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Abstract Motivated by two seminal models proposed to
explain the Universe acceleration, this paper is devoted to
study a hybrid model which is constructed through a gener-
alized Chaplygin gas with the addition of a bulk viscosity. We
call the model a viscous generalized Chaplygin gas (VGCG)
and its free parameters are constrained through several cos-
mological data like the Observational Hubble Parameter,
Type Ia Supernovae, Baryon Acoustic Oscillations, Strong
Lensing Systems, HII Galaxies and using Joint Bayesian
analysis. In addition, we implement a Om-diagnostic to ana-
lyze the VGCC dynamics and its difference with the stan-
dard cosmological model. The hybrid model shows impor-
tant differences when compared with the standard cosmolog-
ical model. Finally, based on our Joint analysis we find that
the VGCG could be an interesting candidate to alleviate the
well-known Hubble constant tension.

1 Introduction

The origin of the accelerated expansion of the Universe in
recent epochs is believed to be caused by an unknown compo-
nent of the universe called the Dark Energy (DE). DE is one
of the cornerstones in the modern cosmology. Despite that the
DE is a strange phenomenon which evolves into an Einstein–
D’Sitter structure, it is confirmed by several observations
such as the cosmic microwave background radiation (CMB)
[1], the distance modulus of type Ia Supernovae (SnIa) [2–4]
and recently through the large-scale structure studies [5].

a e-mail: ahalmada@uaq.mx (corresponding author)

The simplest candidate to explain DE comes from adding
a cosmological constant (CC with value �) [6] in the Einstein
field equations, i.e., a geometrical correction to them. On the
other hand, such CC can also be seen as an effective fluid
with an equation of state (EoS) w = −1 when it is included
through the energy–momentum tensor. Nevertheless, the CC
origin as quantum vacuum fluctuations is not well understood
[7,8], encouraging the necessity of new approaches to under-
stand its nature. Motivated by the CC problems, the commu-
nity has been exploring alternatives to the CC which can be
classified in two kinds of solutions: modify the Einstein field
equations or include effective fluids to them. In this sense, a
zoo of DE models has been appearing in the literature. We
can list for instance, models related to modified gravity as
f (R) theories [9–11], the extra dimensions [12,13], unimod-
ular gravity [14–17]. Conversely, models associated to effec-
tive fluids as DE are phenomenological dark energy which is
related with emergent DE models [18–20], quintessence and
phantom DE [21], dissipative fluids [22–24], Chaplygin gas
(CG) [25,26], Generalized Chaplygin Gas (GCG) [27–29],
and like-Chaplygin gas [30]. For a review of these models
see for instance [21].

An interesting property of Chaplygin fluids is that they are
able to describe Dark Matter (DM) and DE as an unique per-
fect fluid through an EoS of the form pc = −Aρ−α

c , where
0 ≤ α ≤ 1 and A > 0, where pc and ρc are pressure and
density respectively. This kind of models have been analyzed
for inflationary epochs through the formalism of Hamilton-
Jacobi [31], and later were studied at late epochs [27–30]. In
spite of the advantages, this kind of models experience sev-
eral problems such as oscillations and exponential blowup in
the DM power spectrum, in disagreement with the observa-
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tions [32], which in turn affects the formation of structures.
Additionally, several authors [33] have shown that the tra-
jectories in the context of dynamical systems are unstable,
inducing a fine tuning in the initial condition.

On the other hand, non perfect fluids are another approach
to tackle the Universe acceleration. In fact, they also allow
the description of DM and DE in the context of unified fluids
through the inclusion of kinds of viscosity, bulk and shear.
However, the bulk viscosity is the best candidate to face the
DE problem because satisfies the cosmological principle and
it could be studied through two main approaches: Eckart for-
malism [34] and Israel–Steward (IS) theory [35]. The main
difference between them is that the Eckart formalism is a non
causal theory and, as a consequence, it is simpler than the IS.
Indeed, only one bulk viscosity model of the form ξ ∼ ρs

(where ρ is the energy density considered typically as dust
matter) has been studied [36–40] in the IS theory, while sev-
eral models have been explored [41–48] in the Eckart one.

In this paper, we present a hybrid model which consists
of a fusion of viscous effects and the features of Chaplygin
gas, hereafter viscous generalized Chaplygin gas (VGCG),
to tackle the late accelerated expansion of the Universe. Nat-
urally, VGCG is also under the unified dark fluids approach
as GCG and viscous fluids. This kind of hybrid models was
originally proposed by [49] and are able to avoid causality
problems that arise when only dissipative fluids are consid-
ered. This model has been studied by several authors [50–
55]. For instance, [54] studied the spherical top-hat collapse
both in Einstein gravity and in loop quantum cosmology.
Additionally, cosmological bounds of the free parameters
were established by [52], finding that the viscosity terms
(ξ0 = 7.08 × 10−4) may affect the CMB power spectrum
mainly on the height of the acoustic peaks related to the mat-
ter density but consistent to those obtained by �CDM. Addi-
tionally, one of the most important points to propose this kind
of hybrid models is that they could alleviate the oscillations
that cause the blowup in the DM power spectrum for GCG
models [32,56]. The problem lies in the equation for the den-
sity fluctuations δk , in particular in the nonzero sound speed
where, under some regime, the fluctuations become violently
unstable and grow exponentially. Based on the results regard-
ing CMB power spectrum for VGCG [52], the viscosity
terms in the VGCG could also act as a damping term in
the DM power spectrum as occurs in the CMB spectrum
(ξ0 = 7.08 × 10−4), reducing such instabilities. Therefore,
this kind of models must be studied in detail, starting from
the background cosmology.

This paper is devoted to analyze this hybrid model consid-
ering the Eckart formalism to add its viscous effects from the
cosmographics and thermodynamics point of view. Firstly,
we constrain the parameter space of the VGCG by perform-
ing a Bayesian analysis and using the following samples:
observational Hubble parameter (OHD) [57], type Ia super-

novaes (SnIa) [4], baryon acoustic oscillations (BAO) [58],
strong lensing systems (SLS) [59], and HII Galaxies (HIIG)
[60–64]. Furthermore, we also perform a Bayesian joint anal-
ysis combining the mentioned samples to study the cosmog-
raphy of the model, {q, j} phase-space and a test related to
the well-known Om-diagnostic. Finally, we discuss the near
equilibrium condition imposed by the Thermodynamics to
any dissipative fluid.

The manuscript is structured as follow: Sect. 2 presents the
GCG model in presence of viscosity and give general expres-
sions to reconstruct and analyze the cosmography parame-
ters. Section 3 gives a summary of the cosmological data and
presents the methodology to establish bounds on the phase-
space of the model parameters. Section 4 discusses the results
and finally, Sect. 5 makes a summary and shows the conclu-
sions.

2 Viscous generalized Chaplygin gas revisited

In a spatially flat Universe described by the Friedman-
Lemaitre-Robertson-Walker (FLRW) metric, a generalized
Chaplygin gas in presence of viscosity is studied. The model
describes the evolution of baryons (b) and relativistic species
(r ) as perfect fluids with EoS wb = pb/ρb = 0 and
wr = pr/ρr = 1/3 respectively, where ρb,r is their energy
density. Additionally, it is considered a non perfect fluid fol-
lowing the GCG EoS pc = −Aρ−α

c , where pc and ρc are
the pressure and energy density respectively and A and α are
appropriate constants. Based on Eckart formalism, the vis-
cous effects are introduced in the energy-momentum tensor
Tμν = ρtUμU ν + pef f (gμν +UμU ν) as an effective pres-
sure, pef f , where Uμ is the four-velocity. In this context, the
total effective pressure is the sum of the barotropic pressure
of the fluids and the viscous pressure,

pef f =
∑

i

pi + �, (1)

where � = −3ξH , ξ is the bulk viscosity, pi (i = b, r, c) is
the pressure of the fluid and H ≡ ȧ/a is the Hubble param-
eter. Then the Friedmann and continuity equations are

H2 = κ2

3
(ρb + ρr + ρc) , (2)

ρ̇b = −3ρbH, (3)

ρ̇r = −4ρr H, (4)

ρ̇c = −3(ρc + p̃c)H, (5)

where κ2 ≡ 8πG and dots are derivatives with respect to
cosmic time. By integrating the first two continuity equations,
we have ρi = ρi0a−3(wi+1) where ρi0 is the initial energy
density, for i = b, r . To integrate the one for the VGCG we
will assume that ξ = ξ0ρ

1/2
c , being ξ0 an appropriate constant
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and H2 ≈ κ2ρc/3 (a good approximation for the late stage
of the Universe), thus we obtain

ρc = ρc0

[
Bs + (1 − Bs)a

−3(1+α)(1−√
3ξ0)

] 1
1+α

, (6)

where Bs = As(1−√
3ξ0)

−1 and As = A/ρ1+α
c0 . Hence, the

dimensionless Hubble parameter E(z) ≡ H(z)/H0 in terms
of the redshift z is given by

E(z)2 = �c0

[
Bs + (1 − Bs)(1 + z)−3(1+α)(1−√

3ξ0)
] 1

1+α

+�b0(1 + z)3 + �r0(1 + z)4 (7)

where we have used the relation a = (1+z)−1 and �c0 = 1−
�b0 − �r0 which comes from flatness condition E(0) = 1.
It is straightforward that, for ξ0 → 0, Bs → As = A/ρ1+α

c0
which allows us to recover the GCG perfect fluid case. It is
useful to explore the cosmography parameters, mainly the
deceleration and jerk parameters, to distinguish the viscous
effects included in the GCG through the {q, j}-phase space,
and also to compare VGCG with GCG and �CDM.

The deceleration parameter can be estimated by q(z) =
−1 + (1 + z)E(z)−1(dE(z)/dz), then using (7) we obtain,

q(z) = 1

2E(z)2

{
− 3(1 − √

3ξ0)(1 − Bs)

×�c0(1 + z)−3(1+α)(1−√
3ξ0)

×
[
Bs + (1 − Bs)(1 + z)−3(1+α)(1−√

3ξ0)
]−α/(1+α)

+3�b0(z + 1)3 + 3�r0(z + 1)4
}

− 1, (8)

and the jerk parameter takes the form

j (z) = q(2q + 1) + (1 + z)
dq

dz
, (9)

where q is given by Eq. (8). Finally, it is also useful to analyse
the viscous effects through a test related to the well-known
Om-diagnostic proposed in [65], illustrated in a E2 versus
(1+ z)3 panel, that gives a clear evidence of whether the cos-
mological models behave as phantom and/or quintessence
and their deviations with respect to �CDM. In this context,
�CDM is represented by a trajectory with constant slope and
a upper (lower) trajectory for the other cosmological mod-
els over the �CDM one for z > 0 suggests a quintessence
(phanthom) behaviour.

3 Data and methodology

A Bayesian Markov Chain Monte Carlo (MCMC) analy-
sis is performed to constrain the phase-space parameter �

of the viscous generalized Chaplygin gas using OHD, SnIa,
SLS, BAO, HIIG data and a joint analysis. Then, under the
environment of the emcee Python package [66], we use the

Gelman–Rubin criterion [67] to achieve the convergence of
the chains, and then we set 4000 chains with 250 steps each
one to establish bounds on the model parameters. The phase-
space priors are: Gaussian for �b0h2 = 0.02242 ± 0.00014
[1] and flat distributions for the rest of the parameter in the
ranges h : [0.6, 0.8], Bs : [0, 2], α : [0, 2], and ξ0 : [0, 1].
For the joint analysis, the figure-of-merit to be optimized is
given by

χ2
Joint = χ2

OHD + χ2
SnIa + χ2

SLS + χ2
BAO + χ2

HIIG , (10)

where the χ2 sub indexes correspond to the names of the
samples. The rest of the section is devoted to discuss the
details of the samples used to constrain � at background
level.

3.1 Observational hubble parameter

The observational Hubble parameter data (OHD) represents
the most direct way to constrain the parameter space. The
largest OHD sample is compiled by [57] and contains a total
of 51 points covering the range 0 < z < 2.36. From them,
only 31 points are cosmological independent measurements
obtained using differential age (DA) tools and the rest comes
from BAO measurements. Because these measurements are
considered to be uncorrelated, the chi square function can be
expressed as

χ2
OHD =

51∑

i=1

(
Hth(zi ) − Hobs(zi )

σ i
obs

)2

, (11)

where Hth(zi ) is the theoretical estimate using (7) and
Hobs(zi ) ± σ i

obs is the observational Hubble parameter with
its uncertainty at the redshift zi .

3.2 Type Ia supernovae

Authors in Ref. [4] provide 1048 luminosity modulus mea-
surements, known as Pantheon sample, from Type Ia Super-
novae which cover a region 0.01 < z < 2.3. Due to in this
sample the measurements are correlated, it is convenient to
build the chi square function as

χ2
SnIa = a + log

( e

2π

)
− b2

e
, (12)

where

a = �µ̃T · Cov−1
P · �µ̃,

b = �µ̃T · Cov−1
P · �1,

e = �1T · Cov−1
P · �1, (13)

and �µ̃ is the vector of residuals between the theoretical dis-
tance modulus and the observed one, �1 = (1, 1, . . . , 1)T ,
CovP is the covariance matrix formed by adding the sys-
tematic and statistic uncertainties, i.e. CovP = CovP,sys +
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CovP,stat. The super-index T on the above expressions
denotes the transpose of the vectors.

The theoretical distance modulus is estimated by

mth = M + 5 log10[dL(z)/10 pc], (14)

where M is a nuisance parameter which has been marginal-
ized in (12). The dimensionless luminosity distance, denoted
as dL(z), is computed by

dL(z) = (1 + z)c
∫ z

0

dz′

H(z′)
, (15)

where c is the speed of light.

3.3 Baryon acoustic oscillations

Another way to establish a constraint of the model param-
eter is through the standard rules known as Baryon Acous-
tic Oscillations (BAO). These are primordial signatures pro-
duced by the interaction between baryons and photons in a hot
plasma in the pre-recombination epoch. Authors in [58] col-
lected 15 transversal BAO scale measurements which come
from luminous red galaxies distributed in the redshift range
0.110 < z < 2.225. As these points are considered uncorre-
lated, the chi square function is built as

χ2
BAO =

15∑

i=1

(
θ iBAO − θth(zi )

σθ iBAO

)2

, (16)

where θ iBAO ± σθ iBAO
is the BAO angular scale and its uncer-

tainty at 68% measured at zi . On the other hand, the theoret-
ical BAO angular scale, denoted as θth , is estimated by

θth(z) = rdrag
(1 + z)DA(z)

, (17)

where DA = dL(z)/(1+ z)2 is the angular diameter distance
at z and dL(z) was defined in (15). The parameter rdrag is
defined by the sound horizon at baryon drag epoch. For this
work, we set the rdrag = 147.21 ± 0.23 obtained by Planck
collaboration [1].

3.4 Strong lensing systems

A compilation of 204 strong lensing systems (SLS) in the
redshift 0.0625 < zl < 0.958 for the lens and 0.196 <

zs < 3.595 for the source is provided by [59]. The chi square
function for SLS takes the form

χ2
SLS =

204∑

i

[Dth(zl , zs) − Dobs(θE , σ 2)]2

(δDobs)2 , (18)

where the observable to confront is Dobs = c2θE/4πσ 2,
where θE is the Einstein radius of the lens obtained by assum-
ing the gravitational lens potential is modeled by a Singular

Isothermal Sphere (SIS) defined by

θE = 4π
σ 2
SI SDls

c2Ds
. (19)

In the above expression, σSI S is the velocity dispersion of
the lens galaxy, Ds is the angular diameter distance to the
source, and Dls is the angular diameter distance from the
lens to the source. It is interesting to remark that as this SLS
data assumes a lens model for θE and σSI S comes from spec-
troscopy, the sample is independent of h, and as consequence
the parameter constraints do not depend on h. The uncertainty
of Dobs is estimated by

δDobs = Dobs

[(
δθE

θE

)2

+ 4

(
δσ

σ

)2
]1/2

, (20)

where δθE and δσ are the uncertainties of the Einstein radius
and the observed velocity dispersion, respectively.

The theoretical counterpart is estimated by the ratio

Dth ≡ Dls/Ds (21)

where Dls is the angular diameter distance from the lens to
the source given by

Dls(z) = c

1 + z

∫ zs

zl

dz′

H(z′)
, (22)

and Ds = dL(z)/(1 + z)2 is the angular diameter distance to
the source which is obtained using (15).

3.5 HII galaxies

Authors ([60–64], and references therein) argued that the cor-
relation between the measured luminosity L and the inferred
velocity dispersion σ of the ionized gas (e.g. Hβ, Hα,
[OI I I ] emission lines) in extreme starburst galaxies (i.e.
containing a population of O and/or B stars) may be used as a
cosmological tracer to constrain cosmological model param-
eters. A compilation of 153 HII galaxies (HIIG), containing
apparent magnitude, emission line luminosity and velocity
dispersion is provided by [64,68]. Then, the chi square func-
tion is estimated by

χ2
HIIG = A − B2/C , (23)

where

A =
153∑

i=1

(
μth(zi ) − μi

obs

σμi
obs

)2

, (24)

B =
153∑

i=1

μth(zi ) − μi
obs

σμi
obs

, (25)

C =
153∑

i=1

1

(σμi
obs

)2 . (26)
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Fig. 1 1D marginalized posterior distributions and the 2D distributions
at 1σ (dark region) and 3σ (light region) CL for the parameters space
�

In the above expressions, μi
obs±σ i

obs is the observed distance
modulus with its uncertainty at redshift zi . The theoretical
estimate at the redshift z is obtained by using (15) and

μth(z) = μ0 + 5 log[ dL(z) ] , (27)

where μ0 is a nuisance parameter which has been marginal-
ized.

4 Results

Table 1 presents the cosmological constraints of VGCG
and GCG for OHD, SnIa, SLS, BAO, HIIG samples and
the joint analysis respectively. Each best-fit parameter value
includes its uncertainty at 68% confidence level (CL) and is
consistent, within 1σ , with those reported in the literature
[52]. Figure 1 shows the 1D marginalized posterior distribu-
tions for each data and joint analysis and also the 2D phase
space distribution at 68% (1σ), 99.7% (3σ) CL. According
to the χ2 value, both models are in good agreement with the
data1. However, as the VGCG includes an extra parameter
over GCG, it is better to confront them statistically using
the corrected Akaike information criterion (AICc) [69–71]
and the Bayesian information criterion (BIC) [72] defined
as AICc = χ2

min + 2k + (2k2 + 2k)/(N − k − 1) and
BIC = χ2

min + k log(N ) respectively, where k is the num-
ber of free parameters and N is the number of data points.
The criteria establishes that the model with lower values of
AICc and BIC is preferred by data. For AICc, if a differ-
ence between a given model and the best one, �AICc, is
�AICc < 4, both models are supported by the data equally.
If 4 < �AICc < 10 the data still support the given model
but less than the preferred one. A value of �AICc > 10
indicates that the data does not support the given model. For
BIC, the difference between a candidate model and the best
model �BIC is interpreted as the evidence against the can-
didate model being the best model. A yield of �BIC < 2
indicates there is no evidence against the candidate model. A
value in the range 2 < �BIC < 6 suggests that there is mod-
est evidence against the candidate model. A strong evidence
against the candidate model is given when 6 < �BIC < 10,
and a stronger evidence against is if �BIC > 10. In sum-
mary, based on our �AICc results given in Table 1, the data
show a similar preference for both models, VGCG and GCG.
In contrast, �BIC results give a strong evidence against
VGCG for SLS and SnIa data and no evidence against for the
rest of the samples, including the combined sample (Joint).
These results are expected considering that BIC penalizes
free parameters more strongly than AICc and that the penal-
ization function is proportional to the number of points in the
dataset.

4.1 Cosmography parameters

Based on the joint analysis, the parameters of deceleration
(q) and jerk ( j) at z = 0 are estimated, obtaining respectively
values of q0 = −0.523+0.021

−0.024, j0 = 1.029+0.042
−0.021 for the GCG

and q0 = −0.514+0.063
−0.064, j0 = 1.319+0.283

−0.295 for VGCG where

1 Notice that, in the case of the HIIG sample, χ2/dof is much larger
than 1 for both models. This might indicate an underestimation of the
observational errors.
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Table 1 Best fitting values of
VGCG and GCG for each
dataset. The uncertainties are at
1σ CL

Data set χ2
min/dof h �b0h2 Bs α ξ0

VGCG

SLS 570.5/199 0.74+0.18
−0.20 0.02242+0.00014

−0.00014 0.79+0.12
−0.21 1.29+0.49

−0.66 0.09+0.10
−0.06

SnIa 1036.4/1043 0.70+0.20
−0.18 0.02242+0.00014

−0.00014 0.50+0.18
−0.21 0.93+0.69

−0.61 0.15+0.09
−0.09

BAO 14.3/10 0.71+0.03
−0.03 0.02242+0.00014

−0.00014 0.33+0.27
−0.23 1.03+0.66

−0.68 0.14+0.11
−0.09

OHD 19.9/46 0.68+0.04
−0.04 0.02242+0.00014

−0.00014 0.50+0.14
−0.20 1.03+0.66

−0.68 0.13+0.03
−0.04

HIIG 2202.6/148 0.72+0.19
−0.19 0.02242+0.00014

−0.00014 0.18+0.21
−0.13 0.97+0.69

−0.67 0.11+0.03
−0.05

Joint 3942.9/1466 0.69+0.01
−0.01 0.02242+0.00014

−0.00014 0.50+0.05
−0.06 0.99+0.61

−0.58 0.13+0.02
−0.03

GCG

SLS 568.8/200 0.78+0.16
−0.19 0.02242+0.00014

−0.00014 0.96+0.02
−0.04 1.13+0.56

−0.59 –

SnIa 1036.3/1044 0.71+0.20
−0.18 0.02242+0.00014

−0.00014 0.79+0.05
−0.04 0.41+0.44

−0.28 –

BAO 13.0/11 0.71+0.03
−0.04 0.02242+0.00014

−0.00014 0.69+0.15
−0.22 0.93+0.71

−0.64 –

OHD 23.0/47 0.72+0.02
−0.02 0.02242+0.00014

−0.00014 0.81+0.05
−0.03 0.12+0.18

−0.09 –

HIIG 2204.5/149 0.72+0.19
−0.19 0.02243+0.00014

−0.00014 0.55+0.11
−0.08 0.49+0.71

−0.36 –

Joint 3952.7/1467 0.69+0.01
−0.01 0.02242+0.00014

−0.00014 0.72+0.02
−0.01 0.03+0.05

−0.02 –

Table 2 AICc and BIC criteria
for VGCG and GCG. The
difference between models are
�AICc =
AICcVGCG − AICcGCG and
�BIC = BICVGCG − BICGCG

Data set AICcVGCG AICcGCG |�AICc| BICVGCG BICGCG |�BIC|
SLS 580.8 577.0 3.8 597.1 590.1 7.0

SnIa 1046.5 1044.3 2.1 1071.2 1064.1 7.1

BAO 31.0 25.0 6.0 27.8 23.8 4.0

OHD 31.2 31.9 0.6 39.6 38.7 0.8

HIIG 2213.0 2212.8 0.2 2227.8 2224.6 3.1

Joint 3952.9 3960.7 7.8 3979.4 3981.9 2.5

Fig. 2 Best fitting curve (joint analysis) over OHD points for the GCG,
VGCG and its comparison with �CDM model. The bands correspond
to the uncertainty of VGCG at 1σ (darker band) and 3σ (lighter band)

the uncertainties are at 1σ . These q0 values are in agreement
with the �CDM value [73] within 1.6σ and 1.1σ respec-
tively. Regarding the jerk parameter, our results are consis-
tent within 1σ with respect to the expected �CDM value.
Additionally, it is interesting to compare our q0 ( j0) values

of VGCG with other viscous models. For instance, we find
a good agreement with respect to models which consider a
constant viscosity within 1.5σ (0.6σ ) and polynomial viscos-
ity within 1σ (1.2σ ) (see Fig. 4 of [73]). It is worth mention
that although the VGCG model differs from the mentioned
models in the EoS (w = −1) and the viscosity coefficient
(constant and polynomial), we find consistent results in the
current values of q and j .

An alternative way to find differences between cosmo-
logical models is through the {q, r}-panel where r = j .2

Figure 3 shows such {q, r}-space reconstruction for both
models and �CDM in the range −1 < z < 150. The arrows
represent the direction of the universe evolution, being the
evolution from a deceleration phase to an accelerated epoch.
The black square markers over the trajectories represent the
current states and the bands around the VGCG trajectory are
its uncertainties up to 3σ . It is interesting to observe that for
both models, their states q, r converge to �CDM state in the
future (z → −1) in contrast of the observed behaviour by
considering other viscous models as those presented in [73].
Additionally, we observe the path of GCG is close to the one

2 Typically this space is shown by using the notation r instead of j .
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Fig. 3 {q,r}-space reconstruction on z for VGCG, GCG, and �CDM.
Arrows represent the direction of the universe evolution, and black
squares are the current states. The bands correspond to the uncertainty
of VGCG at 1σ (darker band) and 3σ (lighter band)

by �CDM, while for the VGCG we find a deviation of more
than 3σ in the deceleration epochs from �CDM model.

Additionally, high order parameters known as snap (s),
and lent (l) at current time are calculated, we obtain
yields s0 = −0.494+0.062

−0.065, l0 = 3.526+0.190
−0.171 and s0 =

−0.482+0.225
−0.611, l0 = −0.110+1.960

−3.701 for GCG and VGCG
respectively. We obtain s0 values for VGCG (GCG) devi-
ated up to 1.6σ (2.9σ ) and 1.6σ (3.1σ ) from those reported
in [73].

4.2 Near equilibrium condition

Figure 4 displays E(z)2 with respect to (1 + z)3 for VGCG,
GCG and �CDM. This panel shows that VGCG and GCG
behave as quintessence in the past (0 < z < 2.5) and as phan-
tom in the future (−1 < z < 0). Furthermore, we observe
agreement up to 3σ between VGCG and GCG, and a devia-
tion of more than 3σ between VGCG and �CDM in z � 2.3.

Because the VGCG model produces an accelerated expan-
sion stage using two mechanism (the viscous pressure and
the EoS), this model does not need to satisfy the near equi-
librium condition required in the Eckart formalism. In this
context, a natural question is how far the VGCG is from this
condition given by |�/pT | 	 1, where pT is the total pres-
sure of the fluids. Figure 5 shows the behavior of |�/pT |
for VGCG with its uncertainties up to 3σ (blue bands) and
the case of �CDM in presence of viscosity (V�CDM) when
ξ ∼ ρ1/2 [74]. Although, we find a good agreement between
both models, within 3σ in the region −0.5 < z < 2.5, we
observe that VGCG (V�CDM) presents a redshift region
z � 0.2 (z � 0.9) with |�/pT | > 1 which are values lower
than those found in [73], who find a redshift region z � 4

Fig. 4 E(z)2 reconstruction over (1 + z)3 for VGCG, GCG, and
�CDM. The bands correspond to the uncertainty of VGCG at 1σ (darker
band) and 3σ (lighter band)

Fig. 5 |�/pT | reconstruction over z for VGCG. The blue bands corre-
spond to the uncertainty of VGCG at 1σ (darker band) and 3σ (lighter
band). The dot-dashed (green) line represents the case of �CDM in
presence of viscosity

(z � 13) by considering a polynomial (constant) bulk vis-
cosity using OHD+SnIa+SLS data.

5 Conclusions and outlooks

This paper was dedicated to revisit a hybrid model that con-
tains a non-perfect Chaplygin gas, called VGCG, to pro-
duce the accelerated expansion stage. VGCG was studied
mainly in two parts at the background level. The first part was
devoted to perform a Bayesian statistics analysis to confront
the model with the most recent cosmological data (OHD,
SnIa, BAO, SLS, HII Galaxies) and give updated values of
the VGCG parameters. We found consistent constraints of
the phase space parameters within 1σ . Based on our Joint
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analysis results shown in Table 1, the second part was dedi-
cated to explore the evolution of the cosmographic parame-
ters and the near equilibrium condition required in the Eckart
formalism. In particular, we analysed the {q, r}-space which
is useful to find differences between cosmological models.
Thus, we observed a deviation of VGCG with respect to the
�CDM and GCG of more than 3σ CL in the deceleration
phase (see Fig. 3). Additionally, we reported the current cos-
mographic values q0 = −0.514+0.063

−0.064, j0 = 1.319+0.283
−0.295,

s0 = −0.482+0.225
−0.611 and l0 = −0.110+1.960

−3.701 for the VGCG
model corresponding to deceleration, jerk, snap, and lent
parameters respectively. We obtained consistent values with
those values reported in [73] for alternative viscous models.
On the other hand, we found a quintessence behaviour for
VGCG and GCG models in the past z > 0 and a phantom
one for the future as shown in Fig. 4, with the difference
that GCG presents divergence at z = −1. On the other hand,
we reconstructed the |�/pT | to explore how far the VGCG
is from the near equilibrium condition. We found consistent
results up to 3σ with the behaviour by considering a �CDM
model with viscosity presented in [74]. In this context, we
observed that VGCG presents a tighter phase around current
epochs which |�/pT | < 1 with respect to those regions for
the viscous �CDM reported in [73,74].

Finally, based on our results presented in Table 1, it is
noteworthy that the VGCG suggests a central value on h
between the value obtained by Planck [1] and the value by
Riess et. al. [75], contributing to diminish the tension between
these measurements. In fact, we remark that although we are
using data based on local measurements such as OHD that
favor the local value (Riess value), we obtain a central value
on H0 close to the Planck one. Hence, VGCG is a promising
candidate to lessen the discrepancy generated in H0. Further
studies of these models is needed.
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