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Abstract

This is the second part of a two-part work on the unified mathematical theory of gapped and gapless edges 
of 2+1D topological orders. In Part I, we have developed the mathematical theory of chiral gapless edges. 
In Part II, we study boundary-bulk relation and non-chiral gapless edges. In particular, we explain how the 
notion of the center of an enriched monoidal category naturally emerges from the boundary-bulk relation. 
After the study of 0+1D gapless walls, we give the complete boundary-bulk relation for 2+1D topological 
orders with chiral gapless edges (including gapped edges) and 0d walls between edges. This relation is 
stated precisely and proved rigorously as a monoidal equivalence, which generalizes the functoriality of 
the usual Drinfeld center to an enriched setting. We also develop the mathematical theory of non-chiral 
gapless edges and 0+1D walls, and explain how to gap out certain non-chiral 1+1D gapless edges and 0+1D 
gapless walls categorically. In the end, we show that all anomaly-free 1+1D boundary-bulk rational CFT’s 
can be recovered from 2d topological orders with chiral gapless edges via a dimensional reduction process. 
This provides physical meanings to some mysterious connections between mathematical results in fusion 
categories and those in rational CFT’s.
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1. Introduction

Throughout this paper, we use nd to denote the spatial dimension and n+1D to denote the 
spacetime dimension, and we use Theoremph to highlight a physical result and use Theorem to 
represent a mathematically rigorous result.

This work is a continuation of Part I [49]. We assume that the readers have already read Part 
I, in which the mathematical theory of chiral gapless edges of 2d topological orders (without 
symmetries) is developed, and the main result is summarized by the following physical theorem.

Theoremph 1.1 ([49]). 1d chiral gapped/gapless edges of an anomaly-free 2d topological order 
(C, c) are mathematically described and classified by pairs (V , BM) explained below:

1. V is the chiral symmetry, i.e. a unitary rational vertex operator algebra (VOA) such that the 
category B := ModV of V -modules is a unitary modular tensor category (UMTC). When 
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V = C, the edge is gapped and B = H, where H denotes the category of finite dimensional 
Hilbert spaces.

2. BM is a B-enriched unitary fusion category canonically constructed from the pair (B, M), 
where M is a UFC and a left fusion B-module (see Definition 2.3), and M is the underlying 
category of the enriched category BM. More explicitly,

(a) objects x, y, z ∈ BM are precisely those in M, and are topological edge excitations;
(b) the morphism spaces are given by the internal homs, i.e. homBM(x, y) := [x, y]B.

Moreover, we have a direct sum decomposition BM = BM1 ⊕· · ·⊕BMn, where each indecom-
posable direct summand Mi of M is the category of boundary conditions of a modular-invariant 
bulk CFT A(i)

bulk. For x, y ∈ Mi , [x, x]B and [y, y]B are boundary CFT’s of A(i)
bulk and [x, y]B is 

a 0D wall between them. The bulk CFT’s A(i)
bulk and A(j)

bulk are potentially different for i �= j . The 
space [x, y]B should also be viewed as the space of instantons between two edge excitations x
and y. When V = C, M = (C, HM) is a gapped edge.

One of the consequences of above theorem is that all 1d chiral gapless edges are obtained 
from topological Wick rotations [49, Section 5.2]. It is physically absurd if this result does not 
generalize to 0d walls between edges. Inspired by this observation, we propose the following 
correspondence, which plays the role of a guiding principle of this work.

Gapped-gapless Correspondence: All gapless edges and 0d walls between edges of 2d topo-
logical orders can be obtained from topological Wick rotations plus the information of local 
quantum (i.e. chiral or non-chiral) symmetries.

Actually, some parts of our analysis do not use this principle but lead to results respecting this 
principle. At the end of the day, all 0d walls respect this principle. This is a low dimensional case 
of a more general principle for gapless phases in all dimensions proposed in [49, Section 7]. It 
provides a powerful tool and a guiding principle for the study of gapless phases in all dimensions 
(see Section 7).

In this work, we develop the mathematical theory of 0+1D walls between two gapless edges, 
boundary-bulk relation including 0+1D walls and that of non-chiral gapless edges. The main 
physical results are a physical description of boundary-bulk relation for gapless edges as a center 
functor (see Section 4), the classification of non-chiral gapless edges (see Theoremph 5.9) and 
that of 0+1D domain walls between two gapped/gapless edges (see Theoremph 3.7, 5.19 and 
5.23). The theory of non-chiral gapless edges provides a theoretic framework to study the purely 
edge topological phase transitions (see Section 5.3). The main mathematical result that the center 
functor is a symmetric monoidal equivalence (see Theorem 4.15), which gives the complete 
mathematical description of the boundary-bulk relation for 2d topological orders unifying both 
the gapped and gapless edges. The logic flow and the layout of this work are given below.

In Section 2, we review the boundary-bulk relation for gapped edges. In particular, in Sec-
tion 2.1, we review some basic mathematical notions, such as a closed module over a multi-fusion 
category and a closed monoidal modules over a braided fusion category. In Section 2.2, we re-
view the mathematical theory of 0d wall between gapped edges. In Section 2.3, we review the 
boundary-bulk relation for gapped edges including 0d walls. In Section 2.4, we review the the-
3
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ory of generalized 0d defects and that of factorization homology. The anomaly-free condition 
discussed there will be used in many places later.

In Section 3, we develop the mathematical theory of 0+1D walls between two chiral gapless 
edges. We start with a careful analysis of observables on the world line of a 0+1D wall in Sec-
tion 3.1. This analysis shows that a natural construction of a 0+1D wall automatically respects 
the Gapped-gapless Correspondence. In Section 3.2, we discuss more general constructions all 
respecting the Gapped-gapless Correspondence. In particular, we show that a 1+1D chiral sym-
metry in a neighborhood of the world line and a 0+1D chiral symmetry on the world line are 
both needed as defining data. Since there is no thermodynamics in 0d, we carefully distinguish 
the spatial notion of a 0d wall and the spacetime notion of a 0+1D wall (see Definition 3.2). All 
0+1D walls are spatially equivalent to the unique 0d wall. In Section 3.3, using Gapped-gapless 
Correspondence, we conclude that we have found the mathematical description and the classi-
fication of all 0+1D gapless walls between two chiral gapless edges. In Section 3.4, we discuss 
how to fuse two 0+1D walls along a spatial direction and an anomaly associated to it, called 
spatial fusion anomaly. In Section 3.5, we show that the spatial equivalence between two 0+1D 
walls leads to a mathematical notion of a spatial equivalence between bimodules over enriched 
multi-fusion categories and the associated spatial Morita theory. As a consequence, two chiral 
gapless edges are spatially Morita equivalent if and only if they share the same bulk, and the 
spatial Morita equivalence is precisely defined by a 0+1D gapless wall as a spatially invertible 
bimodule.

After the preparation in Section 3, we are ready to give a complete boundary-bulk relation for 
chiral gapless edges in Section 4. We warm up to the precise statement by first explaining how 
the notion of the center of an enriched monoidal category naturally emerges from the physical 
intuition of the relation between a 2d bulk and a 1d edge in Section 4.1 and 4.2. In Section 4.3, we 
add 0+1D walls to the edge and 1+1D gapless walls to the bulk. In Section 4.4, we give our main 
mathematical result (see Theorem 4.15). It says that assigning the data on the boundary to that in 
the bulk by taking centers gives a well-defined functor, which is actually a monoidal equivalence. 
This generalizes our earlier result of the functoriality of Drinfeld center in [46, Theorem 3.3.7].

In Section 5, we develop the mathematical theory of non-chiral gapless edges. The logic 
flow there is parallel to that of chiral gapless edges. In particular, we provide a classification 
of non-chiral gapless edges in Section 5.2, and discuss its significance in the study of purely 
edge topological phase transitions in Section 5.3. Different from the chiral cases, two non-chiral 
gapless edges can have very complicated 0+1D gapless walls. Mathematically, this corresponds 
to the representation theories of non-chiral symmetries in different categories. We explain this in 
Section 5.4.

In Section 6, we show how to use our theory to compute various physical processes. In par-
ticular, in Section 6.1, we show how to gap out non-chiral 0+1D walls; in Section 6.2, we show 
how to fuse two gapless holes in a 2d topological order; in Section 6.3, we show how to recover 
all 1+1D anomaly-free boundary-bulk CFT’s via a dimensional reduction process. At the same 
time, we clarify some mysterious connections between mathematical results in fusion categories 
and those in rational CFT’s.

In Section 7, we discuss two important lessons we have learned from this work and their 
impacts on the study of higher dimensional gapped/gapless phases. In particular, we propose that 
the theory of gapless edges of 2d topological orders developed in this work can be generalized to 
the gapped/gapless boundaries of gapped/gapless phases of all dimensions.

Acknowledgment: LK and HZ are supported by the Science, Technology and Innovation Com-
mission of Shenzhen Municipality (Grant No. ZDSYS20170303165926217) and by Guangdong 
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Provincial Key Laboratory (Grant No. 2019B121203002). LK is also supported by NSFC under 
Grant No. 11971219 and by Guangdong Basic and Applied Basic Research Foundation under 
Grant No. 2020B1515120100. HZ is supported by NSFC under Grant No. 11131008.

2. Boundary-bulk relation I: gapped edges

In this section, we review some basic mathematical notions and boundary-bulk relation for 
gapped edges of 2d topological orders.

2.1. Basics of braided fusion categories

For a multi-fusion category P, we denote its tensor product by ⊗, its tensor unit by 1P and the 
identity morphisms by 1p : p → p for p ∈ P. A multi-fusion category is called indecomposable 
if it is a not direct sum of two non-zero multi-fusion categories. A fusion category is a multi-
fusion category with a simple tensor unit. We use Prev to denote the same category as P but 
equipped with the tensor product ⊗rev defined by p ⊗rev q := q ⊗ p; and use Pop to denotes the 
opposite category. The simplest fusion category is the category H of finite dimensional Hilbert 
spaces. Deligne tensor product is denoted by �.

Definition 2.1. For two multi-fusion categories P and Q, a left P-module is a finite category X
equipped with a monoidal functor φX : P → Fun(X, X), where Fun(X, X) denotes the category 
of functors from X to X; a right P-module is a left Prev-module; a P-Q-bimodule is a left P �
Qrev-module. A (left, right, bi-)module is called closed if φX is also an equivalence.

Remark 2.2. For a left P-module X, for p ∈ P, we often denote the endo-functor φX(p) : X → X

by p � −, where � : P ×X → X is a well-defined P-action on X. Two P-modules X and Y are 
equivalent if there exists an equivalence between X and Y intertwining the P-actions.

For multi-fusion categories P, Q, R, an P-Q-bimodule X and a Q-R-bimodule Y, the rela-
tive tensor product X �Q Y is a well-defined P-R-bimodule. We have a well-defined symmetric 
mononoidal category:

• indMF: objects are indecomposable UMFC’s; morphisms are the equivalence classes of bi-
modules; the composition maps are defined by relative tensor products; the symmetric tensor 
product is the Deligne tensor product.

For a braided fusion category C, we use C to denote the same fusion category but with the 
braidings defined by the anti-braidings of C. The following notions have been introduced many 
times in different contexts with different names (see for example [52,17,23,46,4,30]).

Definition 2.3. For two braided fusion categories A and B, a (multi-)fusion right B-module M is 
a (multi-)fusion category equipped with a braided monoidal functor φM : B → Z(M); a (multi-
)fusion left A-module is a (multi-)fusion right A-module; a (multi-)fusion A-B-bimodule is a 
(multi-)fusion right A�B-module. Such a (left, right, bi-)module is called closed if φM is also 
an equivalence.

Given a multi-fusion right B-module M, by composing φM with the forgetful functor f :
Z(M) → M, we obtain the following commutative diagram:
5
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B
φM

fM=f◦φM

Z(M)

f

M

A functor B →M factoring through the forgetful functor f is called a central functor. The action 
functor � :B ×M → M defined by (a, m) 
→ fM(a) ⊗ m is a monoidal functor.

Definition 2.4 ([46,30]). For a braided fusion category B and two right multi-fusion B-modules 
M, N, a monoidal B-module functor F : M → N is a monoidal functor equipped with an iso-
morphism of monoidal functors F ◦ fM � fN : C → N rendering the following diagram

F(fM(b) ⊗ m)
∼

∼
F(m ⊗ fM(b))

∼

fN(b) ⊗ F(m)
∼

F(m) ⊗ fN(b)

(2.1)

commutative for b ∈B and m ∈ M. M and N are said to be equivalent if F is also an equivalence.

For braided fusion categories A, B, C, a multi-fusion A-B-bimodule M and a multi-fusion 
B-C-module N, the relative tensor product M �B N is a well-defined multi-fusion A-C-
bimodule. By [46, Theorem 3.3.6.], we have a well-defined symmetric monoidal category:

• NBFcl: objects are non-degenerate braided fusion categories; morphisms are the equivalence 
classes of closed multi-fusion bimodules; the composition maps are defined by relative tensor 
products; the symmetric tensor product is the Deligne tensor product.

Definition 2.5. A B-enriched (multi-)fusion category is an enriched monoidal category BM ob-
tained by the canonical construction from a pair (B, M), where B is a non-degenerate braided 
fusion category and M is a (multi-)fusion left B-module.

Remark 2.6. The canonical construction of the enriched category BM from a pair (B, M) is 
well-known. In particular, the underlying category of BM is M and the hom spaces of BM is 
defined by the internal homs [x, y] in B for x, y ∈M. It was proved in [53] that BM has a natural 
monoidal structure (see also [49, Theorem 5.3]).

For physical applications, we need add the unitarity. The above notions can all be generalized 
to their unitary versions. In particular, we abbreviate a unitary multi-fusion category to UMFC, 
and a unitary fusion category to UFC. A unitary non-degenerate braided fusion category has a 
canonical spherical structure such that it becomes a unitary modular tensor category (UMTC) 
[34]. In the unitary cases, all the functors are assumed to be unitary. Throughout this work, we 
assume unitary for all physical discussion, but drop the unitarity assumption only when we state 
certain precise mathematical results in Theorem 2.15 and Section 4.4.

2.2. Gapped edges and 0d walls

An anomaly-free 2d topological order (without symmetry) can be described by a pair (C, c)
(see [34, Appendix E] for a review), where C is a UMTC and c is the chiral central charge. The 
pair (H, 0) describes the trivial 2d topological oder.
6
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Fig. 1. This picture depicts a 2d topological order (C, 0) with three different gapped edges given by UFC’s L, M, N
separated by two 0d walls X and Y. The 2d bulk is oriented as the usual R2 with the normal direction pointing out of the 
paper in readers’ direction. The arrows indicate the induced orientation on the edge.

Theoremph 2.7. As illustrated in Fig. 1, we have the following results.

1. A gapped edge of a 2d topological order (C, 0) is described mathematically by a closed right 
fusion C-module L.

2. Different gapped edges L, M, N (as UFC’s) share the same bulk (as their Drinfeld centers) if 
and only if they are Morita equivalent [14].

A 2d topological order (C, 0) admitting gapped edges is called a non-chiral 2d topological order. 
In these cases, the central functor fL describes how excitations in the bulk are fused into those 
on the edge, thus will be called the bulk-to-boundary map.

Remark 2.8. Unstable 1d topological orders naturally occur in dimensional reduction processes. 
They can be described by an indecomposable UMFC [43,1].

Remark 2.9. By the folding trick, Theoremph 2.7 implies that a gapped 1d wall between two 
2d topological orders (A, c) and (B, c) (see the second picture in (2.4)) is described by a closed 
fusion A-B-bimodule or a closed multi-fusion A-B-bimodule if we allow unstable gapped walls.

A 1d gapped edge L of a 2d topological order should itself be viewed as an anomalous 1d 
topological order, described mathematically by a UMFC L. Its anomaly is completely captured 
by its bulk, which is described by the Drinfeld center Z(L). It is anomaly-free if Z(L) � H.

Theoremph 2.10 ([43,1]). A 0d wall between two gapped edges L and M (i.e. UFC’s) of the 
same 2d topological order (C, c) as depicted in Fig. 1 is mathematically described by the unique 
closed left L �C Mrev-bimodule X.

Remark 2.11. Physically, the L-M-bimodule structure on X is provided by the fusion of topo-
logical excitations in L and M to X from two sides. The closedness condition is an anomaly-free 
condition, which says that the 1d topological order L �C Mrev, obtained from the dimensional 
reduction process depicted in Fig. 2 [20,38], should be nothing but the unique 1d bulk of X
given by Fun(X, X) (see [43,1] for more details). This condition determines X uniquely (up to 
equivalences).

If we consider the entire 0+1D world line of the 0d wall, it makes no sense to specify a wall 
excitation x ∈ X because it can be changed to other excitations on the world line. But if we 
7
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Fig. 2. These two pictures depict a dimensional reduction process from (a) to (b).

want to specify a particular spatial slice of the 0+1D wall, we can further specify a distinguished 
wall excitation x ∈ X. This leads to a new description of the 0d wall as a pair (X, x), which is 
useful in the calculation of global observables or factorization homology on space manifolds (see 
Section 2.4).

Remark 2.12. Mathematically, such a pair (X, x) can be viewed as an E0-algebra in the 2-
category of categories in the sense of Lurie [52]. In the same 2-category, a monoidal category 
is an E1-algebra; a braided monoidal category is an E2-algebra; a symmetric monoidal category 
is an E3-algebra or E∞-algebra. Fun(X, X) is the E0-center of (X, x); the Drinfeld center is an 
E1-center; the Müger center is an E2-center.

Example 2.13. A topological excitation u ∈ C in the 2d bulk (C, c) (resp. on a gapped edge L) 
can be viewed as an anomalous 0d topological order, which can be mathematically described by 
(C, u) (resp. (L, u)) in a spatial slice, where C (resp. L) is viewed as a finite unitary category by 
forgetting its monoidal structures [43,1]. In these cases, the closed (or anomaly-free) condition 
holds automatically, i.e.

C�C�C Crev �−→ Fun(C,C), L�Z(L) L
rev �−→ Fun(L,L)

a �C�C b 
→ a ⊗ − ⊗ b, l �Z(L) m 
→ l ⊗ − ⊗ m, (2.2)

both of which are special cases of a general formula (2.3). We discuss the anomaly-free condition 
for general 0d defect junctions in Section 2.4.

2.3. Boundary-bulk relation for gapped edges

It turns out that the boundary-bulk relation discussed in the previous subsections is only the 
first layer of a hierarchic structure. In this subsection, we drop the assumption of the unitarity.

A most general situation for the boundary-bulk relation is depicted in Fig. 3. The 0d gapped 
defect labeled by X is a junction of three 1d gapped defects labeled by L, M, Z(1)(X). In this case, 
X is an L-M-bimodule but not invertible in general. The 1d gapped wall labeled by Z(1)(X) is 
a closed multi-fusion Z(L)-Z(M)-bimodule (recall Remark 2.9). By the unique bulk principle 
proposed in [43], the gapped 1d wall Z(1)(X), which should be viewed as a 1d “relative bulk” of 
X, is uniquely determined by X, L, M as follows:
8
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Fig. 3. The picture illustrates the complete boundary-bulk relation, which is the physical meaning of Theorem 2.15. The 
arrows indicate the orientation of the edges/walls and the order of the fusion product of topological excitations on the 
edges/walls.

Z(1)(X) = FunL|M(X,X),

where FunL|M(X, X) is the category of L-M-bimodule functors. Moreover, we should have a 
canonical monoidal equivalence:

L�Z(L) Z
(1)(X)�Z(M) M

rev � Fun(X,X)

which is a consequence of the formula (2.3).

Remark 2.14. Note that our convention of the left and right action in the definition of a fusion 
bimodule is that if the orientation of the wall is the same (resp. the opposite) as the induced 
orientation with respect to a bulk phase, then this bulk phase acts on the wall from right (resp. 
left). We will use this convention throughout this work.

Now we consider the fusion of two gapped walls, say Z(1)(X) and Z(1)(Y). This fusion gives 
a new gapped wall Z(1)(X) �Z(B) Z

(1)(Y) between Z(A) and Z(C). On the other hand, it should 
also be viewed as the 1d “relative bulk” of a new 0d wall between A and C obtained by fusing X
and Y, i.e. X �M Y. Hence, we should expect a monoidal equivalence:

FunL|M(X,X)�Z(M) FunM|N(Y,Y) � FunL|N(X�M Y,X�M Y). (2.3)

This monoidal equivalence was rigorously proved in [46, Theorem 3.1.7.]. It simply says that the 
assignment L 
→ Z(L) and X 
→ Z(1)(X) is functorial. This functoriality, stated more precisely 
in Theorem 2.15, provides a complete mathematical description of the boundary-bulk relation 
for 2d topological orders with gapped edges.

Theorem 2.15. The functor Z : indMF → NBFcl defined by

L 
→ Z(L) and X 
→ Z(1)(X) := FunL|M(X,X)

is a well-defined fully faithful symmetric monoidal functor.

Remark 2.16. The above theorem was proved in [46, Theorem 3.3.7]. Its proof can be general-
ized to unitary cases using results in [21,22]. The physical meaning of Theorem 2.15 (as depicted 
in Fig. 3) can be all realized by Levin-Wen type of lattice models [35].

One of the main goals of this work is to generalize above result to gapless edges (see Theo-
rem 4.15).
9
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2.4. Factorization homology on space manifolds

The integration of the local observables on space manifolds is achieved by the mathematical 
theory of factorization homology [1] (see [2] for a recent mathematical review). In this subsec-
tion, we review some basic results that will be useful later.

Definition 2.17. A coefficient system A of an oriented disk-stratified 2-manifold � (see [3]) is 
an assignment of each i-cell to an i-dimensional topological order for i = 0, 1, 2. A coefficient 
system A is called anomaly-free if the following conditions are satisfied:

(2.4)

1. each 2-cell is assigned to a UMTC A (or B, Ai ), or an anomaly-free 2d topological order 
(A, c), where c is fixed for each connecting component of �, thus can be ignored;

2. each oriented 1-cell between two adjacent 2-cells (as illustrated in the second picture in (2.4)) 
is assigned to a closed multi-fusion A-B-bimodule M (or Mi );

3. each 0-cell as the one depicted in the third picture in (2.4) is assigned to a pair (X, x), where 
X is a closed P-module for P := M1 �A0�A1

(M2 �A2 · · · �An−1 Mn) (recall Theoremph

2.10) and x is an object in X.

Such a coefficient system describes a physical configuration of 0d, 1d, 2d topological orders 
on �. Anomaly-free condition means that the corresponding physical configuration can be real-
ized by a 2-dimensional local Hamiltonian lattice model on �. The “closed” condition determines 
X uniquely. In other words, an anomaly-free 0d defect is determined by the physics of its neigh-
borhood uniquely (up to the choices of the distinguished object x ∈ X).

Remark 2.18. Note that if we flip the orientation of a 1-cell and replace its assignment M by 
Mrev at the same time, then the physics configuration remains the same. Therefore, it must define 
an equivalent coefficient system.

The factorization homology of a coefficient system A on an oriented disk-stratified 2-manifold 
� is well-defined and is denoted by 

∫
�

A.

Theorem 2.19 ([1]). If � is compact and A is anomaly-free, then 
∫
�

A = (H, u�), where u� is 
a distinguished object in H.

The physical meaning of u� is nothing but the space of ground states of the associated 
physical configuration on �. This integral is well-defined on any submanifold of � as well. 
In particular, the integral over any open 2-disk like region D in � gives a pair (W, w), i.e. ∫
D

A = (W, w). The following result will be useful later.

Theorem 2.20 ([1]). By shrinking an open 2-disk like region D in � to a 0-cell and assigning ∫
D

A to this 0-cell, we obtain a coefficient system A′ on a new oriented disk-stratified 2-manifold 
�′. The coefficient system A′ on �′ is again anomaly-free.
10
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Fig. 4. This picture depicts the 1+1D world sheet of two chiral gapless edges (VA, AX) and (VB, BY) connected by a 
0+1D gapless wall (i.e. the vertical black line). The complex coordinate z = t + ix is given and determines the orientation 
of the world sheet.

Example 2.21. Consider the following open 2-disk like region D on � with an anomaly-free 
coefficient system:

If 
∫
D

A = (W, w), then W is uniquely determined by S := I �A�D (Jrev �BKrev) as the unique 
closed left S-module. In other words, W is independent of other data: (X, x), M, (Y, y), N, (Z, z),
L, C, but the distinguished object w ∈ W depends on them. The physical meaning is that if we 
view from far away, this open 2-disk like region can simply be viewed a 0d defect junction, 
defined by the pair (X, x), connecting three 1d defects labeled by I, J, K.

3. 0d walls between chiral gapless edges

In this section, we develop the theory of 0d walls between two chiral gapless edges.

3.1. Observables on the world line of a 0d wall

Consider a 0d gapless wall between two chiral gapless edges as depicted in Fig. 4. The 2d 
bulk topological order is (C, c). Two chiral gapless edges are (VA, AX) and (VB, BY), where 
both chiral symmetries (i.e. VOAs) VA and VB have the same central charge c and ModVA

=
A, ModVB

= B. If c = 0, then it is necessary that VA = VB = C. Throughout this work, we use 
vertical planes in Figures to represent 1+1D world sheets of gapless edges/walls.

If m is a topological excitation living on the 0d wall, by fusing topological excitations in the 
bulk and edges with m, we obtain different topological excitations. All such wall excitations can 
be labeled by the objects in a category M, which is called the category of topological excitations. 
Similar to the analysis of the observables on the 1+1D world sheet of a chiral gapless edge, using 
11
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the same dimensional reduction trick as depicted in [49, Figure 5], by the “No-Go Theorem” [49, 
Section 3.3], chiral fields on the 0+1D world line supported on m form 1D boundary CFT’s and 
0D walls between them. Topological excitations can also be viewed as the boundary conditions 
of these boundary CFT’s. Therefore, we can label these boundary CFT’s as Am for a given 
topological excitation m on the wall and a 0D wall by Mm,m′ for two topological excitations 
m, m′. The space Mm,m′ consists of boundary condition changing operators and we have Mm,m =
Am. These chiral fields can have OPE Mm′,m′′ ⊗C Mm,m′ → Mm,m′′ .

By fusing chiral fields in UA = [1X, 1X]A and UB = [1Y, 1Y]B into the world line, we 
obtain two natural maps ιL : VA → Am and ιR : VB → Am, respectively. These maps clearly 
preserve the operator product expansion (OPE). Hence, they are homomorphisms of open-string 
VOA [27]. Let ωA, ωm, ωB be the Viraroso elements in VA, Am, VB, respectively. The minimal 
requirement for a consistent boundary CFT is to satisfy the following condition:

• Conformal invariant boundary condition: 〈ωA〉 ιL−→ 〈ωm〉 ιR←− 〈ωB〉 are isomorphisms.

More generally, we require:

• V -invariant boundary condition: There is a VOA V embedded in VA, Am, VB rendering 
the following diagrams commutative:

V

VA
ιL

Am VB
ιR

∀m ∈M. (3.1)

This VOA V is called the 1+1D chiral symmetry of the wall (defined in the neighborhood of the 
world line), and is assumed to be a unitary rational VOA such that ModV is a UMTC. It is clear 
that Mm,m′ ∈ ModV . The path independent embedding V ↪→ Am becomes a canonical morphism 
idm : 1ModV

→ Am called the identity morphism. The OPE of defect fields defines a composition 
morphism in ModV :

Mm′,m′′ ⊗V Mm,m′
�−→ Mm,m′′, (3.2)

which is associative and unital as illustrated in the following commutative diagrams:

Mm′′,m′′′ ⊗V Mm′,m′′ ⊗V Mm,m′ 1�

�1

Mm′′,m′′′ ⊗V Mm,m′′

�

Mm′,m′′ ⊗V Mm,m′ �
Mm,m′′′

(3.3)

Mm′,m′ ⊗V Mm,m′
�

Mm,m′

idm′ 1

1
Mm,m′

,

Mm,m′ ⊗V Mm,m

�

Mm,m′

1 idm

1
Mm,m′

(3.4)

Therefore, the chiral fields on the 0+1D world line of this wall form a category enriched in 
ModV . Its underlying category is precisely the category M of topological excitations on the 0d 
wall. The background category ModV , however, does not have a direct physical meaning because 
it is not the correct choice of the background category as we will show next.
12
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It is easy to see that all Mm,m′ are VA-VB-bimodules, i.e. Mm,m′ ∈ (ModV )VA|VB
, where 

(ModV )VA|VB
is the category of VA-VB-bimodules in ModV . Note that a left VA-module X is 

automatically a right VA-module with the right action defined by

X ⊗V VA

cX,VA−−−→ VA ⊗V X → X.

Similarly, a right VB-module Y is automatically a left VB-module with the left action defined by

VB ⊗V Y
cVB,Y−−−→ Y ⊗V VB.

Therefore, a VA-VB-bimodule X in ModV is canonically a (VA⊗V VB)-(VA⊗V VB)-bimodule 
in ModV . In the definition of this bimodule structure, whenever we exchange the order of 
VA, X, VB via braidings, the object VA always stays on the top and VB always stays at the 
bottom.1 Therefore, the category (ModV )VA|VB

has a fusion product defined by the relative ten-
sor product

X ⊗VA⊗V VB
Y, ∀X,Y ∈ (ModV )VA|VB

.

The algebra VA ⊗V VB in ModV is not commutative unless VB is in the centralizer of VA, 
thus should be viewed as an open-string VOA extension of V . Moreover, since both VA and 
VB are simple special symmetric †-Frobenius algebras (†-SSSFA, recall [49, Section 4.4]) in 
ModV , VA ⊗V VB is a (not necessarily simple) symmetric special †-Frobenius algebra. As a 
consequence, the category (ModV )VA|VB

is an indecomposable UMFC.

First, notice that we have

homModV
(1ModV

,Mm,m′) � hom(ModV )VA|VB (VA ⊗V VB,Mm,m′). (3.5)

Therefore, the identity morphism idm : 1ModV
→ Mm,m defines a canonical VA-VB-bimodule 

map idm : VA ⊗V VB → Mm,m for m ∈ M. Secondly, from Fig. 4, it is easy to see that the 
composition morphism � defined in Eq. (3.2) should intertwine both the VA-action and the VB-
action. Therefore, it is a morphism in (ModV )VA|VB

. In other words, the chiral fields on the 0+1D 
world line on the wall form a category enriched in (ModV )VA|VB

.
Note that these two different choices of background categories: ModV and (ModV )VA|VB

are gauge choices. They describe exactly the same physics because objects in (ModV )VA|VB

can be viewed automatically as objects in ModV via the forgetful functor f : (ModV )VA|VB
→

ModV . However, the new background category (ModV )VA|VB
has a direct physical meaning. 

More precisely, it describes a fictional gapped wall between two fictional bulk phases (A, c) and 
(B, c). This can be seen from a physical construction. Consider a 2d topological order (ModV , c). 
By condensing two condensable algebras VA and VB in ModV , we obtain two new UMTC’s

(ModV )0
VA

= ModVA
and (ModV )0

VB
= ModVB

, respectively.

Two gapped walls, defined by UFC’s (ModV )VA|V and (ModV )V |VB
, are also produced during 

these two condensation processes as shown in the first of the following pictures.

1 This braiding convention coincides with the one explained in [49, Figure 7], which was drawn in the opposite per-
spective of Fig. 4 in this work.
13
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(3.6)

Then we fuse these two walls. We obtain a new wall

(ModV )VA|V �ModV
(ModV )V |VB

�−→ (ModV )VA|VB
,

where the functor is defined by x �ModV
y 
→ x ⊗V y, and is an equivalence (see for example in 

[46, Theorem 2.2.3]). Moreover, this equivalence is clearly a monoidal equivalence. Therefore, 
P := (ModV )VA|VB

has a physical meaning as a gapped wall between two 2d topological orders 
(A, c) and (B, c), thus a better choice of the background category. By [47, Theorem 3.3.6], P is 
a closed multi-fusion ModVA

-ModVB
-bimodule. This fact provides an evidence of the Gapped-

gapless Correspondence for 0d walls.
The key to the understanding of the enriched category describing the 0d wall is to work out 

the relation between P and M. The analysis is entirely similar to that in [49, Section 6.1]. We 
will not repeat it here. Instead, we will take the advantage of what we have already shown. Since 
all gapless edges can be obtained from topological Wick rotations, it is only reasonable if all 
0d gapless walls can also be obtained from topological Wick rotations. This is precisely the 
Gapped-gapless Correspondence stated in Section 1. As a consequence, the category M of wall 
excitations is uniquely determined. More precisely, by Definition 2.17, the underlying category 
M is uniquely determined by X, A, P, B, Y, C via the following canonical monoidal equivalence:

(Xrev �A P�B Y)�Z(C) C� Fun(M,M). (3.7)

Therefore, the 0d wall depicted in Fig. 4 can be characterized by a pair (V , PM).

3.2. General cases: 0d phases vs. 0+1D phases

For a fixed 1+1D chiral symmetry V , is P := (ModV )VA|VB
the only choice for the back-

ground category? Note that we have shown that Mm,m′ ∈ P, and all the identity morphisms 
and composition morphisms are morphisms in P. Therefore, the only other possibilities are 
subcategories of P, or equivalently, categories that map into P faithfully. By Gapped-gapless 
Correspondence, these categories must be UMFC’s that are Morita equivalent to P. Such a cat-
egory is precisely given by PX|X for a (not necessarily simple) symmetric special †-Frobenius 
algebra X in P. It is equipped with a forgetful functor f : PX|X → P, which is faithful. When 
X = 1P = VA ⊗V VB, PX|X = P. In general, X is an open-string VOA extension of VA ⊗V VB. 
Note that PX|X realize all closed multi-fusion A-B-bimodule up to equivalences. Once we fix 
the background category to be PX|X, the category of 0d wall excitations is determined uniquely 
by Gapped-gapless Correspondence and the anomaly-free condition in Definition 2.17.

Do different background categories PX|X and P produce different 0d walls? For Q := PX|X
and an invertible Q-P-bimodule K :=PX|1P , we obtain a 0d wall defined by (V , Q(K �PM)) as 
illustrated in Fig. 5, in which K is depicted very close to M such that K �PM should be viewed 
as a single fictional defect junction in the figure and the category of 0d wall excitations. We want 
to compare (V , Q(K �P M)) with (V , PM).
14
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Fig. 5. This picture depicts the 0+1D world sheet of a 0d wall (V , Q(K �P M)). K is depicted as a fictional 0D defect 
placed very close to another fictional 0D defect M such that K �P M should be viewed as a single fictional 0D defect 
that defines the category of excitations of (V , Q(K �P M)).

1. We compare the boundary CFT’s on the wall (V , Q(K �P M)) with those on (V , PM). Note 
that PM = PM1 ⊕ · · · ⊕ PMn, where Mi are the indecomposable components of M as a 
left P-module. On the one hand, for 0 �= m ∈ Mi , we have Mi � P[m,m]P and [m, m]P is 
a boundary CFT on the 0+1D world sheet of (V , PM). On the other hand, K �P Mi �
PX|[m,m]P is an indecomposable Q-module. For x ∈ K �P Mi , [x, x]Q is a boundary CFT 
on the 0+1D world sheet of (V , Q(K �P M)). Regarding [x, x]Q as an algebra in P via the 
forgetful functor f : PX|X → P, one can easily show that [x, x]Q and [m, m]P are Morita 
equivalent. Therefore, the set of boundary CFT’s on (V , Q(K �P M)) is a subset of those on 
(V , PM).

2. We compare the categories of wall excitations. They are obviously different. What causes 
this difference? Recall that the previous notion of the chiral symmetry V is a 1+1D notion. 
It is a VOA that is transparent in a neighborhood of the world line except at 0D defects. 
Mathematically, it just means that a VOA is a conformal analogue of an E2-algebra (or a 2-
disk algebra) [52,3,2]. On the 0+1D world line of the wall, we can impose a new 0+1D chiral 
symmetry, which is only transparent on the world line except at 0D defects, and is potentially 
different from the chiral symmetry V . This 0+1D chiral symmetry should be given by an 
observable algebra only defined on an open 1-disk. Mathematically, it is a conformal analogue 
of an E1-algebra. In our case, it is nothing but an open-string VOA, or more precisely, a 
symmetric special †-Frobenius algebra A in P. For a fixed 0+1D chiral symmetry A, it is clear 
that a 0D defect living on the world line must be an A-A-bimodule. For example, for (V , PM), 
this 0+1D chiral symmetry is just VA ⊗V VB; for (V , Q(K �P M)), it is X. Their difference 
in the category of wall excitations is due to the fact that larger 0+1D chiral symmetry allows 
fewer wall excitations and fewer morphisms between wall excitations. Moreover, Fig. 5 shows 
that one can change the 0+1D chiral symmetry by introducing a 0D wall (e.g. K) on the world 
line.

3. Although (V , Q(K �P M)) and (V , PM) differ in their 0+1D chiral symmetry and wall ex-
citations, this difference is superficial from the usual condensed matter physics point of view 
because there is no thermodynamics limit in 0d. It means that changing the 0+1D chiral 
symmetry, or equivalently, introducing 0D fictional defects (e.g. K) onto the 0+1D world 
line, does not trigger a real space phase transition. From this point of view, a 0d wall or an 
anomalous 0d phase should automatically include all possible 0+1D chiral symmetries and 
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0D defects (e.g. K) on the world line, and (V , Q(K �P M)) with (V , PM) should be viewed 
as two gauge equivalent descriptions of the same 0d wall.

4. Consider gapped 0d walls between two 1d gapped edges. In Theoremph 2.10, the background 
category is fixed to H, as a consequence, the category of 0d wall excitations is unique. We 
show in Section 6.1, in certain length scale, not only it makes sense to talk about “a gappable 
gapless 0d wall”, but also it has a precise categorical description. Gapping it out does not 
trigger any 0d phase transition because there is no thermodynamics limit in 0d. Since there 
are precise mathematical descriptions before and after the gapping-out process, it is useful 
to introduce a notion before the gapping and a notion of “gauge equivalence” between the 
description of a 0d gapped wall and that of a gappable 0d gapless wall.

Remark 3.1. 1+1D and 0+1D chiral symmetries are both local quantum symmetries. We believe 
that their relation presented here catches some general features of gapless phases of all dimen-
sions (see Section 7).

Similar phenomena also occur if we vary the chiral symmetry V . In general, there are more 
than one VOA V rendering Diagram (3.1) commutative. It means that we can impose different 
1+1D chiral symmetries on the 0d wall. We denote them by Vi , i = 1, 2, · · · . We obtain different 
pairs (Vi, PiMi ), where Pi = (ModVi

)VA|VB
and Mi is uniquely determined. By the construction 

of P (recall (3.6)), it is clear that Pi is again a closed multi-fusion A-B-bimodules. Hence, Pi

and Pj are Morita equivalent. By introducing a 0D wall Kji on the world line between Pj and 
Pi , we break/change the chiral symmetry from Vi to Vj . Due to the lack of thermodynamics 
limit in 0d, this breaking/changing of 1+1D chiral symmetries does not trigger a real space phase 
transition.

Note that the usual notion of a phase in condensed matter physics is a spatial notion. From this 
perspective, all possible (Vi, PiMi ) and 0D walls among them should be included in the complete 
definition of the spatial notion of a 0d phase. On the other hand, (Vi, PiMi ) and (Vj , PjMj ) for 
i �= j define two different sets of boundary CFT’s preserving different 0+1D chiral symmetries, 
and can be obtained from two different topological Wick rotations. It becomes convenient, or 
physically important, to introduce and carefully distinguish two concepts: a 0d phase (a spatial 
notion) and a 0+1D phase (a spacetime notion).

Definition 3.2. There are two different notions associated to a gapless 0d wall or a potentially 
anomalous 0d gapless phase.

1. By a (potentially anomalous) “0+1D phase”, we mean a 0d defect in a physical system with 
a fixed 1+1D chiral (resp. non-chiral) symmetry V defined in a 1+1D neighborhood of the 
world line and a fixed 0+1D chiral (resp. non-chiral) symmetry X defined on the world line.

2. By a (potentially anomalous) “0d phase”, we mean a 0d defect in a physical system such 
that all possible 1+1D (resp. 0+1D) chiral (or non-chiral) symmetries are realized in a neigh-
borhood of (resp. on) the world line. More precisely, two 0+1D phases are called spatially 
equivalent if they can be transformed from one to the other by introducing a 0D defect (e.g. 
K in Fig. 5) on the world line. Then a 0d phase (or wall) is just a spatial equivalence class of 
0+1D phases (or walls).

In the context of this subsection, we can denote the 0+1D walls constructed in this subsection 
by (V , V, PM), (V , X, Q(K �P M)) and (Vi, Vi, PiMi ), respectively.
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Remark 3.3. We will introduce the notion of a non-chiral symmetry in Section 5.2. Above 
definition also applies to the study of 0d walls between two non-chiral gapless edges (see Sec-
tion 5.4).

Remark 3.4. The spatial equivalence leads us to the mathematical notion of a spatial equivalence 
between two bimodules over enriched multi-fusion categories in Definition 3.23. In that context, 
PM and Q(K �P M) are spatially equivalent AX-BY-bimodules.

Remark 3.5. The subtle difference between the spatial and spacetime notions in Definition 3.2 is 
unique in 0d, and disappears in higher dimensions. For example, introducing a 1-codimensional 
wall on the 1+1D world sheet of a gapped or gapless edge triggers a real space phase transi-
tion.

Remark 3.6. Actually, the spatial equivalence class of a 0+1D wall is much more than the 0+1D 
walls constructed in this subsection. For example, consider a 1+1D gapless phase defined by a 
RCFT defined on a cylinder S1 ×R1, where S1 is the space manifold and R1 is the time. Assume 
that the size of S1 is small. Physically, we know that if we shrink S1 to a point, the spectrum of 
the RCFT becomes gapped in this limit. Mathematically, by integrating the RCFT on the cylinder 
(via factorization homology), we obtain a mathematical description of a 0+1D wall, which is still 
gapless because this integration (or factorization homology) does not know the size of S1. But 
this wall is gappable. Its gappability can be characterized by spatial equivalences as we will show 
in Section 6.1. We denote it by (C, Y, S�), where C is the 1+1D local quantum symmetry and 
Y is the 0+1D non-chiral symmetry. By attaching this gappable 0+1D wall to any one of 0+1D 
chiral gapless walls constructed in this subsection, say (V , V, PM), we get a new 0+1D gapless 
wall (V , V, PM) � (C, Y, S�). This type of 0+1D gapless walls is beyond previous constructions. 
We would like to ignore such gappable 0+1D walls for our classification of 0+1D walls. Note 
that Y is infinite dimensional and does not live in H. By requiring the 0+1D chiral symmetry 
to be a symmetric special †-Frobenius algebra in (ModV )VA|VB

, we ensure that the 0+1D wall 
does not contain any gappable factors or parts. We will explain in details how to gap out a 0+1D 
gappable gapless wall in Section 6.1.

3.3. Classification of 0+1D walls and examples

As a consequence of Definition 3.2 and Gapped-gapless Correspondence, we obtain the clas-
sification of 0+1D gapless walls without any gappable parts (see Remark 3.6) stated as a physical 
theorem.

Theoremph 3.7. All 0+1D gapless walls (without any gappable parts) between two chiral gap-
less edges (VA, AX) and (VB, BY) of the same 2d topological order (C, c) are mathematically 
described and classified by triples (V , X, PM):

1. V is the 1+1D chiral symmetry (defined in the neighborhood of the world line of the wall), 
i.e. a unitary rational VOA of central charge c, and X is the 0+1D chiral symmetry (defined 
on the world line), i.e. a symmetric special †-Frobenius algebra X in (ModV )VA|VB

. They are 
equipped with algebras homomorphisms between algebras in ModV rendering the following 
diagram commutative:
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V

VA
ιL

X VB
ιR

VA ⊗V VB ,

ιX

(3.8)

where ιX is an algebraic homomorphism between two algebras in (ModV )VA|VB
.

2. PM is an enriched category defined by the canonical construction from the pair (P, M), 
where

(a) the background category P is a closed multi-fusion A-B-bimodule defined by

P= ((ModV )VA|VB
)X|X; (3.9)

(b) the underlying category M is the category of topological excitations in the 0d wall, and 
is mathematically defined by a finite unitary category equipped with a unitary monoidal 
equivalence:

(Xrev �A P�B Y)�Z(C) C
�−→ Fun(M,M), (3.10)

where (Xrev �A P �B Y) is a closed multi-fusion right Z(C)-module. Note that M is 
uniquely determined by the monoidal equivalence in (3.10) and has a canonical left P-
module structure defined by

P→ (Xrev �A P�B Y)�Z(C) C� Fun(M,M).

The space of chiral fields living on the world line between two wall excitations m, m′ ∈ M

is given by Mm,m′ = [m, m′]P for m, m′ ∈M.

Moreover, all these 0+1D walls are spatially equivalent and define the same 0d wall. When 
VA = VB = C, we must have V = C, and this 0d wall is gapped. For many purposes, it is 
convenient to abbreviate the triple to PM for simplicity (see Remark 3.9, 3.17, 3.10).

Remark 3.8. If we want to emphasize or study a particular spatial slice of the 0+1D wall, we can 
specify a wall excitation m ∈M in the spatial slice, thus obtain a quadruple (V , X, PM, m).

Remark 3.9. If we naively apply topological Wick rotation, the background category P does 
not have any direct physical meaning. It is necessary to set P = ((ModV )VA|VB

)X|X instead of 
only requiring an equivalence. Strictly speaking, by requiring “=”, we add the information of 
(V , VA, VB, X) to P. For this reason, we will sometimes abbreviate the triple (V , X, PM) to 
PM for simplicity.

Remark 3.10. If we ignore V and X in (V , X, PM), it turns out that the pure categorical de-
scription PM automatically covers all spatially equivalent 0+1D walls including those gappable 
factors or parts discussed in Remark 3.6 (see Remark 3.24).

Example 3.11. We discuss a few special cases and examples of Theoremph 3.7.
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1. When VA = VB = C, we have V = C, and X can be a finite direct sum of matrix algebras 
and P = ModX(H). If, in addition, X = C, then we recover the gapped cases in Theoremph

2.10. If X �= C, then it is already beyond the usual description of a 0d wall in Theoremph 2.10.
2. When VA = VB = V , if X = V , then (V , X, PM) gives the trivial 0+1D wall in the gapless 

edge (V , AX); if X = a ⊗ a∗
≄ V for a ∈ ModV , then (V , X, PM) gives a non-trivial 0+1D 

wall. For example, when VA = VB = V is the minimal model unitary rational VOA VIs of 
central charge c = 1

2 , the UMTC ModV has three simple objects 1, ψ, σ with fusion rule 
σ ⊗ σ = 1 ⊕ ψ . When X = σ ⊗ σ ∗, (V , X, PM) gives a non-trivial 0+1D wall.

3. If VA ↪→ VB and X = V = VB, then we have P = AX (i.e. the category of right X-modules 
in A).

4. If VA �= C = VB, then there is no 0d wall, i.e. no wall exists between a non-trivial chiral 
gapless edges and a gapped edge.

Remark 3.12. 0d wall between gapless edges were also studied in [7]. It will be interesting to 
explore how examples there fit into the mathematical theory developed here.

Given two chiral gapless edges (VA, AX) and (VB, BY) of the same 2d topological order 
(C, c). It is physically obvious that there should exist at least one 0d gapless wall between these 
two edges. By Theoremph 3.7, we obtain the following physical theorem, which should be re-
garded as a mathematical conjecture.

Theoremph 3.13. Given two unitary rational VOA’s V1 and V2 with the same central charge. If 
the UMTC’s ModV1 and ModV2 are Witt equivalent, then V1 and V2 share a sub-VOA V , which 
is also unitary and rational.

3.4. Spatial fusion anomalies

In Fig. 6, we depict three chiral gapless edges (Vi, BiXi ), i = 1, 2, 3 of a 2d topological order 
(C, c). They are connected by two 0d gapless walls (V12, X, PM) and (V23, Y, QN). We would 
like to study the spatial fusion of these two gapless walls.

Remark 3.14. According to the orientation of the edge, the spatial fusion is from right to left 
(recall Remark 2.14). It is precisely our usual convention of the order of tensor product. It is also 
helpful to look at Fig. 6 from the back. Using the following two canonical (monoidal) equiva-
lences

P�B2 Q� Q�B2
P; M�Xrev

2
N � N�X2 M,

we can also write the spatial fusion product from left to right (see (3.12)).

We first restrict ourselves to the special cases V = V12 = V23 and the spatial fusion preserves 
the 1+1D chiral symmetry V . Similar to the discussion in [49, Section 6.3], the naive fusion of 
observables on two world lines gives

[m,m′]P ⊗[1X2 ,1X2 ]B2
[n,n′]Q ∈ P�B2 Q,

which is defined by the coequalizer of the left and the right action of [1X2, 1X2 ]B2 :

[m,m′]P �B [1X ,1X ]B �B [n,n′]Q ⇒ [m,m′]P �B [n,n′]Q. (3.11)
2 2 2 2 2 2
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Fig. 6. This picture illustrates the fusion of two 0d gapless walls (V12, X, PM) and (V23, Y, QN). This fusion is defined 
by (3.12).

However, this naive fusion does not give the correct fusion in general. What happens is again a 
quantum quenching process. This fusion of two 0d walls causes the fusion between the topolog-
ical excitations m ∈M and those in n ∈N according to the following fusion functor:

M�N
�Xrev

2−−−→M�Xrev
2

N

m� n 
→ m�Xrev
2

n.

Therefore, the underlying category, or the category of topological excitations, of the resulting 
0+1D wall is given by M �Xrev

2
N. By the boundary-bulk relation (see Theorem 2.15), we obtain 

that the background category of the resulting 0+1D wall has to be the UMFC P �B2 Q. Fusing 
topological excitations m ∈M and n ∈N causes a change of the microscopic physics so that it is 
pushed away from an RG fixed point, but then must flow to a new RG fixed point. More precisely, 
when two excitations are getting close, certain non-local operators acting on two excitations 
are becoming local. As a consequence, local observables on the 0+1D world line supported on 
m �Xrev

2
n are more than the naive fusion of those on the world lines supported separately on m

and n. According to the Principle of Universality at RG fixed points, introduced in [49, Section 
6.3], observables on the 0+1D world line supported on m �Xrev

2
n at the new RG fixed point must 

be the universal one, i.e. the internal hom [m �Xrev
2

n, m �Xrev
2

n] ∈ P �B2 Q. More generally, 
at the new RG fixed point, the space of boundary-condition changing operators between two 
boundary conditions m �Xrev

2
n and m′ �Xrev

2
n′ is given by the internal hom:

[m�Xrev
2

n,m′ �Xrev
2

n′] ∈ P�B2 Q.

Therefore, in this case, we obtain the following fusion formula:

(V ,X,PM)�(V2,
B2X2)

(V ,Y,QN) := (V ,X �B2 Y, (P�B2Q)(M�Xrev
2

N)), (3.12)

where X �B2 Y is naturally a symmetric separable †-Frobenius algebra in (ModV )V1|V3 , and we 
have a natural unitary monoidal equivalence P �B2 Q � ((ModV )V1|V3)X�B2Y |X�B2Y .

Example 3.15. We consider a special case of Fig. 6: (V3, B3X3) = (V1, B1X1), V = V12 = V23
and (V23, Y, QN) = (V12, X∗, Prev

Mop), where X∗ is the dual symmetric separable †-Frobenius 
algebra of X in (ModV )V2|V1 and can be viewed as the tensor unit of Prev via the canonical 
monoidal equivalence:

Prev = ((ModV )V1|V2)X|X)rev �−→ (ModV )V2|V1)
op
X∗|X∗
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defined by x 
→ x∗. Actually, as Frobenius algebras in ModV , X∗ and X are isomorphic thus 
defines the same 0+1D chiral symmetry. In this case, the spatial fusion of the two walls gives

(V ,X,PM)�(V2,
B2X2)

(V12,X
∗,Prev

Mop) � (V ,X �B2 X∗,P�B2P
rev

(M�Xrev
2

Mop)),

(3.13)

where P�B2P
rev

(M �Xrev
2

Mop) is a B1X1-B1X1-bimodule (see Definition 3.18). Since the 0d 

wall between (V1, B1X) and (V1, B1X) is unique, the wall after the spatial fusion should be spa-
tially equivalent to the trivial 0d wall (V1, V1, B1X1). We will explain the fact in Example 3.27.

In some interesting cases, [m, m′]P �B2 [n, n′]Q � [m �Xrev
2

n, m′ �Xrev
2

n′]. For example, 
when B1 = X1 = B2 = X2 = B3 = X3 = P = M = Q = N = C, all edges are the canonical 
chiral gapless edges and two 0+1D gapless walls are the trivial walls. In this case, we have

[m,m′]P ⊗[1X2 ,1X2 ]B2
[n,n′]Q = m′ ⊗ m∗ ⊗ n′ ⊗ n∗ � m′ ⊗ n′ ⊗ (m ⊗ n)∗

= [m�Xrev
2

n,m′ �Xrev
2

n′]. (3.14)

But in general, they are not isomorphic. Since [m �Xrev
2

n, m′ �Xrev
2

n′] is the universal one, we 
always have the following commutative diagram:

[m�Xrev
2

n,m′ �Xrev
2

n′] � (m�Xrev
2

n)

ev

([m,m′]P �B2 [n,n′]Q) � (m�X2 n)

∃!f0�1

� ([m,m′]P � m
)
�Xrev

2

([n,n′]Q � n
)
ev�Xrev

2
ev
m�Xrev

2
n.

The morphism f0 clearly coequalizing the two morphisms in (3.11). Therefore, we obtain a 
canonical morphism

f : [m,m′]P ⊗[1X2 ,1X2 ]B2
[n,n′]Q → [m�Xrev

2
n,m′ �Xrev

2
n′], (3.15)

which is not an isomorphism in general. It means that naive fusion of observables on the two 
world lines of two 0d gapless wall (i.e. [m, m′]P �B2 [n, n′]Q) is not universal or at a renormal-
ization group (RG) fixed point. It will flow to a RG fixed point, which is universal and defined by 
[m �X2 n, m′ �X2 n′]. In some sense, this morphism f catches the information of the RG flow. 
Interestingly, even in the general cases, for a special class of edges excitations (or excitations in 
the trivial wall), f is an isomorphism (see [49, Remark 6.3]).

From another point of view, that f is not an isomorphism simply can be viewed as an indicator 
that there are certain anomaly, called spatial fusion anomalies. Indeed, 1d gapless edges, together 
with 0d walls between them, are anomalous 1d phases when the bulk (C, c) is non-trivial. It is 
possible that this spatial fusion anomaly vanishes for some special anomalous phases as shown 
in the case discussed in the Eq. (3.14). But when the bulk phase (C, c) is the trivial 2d topological 
order, the spatial fusion anomaly should definitely vanish. This is proved in [45, Theorem 4.5].

Remark 3.16. While spatial fusions are often anomalous, temporal fusions are often anomaly-
free, i.e. [m′, m′′]P ⊗[m′,m′]P [m, m′]P � [m, m′′]P for simple m, m′, m′′ ∈Mi if all four internal 
homs are non-zero.

In general, the 1+1D chiral symmetries on two gapless walls V12 and V23 are potentially 
different, i.e. V12 �= V23. In this case, the spatial fusion of two walls causes the 1+1D chiral 
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symmetries to break further down to a smaller VOA V123. To compute the spatial fusion, we 
need further specify the fusion process. More precisely, we assume that this fusion is achieved 
in two steps: first breaking both 1+1D chiral symmetries V12 and V23 down to V123 without 
changing X and Y , then fusing according to (3.12). More explicitly, the first step gives:

(V12,X,PM) 
→ (V123,X,P
′
M′) (V23, Y,QN) 
→ (V123, Y,Q

′
N′),

where X and Y should be viewed as their images in (ModV123)V1|V2 via two forgetful functors:

(ModV12)V1|V2

f−→ (ModV123)V1|V2

f←− (ModV23)V1|V2,

and P′ = ((ModV123)V1|V2)X|X and Q′ = ((ModV123)V1|V2)Y |Y , and M′, N′ are uniquely deter-
mined. The second step gives:

(V123,X,P
′
M′)�(V2,

B2X2)
(V123, Y,Q

′
N′) = (V123,X �B2 Y, (P′�B2Q

′)(M′ �Xrev
2

N′)),
(3.16)

where X �B2 Y is naturally a symmetric separable †-Frobenius algebra in (ModV123)V1|V3 .

Remark 3.17. The spatial fusion formula (3.16) also suggests that it introduces very little con-
fusion if we abbreviate the triple (V12, X, PM) to PM for simplicity unless there is a breaking 
of 1+1D chiral symmetries.

3.5. Morita equivalence

The physical results in Section 3.1 and Section 3.4 lead us to a representation theory of en-
riched monoidal categories as we will sketch in this subsection. This theory will be developed in 
details elsewhere.

Let A, B be UMTC’s and X, Y two indecomposable UMFC’s. Let AX and BY be the inde-
composable enriched unitary multi-fusion categories obtained from the canonical construction. 
The time reversal of BY is defined by (BY)rev := BYrev. The Deligne tensor product

AX�BYrev := A�B(X� Yrev)

is again an indecomposable enriched unitary multi-fusion categories. We give the following 
working definition of modules over an indecomposable enriched unitary multi-fusion category 
first introduced in [55].

Definition 3.18. An enriched category PM obtained from canonical construction is called

1. a left AX-module if P is a multi-fusion left A-module, and M is a left Xrev�AP-module such 
that the P-module structure on M coincides with the following composed unitary monoidal 
functor

P ↪→Xrev �P
�A−−→ Xrev �A P

φM−−→ FunH(M,M).

2. a right BY-module is a left (BY)rev-module;
3. a AX-BY-bimodule is a left (BY)rev �AX-module.

The (left, right, bi-)bimodule PM is called closed if φM is also an equivalence.
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Remark 3.19. If AX and BY are two gapless edges of a 2d topological order, then PM describe 
a 0+1D gapless wall between two edges. Therefore, the following picture clarifies the physical 
meaning of the notions in Definition 3.18:

(3.17)

Note that if PM is closed, then P must be a closed multi-fusion A-B-bimodule, i.e. φP : A�
B → Z(P) is a braided equivalence. Note that we have also used the left-right convention in 
Remark 2.14.2

Remark 3.20. We briefly clarify the notion of a left AX-module mathematically. All A-enriched 
categories form a 2-category CatA. The monoidal functor ⊗ :A ×A → A defines a pushforward 
2-functor ⊗∗ : CatA×A → CatA. As a consequence, CatA is a monoidal 2-category with the 
tensor product defined by

CatA × CatA
×−→ CatA×A ⊗∗−→ CatA.

An A-enriched monoidal category AX is an algebra object in the monoidal 2-category CatA. For 
a multi-fusion left A-module P, CatP is a naturally a left CatA-module. The enriched category 
PM in Definition 3.18 is precisely a left AX-module in CatP. We will provide more details 
elsewhere.

Remark 3.21. If PM is a AX-BY-bimodule, then (PM)op := Prev
(Mop) is automatically a 

BY-AX-bimodule.

The following mathematical definition echoes with the physical fusion formula (3.12).

Definition 3.22 ([55]). Let PM and QN be a right BY-module and a left BY-module, respec-
tively. We define a relative tensor product �BY as follows:

PM�BY
QN := (P�BQ)(M�Yrev N).

When B = H, Y = H, it is just the Deligne tensor product �, i.e. PM � QN := (P�Q)(M �N).

There is a mathematical notion of a left AX-module functor between two left AX-modules 
PM and QN. It is just an enriched functor F : PM → QN, i.e. a 1-morphism in CatA, such 
that F intertwines the AX-actions. It is called an AX-module equivalence if F is an enriched 
equivalence. In this case, we denote such an equivalence by PM � QN.

It is, however, not enough to describe spatial equivalences among 0+1D walls. We need a new 
notion of a module functor between enriched categories with different background categories. 

2 Physically, A acts on P from left, but X acts on M from right. It seems that neither of the two left-right conventions 
is natural. This is due to the fact that we require A-acting on X from left in our canonical construction, which makes the 
bulk and topological Wick rotation looks natural. If we only study the edge and ignore the bulk and topological Wick 
rotation, by requiring a right A-action on X in a new “canonical construction”, we can flip the arrows in (3.17) such that 
the left-right convention in Definition 3.18 looks natural.
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Fig. 7. This pictures the physical intuition behind the notion of a spatial equivalence of bimodules (see Definition 3.23).

This new notion is given in Definition 3.23, the physical intuition behind which is depicted in 
Fig. 7 (recall Fig. 5).

Definition 3.23 ([55]). For AX-BY-bimodules PM and QN, a spatial AX-BY-bimodule func-
tor from PM to QN is a pair (F, F), where F is a closed left P �A�B Qrev-module, and 
F : M → F �Q N is a Xrev �A P �B Y-module functor. It is called a spatial equivalence if 

F is an equivalence. We denote such a spatial equivalence by PM 
sp� QN.

Example 3.24. Recall Remark 3.6, when we roll up a 1+1D anomaly-free RCFT to a cylinder 
S1 ×R1 then shrink S1 to a point, we obtain a gapped 0+1D phase. Mathematically, by integrat-
ing the RCFT over this cylinder, we obtain a gappable gapless 0+1D phase (C, Y, S�), where the 
enriched category S� is a HH-HH-bimodule FunH(M,M)M for a finite unitary category M. Note 
that M is a FunH(M, M)-H-bimodule. We have the following equivalences of bimodules:

F :Mop �FunH(M,M) M � H and G : M�H Mop � FunH(M,M).

It is clear that Mop is a closed H �H�H FunH(M, M)rev-bimodule. Therefore,

(M,F ) : FunH(M,M)M

sp�−→ HH

defines a spatial equivalence of HH-HH-bimodules. This shows that the spatial equivalence is 
capable of describing how to gap out a 0+1D gapless phase as we claimed in Remark 3.6 and 
Remark 3.10. We will discuss more general situations in Section 6.1.

Example 3.25. This example is illustrated in Fig. 8 (a). Let B1, B2 be UMTC’s and P a 
closed multi-fusion B1-B2-bimodule. Then PP is a B1B1-B2B2-bimodule and P

rev
Pop is a 

B2B2-B1B1-bimodule. Then we have the following B1B1-B1B1-bimodule equivalences:

(P
rev
Pop)�B2B2

PP� Prev�B2P(Pop �Brev
2

P) � FunB1 (P,P) FunB1(P,P),

where we have used the canonical monoidal equivalence P �B2 P
rev � FunB1(P, P) defined 

by x �B2 y 
→ x ⊗ − ⊗ y [55, Corollary 2.7]. It is clear that Pop is a closed B1 �Z(B1)

(P �B2 P
rev)rev-module. Therefore, Pop, together with the canonical B1-module equivalence: 

F : Pop �FunB1 (P,P) FunB1(P, P) � Pop, defines a spatial equivalence:

(Pop,F ) : FunB1 (P,P) FunB1(P,P)

sp�−→ B1(Pop).

Therefore, we obtain

PP�B2 (P
rev
Pop)

sp� B1(Pop).
B2
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Fig. 8. Picture (a) and (b) illustrate the proofs in Example 3.25 and 3.27, respectively.

If Bi = ModVi
for VOA Vi, i = 1, 2, then (V1, V1, B1(Pop)) defines a 0+1D gapless “relative 

boundary” of the 1d gapped wall P �B2 P
rev (see Fig. 8 (a)).

Definition 3.26. An AX-BY-bimodule PM is called spatially invertible if there is a BY-AX-
bimodule QN such that

PM�BY
QN

sp� AX, and QN�AX
PM

sp� BY

as bimodules. Two enriched multi-fusion category AX and BY are called spatially Morita equiv-
alent if there exists a spatially invertible AX-BY-bimodule.

Recall that if Y describes a 0d gapped wall between two gapped edges S and T (i.e. two 
UFC’s), then Y is automatically an invertible S-T-bimodule with the inverse given by Yop. This 
remains to be true for a 0d wall between two chiral gapless edges. We explain this fact in the 
following example.

Example 3.27. Recall Example 3.15. As illustrated in Fig. 8 (b), Pop is clearly a closed left 
B1 �Z(B1) (P �B2 Prev)rev-module. By the property of factorization homology (recall Theo-
rem 2.20 and Example 2.21), we also have the following equivalence:

F : Pop �FunB1 (P,P) (M�Xrev
2

Mop)
�−→X1

as two left Xrev
1 �B1 X1-modules. Therefore, we obtain the following spatial equivalence

PM�B2X2

Prev
Mop � FunB1 (P,P)(M�Xrev

2
Mop)

sp� B1X1.

Similarly, one can also show that P
rev
Mop �B1X1

PM 
sp� B2X2. In other words, the B1X1-B2X2-

bimodule PM is spatially invertible, and defines a spatial Morita equivalence between B1X1 and 
B2X2. This implies that following spatial equivalence between 0+1D walls (recall (3.13)):

(V ,X �B2 X∗,P�B2P
rev

(M�Xrev
2

Mop))
sp� (V1,V1,

B1X1).

If we discuss spatial equivalences, it is safe to abbreviate a triple (V , X, PM) to PM because the 
1+1D and 0+1D chiral symmetries are not preserved under spatial equivalences.

Two 1d gapless edges are called spatially Morita equivalent if the associated enriched multi-
fusion categories are spatially Morita equivalent. Then Example 3.27 gives the following physical 
theorem.
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Theoremph 3.28. A 0+1D gapless wall between two 1d chiral gapless edges of the same 2d 
topological order defines a spatial Morita equivalence between these two chiral gapless edges.

4. Boundary-bulk relation II: chiral gapless edges

In this section, we generalize the boundary-bulk relation for gapped edges to that for both 
gapped and chiral gapless edges.

4.1. Bulk of a chiral gapless edge

Given a chiral gapless edge (V , BX) of a bulk topological order (C, c), how can we under-
stand those bulk excitations in terms of those on the edge? Let us first look at the gapped cases. 
When the edge is gapped, i.e. V = C, B = H, a bulk topological excitation is precisely an edge 
excitation x ∈X that can be moved into the bulk.

1. An edge excitation that can be moved inside the bulk must be equipped with a half-braiding 
with all edge excitations in X. More explicitly, a bulk excitation can be realized by an edge 
excitation x, together with a family of isomorphisms

x ⊗ y
βx,y−−→ y ⊗ x, ∀y ∈ X, (4.1)

such that the following diagrams

x ⊗ y
βx,y

1f

y ⊗ x

f 1

x ⊗ z
βx,z

z ⊗ x

∀f ∈ homX(y, z) (4.2)

are commutative. This family of isomorphisms βx,− = {βx,y}y∈X defines a natural isomor-
phism βx,− : x ⊗ − → − ⊗ x, which is called a half-braiding. Therefore, the pair (x, βx,−)

defines a bulk excitation.
2. Moreover, morphisms (or instantons) between two bulk excitations (x, βx,−) and (y, βy,−)

are precisely those morphisms (instantons) f ∈ homX(x, y) respecting the half-braiding, i.e. 
rending the following diagrams commutative:

x ⊗ z
βx,z

f ⊗1

z ⊗ x

1⊗f

y ⊗ z
βy,z

z ⊗ y

∀z ∈X. (4.3)

All such pairs form a category, which is precisely the Drinfeld center Z(X) of X. The boundary-
bulk relation says that C � Z(X) as UMTC’s. We need generalize these arguments to the gapless 
edge (V , BX).

Now we consider a chiral gapless edge as depicted in Fig. 9 (a), where x is a bulk topological 
excitation and y, z are two edge excitations. We should expect again that a bulk excitation can 
be realized by an edge excitation, together with a “half-braiding”, a notion which will be made 
precise below.
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Fig. 9. These two pictures depict observables on the world line supported on a topological excitation in the bulk can 
be half-braided and fused with those on the world line supported on edge. Picture (a) illustrates the meaning of a half-
braiding, and the label idx of the green dotted line represents the canonical morphism idx : 1 → [x, x]B� and the vacuum 
state in the boundary CFT [x, x]B; Picture (b) illustrate instantons (labeled by s) between x and y in the bulk and its 
compatibility with the half-braidings. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

1. An edge excitation x ∈ X can be moved into the bulk if it is equipped with a half-braiding, 
which should consist of the following isomorphisms in X:

βx,y : x ⊗ y
�−→ y ⊗ x, ∀y ∈ X. (4.4)

Moreover, they should satisfy a similar naturalness condition as in (4.2). Namely, βx,− :
x ⊗ − → − ⊗ x should be a natural isomorphism between two endo-functor of X. But this 
condition is not enough because homX(y, z) contains only the vacuum channels of the whole 
physical hom space [y, z]B.

Note that a half-braiding is an adiabatic process of moving the bulk excitation x around 
an edge excitation y ∈ X. This move automatically moves all observables on the world line 
supported on x. What observables could live on this world line in the bulk? It has to be a 
subspace of the boundary CFT [x, x]B. If this subspace is zero, then it is reasonable to say 
that x is not equipped with any half-braiding. The minimal requirement for a non-zero edge 
excitation x to move into the bulk is that the vacuum state in the boundary CFT [x, x]B
survives on the world line in the bulk. This vacuum state is characterized by the canonical 
morphism idx : 1B → [x, x]B under the assumption that the chiral symmetry V = 1B is 
preserved. This vacuum state can be fused into the space of observables on the world line 
supported on the edge, say [y, z]B, along a path from the bulk to the edge. As illustrated in 
Fig. 9 (a), it is clear that this fusion should be path independent. Namely, we can fuse it into 
[y, z]B from left or first half-braid it to the right then fuse it from right without making any 
difference. This leads to the following commutative diagram:

[y, z]B 1⊗idx

idx ⊗1

[y, z]B ⊗ [x, x]B ⊗ [y ⊗ x, z ⊗ x]B
−◦βx,y

[x, x] ⊗ [y, z] ⊗ [x ⊗ y, x ⊗ z] βx,z◦− [x ⊗ y, z ⊗ x] .

(4.5)
B B B B
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The data (4.4) and the condition (4.5) give the precisely meaning of a “half-braiding” for a 
gapless edge. Therefore, such a pair (x, βx,−) should define a bulk excitation.

2. What about the instantons between two such bulk excitations, say (x, βx,−) and (y, βy,−)? 
Consider the situation depicted in Fig. 9 (b), where z is an edge excitation. Not all observables 
in [x, y] are allowed to live in the bulk. We denote the maximal sub-object of [x, y]B that is 
allowed to live in the bulk by ι : s ↪→ [x, y]B. Then fusing s with [z, z]B from left should not 
be different from first half-braiding it with [z, z]B then fusing it with [z, z]B from right. As a 
consequence, we obtain the following commutative diagram:

s

ι⊗idz

idz ⊗ ι [z, z]B ⊗ [x, y]B ⊗ [z ⊗ x, z ⊗ y]B
−◦βx,z

[x, y]B ⊗ [z, z]B ⊗ [x ⊗ z, y ⊗ z]B βy,z◦− [x ⊗ z, z ⊗ y]B .

(4.6)

Example 4.1. In the case of canonical gapless edge, i.e. C = B, BX = BB and [y, z]B :=
z ⊗ y∗, by restricting to the case y = 1, the commutative diagram (4.5) implies immediately, 
βx,− = cx,−, where cx,− : x ⊗ − → − ⊗ x is the braiding of UMTC B. Importantly, this already 
means that (x, c−1−,x) for x ∈ B are not allowed to live in the bulk! In other words, by promot-

ing homB(y, z) to [y, z]B, it chops off the B-factor in Z(B) = B �B entirely. By spelling out 
the condition (4.6) explicitly in this case, we see immediately that s should be symmetric to all 
z ∈B. Since the braidings in B are non-degenerate, it means that s can only be a direct sum of 1, 
or equivalently, s ∈ H. In other words, s can be identified with homB(1, [x, y]) � homB(x, y). 
Therefore, we have recovered the bulk UMTC B as the bulk of the canonical chiral gapless edge 
(V , BB).

4.2. Bulk is the center of the edge

In this subsection, we translate the data (4.4) and the conditions (4.5) and (4.6) into the math-
ematical notion of a half-braiding and that of the center of an enriched monoidal category first 
introduced in [47].

Let B be a braided multi-fusion category, and let X� be a B-enriched multi-fusion category. 
We denote the underlying category of X� by X. The tensor product in X� is an enriched functor 
⊗ : X� × X� → X�. As a consequence, for x ∈ X�, both x ⊗ −, − ⊗ x : X� → X� are enriched 
functors. Using this language, the data (4.4) and condition (4.5) can be translated to the following 
mathematical definition of a half-braiding for an enriched monoidal category.

Definition 4.2. A half-braiding for an object x ∈X� is an enriched natural isomorphism

βx : x ⊗ − → − ⊗ x

between two enriched endo-functors of X� such that it defines a half-braiding in the underlying 
monoidal category X, and the following diagram:

homX� (y, z)
1⊗idx

idx ⊗1

homX� (y, z) ⊗ homX� (x, x)
⊗ homX� (z ⊗ x, y ⊗ x)

−◦βx,y

homX� (x, x) ⊗ homX� (y, z)
⊗ homX� (x ⊗ y, x ⊗ z)

βx,z◦− homX� (x ⊗ y, z ⊗ x),

(4.7)
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is commutative for y, z ∈ X.

Similarly, using (4.6), we obtain the definition of the center of X�.

Definition 4.3. The center of X� is a category Z(X�) enriched in B defined as follows:

• an object is a pair (x, βx,−), where x ∈X and βx,− is a half-braiding for x;
• homZ(C�)((x, βx), (y, βy)) is the maximal subobject ι : s ↪→ homX� (x, y) rendering the fol-

lowing diagram commutative for any z ∈ X:

s
idz ⊗ ι

ι⊗idz

homX� (z, z) ⊗ homX� (x, y)
⊗ homX� (z ⊗ x, z ⊗ y)

−◦βx,z

homX� (x, y) ⊗ homX� (z, z)
⊗ homX� (x ⊗ z, y ⊗ z)

βy,z◦−
homX� (x ⊗ z, z ⊗ y);

(4.8)

• the identity morphisms and the composition maps ◦ are induced from those in X�.

Remark 4.4. The center Z(X�) has an obvious monoidal structure induced from that of X� and 
that of the ordinary Drinfeld center Z(X). The underlying category of Z(X�) is a full subcategory 
of Z(X) [47, Proposition 4.3].

Let B be a UMTC and X be a left fusion B-module. We denote the centralizer of the image 
of B by φX(B)′|Z(X), which is an H-enriched category but can also be viewed as a B-enriched 
monoidal category by identifying an object a ∈ H with the object a ⊗ 1B in B.

Theorem 4.5 ([47]). We have Z(BX) � φX(B)′|Z(X) as B-enriched braided monoidal cate-
gories.

As a consequence of above mathematical theorem, given a chiral gapless edge (V , BX) of a 
2d topological order (C, c), we have the following boundary-bulk relation:

Z(BX) � B
′|Z(X) � C. (4.9)

In other words, the UFC X describes a gapped wall between two 2d topological orders (B, c) and 
(C, c). It also means that all chiral gapless edges are obtained from a topological Wick rotation 
as illustrated by the following pictures:

(4.10)

which was explained in details in [49, Section 5.2].

Remark 4.6. The isomorphisms in (4.9) simply prove a special case of a general “holographic 
principle” or boundary-bulk relation: the bulk is the center of the boundary for topological orders 
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Fig. 10. This picture depicts three 2d topological orders (Ci , 
∑i

k=1 ck) for i = 1, 2, 3, three 1d gapless edges and two 
gapless walls (Vj , Bj Xj ) for j = 1, 2, 3, 4, 5 and two 0d gapless defects (V142, SS0) and (V253, TT0).

in all dimensions regardless of whether the boundary is gapped or gapless [44]. Note that the 
boundary-bulk relation (4.9) automatically includes gapped edges (i.e. V = C, B = H) as special 
cases. It turns out that it also holds for all non-chiral gapless edge as we will see later.

Theorem 4.7 ([55]). Two indecomposable enriched unitary multi-fusion categories AX and BY

are spatially Morita equivalent if and only if Z(AX) � Z(BY).

The physical meaning of above mathematical theorem can be reformulated as the following 
physical theorem.

Theoremph 4.8. Two 1+1D gapped or chiral gapless edges share the same bulk if and only if the 
associated enriched unitary multi-fusion categories are spatially Morita equivalent.

4.3. Boundary-bulk relation for gapless edges

In this subsection, we consider more general 0d defects up to spatial equivalences. Con-
sider the physical configuration depicted in Fig. 10. There are three 2d topological orders 
(C1, c2), (C2, c1 + c2), (C3, c1 + c2 + c3), which have chiral gapless edges (Vi, BiXi ) for i =
1, 2, 3, respectively, and are separated by two chiral gapless walls (Vi, BiXi ) for i = 4, 5. More-
over, the normal directions of the two vertical rectangles labeled by (B4, c2) and (B5, c3) are 
pointing towards the right. By our convention, we have unitary braided monoidal equivalences:

C2 �B4 � C1 � Z(X4), C3 �B5 � C2 � Z(X5).

There are two 0+1D gapless defects junctions given by SS0 and TT0. We have ignored the 1+1D 
and 0+1D chiral symmetries because we only care about the spatial equivalence classes here. 
These 0+1D defects are uniquely determined by their neighborhoods. We explain this fact in 
details below.

1. S is a closed multi-fusion (B2 � B4)-B1-bimodule, and T is a closed multi-fusion (B3 �
B5)-B2-bimodule, i.e. UMFC’s equipped with unitary braided monoidal equivalences:

φS :B2 �B4 �B1
�−→ Z(S), φT :B3 �B5 �B2

�−→ Z(T). (4.11)

2. S0 is a closed left Xrev
2 �B2�C2

(Xrev
4 �B4 S) �C1�B1

X1-module;
T0 is a closed left Xrev

3 �B3�C3
(Xrev

5 �B5 T) �C2�B2
X2-module. In particular, we have the 

following unitary monoidal equivalences:
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φS0 : Xrev
2 �B2�C2

(Xrev
4 �B4 S)�C1�B1

X1
�−→ FunH(S0,S0),

φT0 :Xrev
3 �B3�C3

(Xrev
5 �B5 T)�C2�B2

X2
�−→ FunH(T0,T0).

3. Then enriched categories SS0 and TT0 are determined by the left S-module structure on S0
and the left T-module structure on T0, respectively, as follows:

S→ Xrev
2 �B2�C2

(Xrev
4 �B4 S)�C1�B1

X1
φS0−−→� FunH(S0,S0),

T →Xrev
3 �B3�C3

(Xrev
5 �B5 T)�C2�B2

X2
φT0−−→� FunH(T0,T0).

Remark 4.9. There are many different ways to see that S0 and T0 are uniquely determined by 
their neighborhood. More precisely, by Theorem 2.15, we have the following different but equiv-
alent ways of characterizing S0 and T0 uniquely (up to equivalences)

• by the following unitary monoidal equivalences, respectively,

Xrev
4 �B4 S

�−→ FunX1|X2(S0,S0), Xrev
5 �B5 T

�−→ FunX2|X3(T0,T0);
• by the following unitary monoidal equivalences, respectively,

Xrev
4 �B1

�−→ FunX1|Srev�B2X2(S0,S0), Xrev
5 �B2

�−→ FunX2|Trev�B3X3(T0,T0);
• by the following unitary monoidal equivalences, respectively,

Xrev
4

�−→ FunXrev
2 �B2S�B1X1(S0,S0), Xrev

5
�−→ FunXrev

3 �B3T�B2X2(T0,T0).

(4.12)

Remark 4.10. The unitary braided monoidal functor φX4 :B4 → Z(X4) that defines the enriched 
multi-fusion category B4X4 is isomorphic to the following functor:

B4 ↪→ C2 �B4 � C1
�−→ Z(Xrev

2 �B2 S�B1 X1)
�−→ Z(X4),

where the first “�” was explained in the proof of [46, Theorem 3.3.6.] and the second “�” is 
determined by the invertible (Xrev

2 �B2 S �B1 X1)-X4-bimodule S0 (recall (4.12)) [15].

Conversely, one can also view the 1d gapless wall (V4, B4X4) as the 1d “relative bulk” of the 
0+1D wall SS0 on the edge. In this setting, we obtain a generalization the unique-bulk principle. 
More precisely, by assuming all the data on the edge (not the data in the bulk), we will show that 
the 1d “relative bulk” (V4, B4X4) is uniquely determined by 0d wall SS0 on the edge.

Definition 4.11. The Z(1)-center of the B1X1-B1X1-bimodule SS0, denoted by Z(1)(SS0), is an 
enriched unitary multi-fusion category

Z(1)(SS0) := Z
(1)
2 (SS0)Z

(1)
1 (SS0),

which is defined by a triple (Z(1)
2 (SS0), Z

(1)
1 (SS0), F) via the canonical construction, and

1. Z
(1)
2 (SS0) is the UMTC defined by

Z
(1)

(SS0) := (B2 �B1)
′| ; (4.13)
2 Z(S)
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Fig. 11. The picture depicts the complete boundary-bulk relation, which can be summarized mathematically as fully 
faithful functor. The arrows indicate the orientation of the edges or walls and the order of tensor product of topological 
excitations on the edges or walls.

2. Z
(1)
1 (SS0) is a UFC defined by

Z
(1)
1 (SS0) := FunXrev

2 �B2S�B1X1(S0,S0)
rev; (4.14)

3. F : Z(1)
2 (SS0) → Z(Z

(1)
1 (SS0)) is a unitary braided monoidal functor defined by

Z
(1)
2 (SS0) ↪→B2 � Z

(1)
2 (SS0)�B1

�−→ Z(Xrev
2 �B2 S�B1 X1)

�−→ Z(Z
(1)
1 (SS0)),

where the second “�” is determined by the invertible (Xrev
2 �B2 S �B1 X1)-Z

(1)
0 (SS0)

rev-
bimodule S0 (recall (4.14)) [15].

Then we can see that B4X4 can be determined by SS0 as the Z(1)-center Z(1)(SS0). Is the 
chiral symmetry V4 also determined by SS0? Yes, indeed. Recall Remark 3.9, we have S =
((ModV1|24)V1|V2⊗CV4)X|X . The relation between the 1+1D chiral symmetry V1|24 and the 0+1D 
chiral symmetry X is given in Diagram (3.8). The VOA V4 can be recovered as the commutant 
of V2 in V2 ⊗C V4. For convenience, we can also denote (V4, B4X4) by Z(1)(SS0) and refer to it 
as the Z(1)-center of SS0.

As a consequence, we obtain a generalization of unique-bulk principle for 2d topological 
orders with gapped and chiral gapless edges as illustrated in Fig. 11. Again this relation can be 
stated as the functoriality of the center. We will make it precisely in Section 4.4.

4.4. Center functor is an monoidal equivalence

In this subsection, we obtain a mathematical theorem inspired from the boundary-bulk relation 
of 2d topological orders with gapped and chiral gapless edges. In order to state and prove a 
mathematically precise result, we drop the assumption of unitarity due to the lack of foundation 
in the unitary cases. Only in this subsection, we choose the ground field to be algebraically closed 
and of characteristic zero.

Definition 4.12. Let C and D be two non-degenerate braided fusion categories. A closed enriched 
multi-fusion D-C bimodule is an indecomposable enriched multi-fusion category BX, together 
with a braided monoidal equivalence φ : D � B � C 

�−→ Z(X), such that BX is obtained from 
the canonical construction with the left multi-fusion B-module structure on X defined by B ↪→
D�B� C 

�−→ Z(X).
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Fig. 12. The picture (a) depicts two chiral gapless walls (VA, AM) and (VB, BN). The vertical direction is the direction 
of time. The picture (b) depicts the new 1d wall obtained after the fusion, where xp := x�Dp, yp := y�D q ∈ M �DN. 
The arrows on the dotted lines are the orientation of the wall. It determines the order of the fusion product of wall 
excitations.

Definition 4.13. Two such closed enriched multi-fusion D-C-bimodules BX and B
′
X′ are called 

equivalent if there are a braided monoidal equivalence f : B → B′ and a monoidal equivalence 
g : X →X′, and a given monoidal natural isomorphism γ such that the following diagram

D�B� C
φ

1f 1

Z(X)
f X

g

D�B′ � C
φ′

Z(X′) f X′

is commutative up to γ and the pair (g, γ ) defines a multi-fusion (D �B)-C-bimodule equiva-
lence between X and X′ (recall Definition 2.4).

Lemma 4.14. Let C, D, E be non-degenerate braided fusion categories. Let AX and BY be a 
closed enriched multi-fusion E-D-bimodule and a closed enriched multi-fusion D-C-bimodule, 
respectively. The following relative tensor product

AX�D
BY := A�B(X�D Y)

is well-defined and is a closed enriched multi-fusion E-C-bimodule by Theorem 2.15. Its physical 
meaning is illustrated in Fig. 12.

We introduce two categories indEMF and NBFen−cl as follows (recall Remark 3.19):

• indEMF: Objects are indecomposable enriched multi-fusion categories AX; morphisms in 
homindEMF(AX, BY) are the spatial equivalence classes of BY-AX-bimodules (recall Def-
inition 3.18 and 3.23), the background category of which, as multi-fusion categories, are 
indecomposable; the identity morphism in homindEMF(AX, AX) is the trivial bimodule AX; 
the composition map is defined by the relative tensor product of bimodules (recall Defini-
tion 3.22).
33



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384
• NBFen−cl: Objects are non-degenerate braided fusion categories C, D, · · · ; morphisms 
in homNBFen−cl(C, D) are the equivalence classes of closed enriched multi-fusion D-C-
bimodules (recall Definition 4.12); the identity morphism from C to C is given by C. The 
composition map is defined by the relative tensor product of bimodules (see Lemma 4.14).

Both categories are symmetric monoidal with the tensor product defined by the Deligne tensor 
product � (recall Definition 3.22).

The boundary-bulk relation of 2d topological orders with gapped and chiral gapless edges can 
be stated as the following mathematical theorem.

Theorem 4.15. The functor Z : indEMF → NBFen−cl, which is defined by

AX 
→ Z(AX) and homindEMF(AX,BY) � PM 
→ Z(1)(PM),

is a well-defined symmetric monoidal equivalence.

Proof. The essential surjectivity follows from Z(CC) � C for any UMTC C [47, Corollary 4.9]. 
The fully faithfulness follows from that of Drinfeld center Theorem 2.15 and the definition of a 
spatial equivalence. The symmetric monoidalness is obvious. �
Remark 4.16. We conjecture that the complete boundary-bulk relation for nd topological orders 
with gapped/gapless boundaries and higher codimensional gapped/gapless defects on the bound-
ary can also be stated as a symmetric monoidal equivalence of higher monoidal categories. This 
generalizes a conjecture proposed in [43] for nd topological orders with only gapped boundaries 
and gapped higher codimensional defects on the boundary.

5. Non-chiral gapless edges

In this section, we develop the mathematical theory of non-chiral gapless edges.

5.1. A construction of non-chiral gapless edge

In this subsection, we construction a non-chiral gapless edge from chiral gapless edges.

First, we recall a useful fusion formula of 1d chiral gapless walls in [49]. We illustrate two 
1d chiral gapless walls before the fusion in Fig. 12 (a) and after the fusion in Fig. 12 (b). More 
precisely, A, B, C, D, E are UMTC’s, and X is a closed fusion (C � A)-D-bimodule, and Y
is a closed fusion (D � B)-E-bimodule.3 The vertical direction is the direction of time. Two 
vertical planes depict the 1+1D world sheets (or fictional bulk phases) of two chiral gapless walls 
(VA, AX) and (VB, BY). Two VOA’s VA and VB have central charge c2 and c3, respectively. 
The spatial fusion of these two walls can be computed by the following formula:

(VA,AX)�(D,c1+c2) (VB,BY) = (VA ⊗C VB,A�B(X�D Y)), (5.1)

which was explained in details in Section 6.3 in [49].

3 Our convention is that the fictional bulk phase A (or B) sits on the left side of the oriented wall (recall Remark 2.14).
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Fig. 13. These two pictures depict two physically equivalent 1d chiral gapless walls, which are equipped with the opposite 
orientations.

Secondly, notice that flipping orientation is associated to changing chirality. Fig. 13 (a) depicts 
a chiral gapless wall (V , AX) with a chosen orientation, which is indicated by the complex 
coordinate z = t + ix on the 1+1D world sheet, or equivalently, by the orientation of the spatial 
dimension (i.e. x-axis or the arrows on the dotted line) because the orientation of time is fixed, 
or equivalently, by the normal direction of the world sheet (pointing towards right in this case). 
The underlying category X of AX is the category of topological wall excitations, and the order 
of the fusion product in X is determined by the orientation of the wall. The chiral central charge 
of VA is c2, and that of VB is c3.

Without altering the physics, we can flip the orientation of this wall (i.e. flipping the direction 
of x-axis) and, at the same time, change all the data according to Fig. 13 (b). As a consequence, a 
point at z in the old coordinate becomes z̄ in the new coordinate; a chiral field ψ(z) in V becomes 
an anti-chiral field ψ(z̄) in V ; The chiral central charge c2 of V becomes the anti-chiral central 
charge c2 of V , or equivalently, the chiral central charge −c2 of V ; X becomes Xrev. In summary, 
we will say that a gapless wall defined by (V , AX) with a given orientation is entirely same as 
the one defined by (V , AXrev) but with the opposite orientation.

Thirdly, we start with two parallel and adjacent gapless walls with the opposite orientations, 
then we change the orientation of one of the walls and the data on the wall according to Fig. 13, 
at last, we apply the formula (5.1). This produces a non-chiral gapless wall or edge. We give 
some examples below.

Example 5.1. We start with a bulk phase (C, c) with a chiral gapless edge (V , BX), then flip 
the arrow of a right semicircle of the edge, then folding the disk as illustrated in the following 
pictures:

(5.2)
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One can see that, in the third picture, there are two edges of the same 2d bulk (Z(C), c):

1. One is a non-chiral gapless edge given by (V ⊗C V , B�B(X �Xrev));
2. the other one is a gapped edge given by C viewed as a UFC. Note that the boundary-bulk 

relation still holds, i.e.

Z(B�B(X�Xrev)) � Z(C) � C� C, (5.3)

and this non-chiral gapless edge is clearly gappable.
3. Interestingly, this process also creates two 0d gapless walls between these two different edges 

in the third picture. It is clear that this 0d wall can be described by (V , BX), in which BX is the 
trivial BX-BX-bimodule (see the first picture in (5.2)), or equivalently, a B�B(X �Xrev)-C-
bimodule (see the third picture in (5.2)). By Theorem 4.7 and (5.3), we see that B�B(X �
Xrev) and HC are spatial Morita equivalent with the spatially invertible bimodule given by 
BX. We will study this type of 0d walls in Section 5.4.

In general, let VL and VR be unitary rational VOA’s with central charge cL and cR , respec-
tively, such that ModVL

and ModVR
are UMTC’s. The following pair

(
VL ⊗C V R, ModVL

�ModVR (ModVL
�Modrev

VR
)
)

,

which defines a so-called the canonical non-chiral gapless edge of (ModVL
�ModVR

, cL − cR). 
We will call VL the chiral symmetry, VR the anti-chiral symmetry, and VL ⊗C V R the non-chiral 
symmetry. When VL ≄ VR , the non-chiral gapless edge will be called heterotic.

5.2. Classification of non-chiral gapless edges

It turns out that VL ⊗C V R is not the most general non-chiral symmetry. The algebraic struc-
ture on VL ⊗C V R is not a VOA but a so-called full field algebra of central charges (cL, cR), 
where cL (resp. cR) is called the chiral (resp. anti-chiral) central charge, or just a full field algebra 
for simplicity [28,36]. Let VL and VR be two (unitary) rational VOA’s of central charges cL and 
cR , respectively. We will be interested in the so-called full field algebras over VL ⊗C V R , which 
is a certain full field algebra of central charge (cL, cR) containing VL ⊗C V R as a subalgebra 
(see [28, Definition 1.17] and texts below [28, Proposition 1.21]). The following theorem is a 
partial result proved in [36, Theorem 4.15].

Theorem 5.2. A full field algebra (of central charges (cL, cR)) over VL ⊗C V R is equivalent to 
a commutative algebra in ModVL

�ModVR
.

In this work, by a non-chiral symmetry, we mean a unitary rational full field algebra. We 
provide a working definition of this notion below.

Definition 5.3. A full field algebra W of central charges (cL, cR) is called unitary rational if 
there exist two unitary rational VOA’s VL and VR of central charges cL and cR , respectively, 
such that ModVL

and ModVR
are UMTC’s, and W is a full field algebra over VL ⊗C V R , and, as 

a commutative algebra in ModV �ModV , it is connected and separable (i.e. condensable [38]).

L R
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It is possible to give a direct definition of the notion of a module over a full field algebra W
such that the category ModW of W -modules is equivalent to (ModVL

�ModVR
)0
W , which denotes 

the category of local W -modules in ModVL
�ModVR

. For the purpose of this work, we can simply 
set ModW := (ModVL

�ModVR
)0
W . This definition is independent of the choices of VL and VR .

Remark 5.4. A condensable algebra in ModVL
�ModVR

is automatically equipped with a canon-
ical structure of a simple special symmetric †-Frobenius algebra (†-SSSFA) in ModVL

�ModVR

(see for example [38]).

Let B := ModW for a unitary rational full field algebra W of central charge (cL, cR). Then 
(B, cL − cR) defines a 2d topological order, and (W, BB) defines the canonical non-chiral gap-
less edge of (B, cL − cR) with a non-chiral symmetry W .

By fusing canonical non-chiral gapless edges with some gapped walls, we obtain more general 
non-chiral gapless edges. Let X by a gapped wall between two 2d topological orders (B, cL−cR)

and (C, cL − cR). Then the following fusion formula:(
W,BX

)
=

(
W,BB

)
�(B, cL−cR)

(
C, HX

)

defines a non-chiral gapless edge of (C, cL − cR). All of these non-chiral gapless edges can also 
be obtained from topological Wick rotations.

Sometimes, a non-chiral gapless edge can be gapped out. In this case, its bulk is a non-chiral 
2d topological order. Non-chiral gapless edges of a non-chiral 2d topological order are always 
gappable. We give some non-trivial examples.

Example 5.5. Let Is be the Ising UMTC given by ModVIs , where VIs is the well known Ising 
VOA with the central charge c = 1

2 . It has three simple objects 1, ψ, σ with the fusion rule given 
by ψ ⊗ ψ = 1, ψ ⊗ σ = σ and σ ⊗ σ = 1 ⊕ ψ . We have Z(Is) � Is� Is. Let Tor be the UMTC 
describing the Z2 2d topological order. It has four simple objects 1, e, m, f with the fusion rule 
given by e⊗ e = m ⊗m = f ⊗f = 1 and m ⊗ e = f . It is known that Tor = Z(Rep(Z2)), where 
Rep(Z2) is the category of finite dimensional representations of the group Z2. The Lagrangian 
algebra B = 1 � 1 ⊕ ψ �ψ ⊕ σ � σ in Z(Is) has a subalgebra

W = 1 � 1 ⊕ ψ �ψ, (5.4)

which is also condensable. By condensing W , we obtain precisely the Z2 2d topological order, 
i.e. Z(Is)0

W � Tor [6,9]. The UFC (Z(Is))W describes a gapped wall between (Z(Is), 0) and 
(Tor, 0). By fusing this gapped wall with the canonical non-chiral gapless edge of Z(Is), we 
obtain a non-trivial non-chiral gapless edge of the toric code phase introduced in [9]:(

VIs ⊗C V Is,
Z(Is)Z(Is)

)
�(Z(Is),0) (Z(Is))W =

(
VIs ⊗C V Is,

Z(Is)(Z(Is))W
)

. (5.5)

By [46, Theorem 3.3.6], we see that the boundary-bulk relation still holds, i.e.

Z(Z(Is)(Z(Is))W ) � Tor.

It is also worth pointing out that the partition function of the non-chiral gapless edge (i.e. that 
of M1,1) is given by |χ0(τ )|2 + |χ 1

2
(τ )|2, which is not modular invariant because the edge is 

anomalous as a gapless 1d phase. It is perhaps the first time to find a physical meaning of non-
modular-invariant partition functions.
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Example 5.6. W defined by (5.4) is automatically a unitary rational full field algebra over VIs ⊗C
V Is. We have ModW := Z(Is)0

W � Tor. Therefore,

(W, ModW Tor) (5.6)

defines a canonical non-chiral gapless edge of the Z2 2d topological order (Tor, 0). In this 
case, the partition function of the non-chiral gapless edge (i.e. that of M1,1) is again given by 
|χ0(τ )|2 + |χ 1

2
(τ )|2. But (5.6) and (5.5) describe different edges because the sets of topological 

edge excitations (or equivalently, the non-chiral symmetries) are different.

Example 5.7. Recall that there are two gapped edges of Z2 topological orders described by two 
UFC’s Rep(Z2) and VecZ2 , corresponding to condensing m-particles and e-particles, respec-
tively. Recall that

B := 1 � 1 ⊕ ψ �ψ ⊕ σ � σ (5.7)

is a Lagrangian algebra in Z(Is). It is a modular invariant full field algebra extending VIs � V Is. 
We have ModB := Z(Is)0

B � H. Then we obtain two new non-chiral gapless edges of (Tor, 0)

defined by (B, ModB Rep(Z2)) and (B, ModB VecZ2). Both of them can be factorized as follows:

(B, ModB Rep(Z2)) � (B, ModB H)� (C, HRep(Z2)) = (B, ModB H)� Rep(Z2), (5.8)

(B, ModB VecZ2) � (B, ModB H)� (C, HVecZ2) = (B, ModB H)� VecZ2 . (5.9)

Note that (B, ModB H) is a non-chiral gapless edge of the 2d trivial phase because Z(ModB H) =
Z(H) = H, thus provides a mathematical description of an anomaly-free 1d gapless phase. There-
fore, both gapless edges (B, ModB Rep(Z2)) and (B, ModB VecZ2) are obtained by stacking the 
anomaly-free 1d gapless phase (B, ModB H) with the gapped edges of Z2 topological orders.

Example 5.8. By a topological Wick rotation, we obtain an edge of the trivial 2d topological 
order, or equivalently, an anomaly-free 1d gapless phase, (VIs ⊗C V Is, Z(Is)Is). It is different 
from (B, ModB H) in Example 5.7 in their non-chiral symmetries and the categories of topological 
edge excitations. One can obtain the first one from the second one via a 1d phase transition, which 
breaks the non-chiral symmetry from B to VIs ⊗C V Is.

Similar to chiral gapless edges, we would like to propose that all non-chiral gapless edges of 
a 2d topological order can be obtained by fusing canonical non-chiral gapless edges with gapped 
walls, or equivalently, by topological Wick rotations. Moreover, we expect that different pairs 
(A, BX) describe different non-chiral gapless edges (see Section 5.3 for more discussion). As a 
consequence, we obtain the following classification result stated as a physical Theorem.

Theoremph 5.9. Non-chiral gapless edges of a 2d topological order (C, c) are mathematically 
described and classified by pairs (W, BX), where

• W is the non-chiral symmetry, which is a unitary rational full field algebra with chiral central 
charge cL and the anti-chiral central charge cR such that c = cL − cR .

• BX is the enriched monoidal category defined by the pair (B, X) via the canonical construc-
tion, where B := ModW and X is a closed fusion B-C-bimodule.
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For the convenience of numerical computation, one can replace the pair (W, BX) by a new pair 
(W, A), where A is a Lagrangian algebra in B� C.

Remark 5.10. The mathematical classification of non-chiral gapless walls is automatic by the 
folding trick.

Remark 5.11. Theoremph 5.9 automatically contains the classification of chiral gapless edges 
(see [49, Theoremph 6.7]) as special cases, in which W = VL ⊗C V R and VR = C.

Theorem 5.12. By Theorem 4.5, a non-chiral gapless edge (W, BX) automatically satisfies the 
boundary-bulk relation, i.e.

Z(BX) � C.

Definition 5.13. We introduce some basic notions related to non-chiral gapless edges.

1. A non-chiral gapless edge (W, BX) is called anomaly-free if the bulk is trivial, i.e. Z(BX) �
H; it is called anomalous if otherwise. It is called trivial if (W, BX) = (C, HH).

2. In general, a non-chiral gapless edges (W, BX) can be factorized as a product:

(W1,
B1X1)� · · ·� (Wk,

BkXk).

If a non-chiral gapless edge can not be factorized as a product of two non-trivial edges, then 
it is called primary. For a given non-chiral gapless edge, we call the product of all its primary 
anomalous factors as its anomalous core.

3. A non-chiral gapless edge (W, BX) is called gappable4 if it shares the same bulk with a 
gapped edge. Mathematically, by Theorem 4.7, (W, BX) is gappable if and only if BX is 
spatially Morita equivalent to a unitary multi-fusion category.

Example 5.14. All gapless edges constructed in Example 5.5, 5.6 and 5.7 are anomalous and 
gappable. The anomalous cores of (B, ModB Rep(Z2)) and (B, ModB VecZ2) in (5.8) and (5.9) are 
given by Rep(Z2) and VecZ2 , respectively.

Remark 5.15. It is clear that the most interesting part of the classification of all non-chiral gap-
less edges of a given 2d topological order lies in the classification of the anomalous cores of all 
non-chiral gapless edges.

Recently, Ji and Wen proposed that the partition functions [1X, 1X]B of gapless edges of 2d 
topological orders transform covariantly under the mapping class group SL(2, Z) according to 
the S-,T -matrix of the bulk UMTC [31]. But this covariance does not hold in general. We give a 
precise statement of this covariance.

Theoremph 5.16. Let (W, BX) be a non-chiral gapless edge of a 2d topological order (C, c). 
The partition functions A = [1X, 1X]B of gapless edges of 2d topological orders transform co-
variantly under the mapping class group SL(2, Z) according to the S-,T -matrices of the UMTC 
B0

A of local A-modules in B.

4 A chiral gapless edge is not gappable because its gaplessness is topologically protected.
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Fig. 14. These two pictures depict a physical description of purely edge phase transition via a topological Wick rotation.

Proof. This follows automatically from the Huang’s construction of the modular tensor category 
from a rational VOA [25]. �
Example 5.17. We provide some counter examples of Ji and Wen’s proposal. Consider a confor-
mal embedding V � A of unitary rational VOA’s, e.g.

su(m)n × su(n)m ⊂ su(mn)1, sp(2m)n × sp(2n)m ⊂ so(4mn)1,

so(m)n × so(n)m ⊂ so(mn)1, so(m)4 × su(2)m ⊂ sp(2m)1, · · · ,

or any embedding of unitary rational full field algebras V � A. Then A can be viewed as a con-
densable algebra in B = ModV [33,26] and we have ModA = B0

A. Therefore, the two topological 
orders (B, c) and (ModA, c) can be connected by a gapped wall given by BA. By topological 
Wick rotations, we obtain a chiral gapless edge of (B, c) defined by (B, ModA(BA)), in which 
M1,1 = A. In this case, the modular transformations of the partition function of M1,1 = A coin-
cide with the S-,T -matrices of ModA instead of those of the bulk UMTC B.

5.3. Purely edge phase transitions

We have mentioned that different pairs (W, BX) and (W ′, B′
X′) should represent different 

non-chiral gapless edges. It means that if we deform one edge by adding perturbations to get the 
other one, we need go through at least one phase transition points. We do not have a physical 
proof of this claim. Actually, as far as we know, there is no universal or model-independent 
definition of a phase transition between two gapless phases. As we have already pointed out 
for chiral gapless edges in [49], our mathematical theory of gapless edges actually provides 
such definitions. These definitions can automatically be generalized to include non-chiral gapless 
edges. More precisely, we propose that a 1+1D purely edge phase transition between two gapless 
chiral (resp. non-chiral) edges can be defined either

1. as a process of changing or breaking chiral (resp. non-chiral) symmetries; or
2. as the topological Wick rotation of a 2d topological phase transition, which is defined by a 

process of closing the gap, as illustrated in Fig. 14.

Remark 5.18. We do not know how to generalize the first definition to higher dimensional gap-
less phases because the replacement for chiral or non-chiral symmetries is not so clear in higher 
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dimensions.5 But the second definition can be automatically generalized to higher dimensions. 
This provides a surprising and exciting implications to the study of higher dimensional gapless 
phases.

Actually, the story about purely edge phase transitions between chiral gapless edges becomes 
complete only when we include all non-chiral gapless edges because non-chiral gapless modes 
should appear at the critical points even if the initial and final edges are either chiral or gapped. 
For example, we can consider purely edge phase transitions between two gapped edges of a non-
chiral topological order (C, 0). At the critical point, the gap is closed and necessarily non-chiral. 
Therefore,

the critical point of a purely edge topological phase transition is nothing but a gappable 
non-chiral gapless edge, and should be mathematically described by a non-chiral symmetry 
and an enriched fusion category, whose Drinfeld center coincides with the UMTC of the bulk.

For example, in [9], it was shown in great details via explicit lattice models that the non-chiral 
gapless edges given in Example 5.5 and Example 5.6 precisely describe the critical points of 
purely edge topological phase transitions between the two well-known gapped edges of the 2d 
Z2 topological order [5].

We believe that chiral gapless/gapped edges and certain non-gappable non-chiral gapless 
edges are stable in the sense that they are RG fixed points. Other non-chiral gapless edges are 
unstable. For example, gappable non-chiral gapless edges are all unstable because they can be 
gapped. As a consequence, we should expect that the following result.

The critical point of a purely edge phase transition between two stable edges of a 2d topolog-
ical order defines an unstable non-chiral gapless edge, and should be mathematically described 
by a non-chiral symmetry and an enriched fusion category, whose Drinfeld center coincides 
with the UMTC of the bulk.

For a given 2d topological order, it is an important problem to work out the complete phase dia-
gram of all edges. A cell of the highest dimension in the phase diagram should represent a stable 
edge, and a cell of codimension 1 should represent an unstable non-chiral gapless edge. If higher 
codimensional cells exist, then it means that there are different levels of unstableness. This will 
be really interesting. Note that the physical fact of the 2d bulk being an invariant (as the gravita-
tional anomaly) of the entire phase diagram is confirmed by the mathematical Theorem 5.12. We 
hope to study the phase diagram in the future.

5.4. 0+1D gapless walls

In this subsection, we study 0+1D gapless walls between two non-chiral gapless edges. We 
first illustrate three special types of 0+1D gapless walls in Fig. 15.

1. 0+1D walls between a non-chiral gapless edge/wall and a gapped edge/wall: for exam-
ple, in Fig. 15, (V , X, PM) defines a 0+1D wall between the 1+1D non-chiral gapless 

5 We expect that an n-dimensional local quantum symmetries should be an analogue of an En-algebra.
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Fig. 15. This picture depicts two chiral 0+1D walls connecting a gapped wall with two non-chiral gapless walls, the left 
of which is obtained by folding the chiral gapless edge (VB, BY) in Fig. 4 backwards, and the right one is obtained 
similarly.

wall (VA ⊗C V B, A�B(X � Yrev)) and the 1+1D gapped wall C; and (V ′, X′, P′
M′) de-

fines a 0+1D wall between the 1+1D gapped wall C and the 1+1D non-chiral gapless wall 
(VA′ ⊗C V B′ , A

′�B′
(X′ � (Y′)rev)).

2. If we spatially fuse two 0+1D gapless walls in Fig. 15, we obtain a 0+1D gapless wall

(V ,X,PM)�(C,HC) (V ′,X′,P′
M′) := (V ⊗C V ′,X �X′,P�P′

(M�C M′)) (5.10)

between the following two 1d non-chiral gapless walls:

(VA ⊗C V B,A�B(X� Yrev)) and (VA′ ⊗C V B′ ,A
′�B′

(X′ � (Y′)rev)). (5.11)

3. (5.10) can also be viewed as a 0+1D gapless wall between the following two 1d non-chiral 
gapless walls:

(VA ⊗C V A′ ,A�A′
(X� (X′)rev)) and (VB ⊗C V B′ ,B�B′

(Y� (Y′)rev)); (5.12)

Type-3 is relatively easier to understand because the chiral parts and the anti-chiral parts are 
completely separated. Therefore, mathematical description follows from that of a 0+1D chiral 
gapless wall between two 1+1D chiral gapless edges.

Type-2 is new. In general, there are more 0+1D gapless walls between the two 1+1D non-
chiral gapless walls in (5.11) than just (5.10). They can be classified by reducing the problem to 
an old one. Indeed, by flipping the orientations of the anti-chiral parts of two non-chiral edges 
in (5.13) and, at the same time, changing (VB, BYrev) and (V B′ , B

′
(Y′)rev) to (VB, BY) and 

(VB′ , B
′
Y′), respectively, we see that a 0+1D gapless wall between two 1+1D non-chiral gapless 

edges

(VA ⊗C V B,A�B(X� Yrev)) and (VA′ ⊗C V B′ ,A
′�B′

(X′ � (Y′)rev)) (5.13)

is precisely a 0+1D chiral gapless wall between the following two chiral gapless walls

(VA ⊗C VB′ ,A�B′
(X� Y′)) and (VB ⊗C VA′ ,B�A′

(Y�X′)). (5.14)
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Fig. 16. These pictures depict two 0+1D gapless walls.

Type-1 walls actually cover all 0+1D walls if we apply the folding trick in temporal direction. 
In this context, there is no need to distinguish “chiral” and “non-chiral” for gapless 0+1D walls 
because we can always view the boundary CFT’s on a 0+1D world line as chiral under the folding 
trick.

Using both the folding tricks in temporal and spatial directions, we can reduce the problem 
of classifying all 0+1D walls (without any gappable parts (see Remark 3.6)) to the classification 
of all 0+1D gapless walls between a gapped edge X = (C,H X) and a 1d non-chiral gapless edge 
(W, ModW Y) as depicted in Fig. 16 (a), where W is a unitary rational full field algebra over V1 ⊗C
V 2. In this case, we still have a 1+1D chiral symmetry V and a 0+1D chiral symmetry X. More 
precisely, V is a unitary rational sub-VOA of V1 and V2.6 The full field algebra W can be viewed 
as a condensable algebra in Z(ModV ) = ModV �ModV . Note that ModV is a closed right fusion 
Z(ModV )-module. We denote the category of right W -modules in ModV by RModW(ModV ). If 
we denote the image of W in ModV under the forgetful functor f : Z(ModV ) → ModV by f(W), 
which is an algebra in ModV , we have RModW(ModV ) = (ModV )f(W), where (ModV )f(W) is 
the category of right f(W)-modules in ModV . It is clear that all 0D defects on the 0+1D world 
line of the wall are objects in RModW(ModV ). Therefore, the 0+1D chiral symmetry X must be 
a symmetric separable †-Frobenius algebra in RModW(ModV ). The relation between V and X
can be summarized by the commutative diagram in (5.15). By [12, Theorem 3.20], (ModV )f(W)

is a closed right multi-fusion ModW -module, so is ((ModV )f(W))X|X .

Theoremph 5.19. For a unitary rational non-trivial full field algebra W over V1 ⊗C V 2, 
0+1D gapless walls (without any gappable parts (see Remark 3.6)) between a gapped edge 
X = (C,H X) and a 1d non-chiral gapless edge (W, ModWY) of a 2d topological order (C, c), 
as depicted in Fig. 16 (a), are mathematically described and classified by triples (V , X, PM), 
where

1. V is the 1+1D chiral symmetry, i.e. a unitary rational VOA; X is the 0+1D chiral symme-
try, i.e. a symmetric separable †-Frobenius algebra in (ModV )f(W). They are equipped with 
algebra homomorphisms in ModV rendering the following diagram commutative

6 If such V does not exist, then no 0+1D gapless wall exists between these two 1d edges.
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V

V1
ιL

X V2
ιR

f(W)

ιY
(5.15)

where ιY is an algebra homomorphism between two algebras in (ModV )f(W) and defines the 
unit of the algebra X.

2. PM is an enriched category defined by the canonical construction from the pair (P, M), 
where P is a closed right multi-fusion ModW -module defined by P = ((ModV )f(W))X|X , and 
the category M of topological excitations is a finite unitary category uniquely determined by 
the unitary monoidal equivalence: (Xrev � P �ModW

Y) �Z(C) C � Fun(M, M). Note that M
has a canonical left P structure defined by P → (Xrev �P �ModW

Y) �Z(C) C � Fun(M, M). 
In particular, the space of chiral fields living on the world line between two wall excitations 
m, m′ ∈M is given by Mm,m′ = [m, m′]P for m, m′ ∈ M.

Moreover, all these 0+1D gapless walls are spatially equivalent and define the same 0d wall. 
When W = C, we must have V = C, and this 0+1D wall is gapped.

Remark 5.20. Similar to Remark 3.10, if we ignore V and X, the pure categorical description 
PM automatically covers 0+1D gappable factors or parts.

Remark 5.21. If we want to emphasize a particular spatial slice of the 0+1D wall, we can specify 
a wall excitation m ∈M in the spatial slice, thus obtain a quadruple (V , X, PM, m).

Example 5.22. Recall Example 5.5, 5.6 and 5.7. Let W and B be the full field algebras defined 
by (5.4) and (5.7), respectively. We have the following two non-chiral gapless edges of the Z2
2d topological order:

(VIs ⊗C V Is,
Z(Is)Z(Is)W ), (W, ModW Tor) (5.16)

and two gapped edges Rep(Z2) and VecZ2 .

1. For a proper M, the triple (VIs, VIs, IsM) defines a 0+1D gapless wall between Rep(Z2) (or 
VecZ2 ) and (VIs ⊗C V Is, Z(Is)Z(Is)W );

2. For a proper M, the triple (VIs, f(W), (Is)f(W)M) defines a 0+1D gapless wall between Rep(Z2)

(or VecZ2 ) and (W, ModW Tor).

It is not so convenient to see 0+1D gapless walls between two non-chiral gapless edges in 
(5.16) because we need to apply the folding trick first in order to reduce the problem to the 
situation in Theoremph 5.19. For readers’ convenience, we work out a special case of Theoremph

5.19 depicted in Fig. 16 (b) and summarize it as the following physical theorem.

Theoremph 5.23. For two unitary rational full field algebras WA and WB over VL ⊗C V R , 
0+1D non-chiral gapless walls (without gappable parts) between two non-chiral gapless edges 
(WA, AX) and (WB, BY) of a 2d topological order (C, c) (see Fig. 16 (b)), preserving the 
1+1D non-chiral symmetry VL ⊗C V R , are mathematically described and classified by triples 
(W, X, PM), where
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1. W is the 1+1D non-chiral symmetry defined by a unitary rational full field algebra W over 
VL ⊗C V R; X is the 0+1D non-chiral symmetry, i.e. a symmetric separable †-Frobenius alge-
bra in (ModW)WA|WB

. They are equipped with algebra homomorphisms in ModW rendering 
the following diagram commutative

W

WA
ιL

X WB
ιR

WA ⊗W WB ,

ιY
(5.17)

where ιY is an algebra homomorphism between two algebras in (ModW)WA|WB
.

2. PM is an enriched category defined by the canonical construction from the pair (P, M), 
where P = ((ModW)WA|WB

)X|X , and the underlying category M is uniquely determined by a 
unitary monoidal equivalence (Xrev�AP �B Y) �Z(C) C � Fun(M, M), and has a canonical 
left P structure defined by P → (Xrev �A P �B Y) �Z(C) C � Fun(M, M).

Note that (WA, WA, AX) defines the trivial 0+1D wall between (WA, AX) and (WA, AX).

Example 5.24. We give a few concrete examples. Recall Example 5.5, 5.6 and 5.7. Let W and 
B be the full field algebras defined by (5.4) and (5.7), respectively. We have the following four 
non-chiral gapless edges of the Z2 2d topological order:

(VIs ⊗C V Is,
Z(Is)Z(Is)W ), (W, ModW Tor), (B, ModB Rep(Z2)), (B, ModB VecZ2).

Then we have

1. (VIs ⊗C V Is, W, Z(Is)W (Z(Is)W )) is a wall between (VIs ⊗C V Is, Z(Is)Z(Is)W ) and (W,
ModW Tor);

2. (W, B, Rep(Z2)Rep(Z2)) is a wall between (W, ModW Tor) and (B, ModB Rep(Z2));
3. (W, B, VecZ2 VecZ2) is a wall between (W, ModW Tor) and (B, ModB VecZ2);
4. (W, B, Rep(Z2)Vec) is a wall between (W, ModW Tor) and (B, ModB VecZ2);
5. (VIs ⊗C V Is, B, Z(Is)BM) is a wall between (VIs ⊗C V Is, Z(Is)Z(Is)W ) and (B, ModB Rep(Z2))

for a proper M.

5.5. Spatial fusion of 0+1D walls and anomalies

Spatial fusion of two 0+1D gapless walls between two non-chiral gapless edges/walls are 
similar to that of walls between chiral gapless edges/walls (see Section 3.4).

We first consider the spatial fusion of two 0+1D gapless walls covered in Theoremph 5.23. 
By first breaking the 1+1D non-chiral symmetries of two walls to a smaller but the same one, 
we reduce the problem to a special case, in which the 1+1D non-chiral symmetries are preserved 
during the spatial fusion.

More precisely, we consider a 0+1D non-chiral (resp. chiral) gapless wall (W12, X, PM)

between (W1, B1X1) and (W2, B2X2) and a 0+1D non-chiral (resp. chiral) gapless wall 
(W23, Y, PM) between (W2, B2X2) and (W3, B3X3) as depicted in Fig. 17. Now we assume 
that all W1, W12, W2, W23, W3 are unitary rational full field algebras over VL ⊗C V R . With-
out loss of generality, we assume W = W12 = W23. In this case, we have the following fusing 
formula:
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Fig. 17. This picture illustrates the fusion of two 0d gapless walls (V12, X, PM) and (V23, Y, QN). This fusion is defined 
by (3.12).

(
W,X,PM

)
�(W2,

B2X2)

(
W,Y,QN

)
=

(
W,X �B2 Y,P�B2Q(M�X2 N)

)
. (5.18)

This formula automatically includes (3.12) in the chiral cases as special cases. We will give some 
interesting example of spatial fusions of 0+1D walls in Section 6.1.

We want to point out again that the canonical morphism (recall Eq. (3.15))

f : [m,m′]P ⊗[1X2 ,1X2 ]B2
[n,n′]Q → [m�Xrev

2
n,m′ �Xrev

2
n′]

is not an isomorphism in general when the 2d bulk (C, c) is non-trivial. This failure of being 
an isomorphism is called spatial fusion anomaly, which reflects the fact that the edge is an 
anomalous 1+1D phase. On the other hand, when (C, c) = (H, 0), we should expect that f is 
an isomorphism because the 1+1D edge is anomaly-free now. This result is proved in [45].

Remark 5.25. The vanishing of the spatial fusion anomaly when (C, c) = (H, 0) implies the 
functoriality of the full center, a special case of which was proved in [11]. Moreover, one can 
show that this full center functor is fully faithful [45]. These results generalize many earlier 
results in boundary-bulk RCFT’s [18,40,11], and provides a complete mathematical description 
of boundary-bulk duality in RCFT’s.

Let us consider another spatial fusion of 0+1D gapless walls. Let V be a unitary rational VOA. 
Let W be a unitary rational full field algebra over V ⊗C V , i.e. a simple symmetric separable 
†-Frobenius algebra in Z(ModV ) = ModV �ModV . Let

X1 = (C, HX1), (V ⊗C V ,Z(ModV )X2), (W, ModWX3)

be a 1d gapped edge and two non-chiral 1d gapless edges, respectively, of the same 2d bulk.

1. For a proper M, the triple (V , V, ModV M) defines a 0+1D gapless wall between X1 and (V ⊗C
V , Z(ModV )X2);

2. For a proper N, the triple (V ⊗C V , W, Z(ModV )W N) defines a 0+1D gapless wall between 
(V ⊗C V , Z(ModV )X2) and (W, ModW X3).

The spatial fusion of these two 0+1D walls produces a 0+1D gapless wall between X1 and 
(W, ModW X3). It is defined by

(V ,V, ModV M)�(V ⊗CV ,Z(ModV )X2)
(V ⊗C V ,W,Z(ModV )WN)

= (V , f(W), RModW (ModV )M�X2 N),
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Fig. 18. This picture depicts a 2d topological order (C, c) with two holes filled with (D, c′) and two gapless walls on the 
boundaries of two filled holes. Two cylinders in the picture depict the 1+1D world sheet of two gapless walls. On each 
cylinder, there are two chiral gapless walls separated by two 0+1D gapless walls.

where we have used the fact that V �Z(ModV ) W � f(W) ∈ RModW(ModV ) and

ModV �Z(ModV ) Z(ModV )W � RModW(ModV )

as closed right multi-fusion ModW -modules [12, Theorem 3.20]. Note that such obtained 0+1D 
wall is precisely one of those given in Theoremph 5.19.

6. Computing physical processes

Recall Definition 5.13, a gapless edge is gappable if it shares the same bulk with a gapped 
edge. Mathematically, by Theorem 4.7, a non-chiral gapless edge (W, BX) is gappable if and 
only if the enriched multi-fusion category BX is spatially Morita equivalent to a UFC. We illus-
trate this phenomenon by examples in this section.

6.1. Shrinking and gapping a gapless hole

Consider the physical configuration depicted in Fig. 18. It depicts a 2d topological order (C, c)
with two holes filled with the same 2d topological order (D, c′). On the boundary of the left hole 
in Fig. 18, there are two chiral gapless edges (VA, AX) and (VB, BY), separated by two 0d 
gapless walls (Vi, Xi, PiMi ) for i = 1, 2. The boundary of the right filled hole is similar.

One can also view Fig. 18 as a configuration for five 1d walls between two 2d topological 
orders (C, c) and (C, c). These five walls include three trivial gapped walls C = (C, HC) and two 
non-chiral gapless walls defined by

(VA,AX)�(D,c′) (V B,BYrev) = (VA ⊗C V B, A�B(X�D Yrev)) (6.1)

and

(VA′ ,A
′
X′)�(D,c′) (V B′ ,B

′
(Y′)rev) = (VA′ ⊗C V B′ , A′�B′

(X′ �D (Y′)rev)), (6.2)

respectively. They are separated by four 0+1D gapless walls, which are defined by (Vi, Xi, PiMi )

for i = 1, 2, 3, 4.
In this subsection, we study how to shrink and gap out the left gapless hole in Fig. 18. We will 

use spatial equivalence seriously. For this reason, there is no need keep track of chiral symmetries 
Vi, Xi for i = 1, 2, 3, 4. We simply abbreviate (Vi, Xi, PiMi ) to PiMi for i = 1, 2, 3, 4.
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Fig. 19. This picture depicts how to gap out a 0+1D non-chiral gapless wall mathematically by a spatial equivalence, i.e. 
by inserting an invertible 0D wall Rop to the world line.

Physically, we know that if we shrink the left hole to a point. The spectrum of the edge modes 
becomes gapped in this limit because tunneling effects or backscattering process between two 
sides of the hole becoming local operators as the size of the hole getting small. Remember that 
our mathematical description of the gapless edge only works in the thermodynamics limit and in 
the long wave length limit. Both limits break down if we shrink the hole to a point.

Mathematically, we can fuse the first and the second 0+1D gapless walls along the non-chiral 
gapless wall defined in Eq. (6.1). This mathematical fusion is, however, completely independent 
of the size of the hole. As a consequence, such obtained 0+1D wall remains gapless after the naive 
mathematical fusion. The mathematical structure that characterizes the gapping-out process is 
precisely the spatial equivalence. More precisely, we have

P1M1 �A�B(X�
D
Yrev)

P2M2 � P1�A�B
P2(M1 �X�

D
Yrev M2)

� FunH(R,R)(M1 �X�
D
Yrev M2)

sp� H(Rop �FunH(R,R) (M1 �X�
D
Yrev M2))

� (C, HC), (6.3)

where all the four steps are explained below.

1. The first “�” is obvious.
2. In the second “�”, since P1 and P2 are both closed A �B-modules, there is a unique finite 

unitary category R such that P1 �A�B P2 � FunH(R, R) as UMFC’s.

3. In the spatial equivalence “
sp�”, since R is an invertible FunH(R, R)-H-bimodule and Rop is 

an invertible H-FunH(R, R)-bimodule, then the pair (Rop, id), where

id :Rop �FunH(R,R) (M1 �X�
D
Yrev M2) →Rop �FunH(R,R) (M1 �X�

D
Yrev M2)

is the identity functor, defines a spatial equivalence

FunH(R,R)(M1 �X�
D
Yrev M2) � H(Rop �FunH(R,R) (M1 �X�

D
Yrev M2))

as HC-HC-bimodules. The physical meaning of this spatial equivalence is illustrated in Fig. 19.
4. In the last “�”, we have used the fact that

Rop �FunH(R,R) (M1 �X�DYrev M2) � C

as unitary categories. We prove this fact below. To compute Rop �FunH(R,R) (M1 �X�
D
Yrev

M2) amounts to push the whole “cap” down to the horizontal plane. This produces a 0d defect 
48



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384
in (C, c) (recall Example 2.21). Since this process preserves the anomaly-free condition by 
Theorem 2.20, the resulting anomaly-free 0d defect has to be given by (C, u) for some object 
u ∈ C. In particular, we obtain an equivalence of unitary categories:

Rop �FunH(R,R) (M1 �X�
D
Yrev M2)

�−→ C

r �FunH(R,R) (m1 �X�
D
Yrev m2) 
→ u

where u depends on the choices r ∈R, m1 ∈M1 and m2 ∈M1.
Actually, to describe a particular gapping-out process, m1 and m2 need to be fixed as an 

initial data. R is uniquely fixed by the anomaly-free condition. Therefore, the gapping-out 
process is completely determined by a choice of an object r ∈ R. The particle x obtained after 
the gapping-out process is uniquely determined by r .

In a summary, we have shown that a fusion of two 0+1D gapless walls produces a 0+1D 
gappable gapless wall, and the gapping-out process is determined by an instanton, i.e. a pair 
(R, r), where R is uniquely fixed and r is an object in R.

6.2. Fusing two gapless filled holes

In this subsection, we study how to fuse the second and the third 0+1D gapless walls along 
the trivial gapped wall C in Fig. 18. We claim that this fusion produces a 0+1D gapless wall

P2M2 �HC
P3M3

sp� SS0 �D
TT0 = S�T(S0 �D T0), (6.4)

as illustrated in the following picture.

(6.5)

We will prove the formula (6.4) by the following equivalences:

P2M2 �HC
P3M3 � P2�P3(M2 �C M3))

sp� S�T(O�P2�P3 (M2 �C M3)))

� S�T(S0 �D T0)), (6.6)

which will be explained below.

1. “
sp�”: First, consider Fig. 20 (b). Since A, B, A′, B′ are all Witt equivalent to C, there is a 

gapped wall, defined by a UFC S, between A and A′, and a gapped wall, defined by a UFC T, 
between B and B′. Then all these data A, B, A′, B′, S, T determines a unique (up to equiva-
lences) finite unitary category O, which defines an anomaly-free 0d defect in Fig. 20 (b). We 
can rearrange the neighborhood of this 0D defect O looks like the saddle point depicted in 
Fig. 20 (a). In particular, O is a (S � T)-(P2 �P3)-bimodule. Therefore, we obtain
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Fig. 20. This picture depicts a fusion of two holes (with gapless edges) inside a 2d topological order (C, c).

P2�P3(M2 �C M3)
sp� S�T(O�P2�P3 (M2 �C M3)),

which implies the “
sp�” in (6.6).

2. The last “�”: To compute O �P2�P3 (M2 �C M3) amounts to squeeze the part below the 
saddle point (see (6.8)) to a point-like anomaly-free defect, which is uniquely determined by 
its environment. By the uniqueness, it is enough to show that S0 � T0 is a solution to the 
anomaly-free condition. Since S is a gapped wall between (A, c) and (A′, c), X is a gapped 
wall between (A, c) and (C �D, c−c′) and X′ is gapped wall between (A′, c) and (C �D, c−
c′). There is a unique 0D defect S0, which is uniquely determined by A, X, C, D, A′, X′, S, 
as shown in the picture in (6.5). Similarly, we obtain another 0D defect T0, which is uniquely 
determined by B, Y, C, D, B′, Y′, T. As a consequence, S0 �D T0 is a solution, i.e.

O�P2�P3 (M2 �C M3) � S0 �D T0. (6.7)

This argument via anomaly-free condition might look mysterious. We would like to pro-
vide a more physical proof. We first illustrated the part below the saddle point labeled by O
by the following picture.

(6.8)

If we squeeze it horizontally, we obtain a 1d gapped wall between (D, c′) and (D, c′) as 
illustrated in (21), in which we have pushed 0d gapped wall M2�(P2�C)rev (O �C) �P3�CM3
on this 1d gapped wall to one of its two end points. Then this 1d gapped wall can be described 
by the UFC FunD(K, K) for a right D-module K. By FunD(K, K) � Kop �D K, we know 
that we can cut this 1d wall according to the first two pictures in (6.9).

(6.9)

This cutting produces two end points labeled by K and Kop, respectively. Then absorbing 
these two ends to two sides of the hole, we obtain a single filled hole as depicted in the third 
picture.
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Fig. 21. This picture depicts an intermediate step in the process of fusing of two filled holes (filled with (D, c′) and a 1d 
gapless wall) inside a 2d topological order (C, c).

We consider a special case A′ = A, B′ = B, X′ = X, Y′ = Y, P1 = Prev
2 = P3, M1 = M

op
2 =

M3 and Vi = Vj and M2 = M4. In this case, the formula (6.3) and (6.4) become

(P
rev
2 M

op
2 )�A�B(X�

D
Yrev)

(P2M2) � FunH(R,R)(M1 �X�
D
Yrev M

op
1 )

sp� (C, HC), (6.10)

(P2M2)�HC (P
rev
2 M

op
2 )

sp� A�B(X�D Yrev).

(6.11)

These two spatial equivalences simply say that P2M2 is a spatially invertible A�B(X �D

Yrev)-C-bimodule and defines a spatial Morita equivalence between A�B(X �D Yrev) and C. 

Therefore, the gappability of the non-chiral 1d gapless wall (VA ⊗C V B, A�B(X �D Yrev)) is 

precisely captured by the fact that A�B(X �D Yrev) and C are spatially Morita equivalent.

Remark 6.1. Fig. 20 (a) show the spatial equivalence between two 0+1D gapless walls. The 
condition that all UMTC’s A, A′, B, B′ are all Witt equivalent automatically holds in the sit-
uation depicted in Fig. 18, and plays a crucial role in the proof. Indeed, the Witt equivalence 
of A, A′, B, B′ implies that we can form Fig. 20 (b), which further implies that Fig. 20 (a) is 
physically realizable.

Remark 6.2. We can certainly fill two holes by two different 2d topological orders (D, c′) and 
(E, c′′). The same arguments again lead us to Fig. 21 or the first picture in (6.9). But the splitting
the 1d gapped wall is not possible any more because there should always be some non-trivial 1d 
wall separating (D, c′) and (E, c′′).

Remark 6.3. When A = B = A′ = B′ = P1 = P3 = Prev
2 = Prev

4 and X = X′ = Y = Y′ = M1 =
M

op
2 = M3 = M

op
4 . The spatial fusion of two filled holes endows the filled hole with an alge-

braic structure. This leads to a generalized anyon condensation theory, which will be developed 
elsewhere.

6.3. Dimensional reduction to boundary-bulk CFT’s

Recall that we have used in [49, Section 3.3] a dimensional reduction process to prove the 
appearance of boundary CFT’s on a chiral gapless edge based on a “No-Go Theorem” as depicted 
in [49, Figure 5]. In this subsection, using the precisely mathematical description of chiral gapless 
edges and their 0+1D gapless walls, we are able to compute this dimensional reduction process 
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Fig. 22. Picture (a) depicts a gapped wall between 2d topological order (C, c) and (C, c) and its gapless boundary 
(V , CB|BCB|A); Picture (b) depicts a special case when B = 1C .

precisely. In particular, we will work out explicitly which boundary-bulk CFT is produced by 
this dimensional reduction process. It turns out that all boundary-bulk RCFT’s can be obtained 
in this way (first announced in [48]).

Let us consider the situation depicted in Fig. 22 (a). Let C = ModV be a UMTC. Let A and B
be two †-SSSFA’s in C. Then the category CA|A of A-A-bimodules in C and CB|B are UFC’s and 
define two 1d gapped walls between two 2d topological orders (C, c) and (C, c). The category 
CB|A defines a 0d gapped wall between CB|B and CA|A. By a topological Wick rotation, we 
obtain the canonical gapless edge (V , CC) of (C, c) and a 0+1D gapless relative boundary of the 
1d gapped wall CA|A, defined by (V , B, CB|BCB|A), which is also a 0+1D gapless wall between 
two canonical 1d gapless edges (V , CC) and (V , CC). Fig. 22 (b) depicts a special case when 
B = 1C. When x = x′ = A ∈ CA, we have [x, x′]C = A.

Consider the physical configuration depicted in Fig. 23 (a). Two 2d topological orders (C, c)
and (C, c) are separated by two 1d gapped walls, which are defined by two UFC’s CA|A and 
CA′|A′ for two †-SSSFA’s A and A′ in C. These two 1d gapped walls are separated by a 0d 
gapped wall defined by a finite unitary category CA|A′ , and they also have 0+1D gapless relative 
boundaries defined by (V , B, CB|BCB|A) and (V , B ′, CB′ |B′CA|B ′), respectively, where B and B ′
are †-SSSFA’s in C. Moreover, each of these two 0+1D gapless relative boundaries can also be 
viewed as a 0+1D gapless wall between two canonical chiral gapless edge (V , CC). x, y are 
objects in CB|A and x′, y′ are objects in CA′|B ′ . Note that we have flipped the orientation of one 

of the canonical gapless edges and changed the label from (V , V, CC) to (V , V , CCrev) without 
altering the physics.

By the same dimensional reduction process as in [49, Figure 5], i.e. fusing of two gapless 
edges in Fig. 23 (a), we obtain the physical configuration in Fig. 23 (b). The 1+1D world sheet 
in Fig. 23 (b) contains five parts:

(V ,B,CB|BCB|A), (V ⊗C V ,Z(C)CA|A), (V ⊗C V ,V ⊗C V ,Z(C)CA|A′),

(V ⊗C V ,Z(C)CA′|A′), (V , (B ′)∗,C
rev
B′|B′CA′|B ′),

where two gapless 0+1D boundaries (V , B, CB|BCB|A) and (V , (B ′)∗, C
rev
B′ |B′CA′|B ′) remains the 

same during the dimensional reduction process, and the remaining three are obtained from the 
following fusion formula:
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Fig. 23. These pictures depict physical configurations before and after the process of dimensional reduction.

(V ,CC)�(C,c) (C, HM)�C (V ,CCrev) = (V ⊗C V ,C�CM) (6.12)

for M = CA|A, CA|A′ , CA′|A′ . We would like to show that the physical configuration depicted 
in Fig. 23 (b) is physically consistent according to the mathematical theory of boundary-bulk 
RCFT’s.

The space of non-chiral fields that can live on 1+1D world sheet on the left (resp. right) side 
is given by internal hom

[1CA|A,1CA|A ]Z(C) = [A,A]Z(C) (resp. [A′,A′]Z(C)),

which is nothing but the full center of A, i.e. Z(A) = [1CA|A, 1CA|A ]Z(C) [10]. By results in 
[19,41,10], this internal hom [A, A]Z(C) (resp. [A′, A′]Z(C)) is precisely a modular invariant bulk 
CFT with a boundary CFT given by A [29,41]. By [41, Theorem 3.4], a modular invariant bulk 
CFT is equivalent to a Lagrangian algebra in Z(C). By [40, Theorem 1.1], there is a one-to-one 
correspondence between the set of Morita classes of SSSFA’s in C that of Lagrangian algebras in 
Z(C) defined by A 
→ [1CA|A, 1CA|A ]Z(C).

Internal homs [x, x]CB|B , [x, y]CB|B , [y, y]CB|B for x ∈ CB|A define boundary CFT’s and 0D 
walls. According to mathematical theory of RCFT [19,41], these boundary CFT’s must share a 
unique bulk given by their full center. Therefore, to show that physical configuration defined in 
Fig. 23 (b) defines consistent boundary-bulk CFT’s, it is enough to show that their full center is 
precisely given by [A, A]Z(C).

By [54, Theorem 3.3.1], we have (CB|B)[x,x] � CB|A � (CB|B)[y,y]. It implies that [x, x]CB|B
and [y, y]CB|B are Morita equivalent. By [40,10], they must share the same full center in 
Z(CB|B) � Z(C). By [13, Theorem 7.12.11], we have the following monoidal equivalences of 
UFC’s

(CB|B)[x,x]|[x,x] � FunCB|B (CB|A,CB|A) � CA|A.

In particular, the tensor unit 1(CB|B)[x,x]|[x,x] = [x, x] is mapped to the tensor unit 1CA|A = A. By 
the definition of full center, we obtain

Z([x, x]) = [1C ,1C ]Z(C) = Z(A)

A|A A|A
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for x ∈ CB|A. Similarly, the boundary CFT’s [x′, x′]CB′ |B′ for x′ ∈ CA′|B ′ share the same bulk 
that is given by Z([x′, x′]CB′ |B′ ) � Z(A′) = [1CA′ |A′ , 1CA′ |A′ ]Z(C). Therefore, Fig. 23 (b) gives 
consistent boundary-bulk CFT’s.

Remark 6.4. It is very interesting to work out a few special cases of above discussion.

1. When A = B = 1C, CA|A = CB|A = CB|B = C and (V , CB|BCB|A) = (V , CC). In this case, 
[x, x]C = x ⊗ x∗ and Z([x, x]C) � Z(1C) = [1C, 1C]Z(C) = ⊕i∈Irr(C)i � i∗ is the famous 
charge conjugate modular invariant CFT.

2. When A = 1, we still have [x, x]CB|B = x ⊗ x∗ for x ∈ CB|1C . On the one hand, by the defini-
tion of full center, we have Z([x, x]CB|B ) := [1(CB|B)[x,x]|[x,x], 1(CB|B)[x,x]|[x,x] ] � [1C, 1C]Z(C). 
On the other hand, the †-SSSFA x ⊗ x∗ in CB|B viewed as boundary CFT’s (via the forgetful 
functor f : CB|B → C) are precisely those boundary CFT’s in the Cardy case (see for example 
[19]). They share the same bulk (i.e. the full center) with the trivial boundary CFT V .

3. When B = 1 and A is not Morita equivalent to 1C, for x ∈ CA, [x, x]C � (x ⊗A x∗)∗ is 
not Morita equivalent to 1C. Instead, [x, x]C is Morita equivalent to [A, A]C = A because 
[A, −]C : CA → C is the forgetful functor. In this case, the bulk of [x, x]C is a modular in-
variant bulk CFT different from Z(1C). By taking A from all Morita classes, we recover all 
possible modular invariant bulk RCFT’s satisfying the V -invariant boundary condition.

The observables on the 0+1D world line in the middle of Fig. 23 (b) form a triple (V ⊗C
V , V ⊗C V , Z(C)CA|A′), which defines a 0+1D wall between the bulk CFT Z(A) and Z(A′). By 
the folding trick, non-chiral fields [a, a]Z(C) for a ∈ CA|A′ should be viewed as a boundary CFT 
of a double layered bulk CFT Z(A) �Z(A′) ∈ Z(C)� Z(C). One can prove this by proving that 
the full center of [a, a]Z(C) in Z(Z(C)) = Z(C) � Z(C) is precisely given by Z(A) � Z(A′) as 
shown below.

1. It is clear that Crev
A|A � CA′|A′ are Morita equivalent to Z(C), and the Morita equivalence is 

defined by the invertible (CA|A � Crev
A′|A′)-Z(C)-bimodule CA|A′ .

2. Then we obtain a monoidal equivalence Z(C)[a,a]|[a,a] � (CA|A � Crev
A′|A′). Therefore, we ob-

tain

Z([a, a]Z(C)) := [1(Z(C))[a,a]|[a,a],1(Z(C))[a,a]|[a,a] ]Z(C)�Z(C)

� [1CA|A � 1CA′ |A′ ,1CA|A � 1CA′|A′ ]Z(C)�Z(C)
= Z(A)�Z(A′).

Therefore, we have shown that the physical configuration in Fig. 23 (b) gives physically consis-
tent wall-boundary-bulk RCFT’s.

Remark 6.5. We have seen that the bulk CFT [A, A]Z(C) is independent of the choice of B , 
and [x, y]CB|B on the 0+1D gapless wall (V , CB|BCB|A) are all consistent with the same bulk 
CFT [A, A]Z(C). Moreover, when [x, y]CB|B is viewed as a wall between boundary CFT’s, it is 
physically indistinguishable with an object in C. In other words, one can identify [x, y]CB|B with 
an object in C via the forgetful functor f : CB|B → C.

Remark 6.6. We have proved the claims in [49, Section 3.3, Figure 5]. Moreover, above compu-
tation of dimensional reduction also provides a rigorous proof and a non-trivial generalization of 
the physical results and claims in [8,51].
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Fig. 24. These pictures depict physical configurations before and after the process of dimensional reduction.

More generally, bulk phases on the two sides of the gapped wall M in Fig. 23 (a) can be 
different, say (C, c) and (D, c) as illustrated in Fig. 24 (a). The VC and VD are unitary rational 
VOA’s such that C = ModVC

and D = ModVD
are Witt equivalent UMTC’s. The UFC’s X and Y

describe two gapped walls between two topological orders (C, c) and (D, c). The finite unitary 
category S describes a gapped 0d wall between X and Y. By Theoremph 3.13, two 0d gapless 
walls between two canonical chiral gapless edges are necessarily preserve a chiral symmetry V
(i.e. a sub-VOA of both VC and VD), which is unitary and rational. Then these two 0d walls are 
given by (V , X, PM) and (V , Y, QN), where

1. For E =: (ModV )VD|VC
and F := (ModV )VC|VD

, the UMFC P (resp. Q) is given by EX|X
(resp. FY |Y ) for a symmetric special †-Frobenius algebra X ∈ E (resp. Y ∈ F);

2. P (resp. Q) is a UMFC Morita equivalent to X (resp. Y) with the Morita equivalence defined 
by the invertible bimodule M (resp. N).

By similar argument, one can show that Fig. 24 (b) give consistent physical configurations. More 
precisely, we have

Z([m,m]) � [1X,1X]C�D, Z([n,n]) � [1Y,1Y]C�D,

Z([a, a]) � [1X,1X]C�D � [1Y,1Y]C�D

for m ∈ M, n ∈N, a ∈ S. They are all modular invariant bulk CFT’s.
In summary, we have shown that dimensional reduction processes of 2d topological orders 

naturally recover all boundary-bulk RCFT’s. Perhaps, a more interesting point of view is that the 
physics of 2d topological orders provide a physical reconstruction of the entire mathematical the-
ory of wall-boundary-bulk RCFT’s [19,16,18,40,41,11]. These processes also explain why there 
are one-to-one correspondences among the following four sets: (1) the set of modular invariant 
bulk RCFT’s [29,41], (2) the set of Lagrangian algebras in Z(C) [12], (3) the set of indecompos-
able module categories of C [54], (4) the set of monoidal equivalence classes of UFC’s that are 
Morita equivalent to C [54,12].
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Remark 6.7. As a by-product, we have proved Gapped-gapless Correspondence between the 
set of all 2+1D anomaly-free non-chiral topological orders and that of all 1+1D anomaly-free 
boundary-bulk-wall RCFT’s (up to the missing chiral and non-chiral symmetries).

7. Conclusions and outlooks

In this work and [49], we have developed the mathematical theory of gapped/gapless edges 
of 2d topological orders and higher codimensional gapped/gapless defects based on enriched 
(multi-)fusion categories and their representations. In this section, we discuss a few lessons we 
have learned from these two works.

The first lesson is that the mathematical description of a potentially anomalous gapped/gap-
less phase X depends on its codimension with respect to an anomaly-free topological order, in 
which X is realized as a defect with a non-trivial codimension [43]. For example, an anomaly-
free 1+1D modular invariant RCFT has a precise mathematical description (see for example [37, 
Theorem 4.17]), which is a 0-codimensional description. If we want to regard it as a boundary 
of the trivial 2d topological order, then we need add all possible defects that are allowed by the 
local quantum symmetries (i.e. a non-chiral symmetry in this case). These defects form an en-
riched fusion category, which provides a 1-codimensional description of the anomaly-free 1+1D 
modular invariant RCFT. Moreover, the center of this enriched fusion category is precisely the 0-
codimensional description of the trivial 2d topological order. We believe that this is a special case 
of a general principle for topological orders and its gapped/gapless boundaries in all dimensions.

Boundary-bulk relation: The center of the 1-codimensional categorical description, which 
contains all possible topological defects that can be obtained from elementary ones via con-
densations (called condensation descendants [42,39]), of a gapped/gapless boundary of an 
anomaly-free nd topological order X coincides with the 0-codimensional categorical descrip-
tion of X.

See more discussion in [39, Section 3.3] and the mathematical theory of condensation completion 
in [24].

The second lesson is that the study of gapped phases is that of gapless phases in disguise. 
Indeed, a general gapless phase can be obtained by stacking a layer of gapless phase with a layer 
of gapped phase as illustrated in the first picture in (7.1). Therefore, the mathematical structure 
of a gapped phase, such as the higher category of topological excitations [43,32,39], is also an 
indispensable ingredient of that of a generic gapless phase. This structure might be changed if 
we introduce interactions between two layers as illustrated in the second picture in (7.1), but its 
higher categorical nature remains intact.

(7.1)

Instead of using stacking, we can also describe this structure intrinsically. For a potentially 
anomalous gapless phase, it is possible to have gapped excitations, which are topological sectors 
of the complete Hilbert space. These topological sectors should also form a higher categorical 
structure similar to those topological excitations in a topological order. We will call this higher 
categorical structure the “topological skeleton” of the gapless phase.
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• For example, in the triple (V , X, PM) described in Theoremph 3.7, the enriched category 
PM is the topological skeleton. For a complete mathematical description of the gapless 
phase, one need add local quantum symmetries to the topological skeleton, such as V and X
in the triple (V , X, PM).

We believe that this example has revealed the general features of gapless phases in all dimen-
sions. More precisely, let us consider an anomalous gapped/gapless nD phase Xn realized as a 
defect in an (n + k)D anomaly-free gapped/gapless phase Yn+k . More precisely, Xn should be 
viewed as an nD domain wall between two n+1D defects Sn+1 and Tn+1 in Yn+k , so on and so 
forth. There is an nD local quantum symmetry Vn defined on Xn, where Vn is a (topological or 
conformal or geometrical) analogue of an En-algebra and will be called an n-disk algebra. There 
should be an n+1D local quantum symmetry Vn+1 defined in the n+1D neighborhood of Xn

determined by Sn+1 and Tn+1, where Vn+1 is an (n+1)-disk algebra and a common subalgebra 
of two (n+1)-disk algebras that define the n+1D local quantum symmetries in Sn+1 and Tn+1, 
respectively. Moreover, Vn is an n-disk algebra over Vn+1 in the sense of Lurie [52], so on and 
so forth. Therefore, we expect a k-codimensional mathematical description of Xn to be given by 
(Vn+k, · · · , Vn, X�), where X� is the topological skeleton.

In this context, the Gapped-Gapless Correspondence proposed in [49, Section 7] can be 
restated as follows: the topological skeletons of gapless phases can all be obtained by topo-
logical Wick rotations from gapped phases. Also note that local quantum symmetries Vi must 
be compatible with the topological skeletons. This provides a severe constraint on local quan-
tum symmetries for a given topological skeleton. In this sense, the topological skeleton can be 
viewed as the symmetry of a gapless phase, and provides a powerful tool and a systematic way 
to study all gapless phases. Moreover, many properties of gapless phases can be studied without 
knowing local quantum symmetries, such as the condensations of topological defects, domain 
walls between phases and boundary-bulk relation.

More precisely, since boundary-bulk relation holds in all dimensions [44], we expect that 
Theorem 4.15 can be generalized to a functorial statement of the boundary-bulk relation for 
higher dimensional topological orders with gapped and gapless boundaries. We illustrate this 
boundary-bulk relation in Fig. 25, where only topological skeletons are shown and local quantum 
symmetries are ignored because this relation only involves the topological skeletons. All gapless 
boundary/wall/defects are obtained from topological Wick rotations. In particular, it means that 
Xi is a gapped domain wall between two n+1d topological orders Ci and Bi for i = 1, 2, 3. 
Physically, this boundary-bulk relation can be stated as a functor from the higher category of nd 
boundaries of n+1d topological orders to the higher category of n+1d topological orders, by 
assigning each boundary to the monoidal center of its topological skeleton (i.e. BiXi 
→ Ci ), and 
assigning each 1-codimensional wall on the boundary to its one-dimensional higher relative bulk 
(i.e. SS0 
→ B4X4), so on and so forth. Mathematically, Xi’s are indecomposable unitary multi-
fusion n-categories, and BiXi ’s are indecomposable enriched unitary multi-fusion n-categories, 
and Ci ’s are unitary modular n-categories (i.e. unitary braided fusion n-categories with trivial 
E2-centers). The notion of a (braided) multi-fusion n-category was recently proposed in [32]
and its unitary version in [50]. The precise mathematical formulation of above boundary-bulk 
relation as a well-defined functor is a highly non-trivial mathematical conjecture. Even a small 
part of it, for example, that the monoidal center of CC is C for a unitary modular n-category C is 
already a quite amazing conjecture.
57



L. Kong and H. Zheng Nuclear Physics B 966 (2021) 115384
Fig. 25. This picture depicts three n+1d topological orders Ci for i = 1, 2, 3, three nd gapless boundaries and two gapless 
walls Bj Xj for j = 1, 2, 3, 4, 5 and two n−1d gapless defects SS0, TT0, where gapless boundaries/walls/defects are all 
obtained by topological Wick rotation.

Remark 7.1. In the light of the discussion around Eq. (7.1), it is reasonable to ask if the 
boundary-bulk relation holds when the bulk phases are also gapless. Since it seems that the 
notion of a topological skeleton is well defined for both the boundary and the bulk of a gapless 
phase, we propose that above boundary-bulk relation should generalize to gapless-bulk cases. 
This idea was further developed in [50]. Actually, the categorical formulation of the boundary-
bulk relation (also called open-closed duality) in 1+1D rational CFT’s [11,45] is an example of 
this generalized boundary-bulk relation for gapless bulk phases.

Remark 7.2. The topological Wick rotation has another important application. By topologi-
cally Wick rotating the mathematical description of symmetry protected/enriched topological 
orders (SPT/SET) with finite onsite symmetries based on the idea of boundary-bulk relation [39, 
Theoremph 1.1], we obtain a new mathematical description of SPT/SET’s in all dimensions in 
terms of enriched higher categories (first proposed in [50, Section 5.2]). For example, given a 
symmetry fusion category E, the enriched fusion category Z(E)E defines the topological skeleton 
of a 1+1D SPT with the onsite symmetry E. The information of the onsite symmetry can be added 
by setting E = Rep(G) or Rep(G, z) and selecting a braided auto-equivalence φ : Z(E) → Z(E)

that preserves the canonical embedding E ↪→ Z(E). Different choices of φ define different en-
richments, which further defines different SPT’s. When E = Rep(G), such braided equivalences 
φ are classified by H 2(G, U(1)). This means that an onsite symmetry can be viewed as a special 
case of local quantum symmetries.
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