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1 Introduction

The striped superconductor (SSC) is a special kind of high-Tc superconductors charac-
terized by the presence of pair density waves (PDW), which is described by a spatially
modulated order parameter [1–5]. The SSC phase plays a key role in understanding the
mechanism of high-temperature superconductivity because in many materials SSC appears
as the intertwined phase of charge density wave (CDW) phase and the uniform supercon-
ducting (SC) phase. The former is due to the spontaneous breaking of the translational
symmetry, while the latter is due to the spontaneous breaking of U(1) gauge symmetry.
The interplay between CDW phase and SC phase has been studied in high-Tc supercon-
ductors for decades [6–13]. They exhibit very peculiar and complicated relations which
may be both cooperative and competitive. However, due to the strongly coupled nature
of the system, the theoretical mechanism leading to these relations maintains mysterious,
which prevents us from understanding the abundant phase structure of high-Tc supercon-
ductors. Now, more and more experimental evidences for PDW have been accumulated
such as in cuprate Bi2Sr2CaCu2O8+x, where the PDW order exhibits the same period as
CDW [14]. Therefore, investigating the formation of SSC and its features from a theoreti-
cal point of view will improve our understanding on the relationship between CDW phase
and SC phase.

The holographic duality, also known as AdS/CFT correspondence, has been applied
to analyze the fundamental problems in strongly coupled system in condensed matter
physics [15–17]. The key point is that a quantum operator involving dynamics with strong
interactions can be holographically dual to a field in one-dimension higher spacetime, whose
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dynamics is well described by the classical theory of gravity. In particular, recent progress
on AdS/CMT has provided us robust foundation to investigate the relationship between
SC phase and CDW phase. On one hand, various holographic models have been built
for SC since the seminal work in [18–20], where the occurrence of superconducting phase
transition is signaled by the formation of the scalar hair in the bulk. On the other hand,
the holographic description of CDW has also been established by spontaneously breaking
the translational invariance [21–24].

In the early stage of AdS/CMT duality, some references were motivated to construct
holographic models for SSC [25, 26]. However, in these models the spatially modulated
phase was sourced by a chemical potential, which means the translational invariance was
broken explicitly instead of spontaneously. Moreover, the full backreaction to the back-
ground was not taken into account. Later, some efforts have been made to implement the
phase diagram with SC and CDW where the translational symmetry is spontaneously bro-
ken [27, 28], and then attempted to construct a holographic model for PDW [29, 30]. Per-
haps it should be stressed that in these papers the holographic superconductor is achieved
by means of Stückelberg mechanism, rather than the standard U(1) symmetry breaking
in which the scalar field is the modular of the complex field and thus must be positive
definite. Furthermore, the translational symmetry breaking is characterized by the same
order parameter of superconductivity such that these two different symmetries must be
broken simultaneously [29, 30]. In another word, the CDW phase and PDW always coexist
and can not be separated such that SSC as the intertwined phase of CDW and SC is not
transparently demonstrated.

In this paper, we intend to construct a holographic model for SSC that is achieved
as the intertwined phase of CDW phase and SC phase. In contrast to the previous holo-
graphic work in literature, we insist that the CDW phase is implemented by breaking the
translational invariance spontaneously and the SC phase is implemented by the standard
U(1) symmetry breaking, rather than Stückelberg mechanism. More importantly, we will
introduce different order parameters for above symmetry breaking such that the CDW and
SC phase can exist individually. Moreover, the interplay between the CDW phase and SC
phase can be manifestly demonstrated such that the SSC as the intertwined phase of these
two phases is manifestly observed in the phase diagram. In another word, the PDW order
is induced due to the coexistence of CDW and SC. Therefore, the SSC is characterized
by the coexistence of three orders, namely the CDW, the SC and the PDW order, which
has been experimentally observed in ref. [13]. We investigate the interplay of these three
orders in SSC phase and explore how the features of PDW could reflect the relationship
between the CDW and the SC.

Nevertheless, the main motivation of the current paper comes from our recent work in
ref. [31], in which we have successfully constructed a holographic model demonstrating that
the superconductivity can be induced by CDW solely. To achieve this, one needs to separate
the CDW from free charges such that the electric chemical potential is set to zero. In this
paper we intend to turn on the electric chemical potential and investigate the relationship
between CDW and SC which is induced by the normal free charges. Therefore, in this
paper we introduce a doping parameter x, which is defined as the ratio of two chemical
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potentials associated with two gauge fields A and B respectively. In current paper we
will obtain a different kind of CDW in contrast to the CDW constructed in ref. [31], and
demonstrate that the CDW exhibits a quite different relationship with SC. More explicitly,
we find that in the presence of free charges, only the even orders of the Fourier modes exist
in the expansion of the charge density, while in ref. [31] only the odd orders exist. Based
on the results obtained in this paper and those in ref. [31], we intend to conjecture that
the complicated relationship between CDW and SC observed in experiments would be the
combinational effects of these two different kinds of CDWs.

The paper is organized as follows. In section 2, we present the holographic setup for the
striped superconductor based on doubly charged black holes. In section 3, we investigate
the instability of the system under the perturbations with spatially modulated modes,
and obtain the phase diagram for CDW with the critical temperature as the function of
the doping parameter x. In section 4, we investigate the superconducting condensate in
the absence of the translational symmetry breaking. Then we focus on the SSC phase
in section 5, which results from the coexistence of CDW phase and SC phase. The full
background with charge density waves and superconductivity will be numerically obtained
and the relations among these three orders will be analyzed. We present our conclusions
and discussions in the last section.

2 The holographic setup

We consider a holographic model in four dimensional spacetime, in which gravity is coupled
to a dilaton field, two U(1) gauge fields and a complex scalar field. The action is given by,

S = 1
2κ2

∫
d4x
√
−g

[
R− 1

2 (∇Φ)2 − V (Φ)− 1
4ZA(Φ)F 2

−1
4G

2 − |(∇− ieB) Ψ|2 −m2
vΨΨ∗

]
,

(2.1)

where F = dA, G = dB, ZA(Φ) = 1 − β
2L

2Φ2, V (Φ) = − 1
L2 + 1

2m
2
sΦ2. The β-term is

introduced to induce the instability of the homogeneous background such that the trans-
lational symmetry can be spontaneously broken. The dilaton field Φ is real and its leading
order near the boundary will be treated as the order parameter of translational symmetry
breaking. We also introduce two U(1) gauge fields A and B such that the black hole could
be doubly charged, but we will treat B as the electromagnetic field and study the transport
properties of its dual field. Moreover, to break U(1) gauge symmetry spontaneously we
introduce the complex scalar field Ψ as the order parameter of condensation. We redefine
the complex scalar field Ψ as ηeiθ, where η > 0 and θ will be set θ = 0 as a gauge fixing.
The equations of motion are given by,

Rµν − TΦ
µν − TAµν − TBµν − T ηµν = 0,

∇2Φ− 1
4Z
′
AF

2 − V ′ = 0,

∇2η −m2
vη − (eB)2η = 0,
∇µ(ZAFµν) = 0,

∇µGµν − 2e2η2Bν = 0,

(2.2)
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where
TΦ
µν = 1

2∇µΦ∇νΦ + 1
2V gµν ,

TAµν = ZA
2

(
FµρF

ρ
ν −

1
4gµνF

2
)
,

TBµν = 1
2

(
GµρG

ρ
ν −

1
4gµνG

2
)
,

T ηµν = ∇µη∇νη + e2η2BµBν + 1
2m

2
vη

2gµν ,

(2.3)

and the prime ′ denotes the derivative with respect to the dilaton field Φ. We consider the
formation of CDW and superconductivity over a doubly charged AdS-RN black hole. The
ansatz for the background can be written as:

ds2 = 1
z2

[
−(1− z)p(z)Qttdt2 + Qzzdz

2

(1− z)p(z) +Qxx
(
dx+ z2Qxzdz

)2
+Qyydy

2
]
,

At = µ1(1− z)a, Bt = µ2(1− z)b, Φ = zφ, η = zζ,

(2.4)

where p(z) = 4
(
1 + z + z2 − (µ2

1+µ2
2)2z3

16

)
, µ1 and µ2 are the chemical potential of gauge

field A and B, respectively. Qtt, Qzz, Qxx, Qyy, Qxz, ψ, a, b, φ, ζ are functions of x and
z. Obviously, if we set Qtt= Qzz= Qxx= Qyy = a = b = 1 and Qxz = φ = ζ = 0, the
background is a doubly charged version of AdS-RN black hole. Throughout this paper we
shall set the AdS radius l2 = 6L2 = 1/4, the masses of the dilaton and the condensation
m2
s = m2

v = −2/l2 = −8, the coupling constant β = −129. In addition, we require that
l2

2κ2 � 1 such that the large N limit of the dual field theory is guaranteed. Moreover, we
will take µ1 as the unit and define x = µ2/µ1 as the doping parameter, as proposed in
ref. [27]. Obviously, with a larger doping parameter, the system contains more effective
carriers and its transport properties are expected to vary correspondingly. Finally, the
Hawking temperature of the black hole is simply given by T/µ1 = (48− µ2

1 − µ2
2)/(16πµ1)

and this expression is also applicable for striped black holes due to the Einstein-DeTurck
method [32–37].

We remark that the holographic model considered in this paper is different from what
has previously been studied in refs. [24, 31], where a coupling term between gauge field A
and B, namely γΦFG, is introduced into the action such that the dome of the unstable
region could shift to a position with non-zero kc. This coupling term is harmless there since
the gauge field B is turned off, such that the order parameter of translational symmetry,
namely the dilaton field Φ, always has a zero solution before the translational symmetry
breaking. However, in current paper we intend to introduce free charges with finite density
associated with the gauge field B, thus B is turned on to form a doubly charged AdS-
RN black hole as the background. At this situation, one needs to turn off the coupling
term, otherwise it would contribute a non-trivial term to the equation of dilaton field Φ
in eq. (2.2), such that the order parameter would not have a zero solution even prior to
the symmetry breaking. Therefore, in current paper we drop off this coupling term and
demonstrate that it will lead to interesting phenomenon for the interplay between CDW
and SC, which is dramatically different from those observed in [24, 31].
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Near the AdS boundary z → 0, we obtain the following asymptotic form of the fields,

Qtt = 1 + qtt(x)z3 + o(z4), Qzz = 1 + o(z4),
Qxx = 1 + qxx(x)z3 + o(z4), Qyy = 1 + qyy(x)z3 + o(z4),

Qxz(z) = o(z2), At = µ1 − ρA(x)z + o(z2),
Bt = µ2 − ρB(x)z + o(z2),

(2.5)

where ρB(x) is the charge density we are interested in, and the form of Fourier expansion
is given by

ρB(x) = ρ
(0)
B + ρ

(1)
B cos(kx) + ρ

(2)
B cos(2kx) + · · · . (2.6)

In section 3, 4 and 5, we will firstly obtain the phase diagram for the system by perturba-
tive analysis and then solve all the coupled equations with full backreaction numerically.
Before this we argue that over a doubly charged black hole background, both translational
symmetry and U(1) gauge symmetry could be spontaneously broken when the temperature
drops down, giving rise to the CDW phase and SC phase, respectively. We will explicitly
show that, which one breaks prior to the other depends on the doping parameter x.

3 The charge density wave phase (Φ 6= 0, η = 0)

In this section we consider the formation of CDW in the absence of superconductivity,
which can be done by turning off the condensate field, namely setting η = 0 always. The
holographic CDW is formed by spontaneously breaking the translational symmetry. Such
instability is caused by the violation of the BF bound of AdS2, which is the near horizon
geometry in the extremal limit. Below the critical temperature Tc, the AdS-RN black hole
becomes unstable and the spatially modulated modes may appear to form a striped black
hole. Specifically, we turn on the following linear perturbation to examine the instability
of the black hole,1

δΦ = δφ(z) cos(kcx). (3.1)

By substituting (3.1) into the equations of motion (2.2), we obtain the linearized equation
for δΦ. Moreover, we demand the regular boundary condition at the horizon z = 1, while
the asymptotic expansion of δφ(z) near the boundary is

δφ ≈ δφ1z + δφ2z
2 + · · · , (3.2)

where δφ1 is treated as the source and δφ2 as the expectation value in the dual theory.
Since one expects the translational invariance is spontaneously breaking, we set δφ1 = 0.
In figure 1, we plot the critical temperature as the function of the wave number for x =
0, 1, 2, 3. Below the curves the AdS-RN black hole becomes unstable and the spatially
modulated modes will appear with the allowed wave number as illustrated in figure 1.

Without loss of generality, we take the wave number kc/µ1 = 0.34 throughout the
paper. For a given kc/µ1 and doping parameter x, one can drop down the temperature of

1Unlike the case in ref. [31], here one need not turn on the perturbation of gauge field B since at linear
level they are decoupled to each other.
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Figure 1. The critical temperature as the function of wave number for x = 0, 1, 2, 3. The region
below each curve becomes unstable and CDW can be generated.

Figure 2. The CDW phase diagram in (x, T ) plane.

the black hole, then the instability of the background is signaled by the presence of non-
trivial solution for δΦ at some temperature, which is estimated as the critical temperature
Tc. As illustrated in figure 2, the curve in red depicts the critical temperature Tc of CDW
phase as the function of x. In general, we find the critical temperature goes down with the
increase of the doping parameter x. This is not surprising since the CDW is an insulating
phase, with the increase of the carriers, the formation of CDW phase becomes harder.

Next, we explicitly construct the background with CDW by numerically solving all
the equations of motion in the absence of condensation field. In particular we obtain the
numerical results for the charge density. It is found that only even orders of the Fourier
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Figure 3. The CDW amplitude ρ(2)
B as the functions of temperature T (left) and doping parameter

x(right).

series of ρB(x) appear, namely

ρB(x) = ρ
(0)
B + ρ

(2)
B cos(2kcx) + · · · . (3.3)

It is quite interesting to compare the above result with that obtained in [31], where
only odd orders of the Fourier series exist, namely

ρB(x) = ρ
(1)
B cos(kcx) + ρ

(3)
B cos(3kcx) + · · · . (3.4)

This key difference results from the following two facts. First, in [31] the chemical potential
is always set to zero, namely x = 0, then the leading term of charge density has to be zero,
namely ρ(0)

B = 0. Second, the coupling term ΦFG is absent in current paper, thus even
in the limit x → 0, the striped black hole background will not go back to the solutions
in [31], instead the charge density maintains the form as in eq. (3.3) and goes to zero in
the limit x→ 0.

To justify this we may plot the constant term of the charge density ρ
(0)
B as well as

the CDW amplitude ρ(2)
B as the function of temperature T and doping parameter x, as

illustrated in figure 4 and figure 3. From the left of figure 4, it is obvious to see that ρ(0)
B

has the same tendency with the temperature even in the presence of CDW. In another word,
the presence of CDW does not change the value of ρ(0)

B at a given temperature. Moreover,
with the increase of doping parameter, ρ(0)

B increases as well, as illustrated in the right
plot of figure 4. In the left plot of figure 3, we find the amplitude of CDW ρ

(2)
B increases

and then intends to be saturated when dropping down the temperature. In the right plot
of figure 3, ρ(2)

B exhibits interesting behavior with the doping parameter x. In the limit
x → 0, both ρ(0)

B and ρ(2)
B are vanishing such that the gauge field B has the zero solution

only, while for large x we find ρ(2)
B becomes smaller again because the phase transition is

suppressed by the increase of carriers, as illustrated in the phase diagram figure 2.
The near boundary expansion of the CDW order parameter is φ = φ2(x)z2, and we

numerically find φ2 behaves as

φ2(x) = φ
(1)
2 cos(kcx) + φ

(3)
2 cos(3kcx) · · · . (3.5)
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Figure 4. The charge density ρ(0)
B as the function of temperature T (left) and doping parameter

x(right). The solid lines in color stand for ρ(0)
B in black hole with CDW, while the dashed lines in

color stand for ρ(0)
B in RN black hole. The vertical lines denote the location of CDW phase transition.

Figure 5. The order parameter φ(1)
2 as the function of temperature T (left) and doping parameter

x(right).

We plot the magnitude of the order parameter φ(1)
2 in figure 5. It is also noticed that φ(1)

2
goes to zero in the limit x → 0, while for large x, φ(1)

2 drops down again which behaves
similarly as ρ(2)

B .
As a summary of this section, we find that the critical temperature Tc of CDW decreases

with the increase of the doping parameter x, which means achieving such an insulating
phase becomes harder with the doping. However, the Fourier series of the charge density
ρB(x) grow up with x, indicating that the CDW phase benefits from the increase of carriers.

4 The uniform superconducting phase (η 6= 0, Φ = 0)

In this section we consider the condensate of superconductivity in the absence of CDW,
which can be done by setting Φ = 0 always. The SC phase is characterized by the conden-
sation of the complex scalar fields when U(1) symmetry is spontaneously broken. In order
to evaluate the critical temperature for the condensation, we may consider the perturba-
tion of the scalar field η over a fixed background. The perturbative equation of motion is
given by:

−∇2η +m2
vη = −e2B2η. (4.1)
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Figure 6. The SC phase diagram in (x, T ) plane.

As investigated in [35, 38], this is a positive self-adjoint eigenvalue problem for e2. We
demand regularity on the horizon z = 1. And the asymptotical behavior near z = 0 is
given by

η ≈ η1z + η2z
2 + · · · . (4.2)

Since U(1) symmetry should be broken spontaneously, we set the source term η1 = 0.
The condensation of the scalar field will be signaled by the appearance of non-vanishing
solution for η2. For a fixed e2, the corresponding critical temperature Tc for SC depends
on the doping parameter x. As illustrated in figure 6, the curve in green depicts the critical
temperature Tc of SC phase as the function of x for e = 4. In contrast to CDW phase, we
find that with the increase of the doping parameter x, the critical temperature Tc for SC
phase goes up, indicating that the condensation of Cooper pairs becomes easier with the
increase of carriers.

Next we construct the background with condensation by solving all the equations of
motions. Note that, as compared to section 3, the order parameter η2(x) of SC and the
charge density ρB(x) are now uniform in x-direction, namely η2(x) = η

(0)
2 and ρB(x) = ρ

(0)
B .

We plot ρ(0)
B and η(0)

2 as the function of T and x in figure 8 and figure 7. Obviously, one
finds that below the critical temperature, the charge density ρ(0)

B in SC phase exhibits an
opposite behavior with the temperature and is much larger than that in normal phase.
In addition, we find the charge density as well as the critical temperature of SC increases
with the doping parameter x. In the plot of figure 7, we find the saturated value of the
condensation increases as well with the doping parameter.

As a summary of this section we conclude that the condensation of uniform SC ben-
efits from the doping mechanism. The critical temperature Tc increases with the doping
parameter x. The charge density ρ(0)

B and the saturated value η(0)
2 of the condensation grow

up with x as well.
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Figure 7. The order parameter η(0)
2 of uniform SC as the function of temperature T (left) and

doping parameter x(right).

Figure 8. The charge density ρ(0)
B as the function of temperature T (left) and doping parameter

x(right). The solid lines in color stand for ρ(0)
B after condensation, while the dashed lines in color

stand for ρ(0)
B in RN black hole. The vertical lines denote the location of SC phase transition.

5 The striped SC phase (Φ 6= 0, η 6= 0)

5.1 The phase diagram

In this section we focus on the striped superconductivity due to the coexistence of CDW
and uniform SC, namely η 6= 0 and Φ 6= 0. When both the transitional symmetry and
U(1) symmetry are spontaneously broken, a new phase is formed which is called the striped
superconducting phase. Now the asymptotic behavior of η2 becomes x-dependent and can
be expanded as

η2(x) = η
(0)
2 + η

(1)
2 cos(kcx) + η

(2)
2 cos(2kcx) + · · · , (5.1)

where among coefficients η(i)
2 (i = 1, 2, . . .) of the modulated modes, the leading orders,

for instance η(1)
2 or η(2)

2 , could be treated as the order parameter of the striped SC phase.
Obviously, the presence of the striped phase results from the coexistence of the CDW
phase and the SC phase. Usually this novel phase is also called pair density waves (PDW)
phase implying the periodic distribution of Cooper pairs in spatial directions. In a parallel
way, we may plot the phase diagram by perturbative analysis, as illustrated in figure 9.
The brown region stands for SSC phase, and there are three orders in this region, namely
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Figure 9. The phase diagram in (x, T ) plane. The dashed vertical line corresponds to xc ≈ 1.53.

CDW order, uniform SC order and PDW order, where xc ≈ 1.53 is the critical doping
parameter. The dashed curve in orange depicts the critical temperature Tc of CDW phase
in the absence of SC phase, while the curve in red depicts Tc of CDW in the presence of SC
phase. On the left-hand side of xc, the CDW phase is formed prior to the SC phase, thus
these two curves are overlapped, while on the right-hand side of xc, the SC phase is formed
prior to the CDW phase, thus we find these two curves are different. In particular, we
find the critical temperature of CDW in the presence of SC is always higher than that in
the absence of superconductivity. This is because the constant term of the charge density
becomes larger in the presence of SC such that the formation of CDW becomes easier.
Furthermore, the curve in green depicts the critical temperature Tc of SC phase in the
absence of CDW phase, while the dashed curve in blue depicts Tc of SC in the presence
of CDW phase. It is quite interesting to notice that on the left-hand side of xc, the green
curve is almost overlapped with the dashed blue curve, indicating that the presence of
CDW does not change the critical temperature of SC. This result will further be justified
by our analysis on the background with full backreactions, as presented below.

5.2 The PDW order in SSC phase

Now we take the backreactions into account and numerically solve all the equations for
the background with CDW and SC, focusing on the temperature behavior of the charge
density wave ρB(x), the scalar condensate η2(x) and the CDW order parameter φ2(x).

In figure 10, we perform the contour plot for the charge density wave ρB(x) as the
function of x and temperature T for x = 1.5 and x = 1.6, respectively. In parallel, we
perform the contour plot for the condensate η2(x) as the function of x and temperature
T for x = 1.5 and x = 1.6 in figure 11, respectively. One finds that η2(x) becomes
spatially modulated when the CDW is involved, indicating that the striped SC is formed.
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Figure 10. The contour plot for the charge density wave ρB(x) as a function of x and temperature
T for x = 1.5 and x = 1.6, respectively.
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Figure 11. The contour plot for the condensate η2(x) as a function of x and temperature T for
x = 1.5 and x = 1.6, respectively.

Numerically, in terms of Fourier series, we find that ρB(x), η2(x), and φ2(x) have the
following form

ρB(x) = ρ
(0)
B + ρ

(2)
B cos(2kcx) + · · · ,

η2(x) = η
(0)
2 + η

(2)
2 cos(2kcx) + · · · ,

φ2(x) = φ
(1)
2 cos(kcx) + φ

(3)
2 cos(3kcx) · · · . (5.2)

The formation of SSC is signaled by the appearance of non-zero η(2)
2 , that we treat as the

order parameter of PDW. Obviously, the formation of PDW results from the coexistence of
CDW φ

(1)
2 and the uniform SC η

(0)
2 , thus the SSC is implemented as the intertwined phase

of CDW and the uniform SC phase and is characterized by the coexistence of three orders,
namely CDW order, uniform SC order and PDW order. Moreover, it is interesting to notice
that the condensate η2(x) shares the same period with the charge density wave ρB(x).
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Figure 12. The uniform SC order parameter η(0)
2 as the function of temperature T (left) and doping

parameter x(right). The solid curves in color stand for η(0)
2 in SSC phase, while the dotted curves

in color stand for η(0)
2 in the absence of CDW.

Figure 13. The PDW order parameter η(2)
2 as the function of temperature T (left) and doping

parameter x(right).

5.3 The interplay of three orders

Next, we demonstrate the temperature behavior of the order parameters and charge density
in details, which is helpful for us to understand the structure of the phase diagram obtained
in figure 9. First of all, we are concerned with the order parameter of PDW, namely η(2)

2 .
The non-zero value of η(2)

2 implies that the Cooper pairs develop a periodic structure with
spatial oscillation due to the presence of the CDW. In figure 13, we plot η(2)

2 as the function
of T and x, respectively. The left plot shows that below the critical temperature the PDW
grows rapidly as T drops down. The right plot shows that the PDW becomes prominent
with the increase of the doping parameter x at first, and then gradually decays with the
doping parameter x.

In parallel, we plot the order parameter of CDW φ
(1)
2 and that of the uniform SC

η
(0)
2 as functions of T and x in figure 14 and figure 12, respectively. First of all, we are
very interested in how these three orders interact in SSC phase. In particular, we are very
concerned how the CDW order and the uniform SC order would affect the PDW order in
SSC phase. Or conversely, from the PDW order, can one read any information about the
CDW order and the uniform SC order? As the intertwined order of CDW and uniform
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Figure 14. The CDW order parameter φ(1)
2 as the function of temperature T (left) and doping pa-

rameter x(right). The solid lines in color stand for φ(1)
2 in SSC phase, while the dashed lines in color

stand for φ(1)
2 in the absence of SC. The vertical lines denote the location of SSC phase transition.

Figure 15. The relation between the PDW order parameter η(2)
2 and the ratio of uniform SC order

parameter to the CDW order parameter η(0)
2 /φ

(1)
2 .

SC order, we know that the PDW order φ(1)
2 must be zero when either CDW order φ(1)

2 or
uniform SC order η(0)

2 vanishes. As a result, we intend to plot the relation between η
(2)
2

and η(0)
2 /φ

(1)
2 , as illustrated in figure 15. It is interesting to notice that there exists a tip

in each curve indeed. Moreover, with the decrease of temperature, we find that η(0)
2 /φ

(1)
2

of the tip approaches to one, which means that the PDW order becomes prominent when
the CDW order and uniform SC order have a balanced contribution in the SSC phase.

Next, we turn to investigate how the CDW order and the uniform SC order would
affect to each other in SSC phase. When the temperature goes down, there are two possible
sequences for the occurrence of phase transition. One is that the CDW order is formed
prior to the uniform SC order, while the other is that the uniform SC order is formed prior
to the CDW order, which depends on the doping parameter x. In the left plot of figure 14,
the blue curve demonstrates that the CDW order is formed prior to the uniform SC order.
In comparison with the data in the absence of SC, we find the saturated value of φ(1)

2
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grows up a little bit higher, which looks interesting. While the orange curve demonstrates
that the formation of uniform SC order is prior to the CDW. We find that the critical
temperature of CDW in the presence of SC is higher than that in the absence of SC, which
is consistent with the phase diagram in figure 9. Again, its saturated value becomes a little
bit higher.

On the other hand, from the left plot of figure 12 we notice that the data of the uniform
SC η

(0)
2 in SSC phase are the same as those in the absence of CDW. This means that the

CDW order does not affect the formation of uniform SC. The critical temperature of SC is
not sensitive to the CDW order either, as illustrated in figure 9. This could be understood
as follows, the CDW phase is characterized by φ(1)

2 and ρ(2)
B . Numerically such sub-leading

orders in Fourier expansion would not change the data of leading orders much. This also
interprets why the critical temperature of CDW in SC phase is larger than that in the
absence of SC phase in figure 9, since the presence of more carriers would make it easier to
distort the crystal lattice leading to the spontaneous breaking of translational symmetry
in a doping system.

Next we plot the charge density ρ(0)
B and ρ(2)

B as the function of temperature T and x.
In our opinion, in SSC phase these two terms contain the information about both the CDW
order and the PDW order. In figure 16 we find ρ(0)

B is sensitive to the SC order only, and
independent of the CDW order. However, we insist that if the formation of CDW order is
prior to the SC phase, some free charges should be pinned by the lattice effects and exhibit
an insulating behavior.2 Thus, ρ(0)

B contains two ingredients in SSC phase. One is the
average charge density of CDW, and the other is the average charge density of superfluid.
In the left plot of figure 17, the blue curve illustrates the case that the CDW order is formed
prior to the SC phase. We find ρ(2)

B jumps at the critical temperature of SC, signaling the
formation of PDW. While the orange curve illustrates the case that the uniform SC order
is formed prior to the CDW phase. One notices that the critical temperature of CDW
in the presence of SC is higher than that in the absence of SC, which is consistent with
the phase diagram in figure 9. In this case, PDW is formed simultaneously with CDW.
Thus from beginning, ρ(2)

B contains the information of these two orders. Obviously, the
PDW shares the same period as the CDW.3 Furthermore, it is important to notice that
the saturated ρ

(2)
B becomes smaller in comparison with that in the absence of SC phase,

which implies that the CDW order is suppressed by the presence of SC order. In the right
plot of figure 17, we find that at low temperature ρ(2)

B decreases with the presence of the
SC order as well.

2Although in current paper we do not introduce the lattice structure for the simplicity.
3This is consistent with phenomenon observed in experiment where the period of PDW is twice of that

of CDW, because different order parameters are applied to characterize the superconductivity. Here we take
the modular part of the complex scalar field, η2, as the order parameter, which is always positive definite
(hence η(0)

2 > η
(2)
2 ). However, if one takes the real part of the complex scalar field as the order parameter

(which could be negative), for instance gauging fixing the imaginary part to zero, then taking the Fourier
expansion, one can easily find the period of the modular is just one half of the period of real part of the
complex field.
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Figure 16. The charge density ρ(0)
B in the presence of CDW as the function of temperature T (left)

and doping parameter x(right). The solid curves in color stand for ρ(0)
B in SSC phase, while the

dotted curves in color stand for ρ(0)
B in the absence of CDW, and the dashed lines in color stand for

ρ
(0)
B in RN black hole. The vertical lines in black denote the location of the critical temperature of

SC, and the vertical lines in pink or purple denote the location of the critical temperature of CDW.

Figure 17. ρ(2)
B as the function of temperature T (left) and doping parameter x(right). The solid

curves in color stand for ρ(0)
B in SSC phase, while the dashed lines in color stand for ρ(2)

B in the
absence of SC. The vertical lines denote the location of SSC phase transition.

5.4 The free energy of three phases

In the end of this section we intend to verify that among above three phases, namely CDW,
SC and SSC phase, the striped superconducting phase is the most stable state, and thus
is favored by the system. For this purpose, we compute the averaged free energy of the
system. According to refs. [22, 23, 39, 40], the free energy of the dual field on the boundary
is identified with the product of the temperature and the on-shell Euclidean bulk action.
Specifically, the averaged free energy of the system is given by

F = M − µ1QA − µ2QB − TS, (5.3)
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Figure 18. The averaged free energy for RN black hole, CDW/SC black hole and SSC black hole
with x = 1.4(left) and x = 1.6(right), respectively.

where

M = 2 + µ1
2 + µ2

2 −
3kc
2π

∫ 2π/kc

0
qtt(x)dx,

QA = kc
2π

∫ 2π/kc

0
ρA(x)dx,

QB = kc
2π

∫ 2π/kc

0
ρB(x)dx,

S = k

∫ 2π/kc

0

√
Qxx(x, 1)Qyy(x, 1)dx.

(5.4)

In figure 18, we plot the averaged free energy for different background solutions with x = 1.4
and x = 1.6, respectively. The system undergoes the phase transitions from RN black hole
to striped black hole with CDW and then to SSC black hole, or from RN black hole to black
hole with SC and then to SSC black hole. The plots evidently show that the free energy of
black hole with SSC is the lowest one in comparison with other two phases. This indicates
that the SSC branch is thermodynamically preferred under the critical temperature, indeed.

6 Discussion

In this paper we have constructed a holographic model for striped superconductor, where
both U(1) symmetry and translational symmetry are spontaneously broken. Firstly, we
have obtained the phase diagram for the CDW phase and the uniform SC phase separately,
and then constructed the phase diagram for the striped superconductor, which contains
three orders, namely the CDW order, uniform SC order and PDW order. The PDW order
is implemented as the intertwined order of the CDW order and the uniform SC order. It
is found that the CDW order is suppressed by the presence of the uniform SC order, while
the SC order is not sensitive to the presence of CDW order. Furthermore, PDW shares the
same period with CDW. This relation is the same as that observed in experiments [14].
Finally, we have also demonstrated that among all the possible solutions, the black hole
in SSC phase has the lowest free energy and thus is favored from the thermodynamical
point of view.
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It is quite instructive to compare our results obtained in this paper with those in
ref. [31]. Two different kinds of CDWs were constructed in these two papers. In current
paper CDW contains even orders of the Fourier modes of charge density, while in ref. [31]
the CDW contains odd orders only. The different forms of CDW lead to distinct behavior
in the interplay of CDW order and SC order. In [31] due to the absence of free charges,
the U(1) gauge symmetry is broken by the presence of CDW only, thus the SC order
benefits from the existence of CDW. While in current paper the U(1) gauge symmetry is
broken by the presence of free charges, and we find the uniform SC order is not sensitive
to CDW at all. We conjecture that the CDW observed in practical materials could be
the combination of these two kinds of CDW in holographic framework and thus exhibit
more abundant interplay behavior with the SC order. Therefore, it is quite desirable to
construct a holographic model for CDW which contains both even and odd orders of the
charge density.

In current model we have only considered the essential ingredients to generate the
striped superconductor as the intertwined phase of CDW order and SC order. It is quite
worthwhile to investigate more complicated relations between CDW and SC by introducing
various interacting terms among gauge fields and scalar fields, for instance, considering the
coupling between the condensation field of SC and the dilaton field of CDW. This may
disclose more novel phenomena in high temperature superconductivity and deserve for
further investigation.
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