D gapless wall exists between these two 1d edges.
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Vi
\ by (5.15)

where vy is an algebra homomorphism between two algebras in (Mody )¢w) and defines the
unit of the algebra X.

2. "M is an enriched category defined by the canonical construction from the pair (P, M),
where P is a closed right multi-fusion Modw -module defined by P = ((Mody )¢w)) x|x, and
the category M of topological excitations is a finite unitary category uniquely determined by
the unitary monoidal equivalence: (X' X P Myoay, ) M3¢e) € 2~ Fun(M, M). Note that M
has a canonical left P structure defined by P — (X™ X P Rmody, ¥) K3(e) € 2 Fun(M, M).
In particular, the space of chiral fields living on the world line between two wall excitations
m,m’ € M is given by My, v = [m, m’]p for m,m’ € M.

Moreover, all these 0+1D gapless walls are spatially equivalent and define the same 0d wall.
When W = C, we must have V = C, and this 0+ 1D wall is gapped.

Remark 5.20. Similar to Remark 3.10, if we ignore V and X, the pure categorical description
P M automatically covers 0+1D gappable factors or parts.

Remark 5.21. If we want to emphasize a particular spatial slice of the 0+1D wall, we can specify
a wall excitation m € M in the spatial slice, thus obtain a quadruple (V, X, UDJ\/[, m).

Example 5.22. Recall Example 5.5, 5.6 and 5.7. Let W and B be the full field algebras defined
by (5.4) and (5.7), respectively. We have the following two non-chiral gapless edges of the Z»
2d topological order:

(Vis ®¢ Vis, " 3(0s)w), (W, M4 Tor) (5.16)

and two gapped edges Rep(Z) and Vecz,.

1. For a proper M, the triple (Vis, Vis, ISM) defines a 0+1D gapless wall between Rep(Z,) (or
Vecz,) and (Vis ®c Vis, * 1 3Is)w);

2. For a proper M, the triple (Vis, f(W), 19t M) defines a 0+1D gapless wall between Rep(Z,)
(or Vecz,) and (W, Modw Tor).

It is not so convenient to see 0+1D gapless walls between two non-chiral gapless edges in
(5.16) because we need to apply the folding trick first in order to reduce the problem to the
situation in TheoremP? 5.19. For readers’ convenience, we work out a special case of TheoremP?
5.19 depicted in Fig. 16 (b) and summarize it as the following physical theorem.

TheoremP" 5.23. For two unitary rational full field algebras W4 and Wg over Vi @c Vg,
0+ 1D non-chiral gapless walls (without gappable parts) between two non-chiral gapless edges
(Wa,AX) and (W, BY) of a 2d topological order (C,c) (see Fig. 16 (b)), preserving the
1+1D non-chiral symmetry Vi ®c V g, are mathematically described and classified by triples
W, X, g)3\/[), where
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1. W is the 1+1D non-chiral symmetry defined by a unitary rational full field algebra W over
Vi ®c V r; X is the 0+1D non-chiral symmetry, i.e. a symmetric separable *-Frobenius alge-
bra in (Modw)w 4 \wy-. They are equipped with algebra homomorphisms in Mody rendering
the following diagram commutative

gl |
\\ ¢1Y /
where ty is an algebra homomorphism between two algebras in (Modw)w ,|w; -
2. M is an enriched category defined by the canonical construction from the pair (P, M),
where P = ((Modw ) w ,|wy ) x| X, and the underlying category M is uniquely determined by a

unitary monoidal equivalence (X' X 4 P Mg Y) X3 ) C >~ Fun(M, M), and has a canonical
left P structure defined by P — (X™ K 4 P Xg Y) M3e) € = Fun(M, M).

(5.17)

Note that (W4, W4, A X) defines the trivial 0+1D wall between (W 4, A X) and (W4, A X).

Example 5.24. We give a few concrete examples. Recall Example 5.5, 5.6 and 5.7. Let W and
B be the full field algebras defined by (5.4) and (5.7), respectively. We have the following four
non-chiral gapless edges of the Z, 2d topological order:

(Vis ®¢ Vis, "®3(ds)w), (W, MW Tor), (B, MRep(Zy)), (B,M%Vecy,).

Then we have

1. (Vis ®c Vis, W, 2IW (3(Is)w)) is a wall between (Vis ®c Vis, 2 3(Is)w) and (W,
Modw Tor);

(W, B,ReP(Z2)Rep(Z,)) is a wall between (W, M4 Tor) and (B, M°d5Rep(Z,));

(W, B, Veez, Vecgz,) is a wall between (W, Modw Tor) and (B, Mods Vecz,);

(W, B, Rep(Z2)vec) is a wall between (W, Mo Tor) and (B, Mods Vecz,);

(Vis ®c Vis, B, 315 M) is a wall between (Vs ®c Vis, 21 3(Is)w) and (B, M*I5Rep(Z,))
for a proper M.

Nk v

5.5. Spatial fusion of 0+ 1D walls and anomalies

Spatial fusion of two 0+1D gapless walls between two non-chiral gapless edges/walls are
similar to that of walls between chiral gapless edges/walls (see Section 3.4).

We first consider the spatial fusion of two 0+1D gapless walls covered in TheoremP? 5.23.
By first breaking the 1+1D non-chiral symmetries of two walls to a smaller but the same one,
we reduce the problem to a special case, in which the 1+1D non-chiral symmetries are preserved
during the spatial fusion.

More precisely, we consider a 0+1D non-chiral (resp. chiral) gapless wall (W, X, TM)
between (W, 3lf)Cl) and (W3, TS2362) and a 0+1D non-chiral (resp. chiral) gapless wall
(Wa3, Y, PM) between (Wa, B2X,) and (W3, B3X3) as depicted in Fig. 17. Now we assume
that all Wy, Wip, Wa, Wa3, W3 are unitary rational full field algebras over Vi Q¢ V z. With-
out loss of generality, we assume W = Wiy = W»3. In this case, we have the following fusing
formula:
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Wiz, X, P M) (W23, Y, ON) (Wi, X &3, ¥, 72522 (M mx, N))
Wi, B12)  PY (W, B2Xp) YO (Ws,BsX) (V1,#120) (Va, %2s)
[m, m’]p [n,n']g [m ®x, n,m" Bx, n’]
[1x,,1x,13, - : :
X Xy X3 X1 X3

..... PRI ST s B
€0 €0

Fig. 17. This picture illustrates the fusion of two 0d gapless walls (Vi2, X, JJJ\/[) and (V3,7, QJ\D. This fusion is defined
by (3.12).

This formula automatically includes (3.12) in the chiral cases as special cases. We will give some
interesting example of spatial fusions of 0+1D walls in Section 6.1.

We want to point out again that the canonical morphism (recall Eq. (3.15))

film,mp B, 1, I3, [, n'log — [m Rorev 1, m' Mocrev n']

is not an isomorphism in general when the 2d bulk (C, ¢) is non-trivial. This failure of being
an isomorphism is called spatial fusion anomaly, which reflects the fact that the edge is an
anomalous 1+1D phase. On the other hand, when (C, ¢) = (H, 0), we should expect that f is
an isomorphism because the 1+1D edge is anomaly-free now. This result is proved in [45].

Remark 5.25. The vanishing of the spatial fusion anomaly when (C, ¢) = (H, 0) implies the
functoriality of the full center, a special case of which was proved in [11]. Moreover, one can
show that this full center functor is fully faithful [45]. These results generalize many earlier
results in boundary-bulk RCFT’s [18,40,11], and provides a complete mathematical description
of boundary-bulk duality in RCFT’s.

Let us consider another spatial fusion of 0+1D gapless walls. Let V be a unitary rational VOA.
Let W be a unitary rational full field algebra over V ®¢ V, i.e. a simple symmetric separable
t-Frobenius algebra in 3(Mody) = Mody KMody . Let

Xy = ((C’Hxl), (V ®c V,B(MOdV)DQ), W, Modwx3)

be a 1d gapped edge and two non-chiral 1d gapless edges, respectively, of the same 2d bulk.

1. For a proper M, the triple (V, V, Modv () defines a 0+1D gapless wall between X and (V ®c
V! B(MOdV) :X:Z);

2. For a proper N, the triple (V ®c V, W, 3Modv)w Ny defines a 0+1D gapless wall between
(V ®c V. 7MX) and (W, Modwixy).

The spatial fusion of these two 0+1D walls produces a 0+1D gapless wall between X; and
(W, Modw 203y Tt is defined by

(V» Vv, MOdVM) &(V®CV,B(M°dV>fXI2) (V ®c V, W, 3(MOd\/)WJ\D
= (V, f(W), RModw MRy, ),
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Vs, BY) Ve, 2'Y)

(V1,X1,T1M1 (V3,X3,T3M3(V4,X4,T4M4)

Fig. 18. This picture depicts a 2d topological order (€, ¢) with two holes filled with (D, ¢’) and two gapless walls on the
boundaries of two filled holes. Two cylinders in the picture depict the 1+1D world sheet of two gapless walls. On each
cylinder, there are two chiral gapless walls separated by two 0+1D gapless walls.

where we have used the fact that V M3 od,) W = f(W) € RModwy (Mody ) and

MOdV gﬁ(Modv) S(Modv)w =~ RMOdw(MOdv)

as closed right multi-fusion Modw-modules [12, Theorem 3.20]. Note that such obtained 0+1D
wall is precisely one of those given in TheoremP" 5.19.

6. Computing physical processes

Recall Definition 5.13, a gapless edge is gappable if it shares the same bulk with a gapped
edge. Mathematically, by Theorem 4.7, a non-chiral gapless edge (W, 2X) is gappable if and
only if the enriched multi-fusion category X is spatially Morita equivalent to a UFC. We illus-
trate this phenomenon by examples in this section.

6.1. Shrinking and gapping a gapless hole

Consider the physical configuration depicted in Fig. 18. It depicts a 2d topological order (C, ¢)
with two holes filled with the same 2d topological order (D, ¢’). On the boundary of the left hole
in Fig. 18, there are two chiral gapless edges (VA,ADC) and (Vg, I"zi), separated by two 0d
gapless walls (V;, X;, 7iM;) for i = 1, 2. The boundary of the right filled hole is similar.

One can also view Fig. 18 as a configuration for five 1d walls between two 2d topological
orders (G, ¢) and (C, c). These five walls include three trivial gapped walls € = (C, @) and two
non-chiral gapless walls defined by

(Va, A0 Bip.ey Vg, PY) = (Va ®c Vg, A25 (X Ry Y)) 6.1)
and
Var, X Bep.ey Vi, B YY) = (Var @¢ Vo, V9P (X0 R (4))), (6.2)

respectively. They are separated by four 0+1D gapless walls, which are defined by (V;, X;, Vi M;)
fori=1,2,3,4.

In this subsection, we study how to shrink and gap out the left gapless hole in Fig. 18. We will
use spatial equivalence seriously. For this reason, there is no need keep track of chiral symmetries
Vi, X; fori =1, 2,3, 4. We simply abbreviate (V;, X;, Pin;) to Pim; fori =1,2,3, 4.
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Fig. 19. This picture depicts how to gap out a 0+1D non-chiral gapless wall mathematically by a spatial equivalence, i.e.
by inserting an invertible 0D wall R°P to the world line.

Physically, we know that if we shrink the left hole to a point. The spectrum of the edge modes
becomes gapped in this limit because tunneling effects or backscattering process between two
sides of the hole becoming local operators as the size of the hole getting small. Remember that
our mathematical description of the gapless edge only works in the thermodynamics limit and in
the long wave length limit. Both limits break down if we shrink the hole to a point.

Mathematically, we can fuse the first and the second 0+1D gapless walls along the non-chiral
gapless wall defined in Eq. (6.1). This mathematical fusion is, however, completely independent
of the size of the hole. As a consequence, such obtained 0+1D wall remains gapless after the naive
mathematical fusion. The mathematical structure that characterizes the gapping-out process is
precisely the spatial equivalence. More precisely, we have

CPIM] @A&ﬁ(fx‘zﬁym” :PZMZ ~ TIX’A®§T2 (Ml &ngymv MZ)
~ PRI (M) Ry, yrev M2)
Sp
~ (R Rpyng (=, %) M1 R, yrev M)
~ (C,He), (6.3)
where all the four steps are explained below.
1. The first “~” is obvious.

2. In the second “~~”, since P; and P, are both closed A X B-modules, there is a unique finite
unitary category R such that Py X g P2 >~ Fung(R, R) as UMFC’s.

3. In the spatial equivalence “2”, since R is an invertible Fung (R, R)-H-bimodule and R°P is
an invertible H-Fung (R, R)-bimodule, then the pair (R°P, id), where

id : R°P Mrung (R, ®) (M4 gx‘gﬁymv My) — R°P MEung (R, R) (M4 gngyrev My)
is the identity functor, defines a spatial equivalence
Fun 30 (M) B yree Ma) 2 T (RP Rpung . ) V1 Raeg s yrer M2))

as He-HE-bimodules. The physical meaning of this spatial equivalence is illustrated in Fig. 19.
4. In the last “~”, we have used the fact that

RP Wpung (R, ®) (M1 By syrer Mz) 2 €

as unitary categories. We prove this fact below. To compute R Mgypg®, =) (M X Xz Yrev
M,) amounts to push the whole “cap” down to the horizontal plane. This produces a 0d defect
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in (C, ¢) (recall Example 2.21). Since this process preserves the anomaly-free condition by
Theorem 2.20, the resulting anomaly-free 0d defect has to be given by (C, u) for some object
u € C. In particular, we obtain an equivalence of unitary categories:

RP Wpung (R, ®) (M1 Moy syrer Mz) = €
r Mpung(®,®) (M1 Mxgyrev m2) > u

where u depends on the choices r € R, m| € M| and my € M.

Actually, to describe a particular gapping-out process, m| and mj need to be fixed as an
initial data. R is uniquely fixed by the anomaly-free condition. Therefore, the gapping-out
process is completely determined by a choice of an object r € R. The particle x obtained after
the gapping-out process is uniquely determined by 7.

In a summary, we have shown that a fusion of two 0+1D gapless walls produces a 0+1D
gappable gapless wall, and the gapping-out process is determined by an instanton, i.e. a pair
(R, r), where R is uniquely fixed and r is an object in R.

6.2. Fusing two gapless filled holes

In this subsection, we study how to fuse the second and the third 0+1D gapless walls along
the trivial gapped wall C in Fig. 18. We claim that this fusion produces a 0+1D gapless wall

P2y R T3M3 2 88 Kigy 7T = 587 (8 K To), (6.4)
as illustrated in the following picture.

Vg, BY) (Uy, Ya, 7o) (Vay, B'Y7)

(6.5)
(€ 0)
We will prove the formula (6.4) by the following equivalences:
P2, B T3M5 = T2HT3 (M, e M3))
2 S¥T (9 Rp,mp, (M Ke Ms)))
~ SMT (8o Ky T0)), (6.6)

which will be explained below.

1. “g”: First, consider Fig. 20 (b). Since A, B, A, B are all Witt equivalent to C, there is a
gapped wall, defined by a UFC 8, between A and A’, and a gapped wall, defined by a UFC T,
between B and B’. Then all these data A, B, A, B', 8, T determines a unique (up to equiva-
lences) finite unitary category O, which defines an anomaly-free 0d defect in Fig. 20 (b). We
can rearrange the neighborhood of this OD defect O looks like the saddle point depicted in
Fig. 20 (a). In particular, O is a (8§ X 7)-(P, X P3)-bimodule. Therefore, we obtain
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(a) (b

Fig. 20. This picture depicts a fusion of two holes (with gapless edges) inside a 2d topological order (C, ¢).

sp
T3 (M B Ms) = 557 (0 Bp,mp, (Mo Ke M3)),

which implies the “=" in (6.6).

2. The last “~”: To compute O Mp,xp, (M K M3) amounts to squeeze the part below the
saddle point (see (6.8)) to a point-like anomaly-free defect, which is uniquely determined by
its environment. By the uniqueness, it is enough to show that 8o X Ty is a solution to the
anomaly-free condition. Since 8§ is a gapped wall between (A, ¢) and (A’, ¢), X is a gapped
wall between (A, ¢) and (XD, ¢ —¢’) and X' is gapped wall between (A’, ¢) and (CXD, ¢ —
¢’). There is a unique 0D defect Sy, which is uniquely determined by A, X, C, D, A’, X, §,
as shown in the picture in (6.5). Similarly, we obtain another 0D defect Ty, which is uniquely
determined by B, Y, C, D, B',Y’, T. As a consequence, Sy Xz To is a solution, i.e.

O Mp,xp, (M2 Ke Msz) > 8o Mg To. (6.7)

This argument via anomaly-free condition might look mysterious. We would like to pro-
vide a more physical proof. We first illustrated the part below the saddle point labeled by O
by the following picture.

(6.8)

If we squeeze it horizontally, we obtain a 1d gapped wall between (D, ¢’) and (D, ¢’) as
illustrated in (21), in which we have pushed 0d gapped wall M, X p,meyrev (OX C) Mp e M3
on this 1d gapped wall to one of its two end points. Then this 1d gapped wall can be described
by the UFC Funqp (X, K) for a right D-module X. By Funp (K, K) >~ K°P Kp K, we know
that we can cut this 1d wall according to the first two pictures in (6.9).

To
XKep ,
4 (D,¢) s (D¢ (6.9)
(D,¢) % So

This cutting produces two end points labeled by K and X°P, respectively. Then absorbing
these two ends to two sides of the hole, we obtain a single filled hole as depicted in the third

picture.
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(Vs,%Y) (U2, Y2,7T0) (Var, B'Y')

(V1, X1, T1My) Y (Vi, Xq, T1My)

¥~ 0------ oo L
"""" D, Funy (K, K
un - ( ) ~

Fig. 21. This picture depicts an intermediate step in the process of fusing of two filled holes (filled with (D, ¢’) and a 1d
gapless wall) inside a 2d topological order (C, ¢).

We consider a special case A’ =A, B’ =B, X'=X, Y =Y, P =P =P3, M; = J\/[gp =
M3 and V; = V; and M3 = My. In this case, the formula (6.3) and (6.4) become

rev Ny
(T2 M) B gy (T2 M) = D QMG By M) = (C,HE), (6.10)

(’PzMz) g“@ (TrzeVMgP) g A@@Cx &5 %rev)_
(6.11)

These two spatial equivalences simply say that 72, is a spatially invertible Am(x X5
Yrev)_@-bimodule and defines a spatial Morita equivalence between A& (¢ Xz Y') and C.
Therefore, the gappability of the non-c_hiral 1d gapless wall (V4 ®c Vg, 8B X YY) is
precisely captured by the fact that A%5 (X X7 Y™") and € are spatially Morita equivalent.

Remark 6.1. Fig. 20 (a) show the spatial equivalence between two 0+1D gapless walls. The
condition that all UMTC’s A, A’, B, B’ are all Witt equivalent automatically holds in the sit-
uation depicted in Fig. 18, and plays a crucial role in the proof. Indeed, the Witt equivalence
of A, A’, B, B’ implies that we can form Fig. 20 (b), which further implies that Fig. 20 (a) is
physically realizable.

Remark 6.2. We can certainly fill two holes by two different 2d topological orders (D, ¢’) and
(&, ¢”). The same arguments again lead us to Fig. 21 or the first picture in (6.9). But the splitting
the 1d gapped wall is not possible any more because there should always be some non-trivial 1d
wall separating (D, ¢’) and (€, ¢”).

Remark 6.3. When A=B=A"=B'" =P =P; =P =PV and X=X =Y =Y =M =
Mgp =Mz = Mip. The spatial fusion of two filled holes endows the filled hole with an alge-
braic structure. This leads to a generalized anyon condensation theory, which will be developed
elsewhere.

6.3. Dimensional reduction to boundary-bulk CFT’s

Recall that we have used in [49, Section 3.3] a dimensional reduction process to prove the
appearance of boundary CFT’s on a chiral gapless edge based on a “No-Go Theorem” as depicted
in [49, Figure 5]. In this subsection, using the precisely mathematical description of chiral gapless

edges and their 0+1D gapless walls, we are able to compute this dimensional reduction process

51



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384

(V, B, “BBCp ) (V,V,%€Ca)
v, €e) ALS) v, e : (A
Cpp ey
[x, X Teg, [x,x']e |:|
v
e e é e
........ <””"'x"€"(?'zé|}i<{”""” /;/cee/{q
(€0 (€c (C,0) GAIA (€,¢)
(a) ()

Fig. 22. Picture (a) depicts a gapped wall between 2d topological order (C,c) and (C,c) and its gapless boundary
(v, Crip Cpg|a); Picture (b) depicts a special case when B = 1¢.

precisely. In particular, we will work out explicitly which boundary-bulk CFT is produced by
this dimensional reduction process. It turns out that all boundary-bulk RCFT’s can be obtained
in this way (first announced in [48]).

Let us consider the situation depicted in Fig. 22 (a). Let € = Mody be a UMTC. Let A and B
be two T-SSSFA’s in €. Then the category €44 of A-A-bimodules in € and €p|p are UFC’s and
define two 1d gapped walls between two 2d topological orders (C, ¢) and (C, ¢). The category
Cpja defines a 0d gapped wall between Cpp and C4ja. By a topological Wick rotation, we
obtain the canonical gapless edge (V, ©C) of (G, ¢) and a 0+1D gapless relative boundary of the
1d gapped wall €44, defined by (V, B, eBlBBB‘A), which is also a 0+1D gapless wall between
two canonical 1d gapless edges (V, ©@) and (V, ©@). Fig. 22 (b) depicts a special case when
B=1c. When x =x' = A € @4, we have [x, x']e = A.

Consider the physical configuration depicted in Fig. 23 (a). Two 2d topological orders (C, ¢)
and (C, ¢) are separated by two 1d gapped walls, which are defined by two UFC’s €44 and
Carar for two T-SSSFA’s A and A’ in C. These two 1d gapped walls are separated by a 0d
gapped wall defined by a finite unitary category €44/, and they also have 0+1D gapless relative
boundaries defined by (V, B, GB\BGBM) and (V, B’, GB’IB’GMB/), respectively, where B and B’
are T-SSSFA’s in C. Moreover, each of these two 0+1D gapless relative boundaries can also be
viewed as a 0+1D gapless wall between two canonical chiral gapless edge (V,€@). x, y are
objects in Cp|4 and x’, y’ are objects in €4/ 5. Note that we have flipped the orientation of one
of the canonical gapless edges and changed the label from (V, V, e@) to (V,V, e@“‘V) without
altering the physics.

By the same dimensional reduction process as in [49, Figure 5], i.e. fusing of two gapless
edges in Fig. 23 (a), we obtain the physical configuration in Fig. 23 (b). The 1+1D world sheet
in Fig. 23 (b) contains five parts:

(V, B,C818CR ), (V®cV, B(G)GA\A)» (VecV,VecV, 3(6)@A|A/),
(Ve V.3, (V. (B, ¥ C ),

where two gapless 0+1D boundaries (V, B, e13“3@)5|A) and (V, (B))*, o Car|p’) Temains the
same during the dimensional reduction process, and the remaining three are obtained from the
following fusion formula:
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(Ve V,3®eC 4) (Vec V,3®e )

Wy ey s 1Y, Yleys [V v ey
AA YV [A,A]
[x, Ylep, (4 Alye) Y I L@ X ¥ ley s

[2,0"13e) 0
dimensional reduction =)

, e\A|A @A/M/ ,
X €GA’|B’ CB\Aax ...... J I PR Fmaeanad X EGA’\B'
ae GA‘A
, [a,a]3)Y ,

¥, ¥ Tegp [x, xleyy, 5© ¥, ¥ ]eg

@rev ——— orev
(V, B, BB Cp) (V,(B')", "B’ Carypr) (V,B,CBBCp,) ecTvec Ve (V,(B'), v Cap)
(a) ()

Fig. 23. These pictures depict physical configurations before and after the process of dimensional reduction.

(V. €0) He.) (C.BM) Re (V, CC™) = (V ®¢ V., “ECM) (6.12)

for M = Cxja, Cajar, Carjar. We would like to show that the physical configuration depicted
in Fig. 23 (b) is physically consistent according to the mathematical theory of boundary-bulk
RCFT’s.

The space of non-chiral fields that can live on 1+1D world sheet on the left (resp. right) side
is given by internal hom

e legalze =14, Alze)  (tesp. [A', A'l3e),

which is nothing but the full center of A, i.e. Z(A) = [IGAW IGA\A]S(G) [10]. By results in
[19,41,10], this internal hom [A, A]3e) (resp. [A’, A']3(e)) is precisely a modular invariant bulk
CFT with a boundary CFT given by A [29,41]. By [41, Theorem 3.4], a modular invariant bulk
CFT is equivalent to a Lagrangian algebra in 3(C). By [40, Theorem 1.1], there is a one-to-one
correspondence between the set of Morita classes of SSSFA’s in € that of Lagrangian algebras in
3(C) defined by A [leAlA, leA‘A]zz,(e).

Internal homs [x, x]eB‘B, [x, y]eB‘B, [y, y]eB‘B for x € €p|a define boundary CFT’s and 0D
walls. According to mathematical theory of RCFT [19,41], these boundary CFT’s must share a
unique bulk given by their full center. Therefore, to show that physical configuration defined in
Fig. 23 (b) defines consistent boundary-bulk CFT’s, it is enough to show that their full center is
precisely given by [A, A]3c).

By [54, Theorem 3.3.1], we have (Cp|B)(x,x] =2 €Bja = (Cp|B)[y,y]. It implies that [x, x]@BlB
and [y, yle s Are Morita equivalent. By [40,10], they must share the same full center in
3(Cpp) = 3(C). By [13, Theorem 7.12.11], we have the following monoidal equivalences of
UFC’s

(CB1B)Lx.x1iix.x1 = Funey , (Cpja, Cpja) = Caja.

In particular, the tensor unit ¢y z);, ) = [, X1 is mapped to the tensor unit 1¢, , = A. By
the definition of full center, we obtain

Z([x,x]) =[Ley,, Leyulse) = Z(A)
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for x € Cp|a. Similarly, the boundary CFT’s [x’,x’]@B,lB,
that is given by Z([x/,x’]eB,‘B/) ~Z(A) = [IGA,W, ICA/\A/]S(G)' Therefore, Fig. 23 (b) gives
consistent boundary-bulk CFT’s.

for x" € C4/p share the same bulk

Remark 6.4. It is very interesting to work out a few special cases of above discussion.

1. When A = B =1g, Cqja = Cpja = Cpp = C and (V, ®B18Cp4) = (V, ©C). In this case,
[x,xle =x @x* and Z([x, x]e) = Z(1e) = [1e, 1el3e) = Picim(e)i Wi* is the famous
charge conjugate modular invariant CFT.

2. When A =1, we still have [x, x]e, , =x ® x* for x € Cp1,. On the one hand, by the defini-
tion of full center, we have Z([x, xley ) = [L€p )1t 1 Comwama] = [Les 1elze)-
On the other hand, the T-SSSFA x ® x* in Cp|p viewed as boundary CFT’s (via the forgetful
functor f: Cp|p — C) are precisely those boundary CFT’s in the Cardy case (see for example
[19]). They share the same bulk (i.e. the full center) with the trivial boundary CFT V.

3. When B =1 and A is not Morita equivalent to 1e, for x € Cy4, [x,x]e =~ (x ®4 x*)* is
not Morita equivalent to 1e. Instead, [x, x]e is Morita equivalent to [A, A]le = A because
[A, —]e : €4 — C is the forgetful functor. In this case, the bulk of [x, x]e is a modular in-
variant bulk CFT different from Z(1¢). By taking A from all Morita classes, we recover all
possible modular invariant bulk RCFT’s satisfying the V-invariant boundary condition.

The observables on the 0+1D world line in the middle of Fig. 23 (b) form a triple (V ®c
V,V®c V,3©e4 ), which defines a 0+1D wall between the bulk CFT Z(A) and Z(A'). By
the folding trick, non-chiral fields [a, a]3(e) for a € C4)4/ should be viewed as a boundary CFT
of a double layered bulk CFT Z(A) X Z(A’) € 3(€) X 3(€). One can prove this by proving that
the full center of [a, al3(e) in 3(3(C)) = 3(C) W 3(C) is precisely given by Z(A) X Z(A’) as
shown below.

1. It is clear that Grj“’A X C4r)4r are Morita equivalent to 3(€), and the Morita equivalence is
defined by the invertible (C4j4 X Gf,vl 4)-3(C)-bimodule Cjar.

2. Then we obtain a monoidal equivalence 3(C)[4,q]|[a,a] = (Caja X fo)’l 4)- Therefore, we ob-
tain

Z(la,al3@e) = [1(3(6))[a,a]\[a.a]’ 1(3(6))[a.a1\[a,a1 ]W@B(@)
= [IGA‘A IE leA/‘A/’ IGA‘A & IGA’\A’]m&B(G) = Z(A) & Z(A/)

Therefore, we have shown that the physical configuration in Fig. 23 (b) gives physically consis-
tent wall-boundary-bulk RCFT’s.

Remark 6.5. We have seen that the bulk CFT [A, A]3e) is independent of the choice of B,
and [x, y]@m on the 0+1D gapless wall (V, eB“-‘?GBM) are all consistent with the same bulk
CFT [A, A]3(e). Moreover, when [x, y]emB is viewed as a wall between boundary CFT’s, it is
physically indistinguishable with an object in €. In other words, one can identify [x, yle, , with
an object in € via the forgetful functor f: €55 — C.

Remark 6.6. We have proved the claims in [49, Section 3.3, Figure 5]. Moreover, above compu-
tation of dimensional reduction also provides a rigorous proof and a non-trivial generalization of

the physical results and claims in [8,51].
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Fig. 24. These pictures depict physical configurations before and after the process of dimensional reduction.

More generally, bulk phases on the two sides of the gapped wall M in Fig. 23 (a) can be
different, say (C, ¢) and (D, ¢) as illustrated in Fig. 24 (a). The Ve and Vo are unitary rational
VOA’s such that € =Mody,, and D = Mody,, are Witt equivalent UMTC’s. The UFC’s X and Y
describe two gapped walls between two topological orders (C, ¢) and (D, c¢). The finite unitary
category 8 describes a gapped 0d wall between X and Y. By TheoremP! 3.13, two 0d gapless
walls between two canonical chiral gapless edges are necessarily preserve a chiral symmetry V
(i.e. a sub-VOA of both Ve and V), which is unitary and rational. Then these two 0d walls are
given by (V, X, TM) and (V,7Y, QN), where

1. For & =: Mody)v,|ve and F := (Mody)v,|vy,, the UMFC P (resp. Q) is given by Ex|x
(resp. Fy|y) for a symmetric special {-Frobenius algebra X € € (resp. Y € J);

2. P (resp. Q) is a UMFC Morita equivalent to X (resp. Y) with the Morita equivalence defined
by the invertible bimodule M (resp. N).

By similar argument, one can show that Fig. 24 (b) give consistent physical configurations. More
precisely, we have

Z(la,a]) ~ [1x, Ix]legs K [1y, lylogs

form € M, n € N, a € 8. They are all modular invariant bulk CFT’s.

In summary, we have shown that dimensional reduction processes of 2d topological orders
naturally recover all boundary-bulk RCFT’s. Perhaps, a more interesting point of view is that the
physics of 2d topological orders provide a physical reconstruction of the entire mathematical the-
ory of wall-boundary-bulk RCFT’s [19,16,18,40,41,11]. These processes also explain why there
are one-to-one correspondences among the following four sets: (1) the set of modular invariant
bulk RCFT’s [29,41], (2) the set of Lagrangian algebras in 3(C) [12], (3) the set of indecompos-
able module categories of C [54], (4) the set of monoidal equivalence classes of UFC’s that are
Morita equivalent to C [54,12].
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Remark 6.7. As a by-product, we have proved Gapped-gapless Correspondence between the
set of all 2+1D anomaly-free non-chiral topological orders and that of all 1+1D anomaly-free
boundary-bulk-wall RCFT’s (up to the missing chiral and non-chiral symmetries).

7. Conclusions and outlooks

In this work and [49], we have developed the mathematical theory of gapped/gapless edges
of 2d topological orders and higher codimensional gapped/gapless defects based on enriched
(multi-)fusion categories and their representations. In this section, we discuss a few lessons we
have learned from these two works.

The first lesson is that the mathematical description of a potentially anomalous gapped/gap-
less phase X depends on its codimension with respect to an anomaly-free topological order, in
which X is realized as a defect with a non-trivial codimension [43]. For example, an anomaly-
free 1+1D modular invariant RCFT has a precise mathematical description (see for example [37,
Theorem 4.17]), which is a O-codimensional description. If we want to regard it as a boundary
of the trivial 2d topological order, then we need add all possible defects that are allowed by the
local quantum symmetries (i.e. a non-chiral symmetry in this case). These defects form an en-
riched fusion category, which provides a 1-codimensional description of the anomaly-free 1+1D
modular invariant RCFT. Moreover, the center of this enriched fusion category is precisely the O-
codimensional description of the trivial 2d topological order. We believe that this is a special case
of a general principle for topological orders and its gapped/gapless boundaries in all dimensions.

Boundary-bulk relation: The center of the 1-codimensional categorical description, which
contains all possible topological defects that can be obtained from elementary ones via con-
densations (called condensation descendants [42,39]), of a gapped/gapless boundary of an
anomaly-free nd topological order X coincides with the 0-codimensional categorical descrip-
tion of X.

See more discussion in [39, Section 3.3] and the mathematical theory of condensation completion
in [24].

The second lesson is that the study of gapped phases is that of gapless phases in disguise.
Indeed, a general gapless phase can be obtained by stacking a layer of gapless phase with a layer
of gapped phase as illustrated in the first picture in (7.1). Therefore, the mathematical structure
of a gapped phase, such as the higher category of topological excitations [43,32,39], is also an
indispensable ingredient of that of a generic gapless phase. This structure might be changed if
we introduce interactions between two layers as illustrated in the second picture in (7.1), but its
higher categorical nature remains intact.

gapped A gapped B
Amxzz{ BRe Y :={ T emeac (7.1)
gapless X gapless Y

Instead of using stacking, we can also describe this structure intrinsically. For a potentially
anomalous gapless phase, it is possible to have gapped excitations, which are topological sectors
of the complete Hilbert space. These topological sectors should also form a higher categorical
structure similar to those topological excitations in a topological order. We will call this higher
categorical structure the “topological skeleton” of the gapless phase.
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e For example, in the triple (V, X, P M) described in TheoremP" 3.7, the enriched category
PM is the topological skeleton. For a complete mathematical description of the gapless
phase, one need add local quantum symmetries to the topological skeleton, such as V and X
in the triple (V, X, 7).

We believe that this example has revealed the general features of gapless phases in all dimen-
sions. More precisely, let us consider an anomalous gapped/gapless nD phase X, realized as a
defect in an (n + k)D anomaly-free gapped/gapless phase Y,,+. More precisely, X,, should be
viewed as an nD domain wall between two n+1D defects 8,41 and T4 in Y, 1, so on and so
forth. There is an nD local quantum symmetry V,, defined on X,, where V,, is a (topological or
conformal or geometrical) analogue of an E,,-algebra and will be called an n-disk algebra. There
should be an n+1D local quantum symmetry V;,4 defined in the n+1D neighborhood of X,
determined by 8,4+ and T;,41, where V, 1 is an (n+1)-disk algebra and a common subalgebra
of two (n+1)-disk algebras that define the n+1D local quantum symmetries in 8,41 and T4,
respectively. Moreover, V), is an n-disk algebra over V,,11 in the sense of Lurie [52], so on and
so forth. Therefore, we expect a k-codimensional mathematical description of X, to be given by
Vatks -5 Vi, X1, where X? is the topological skeleton.

In this context, the Gapped-Gapless Correspondence proposed in [49, Section 7] can be
restated as follows: the topological skeletons of gapless phases can all be obtained by topo-
logical Wick rotations from gapped phases. Also note that local quantum symmetries V; must
be compatible with the topological skeletons. This provides a severe constraint on local quan-
tum symmetries for a given topological skeleton. In this sense, the topological skeleton can be
viewed as the symmetry of a gapless phase, and provides a powerful tool and a systematic way
to study all gapless phases. Moreover, many properties of gapless phases can be studied without
knowing local quantum symmetries, such as the condensations of topological defects, domain
walls between phases and boundary-bulk relation.

More precisely, since boundary-bulk relation holds in all dimensions [44], we expect that
Theorem 4.15 can be generalized to a functorial statement of the boundary-bulk relation for
higher dimensional topological orders with gapped and gapless boundaries. We illustrate this
boundary-bulk relation in Fig. 25, where only topological skeletons are shown and local quantum
symmetries are ignored because this relation only involves the topological skeletons. All gapless
boundary/wall/defects are obtained from topological Wick rotations. In particular, it means that
X; is a gapped domain wall between two n+1d topological orders C; and B; for i = 1,2, 3.
Physically, this boundary-bulk relation can be stated as a functor from the higher category of nd
boundaries of n+1d topological orders to the higher category of n+1d topological orders, by
assigning each boundary to the monoidal center of its topological skeleton (i.e. BiX; — €;), and
assigning each 1-codimensional wall on the boundary to its one-dimensional higher relative bulk
(i.e. 38 > B4)4), so on and so forth. Mathematically, X;’s are indecomposable unitary multi-
fusion n-categories, and 2i(;’s are indecomposable enriched unitary multi-fusion n-categories,
and C;’s are unitary modular n-categories (i.e. unitary braided fusion n-categories with trivial
E>-centers). The notion of a (braided) multi-fusion n-category was recently proposed in [32]
and its unitary version in [50]. The precise mathematical formulation of above boundary-bulk
relation as a well-defined functor is a highly non-trivial mathematical conjecture. Even a small
part of it, for example, that the monoidal center of ©C is € for a unitary modular n-category C is
already a quite amazing conjecture.
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SSO lel
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Fig. 25. This picture depicts three n+1d topological orders C; fori = 1, 2, 3, three nd gapless boundaries and two gapless
walls BJ Xj for j=1,2,3,4,5 and two n—1d gapless defects 880, {I‘J'o, where gapless boundaries/walls/defects are all
obtained by topological Wick rotation.

Remark 7.1.1In the light of the discussion around Eq. (7.1), it is reasonable to ask if the
boundary-bulk relation holds when the bulk phases are also gapless. Since it seems that the
notion of a topological skeleton is well defined for both the boundary and the bulk of a gapless
phase, we propose that above boundary-bulk relation should generalize to gapless-bulk cases.
This idea was further developed in [50]. Actually, the categorical formulation of the boundary-
bulk relation (also called open-closed duality) in 1+1D rational CFT’s [11,45] is an example of
this generalized boundary-bulk relation for gapless bulk phases.

Remark 7.2. The topological Wick rotation has another important application. By topologi-
cally Wick rotating the mathematical description of symmetry protected/enriched topological
orders (SPT/SET) with finite onsite symmetries based on the idea of boundary-bulk relation [39,
TheoremP? 1.1], we obtain a new mathematical description of SPT/SET’s in all dimensions in
terms of enriched higher categories (first proposed in [50, Section 5.2]). For example, given a
symmetry fusion category €, the enriched fusion category 3(E)¢ defines the topological skeleton
of a 1+1D SPT with the onsite symmetry €. The information of the onsite symmetry can be added
by setting & = Rep(G) or Rep(G, z) and selecting a braided auto-equivalence ¢ : 3(€) — 3(€)
that preserves the canonical embedding & < 3(€). Different choices of ¢ define different en-
richments, which further defines different SPT’s. When & = Rep(G), such braided equivalences
¢ are classified by H>(G, U(1)). This means that an onsite symmetry can be viewed as a special
case of local quantum symmetries.
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