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Abstract

We formulate λ-deformed σ -models as QFTs in the upper-half plane. For different boundary conditions 
we compute correlation functions of currents and primary operators, exactly in the deformation parameter 
λ and for large values of the level k of the underlying WZW model. To perform our computations we use 
either conformal perturbation theory in association with Cardy’s doubling trick, as well as meromorphicity 
arguments and a non-perturbative symmetry in the parameter space (λ, k), or standard QFT techniques 
based on the free field expansion of the σ -model action, with the free fields obeying appropriate boundary 
conditions. Both methods have their own advantages yielding consistent and rich, compared to those in 
the absence of a boundary, complementary results. We pay particular attention, albeit not exclusively, to 
integrability preserving boundary conditions.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Theories with boundaries are of tremendous interest and have attracted over the years a lot 
of attention from physical and mathematical view points. Boundary conditions have played a 
fundamental rôle in the very development of string theory, since treating them carefully led to 
the discovery of D-branes [1–5], which in turn boosted our understanding of non-perturbative 
aspects of string theory [6,7] and also was instrumental in precisely formulating the AdS/CFT 
correspondence [8–11].

Quantum field theories (QFTs), in particular conformal field theories (CFTs), in spaces with 
boundaries have several additional applications, besides string theory, in condensed matter and 
statistical mechanics systems, determining at critical points the surface correlation functions 
and the corresponding critical exponents [12,13]. The aim of this paper is to investigate the 
response of such boundary CFTs, to finite deformations. In particular, we will investigate this 
issue, mostly focusing on quantum and integrability aspects, in the context of the λ-deformed 
models of [14].

In a CFT with plane boundary, there is still a remnant of the conformal group which consists 
of those transformations leaving the boundary surface intact [12]. For example, let us consider 
2
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a scalar operator �(x, y) of scaling dimension � and place the boundary at y = 0. The one-
point correlation function of such an operator is constrained by demanding translation invariance 
and also covariance under special conformal transformation parallel to the surface. It turns out 
that it is generically non-vanishing, in contrast to the full plane result, and it is given up to a 
proportionality constant by [13]

〈�(x,y)〉uhp ∝ 1

y�
, (1.1)

where uhp stands for the upper-half plane. Similarly, the two-point correlation function of two 
such operators is given by [12,13]

〈�1(x1, y1)�2(x2, y2)〉uhp = ψ (ζ )

y
�1
1 y

�2
2

, ζ = (x1 − x2)
2 + y2

1 + y2
2

y1y2
, (1.2)

where ψ(ζ ) is an undetermined function, which depends on the specific theory for given bound-
ary conditions. The above result applies in any dimension, with the appropriate realization of 
(x1 − x2)

2 as the norm of the corresponding vector, as only translational and special conformal 
transformations were involved. In the two-dimensional case (1.1) and (1.2) apply for operators 
with equal weights for the holomorphic and anti-holomorphic sectors (h, h), with � = 2h. De-
spite the fact that the operators may have unequal scaling dimension, their two-point function 
is generically non-vanishing, in contrast to the case without a boundary. The fact that even a 
two-point correlation function can be determined up to an unknown function and not up to a 
normalization constant as it is the case with no boundaries, suggests that these theories and their 
deformations thereof, have a much richer structure.

The σ -models we will be focusing on, are known generically as λ-deformations [14–23]. They 
describe deformations of CFTs corresponding to WZW [24] or gauged WZW theories [25–28]
by current or parafermionic bilinears, respectively. More concretely, in the present work we will 
use the prototype λ-deformed action [14]1

Sk,λ(g) = SWZW,k(g) + k

π

∫
d2σ Ra+

(
λ−11 − DT

)−1

ab
Lb− , (1.3)

where SWZW,k(g) is the WZW action for a group element g of a compact semisimple group G
and the right-/left-invariant one-forms as well as the adjoint action are given by

Ra+ = −i Tr
(
ta∂+gg−1) , La− = −i Tr

(
tag

−1∂−g
)
, Dab = Tr

(
tagtbg

−1) , (1.4)

where ta’s form a basis of the Lie algebra g of G, normalized as Tr(tatb) = δab and obeying the 
Lie algebra [ta, tb] = ifabc tc. The structure constants fabc are real, the Killing metric is δab, with 
a = 1, . . . , dG, dG being the dimension of the group G. The constant k is a positive integer which 
is taken to be large enough so that the curvature of the metric corresponding to the σ -model (1.3)
is small. The physical range of the parameter λ is the interval [0, 1) and in that range the model 
is non-singular. The action (1.3) is the effective description of the non-Abelian Thirring model

S(g) = SWZW,k(g) + λ
k

π

∫
d2σ Ra+La− , (1.5)

1 The worldsheet light-cone coordinates σ± and (τ, σ) are given by

σ± = τ ± σ , ∂τ = ∂+ + ∂− , ∂σ = ∂+ − ∂− .
3
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to which it reduces for small values of λ. In addition, (1.3) enjoys a non-perturbative symmetry 
involving flipping the sign of k, inverting λ and the group element g [29]. This symmetry is not 
manifest in (1.5) and for that action arises only after employing path integral arguments [30]. 
Moreover, (1.3) is integrable [14] which is not a property of (1.5) as well. Furthermore, (1.3) has 
well behaved zoom-in limits around λ = 1 and λ = −1, that is the non-Abelian T-dual of the 
principal chiral model and the pseudo chiral model, respectively [14,31]. Apart from the afore-
mentioned symmetry the above actions share the same β-function [32,29,33,34] and symmetry 
algebra [14,35,36,31]. In fact, (1.3) is the all-loop in λ effective action of (1.5), for large values 
of k. Its simplicity and the fact that it is an all order action in the deformation parameter λ, makes 
it a rear example in the literature.

A lot a progress has been made in recent years in understanding several quantum aspects of the 
above actions from complementary view points and methods. These range from low order con-
formal perturbation theory, symmetry arguments based on the aforementioned non-perturbative 
symmetry and demanding meromorphicity near λ = ±1 (correlated with the limit k → ∞) as 
well as gravitational methods. These efforts allowed the exact determination of two- and three-
point functions of current, composite current-bilinear and primary fields and of their anomalous 
dimensions [36,31,37,38]. A rather distinct approach in performing computations in this context 
was put forward in [39]. This approach utilizes the expansion of (1.3) around the free field point, 
thus manifestly taking into account the exact dependence of the interaction vertices on the de-
formation parameter λ. The above approach was further extended for λ-deformations based on 
coset CFTs in [40].

Given the progress outlined above it is important to extend the analysis of λ-deformed σ -
models as QFTs in spaces with boundaries, the simplest case being in the upper-half plane. As 
argued above based on the structure of (1.2), we expect a much richer structure arising in the 
study of quantum aspects of (1.3) in spaces with boundaries than in the absence of them. The 
immediate extra ingredient is dealing with boundary conditions, in particular distinguishing them 
according to whether or not they preserve integrability. We note that integrability preserving 
boundaries conditions were exposed for the λ-deformed action (1.3) in [41], nicely extending 
previous works for consistent boundary conditions for WZW model, in particular that of [42–45].

The plan of the paper is as follows: In Section 2, we review and apply the results of [12] to 
evaluate single and composite current correlation functions on the upper-half plane at the con-
formal point, paving the way for the more complicated equations in the subsequent sections. 
In addition, we also evaluate the one-point correlation function of primary fields. In Section 3, 
we move away from the conformal point and we compute current and primary field correlation 
functions exactly in λ and to leading order in 1/k, using conformal perturbation. In Section 4, we 
perform similar computations using the free field expansion as a basis and standard QFT tech-
niques. The end results are in agreement and complementary to those in Section 3. In Section 5, 
we present our conclusions and future directions of this work. Appendix A, stands as a quiver 
for the various integrals on the upper-half which are needed in Sections 3, 4 of the present work. 
Finally, Appendices B and C, provide computational details for Section 3.

2. CFTs in the upper-half plane

In this section we discuss CFT correlation functions in the upper-half plane using conventional 
QFT methods as well as Cardy’s doubling trick [12], for a review see also section 11.2.1 in [46], 
which greatly facilitates the relevant computations. To enhance the pedagogical component of 
the paper we present elementary examples with free fields and non-Abelian currents.
4



K. Sfetsos and K. Siampos Nuclear Physics B 968 (2021) 115451
2.1. Cardy’s doubling trick

Consider an operator �(h,h̄)(z, ̄z) with conformal weights h and h̄ for the holomorphic and 
anti-holomorphic sectors, respectively. We are interested in correlation functions involving this 
operator in the upper-half plane (uhp) of the form

〈�(h,h̄)(z, z̄) · · · 〉uhp , (2.1)

where the ellipsis denote all other operators in the correlator. Assuming that there is no flow of 
energy across the boundary that is T̄ (z̄) = T (z), when z̄ = z, Cardy’s doubling trick [12] amounts 
in realizing the above correlator by one defined in the entire plane

〈�(h,h̄)(z, z̄)�̄(h̄,h)(z̄, z) · · · 〉hol , (2.2)

where we have inserted the conjugate operator �̄(h̄,h)(z̄, z) into the correlator at the mirror image 
point with respect to the real axis, i.e. at (z̄, z) and with the conformal weights interchanged. 
The z̄-dependence (z-dependence) in the inserted conjugate operator should be understood as a 
holomorphic (an antiholomorphic) coordinate which takes values in the lower-half (upper-half) 
plane. In addition, we restrict the evaluation of the correlator in the holomorphic sector, which 
in (2.2) is indicated by the subscript. Of course, all other operators in the correlator are treated 
in a similar manner. We emphasize that the replacement of (2.1) by (2.2) is at the level of Ward 
identities, see Eq. (4.10) in [12], leaving room for integration constants to be specified for the 
appropriate boundary conditions to be obeyed.

As an illustration we evaluate the one-point function of the operator �(h,h̄)(z, ̄z)

〈�(h,h̄)(z, z̄)〉uhp = 〈�(h,h̄)(z, z̄)�(h̄,h)(z̄, z)〉hol = A� δh,h̄

(z − z̄)2h
, (2.3)

where A� is a constant. This is consistent with the general result (1.1) with � = 2h and z →
x + iy.

As an application of particular interest consider the case with h̄ = 0. Then �(h,0)(z, ̄z) is 
essentially z̄-independent so that we may denote it by �h(z) and its conjugate field by �̄h(z). 
Then

〈�h(z) · · · 〉uhp = 〈�h(z)�̄h(z) · · · 〉hol = 〈�h(z) · · · 〉 , (2.4)

where in the last step we have omitted �̄h(z) since being a purely anti-holomorphic operator 
it does not contribute to the holomorphic sector of the correlator. For the same reason we have 
removed the subscript.

An equally important application is when h = 0. Then �(0,h̄)(z, ̄z) is essentially z-independent 
so that we may denote it by �̄h̄(z̄) and its conjugate field by �h̄(z̄). Then

〈�̄h̄(z̄) · · · 〉uhp = 〈�̄h̄(z̄)�h̄(z̄) · · · 〉hol = 〈�h̄(z̄) · · · 〉 , (2.5)

where in the last step we have omitted �̄h̄(z̄) since, as before, being a purely anti-holomorphic 
operator it does not contribute to the holomorphic correlator. As a result of the above analysis 
purely holomorphic operators are left in correlation function as they are not accompanied by their 
conjugates. Similarly, purely anti-holomorphic operators are just replaced by their corresponding 
holomorphic conjugates. Hence, quite generally we have that

〈�h(z)�̄h̄(z̄) . . . 〉uhp = 〈�h(z)�h̄(z̄) . . . 〉 . (2.6)
5
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Let us recapitulate, using Cardy’s doubling trick one reduces the evaluation of conformal correla-
tion functions in the upper-half plane to correlation functions in the entire plane, as they obey the 
same Ward identities, which nevertheless should encode the original boundary conditions upon 
appropriate choice of the integration constants.

2.2. Correlation functions of Abelian currents

We first discuss the appropriate boundary conditions for a single free field φ in the Minkowski 
as well as in the Euclidean regimes. In the case where the world-sheet S has a non-trivial bound-
ary ∂S on the real axis, possible boundary conditions are

Dirichlet b.c. : φa|∂S = 0 ⇒ ∂τφ
a|∂S = 0 ⇔ (∂+φa + ∂−φa)|∂S = 0 (2.7)

and

Neumann b.c. : ∂σ φa|∂S = 0 ⇔ (∂+φa − ∂−φa)|∂S = 0 . (2.8)

In order to pass to the Euclidean regime we perform the analytic continuation

τ → −it , z = t + iσ , z̄ = t − iσ ,

σ+ → −iz , σ− → −iz̄ , ∂+ → i∂ , ∂− → i∂̄ ,

∂τ → i(∂ + ∂̄) , ∂σ → i(∂ − ∂̄) .

(2.9)

The holomorphic and anti-holomorphic derivatives of φ are Virasoro primary fields of corre-
sponding dimension one. For them we will use the notation

j (z) = ∂φ(z, z̄) , j̄ (z̄) = ∂̄φ(z, z̄) . (2.10)

In order to perform field theory computations using Wick’s theorem, we need to determine the 
basic two-point function

G(z,w) = 〈φ(z, z̄)φ(w, w̄)〉uhp . (2.11)

In the following we restrict our domain S to the upper-half plane. Hence, the boundary ∂S is the 
real axis where the Dirichlet and Neumann boundary conditions are set. In the Euclidean regime 
this corresponds to set z̄ = z, yielding

Dirichlet b.c. : φ(z, z̄)|z̄=z = 0 ⇒ (∂ + ∂̄)G|z̄=z = 0 (2.12)

and that

Neumann b.c. : (∂ − ∂̄)G|z̄=z = 0 . (2.13)

The solution to the two-point function with the above two different boundary conditions can be 
easily presented in a unified way which also includes the case in which the theory is defined in 
the entire plane. It reads that

〈φ(z, z̄)φ(w, w̄)〉uhp = − ln |z − w|2 − ε ln |z − w̄|2 (2.14)

where

ε = 0,+1,−1 , for the entire plane, Neumann b.c.,Dirichlet b.c. (2.15)

and obeys the usual Green-function equation
6
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∂∂̄G = −πδ(2)(z − w) (2.16)

and in our conventions δ(2)(z) = δ(t)δ(σ ). In the following we will use xi and x̄i for the Eu-
clidean world-sheet coordinates as this facilitates the more complicated calculations performed 
later in the paper when more than two fields are involved. From the above we find the following 
propagators for the currents

〈j (x1)j (x2)〉uhp = − 1

x2
12

+ επ δ(2)(x1 − x̄2) ,

〈j (x1)j̄ (x̄2)〉uhp = − ε

(x1 − x̄2)2 + π δ(2)(x12) ,

(2.17)

where x12 = x1 − x2. The terms involving δ-functions arise from the fact that ∂
1

z̄
= ∂̄

1

z
=

πδ(2)(z). We may ignore the δ-function in the first correlator above since x1 and x̄2 are located 
at different parts of the complex plane.

We would like to realize the above two-point functions using CFT methods. The holomorphic 
conformal block of four operators with conformal weights hi , i = 1, 2, 3, 4 takes the form [56]

G(4) = x
h2+h4
13 x

h1+h3
24 x

−h1−h2
12 x

−h2−h3
23 x

−h3−h4
34 x

−h1−h4
14 F(ξ) , ξ = x12x34

x13x24
, (2.18)

where the function F(ξ) is to be determined. According to Cardy’s doubling trick [12], this can 
be used, as we do below, to evaluate two-point functions in which two of the four operators and 
their locations are the conjugate ones, that is x3,4 = x̄1,2 and h3,4 = h̄1,2 yielding

G
(2)
uhp = (x1 − x̄1)

h2+h̄2 (x2 − x̄2)
h1+h̄1 (x1 − x̄2)

−h1−h̄2 (x2 − x̄1)
−h2−h̄1

× x
−h1−h2
12 x̄

−h̄1−h̄2
12 F(ξ) ,

(2.19)

with

ξ = − |x12|2
(x1 − x̄1)(x̄2 − x2)

� 0 , 1 − ξ = |x1 − x̄2|2
(x1 − x̄1)(x̄2 − x2)

� 0 (2.20)

and the function F(ξ) incorporates the boundary conditions [12]. A comment is in order con-
cerning the relationship of the two-point functions (2.19) with (1.2). Their explicit connection 
reads

ψ(ζ ) = 4h1+h2

(ζ 2 − 4)h1+h2
F(ξ) , ζ = 2(1 − 2ξ)� 2 , �1,2 = 2h1,2 = 2h̄1,2 . (2.21)

The 〈jj 〉uhp two-point function: The two-point function evaluated on the upper-half plane is 
given by (2.17). According to Cardy’s doubling trick this is given by the two-point function (2.19)
in which the holomorphic conformal weights are h1,2 = 1 and h̄1,2 = 0. In order to reproduce 
(2.17) we have to choose

F(ξ) = ξ − 1 , (2.22)

where the invariant ratio ξ was defined in (2.20).

The 〈j j̄〉uhp two-point function: The two-point function is given in (2.17). According to 
Cardy’s doubling trick this is given by the two-point function (2.19) in which the holomorphic 
conformal weights are h1 = h̄2 = 1 and h2 = h̄1 = 0. The above choice leads to
7
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〈j (x1)j̄ (x̄2)〉uhp = 1

(x1 − x̄2)2

F(ξ)

ξ
, (2.23)

where the parameter ξ is given in (2.20). It can be shown that

δ(2)(x12) = − 1

π(x1 − x̄2)2 δ(ξ) (2.24)

and therefore (2.17) takes the form

F(ξ)

ξ
= −ε − δ(ξ) . (2.25)

The parameter ε should be thought an integration constant in the Ward identities in the upper-half 
plane, such that the boundary conditions (2.12) and (2.13) are obeyed. Equivalently we should 
include the factor of ε when applying Cardy’s doubling trick

j̄ (x̄) =⇒ ε j (x̄) , ε = ±1 , (2.26)

in the corresponding correlator evaluated in the entire plane. As an elementary example let us 
again consider the two-point function (2.17)

〈j (x1)j̄ (x̄2)〉uhp = ε〈j (x1)j (x̄2)〉 = − ε

(x1 − x̄2)2 , (2.27)

where we have omitted the contact term. Finally, we emphasize that (2.26) becomes handy in 
computing higher point correlators.

Composite current-bilinear operator: Let us consider the composite current-bilinear 
O(x, x̄) = j (x)j̄ (x̄) of conformal weight (1, 1). Its one-point function on the upper-half plane 
can be obtained through (2.17)

〈O(x, x̄)〉uhp = − ε

(x − x̄)2 , (2.28)

in agreement with (2.3) with A� = −ε. Its two-point function 〈O(x1, x̄1)O(x2, x̄2)〉uhp on the 
upper-half plane can be evaluated using Wick contraction and (2.17)

〈O(x1, x̄1)O(x2, x̄2)〉uhp = 〈j (x1)j̄ (x̄1)j (x2)j̄ (x̄2)〉uhp

= 1

|x12|4 + ε2

|x1 − x̄2|4 + ε2

(x1 − x̄1)2(x2 − x̄2)2 ,
(2.29)

where we have omitted contact terms. Alternatively, we may obtain the same result through 
Cardy’s doubling trick

〈j (x1)j̄ (x̄1)j (x2)j̄ (x̄2)〉uhp = 〈j (x1)j (x̄1)j (x2)j (x̄2)〉 . (2.30)

Indeed, this fits in the general expression of the two-point function as obtained from the holo-
morphic conformal block two-point function (2.19) with h1,2 = h̄1,2 = 1 after choosing

F(ξ) = (1 − ξ)2 + ε2ξ2(1 + (1 − ξ)2) , (2.31)

where the ξ is given by (2.20). The two-point function (2.29), fits in the generic form of (1.2)

ψ(ζ ) = ε2

16
+ 1

(ζ − 2)2 + ε2

(ζ + 2)2 , ζ = 2(1 − 2ξ)� 2 , �1,2 = 2 , (2.32)

which is also in agreement with (2.21) and (2.31).
8
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2.3. Non-Abelian currents

We now turn our attention to non-Abelian currents Ja(x) and J̄a(x̄) satisfying the usual oper-
ator product expansion

Ja(x1)Jb(x2) = δab

x2
12

+ fabc√
k x12

Jc(x2) , Ja(x1)J̄b(x̄2) = 0 , (2.33)

where here the structure constants fabc are taken to be imaginary. A similar algebra is also obeyed 
by the J̄a(x̄)’s. Concerning the allowed boundary conditions at x̄ = x, the one below

Ja(x) = J̄a(x̄) , (2.34)

is consistent, at it preserves the form of (2.33) for the holomorphic and the anti-holomorphic 
currents, up to inner or outer automorphisms of the algebra also preserving the Killing metric δab. 
In fact, this boundary condition describes D-branes whose world-volume is described in terms 
of the conjugacy classes of the group G [42–45]. Note that this is not the case for the boundary 
condition Ja(x) = −J̄a(x̄), at x̄ = x, as there is an explicit obstruction from the non-Abelian 
term in the current algebra (2.33), contrary to the Abelian case. Hence, the current algebra is 
not preserved. It turns out that this boundary condition describes D-branes whose world-volume 
includes coset spaces [44] and we will not be interested in these boundary conditions in the 
present paper.

Using Cardy’s doubling trick we find that the one-point correlation function vanishes

〈Ja(x)〉uhp = 〈Ja(x)〉 = 0 , (2.35)

since the only vector structure, is the trace of the structure constant fabc with the Killing metric 
δab and this vanishes for the semisimple group G under consideration.

Moving on to the two-point function of the Kac–Moody currents the discussion is analogue 
to the free field case. Hence, using Cardy’s doubling trick we find that

〈Ja(x1)Jb(x2)〉uhp = δab

x2
12

, 〈Ja(x1)J̄b(x̄2)〉uhp = δab

(x1 − x̄2)2 . (2.36)

Also, the three-point functions are given by

〈Ja(x1)Jb(x2)Jc(x3)〉uhp = fabc√
k x12x23x13

,

〈Ja(x1)Jb(x2)J̄c(x̄3)〉uhp = fabc√
k x12(x1 − x̄3)(x2 − x̄3)

.

(2.37)

Note that the above correlators (2.36) and (2.37) are consistent with the boundary condition 
(2.34).

Let us consider the composite current-bilinear O(x, x̄) = Ja(x)J̄a(x̄) which has conformal 
weight (1, 1). Its one-point function on the upper-half plane is read from (2.36)

〈O(x, x̄)〉uhp = dG

(x − x̄)2 , (2.38)

in agreement with (2.3) with A� = dG. We may evaluate its two-point function on the upper-half 
plane using the above prescription as well as the four-point function of currents on the full plane
9
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〈Ja1(z1)Ja2(z2)Ja3(z3)Ja4(z4)〉 = 1

k

(
fa1a3efa2a4e

z12z13z24z34
− fa1a4efa2a3e

z12z14z23z34

)
+ δa1a2δa3a4

z2
12z

2
34

+ δa1a3δa2a4

z2
13z

2
24

+ δa1a4δa2a3

z2
14z

2
23

.

(2.39)

We find that

〈O(x1, x̄1)O(x2, x̄2)〉uhp

= 〈Ja(x1)J̄a(x̄1)Jb(x2)J̄b(x̄2)〉uhp = 〈Ja(x1)Jb(x2)Ja(x̄1)Jb(x̄2)〉

= dG

|x12|4 + dG

|x1 − x̄2|4 + d2
G

(x1 − x̄1)2(x2 − x̄2)2 + cG

k

dG

|x12|2|x1 − x̄2|2 ,

(2.40)

where we note the explicit cG/k dependence, with cG being the quadratic Casimir in the adjoint 
representation, defined by facdfbcd = −cGδab . This is a positive number for the compact Lie 
groups under consideration. Moreover, the result takes the form of (2.19) with

F(ξ) = dG

(
1 −

(
2 + cG

k

)
ξ(1 − ξ) + dG ξ2(1 − ξ)2

)
(2.41)

and the invariant ratio ξ is given by (2.20). The two-point function (2.40), fits in the generic form 
of (1.2)

ψ(ζ ) = d2
G

16
+ dG

(ζ − 2)2 + dG

(ζ + 2)2 + cGdG

k(ζ 2 − 4)
, ζ = 2(1 − 2ξ)� 2 , �1,2 = 2 ,

(2.42)

which is also in agreement with (2.21) and (2.41). As a further check, the above expression 
degenerates to (2.29) in the Abelian (single field) limit in which cG = 0 and dG = 1.

Before concluding this subsection let us comment on the limiting case when one of the two 
operators in (2.40) approaches the boundary. In that case the corresponding two-point function 
reads

〈O(x1, x̄1)T (t2)〉uhp = dG

|x1 − t2|4 , (2.43)

where the operator T (t) is defined via the usual normal ordering procedure

T (t) = k

2k + cG

lim
σ→0+

(
O(x, x̄) − dG

(x − x̄)2

)
(2.44)

and x = t + iσ . The two-point correlation function (2.43) corresponds to a non-vanishing bulk-
boundary operator product expansion and once we turn on the bulk perturbation, that is driven 
by the composite current-bilinear O(x, x̄) – see Eq. (1.5), it induces an RG flow on the coupling 
of the boundary operator T (t) [47]. In the present work we will be interested in evaluating bulk 
correlators on the upper-half plane and away from conformal point, which are unaffected by the 
presence of the boundary fields for the boundary conditions of (2.34), see [47].2

2 Let us note that in higher-genus diagrams, the bulk RG flows and correlators are also modified due to a Fis-
chler–Susskind type of mechanism [48,49]. The RG flows were explicitly analyzed for the annulus case in [50].
10
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2.4. Primary fields

We now turn our attention to affine primary fields �i,i′(x, x̄), transforming in the irreducible 
representations R and R′, under the action of the currents Ja and J̄a . In terms of the Hermitian 
matrices ta and t̃a and using the notation of [31] we have that

Ja(x1)�i,i′(x2, x̄2) = − (ta)ij√
k

�j,i′(x2, x̄2)

x12
,

J̄a(x̄1)�i,i′(x2, x̄2) =
(
t̃a

)
j ′i′√
k

�i,j ′(x2, x̄2)

x̄12
,

(2.45)

where i = 1, 2, . . . , dimR and i′ = 1, 2, . . . , dimR’. The signs on the right hand sides are such 
that the representation matrices obey the same Lie algebra, i.e. [ta, tb] = fabctc.

These fields are also Virasoro primaries with holomorphic and anti-holomorphic conformal 
dimension [51]

hR = cR

2k + cG

, hR′ = cR′

2k + cG

, (2.46)

where cR and cR′ are the quadratic Casimir operators in the representations R and R′ respectively 
which are defined as

(tata)ij = cRδij ,
(
t̃a t̃a

)
i′j ′ = cR′δi′j ′ (2.47)

and we also note that for the adjoint representation (ta)bc = (t̃a)bc = −fabc .
Using Cardy’s doubling trick we may evaluate the one-point function of a general affine pri-

mary field �i,i′(x, x̄), transforming as described above. In the whole plane such a one-point 
function vanishes identically. We need the conjugate field �̄i′,i (x̄, x), which transforms under Ja

in (2.45) in the conjugate to R′ representation with matrices −t̃∗a . Similarly, under J̄a in (2.45)
the same field transforms in the conjugate to R representation with matrices −t∗a . Therefore, the 
one-point function is non-vanishing if and only if the representations R and R′ are identical so 
that t̃a = ta and equals to3

〈�i,i′(x, x̄)〉uhp = 〈�i,i′(x, x̄)�̄i′,i (x̄, x)〉hol = δii′

(x − x̄)2hR
, (2.48)

in agreement with (2.3), where h = hR and A� = 1.

3. CFT perturbation in the upper-half plane

In this section as well as in the accompanying Appendices B, C we employ conformal pertur-
bation and compute two-point correlation functions of currents and composite current-bilinear, 
three-point functions of currents and one-point function of primaries in the upper-half plane and 
beyond the conformal point. These computations will be performed in Euclidean signature.

3 We have ignored an overall coefficient encoding the boundary conditions for the primary field. This can be obtained 
from Verlinde’s formula by projecting Cardy’s boundary states [52] on the Ishibashi ones, see for example Eq. (4.20) [53]
for the su(2) case. Rather unexpectedly this coefficient can be derived via a semi-classical analysis of the Born–Infeld 
action up to a shift of the level of the current algebra [54,55]. The ignored normalization is affecting all higher-point 
correlators and in addition carries over information for the boundary conditions obeyed by the primary fields. However, 
we are not interested in these issues in the current work.
11
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As a reminder we note that, the structure constants of the Lie algebra in this section and also 
in the accompanying Appendices B, C are taken to be imaginary.

In the Euclidean regime (2.9), the WZW perturbation (1.5) when considered on the upper-half 
plane contributes in the path integral as − λ

π

∫
S

d2z J a(z, ̄z)J̄ a(z, ̄z). Consider a set of generic 
fields {A1(x1, x̄1), A2(x2, x̄2), · · · }, then to order λn their correlation function takes the form

〈A1(x1, x̄1)A2(x2, x̄2) · · · 〉(n)
uhp = 1

n!
(

− λ

π

)n ∫
S

d2z1···n〈Ja1(z1, z̄1) · · ·Jan(zn, z̄n) ,

J̄a1(z1, z̄1) · · · J̄an(zn, z̄n)A1(x1, x̄1)A2(x2, x̄2) · · · 〉uhp ,

(3.1)

where d2z1···n = d2z1 · · ·d2zn. The subscript S in the integral denotes the domain of integration, 
which is the upper-half plane S = {Imz � 0}. To evaluate the above integral we follow the regu-
larization prescription described in [31], but in the present work we also allow internal points to 
coincide with external ones. In other words, we keep all δ-functions (except those corresponding 
to external points) and we introduce a short-distance regulator ε whenever an integral diverges. In 
this way we do not need to worry about keeping the order of integrations intact. In addition, if an 
integral diverges for large distances we restrict the integration within the radius R of a half-disc 
located at the upper-half plane.

For our computations we need the basic integral∫
S

d2z

(z − x1)(z̄ − x̄2)
= π ln

R(x̄2 − x1)

|x12|2 − iπ2

2
, (3.2)

evaluated in Appendix A.4, as well as the integrals∫
S

d2z

(z − x1)2(z̄ − x̄2)
= π

(
1

x1 − x̄2
− 1

x12

)
,

∫
S

d2z

(z − x1)(z̄ − x̄2)2 = −π

(
1

x1 − x̄2
− 1

x̄12

)
,

∫
S

d2z

(z − x1)2(z̄ − x̄2)2 = π

(x1 − x̄2)2 + π2δ(2)(x12) ,

(3.3)

obtained by taking appropriate derivatives of (3.2).

3.1. Three-point current correlation functions

We turn our attention to correlators of the form 〈JJJ 〉 and 〈JJ J̄ 〉 up to λ/
√

k in the confor-
mal perturbation theory. This is enough to determine their full λ-dependence by employing the 
symmetry in coupling space [29]

λ → λ−1 , k → −k , (3.4)

valid for k � 1, as well as the non-Abelian limit (correlated λ → 1, k → ∞), the pseudo-dual 
limit (correlated λ → −1, k → ∞) and also by matching with the perturbative result up to order 
λ/

√
k we are about to compute. This technique has been already fruitful in evaluating the same 

correlators in the entire plane [36,31], for unequal levels as well [57].
12
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3.1.1. The three-point function 〈JJJ 〉
We will show that the three-point function 〈JJJ 〉 to order λ/

√
k takes the following form

〈Ja(x1)Jb(x2)Jc(x3)〉(λ)
uhp = fabc√

k x12x13x23
+ λfabc√

k

(
1

x2
23

(
1

x1 − x̄2
+ 1

x̄3 − x1

)

+ π

x2
12

(
1

x̄2 − x3
+ 1

x3 − x̄1

)
+ π

x2
13

(
1

x2 − x̄3
+ 1

x̄1 − x2

))
. (3.5)

From the above result, the symmetry (3.4) and regularity at the non-Abelian and pseudo-dual 
limits we obtain the full λ-dependence of the couplings and hence of the correlator (the steps are 
identical to those in [31] for the same correlator)

〈Ja(x1)Jb(x2)Jc(x3)〉(λ),exact
uhp = 1 + λ + λ2√

k(1 − λ)(1 + λ)3

fabc

x12x13x23

+ λ√
k(1 − λ)(1 + λ)3

fabc

(
1

x2
23(x1 − x̄2)

− 1

x2
13(x2 − x̄1)

+ cyclic in 1,2,3

)
.

(3.6)

In what follows we shall work out the details in deriving (3.5), namely the conformal result (3.7)
as well as the one-loop correction to it (3.14).

Conformal result: At the conformal point the correlator equals to (2.37). We repeat it here 
for the reader’s convenience

〈Ja(x1)Jb(x2)Jc(x3)〉uhp = fabc√
k x12x13x23

. (3.7)

One-loop: To the above result we add the contribution of order λ/
√

k which reads

〈Ja(x1)Jb(x2)Jc(x3)〉(1)
uhp = − λ

π

∫
S

d2z 〈Ja(x1)Jb(x2)Jc(x3)Jd(z)J̄d (z̄)〉uhp . (3.8)

To evaluate the above five-point function we first use Cardy’s doubling trick, in particular (2.6)
and then we perform the corresponding contractions using (2.33). We have that

〈Ja(x1)Jb(x2)Jc(x3)Jd(z)J̄d (z̄)〉uhp = 〈Ja(x1)Jb(x2)Jc(x3)Jd(z)Jd(z̄)〉
= 〈Jb(x2)Jc(x3)Ja(z̄)〉

(x1 − z)2 + 〈Jb(x2)Jc(x3)Ja(z)〉
(x1 − z̄)2

+ fabe〈Je(x2)Jc(x3)Jd(z)Jd(z̄)〉√
k x12

+ face〈Jb(x2)Je(x3)Jd(z)Jd(z̄)〉√
k x13

+ fade〈Jb(x2)Jc(x3)Je(z)Jd(z̄)〉√
k (x1 − z)

+ fade〈Jb(x2)Jc(x3)Jd(z)Je(z̄)〉√
k (x1 − z̄)

= fabc√
k(x1 − z)2x23(x2 − z̄)(x3 − z̄)

+ fabc√
k(x1 − z̄)2x23(x2 − z)(x3 − z)

(3.9)

+ fabc√
k x12

(
dG

x2
23(z − z̄)2

+ 1

(z − x2)2(z̄ − x3)2 + 1

(z − x3)2(z̄ − x2)2

)

− fabc√
k x

(
dG

x2 (z − z̄)2
+ 1

(z − x2)2(z̄ − x3)2 + 1

(z − x3)2(z̄ − x2)2

)

13 23

13
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− fabc√
k(x1 − z)

(
1

(z − x2)2(z̄ − x3)2 − 1

(z − x3)2(z̄ − x2)2

)
+ fabc√

k(x1 − z̄)

(
1

(z − x2)2(z̄ − x3)2 − 1

(z − x3)2(z̄ − x2)2

)
.

Then we insert this expression into (3.8) and compute the corresponding integrals. We will also 
dismiss terms corresponding to bubble diagrams which it turns out to be proportional to the group 
dimension dG.

First we start with the integral arising from the first term after the last equality above. It is 
given by

1

x23

∫
S

d2z

(x1 − z)2(x2 − z̄)(x3 − z̄)
= 1

x2
23

∂x1

∫
S

d2z

z − x1

(
1

z̄ − x2
− 1

z̄ − x3

)
= 0 , (3.10)

where we have used (A.22).
The integral arising from the following term is

1

x23

∫
S

d2z

(x1 − z̄)2(x2 − z)(x3 − z)
= 1

x2
23

∂x1

∫
S

d2z

z̄ − x1

(
1

z − x2
− 1

z − x3

)

= π

x2
23

(
1

x1 − x̄3
− 1

x1 − x̄2

)
,

(3.11)

where we have used again (A.22). The terms in the following second and third lines after the 
equality (apart from the bubble diagrams) vanish as it can easily seen using once again (A.22).

The terms in the next fourth line equal to∫
S

d2z

z − x1

(
1

(z − x2)2(z̄ − x3)2 − 1

(z − x3)2(z̄ − x2)2

)
= I321 − I231

= π

x2
12

(
1

x3 − x̄2
− 1

x3 − x̄1

)
− π

x2
13

(
1

x2 − x̄3
− 1

x2 − x̄1

)
,

(3.12)

using the results of Appendix A.1. The terms in the fifth line are vanishing as they are related to 
the integral J123∫

S

d2z

x1 − z̄

(
1

(z − x2)2(z̄ − x3)2 − 1

(z − x3)2(z̄ − x2)2

)
= −J321 + J231 = 0 , (3.13)

using the results of Appendix A.2.
Inserting the above into (3.8) we find that

〈Ja(x1)Jb(x2)Jc(x3)〉(1)
uhp = λfabc√

k

(
1

x2
23

(
1

x1 − x̄2
+ 1

x̄3 − x1

)

+ π

x2
12

(
1

x̄2 − x3
+ 1

x3 − x̄1

)
+ π

x2
13

(
1

x2 − x̄3
+ 1

x̄1 − x2

))
.

(3.14)

Adding the latter with the conformal result (3.7), we reach (3.5).
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3.1.2. The three-point function 〈JJ J̄ 〉
We will show that the three-point function 〈JJ J̄ 〉 to order λ/

√
k takes the following form

〈Ja(x1)Jb(x2)J̄c(x̄3)〉(λ)
uhp = fabc√

k x12(x1 − x̄3)(x2 − x̄3)

+ λfabc√
k

(
x̄12

x2
12x̄13x̄23

+ 1

(x1 − x̄3)2

(
1

x̄1 − x2
+ 1

x23

)
+ 1

(x2 − x̄3)2

(
1

x1 − x̄2
− 1

x13

))
.

(3.15)

As in the previous subsection, this result, the symmetry (3.4) and regularity at the non-Abelian 
and pseudo-dual limits, allows for the full λ-dependence of the couplings and hence of the cor-
relator

〈Ja(x1)Jb(x2)J̄c(x̄3)〉(λ),exact
uhp = 1 + λ + λ2√

k(1 − λ)(1 + λ)3

fabc

x12(x1 − x̄3)(x2 − x̄3)

+ λfabc√
k(1 − λ)(1 + λ)3

(
x̄12

x2
12x̄13x̄23

+ 1

(x1 − x̄3)2

(
1

x̄1 − x2
+ 1

x23

)
+ 1

(x2 − x̄3)2

(
1

x1 − x̄2
− 1

x13

))
.

(3.16)

Before we proceed, we note the above correlator and (3.6) are consistent with the Dirichlet 
boundary condition at x̄3 = x3, that is〈

Ja(x1)Jb(x2)
(
Jc(x3) − J̄c(x̄3)

)〉(λ)

uhp

∣∣∣
x̄3=x3

= 0 . (3.17)

In what follows we work out the details in deriving (3.15), that is the conformal result (3.18) and 
the one-loop contribution (3.23).

Conformal result: At the conformal point the correlator equals to (2.37) and is repeated here 
for the reader’s convenience

〈Ja(x1)Jb(x2)J̄c(x̄3)〉uhp = fabc√
k x12(x1 − x̄3)(x2 − x̄3)

. (3.18)

One-loop: The contribution to the above result of order λ/
√

k reads

〈Ja(x1)Jb(x2)J̄c(x̄3)〉(1)
uhp = − λ

π

∫
S

d2z〈Ja(x1)Jb(x2)J̄c(x̄3)Jd(z)J̄d (z̄)〉uhp . (3.19)

We evaluate the above five-point function via Cardy’s doubling trick and (2.33)

〈Ja(x1)Jb(x2)J̄c(x̄3)Jd(z)J̄d (z̄)〉uhp = 〈Ja(x1)Jb(x2)Jc(x̄3)Jd(z)Jd(z̄)〉
= 〈Jb(x2)Jc(x̄3)Ja(z̄)〉

(x1 − z)2 + 〈Jb(x2)Jc(x̄3)Ja(z)〉
(x1 − z̄)2

+ fabe〈Je(x2)Jc(x̄3)Jd(z)J̄d (z̄)〉√
k x12

+ face〈Jb(x2)Je(x̄3)Jd(z)Jd(z̄)〉√
k (x1 − x̄3)

+ fade〈Jb(x2)Jc(x̄3)Je(z)Jd(z̄)〉√ + fade〈Jb(x2)Jc(x̄3)Jd(z)Je(z̄)〉√

k (x1 − z) k (x1 − z̄)

15
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= fabc√
k(x1 − z)2(x2 − x̄3)(x2 − z̄)(x̄3 − z̄)

+ fabc√
k(x1 − z̄)2(x2 − x̄3)(x2 − z)(x̄3 − z)

+ fabc√
k x12

(
dG

(x2 − x̄3)2(z − z̄)2 + 1

(z − x2)2(z̄ − x̄3)2 + 1

(z − x̄3)2(z̄ − x2)2

)
− fabc√

k (x1 − x̄3)

(
dG

(x2 − x̄3)2(z − z̄)2 + 1

(z − x2)2(z̄ − x̄3)2 + 1

(z − x̄3)2(z̄ − x2)2

)
− fabc√

k(x1 − z)

(
1

(z − x2)2(z̄ − x̄3)2 − 1

(z − x̄3)2(z̄ − x2)2

)
+ fabc√

k(x1 − z̄)

(
1

(z − x2)2(z̄ − x̄3)2 − 1

(z − x̄3)2(z̄ − x2)2

)
, (3.20)

then we insert it into (3.19) and compute the corresponding integrals, dismissing bubble diagrams 
terms.

The first term of the first line after the last equality is∫
S

d2z

(x1 − z)2(x2 − x̄3)(x2 − z̄)(x̄3 − z̄)
= 1

(x2 − x̄3)2 ∂x1

∫
S

d2z

z − x1

(
1

z̄ − x2
− 1

z̄ − x̄3

)

= π

(x2 − x̄3)2

(
1

x13
− 1

x1 − x̄3

)
,

(3.21)

where we have used the integral (3.33) and the first of (3.46). For the second term of the same 
line we find in a similar manner that∫

S

d2z

(x1 − z̄)2(x2 − x̄3)(x2 − z)(x̄3 − z)
= π

(x2 − x̄3)2

(
1

x1 − x̄3
− 1

x1 − x̄2

)
. (3.22)

In addition, the terms in the second line, after the last equality, cancel among themselves as it 
can easily see using (3.44). This is also true for the following third line as well.

The last two lines which can be evaluated using the integrals of (A.2), specifically in order of 
appearance A123, E123, B123 and F123. Employing all the above into (3.19) we find

〈Ja(x1)Jb(x2)J̄c(x̄3)〉(1)
uhp =

λfabc√
k

(
x̄12

x2
12x̄13x̄23

+ 1

(x1 − x̄3)2

(
1

x̄1 − x2
+ 1

x23

)
+ 1

(x2 − x̄3)2

(
1

x1 − x̄2
− 1

x13

))
(3.23)

and adding the latter with the conformal result (3.18), we reach (3.15).

3.2. Two-point current correlation functions

We will compute the two-point functions 〈JJ 〉 and 〈J J̄ 〉, beyond the conformal point and 
read the corresponding anomalous dimension. Our results will be exact in the parameter λ and 
up to order 1/k in the large k expansion. We already note that these correlators have a much richer 
structure than the corresponding ones for the entire plane [36].
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3.2.1. The two-point function 〈JJ 〉
We will show that the two-point function 〈JJ 〉 to order λ2/k takes the following form

〈Ja(x1)Jb(x2)〉(λ)
uhp

= δab

x2
12

(
1 − cG

k
λ2 ξ

1 − ξ
− cG

k
λ(1 − 2λ) ln(1 − ξ) + cG

k
λ2 ln

ε2

|x12|2
)

,
(3.24)

where ε is a short-distance cut-off and we have ignored a factor 1 + λ2 inside the parenthesis 
which only affects the overall normalization of the correlator. From the logarithmic term of the 
two-point function (3.24), we can extract the anomalous dimension of the current operator to 
order λ2/k. From (3.24) and the non-perturbative symmetry (3.4) as well as regularity at the non-
Abelian and pseudo-dual limits at λ = ±1 we get the exact dependence of the correlator in λ to 
order 1/k

〈Ja(x1)Jb(x2)〉(λ),exact

uhp = δab

x2
12

(
1 − γJ

ξ

1 − ξ
+ δJ ln(1 − ξ) + γJ ln

ε2

|x12|2
)

, (3.25)

where the parameters γJ and the δJ are given by

γJ = cGλ2

k(1 − λ)(1 + λ)3 � 0 , δJ = − cGλ(1 + λ2)

k(1 − λ)(1 + λ)3 . (3.26)

The anomalous dimension of the operator Ja is identified with the parameter γJ and matches the 
whole plane result, see Eq. (2.5) in [36]. This agreement should have been expected on physical 
grounds as the anomalous dimension is determined by the short-distance behavior and in the 
upper-half plane the presence of the boundary has no effect (see footnote 2).

In what follows we shall work out the details in proving (3.24).

Conformal result: At the conformal point the correlator equals to (2.36), repeated here for 
the reader’s convenience

〈Ja(x1)Jb(x2)〉uhp = δab

x2
12

. (3.27)

One-loop: Turning on the deformation parameter, the one-loop contribution to the two-point 
function reads

〈Ja(x1)Jb(x2)〉(1)
uhp = − λ

π

∫
S

d2z〈Ja(x1)Jb(x2)Jc(z)J̄c(z̄)〉uhp . (3.28)

Using Cardy’s doubling trick, we can evaluate the above four point function as

〈Ja(x1)Jb(x2)Jc(z)J̄c(z̄)〉uhp = 〈Ja(x1)Jb(x2)Jc(z)Jc(z̄)〉
= δab dG

x2
12(z − z̄)2

+ δab

(x1 − z)2(x2 − z̄)2 + δab

(x1 − z̄)2(x2 − z)2

+ cGδab

k(z − x1)(z − x2)(z̄ − x1)(z̄ − x2)
.

(3.29)

Inserting the above correlation function into (3.28) we find that its first term is a bubble diagram, 
hence it is dismissed. Moving on to the second and third terms we find that these vanish since
17
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I1|1(x1;x2) =
∫
S

d2z

(z − x1)2(z̄ − x2)2 = 0 , (3.30)

which can be easily shown using the results of Appendix A.3. So, we are left with the following 
integral

〈Ja(x1)Jb(x2)〉(1)
uhp = − λ

π

cGδab

k

∫
S

d2z

(z − x1)(z − x2)(z̄ − x1)(z̄ − x2)
. (3.31)

To evaluate it we use twice the identity

1

(z − x1)(z − x2)
= 1

x12

(
1

z − x1
− 1

z − x2

)
(3.32)

and the integral

I1(x1;x2) =
∫
S

d2z

(z − x1)(z̄ − x2)
= π ln

R

x̄1 − x2
+ iπ2

2
, (3.33)

evaluated in Appendix A.3, where R is a large cut-off radius of a half-disc located at the upper-
half plane. Employing the above we can easily find that∫

S

d2z

(z − x1)(z − x2)(z̄ − x1)(z̄ − x2)
= π

x2
12

ln
|x1 − x̄2|2

(x1 − x̄1)(x̄2 − x2)
. (3.34)

So the one-loop contribution reads

〈Ja(x1)Jb(x2)〉(1)
uhp = −λ

cGδab

k

1

x2
12

ln(1 − ξ) , (3.35)

in terms of the invariant ratio (2.20). At this point we will present the one-loop result since we 
will need it when we establish the mixed correlator 〈J J̄ 〉 below. Adding up (3.27) and (3.35) we 
find that to order λ/k it reads

〈Ja(x1)Jb(x2)〉(λ)
uhp = δab

x2
12

(
1 − cG

k
λ ln(1 − ξ)

)
. (3.36)

Two-loop: Moving to the two-loop order in λ, we need to evaluate

〈Ja(x1)Jb(x2)〉(2)
uhp = λ2

2π2

∫
S

d2z12〈Ja(x1)Jb(x2)Jc(z1)J̄c(z̄1)Jd(z2)J̄d(z̄2)〉uhp . (3.37)

After a rather long but straightforward computation which is sketched in Appendix B we reach 
the end result (B.20) that we repeat also here

〈Ja(x1)Jb(x2)〉(2)
uhp = λ2

(
1 − cG

k

ξ

1 − ξ

)
δab

x2
12

+ cGλ2

k

δab

x2
12

ln
(1 − ξ)2ε2

|x12|2 , (3.38)

where again ε is a short distance cut-off.
Finally, the end result can be read by adding up the CFT, one-loop and two-loop results, that 

is Eqs. (3.27), (3.35) and (3.38) respectively, we find (3.24).
18



K. Sfetsos and K. Siampos Nuclear Physics B 968 (2021) 115451
3.2.2. The two-point function 〈J J̄ 〉
We will show that the two-point function 〈J J̄ 〉 to order λ/k takes the following form

〈Ja(x1)J̄b(x̄2)〉(λ)
uhp = δab

(x1 − x̄2)2

(
1 − λ

cG

k
ln(−ξ)

)
. (3.39)

Before we proceed with the various contributions leading to this result, we note that, this corre-
lator and (3.36) are consistent with the Dirichlet boundary condition at x̄2 = x2, that is〈

Ja(x1)
(
Jb(x2) − J̄b(x̄2)

)〉(λ)

uhp

∣∣∣
x̄2=x2

= 0 . (3.40)

In what follows we shall work out the details in proving (3.39).

Conformal result: At the conformal point the correlator equals to (2.36), which we repeat 
here as well

〈Ja(x1)J̄b(x2)〉uhp = δab

(x1 − x̄2)2 . (3.41)

One-loop: Turning on the deformation parameter λ, the 〈J J̄ 〉 correlator at one-loop order 
reads

〈Ja(x1)J̄b(x̄2)〉(1)
uhp = − λ

π

∫
S

d2z〈Ja(x1)J̄b(x̄2)Jc(z)J̄c(z̄)〉uhp . (3.42)

The above four-point function can be evaluated using Cardy’s doubling trick

〈Ja(x1)J̄b(x̄2)Jc(z)J̄c(z̄)〉uhp = 〈Ja(x1)Jb(x̄2)Jc(z)Jc(z̄)〉
= δab dG

(x1 − x̄2)2(z − z̄)2 + δab

(x1 − z)2(x̄2 − z̄)2 + δab

(x1 − z̄)2(x̄2 − z)2

+ cGδab

k(z − x1)(z − x̄2)(z̄ − x1)(z̄ − x̄2)
.

(3.43)

Inserting the above into (3.42) we find that the first term is a bubble diagram and therefore it is 
dismissed. Moving on to the second and third terms these cancel each other since from (A.3)

J1|1(x1;x2) =
∫
S

d2z

(z − x1)2(z̄ − x̄2)2 = π

(x1 − x̄2)2 ,

J2|1(x1;x2) =
∫
S

d2z

(z − x̄2)2(z̄ − x1)2 = − π

(x1 − x̄2)2 ,

(3.44)

where we have dismissed contact terms of external points. Therefore, all we are left is the integral 
corresponding to the last term

〈Ja(x1)J̄b(x2)〉(1)
uhp = − λ

π

cGδab

k

∫
S

d2z

(z − x1)(z − x̄2)(z̄ − x1)(z̄ − x̄2)
. (3.45)

To evaluate the above expression we use twice the identity (3.32), the integral (3.33) and the 
integrals (A.3)
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J1(x1;x2) =
∫
S

d2z

(z − x1)(z̄ − x̄2)
= π ln

R(x̄2 − x1)

|x12|2 − iπ2

2
,

J2(x1;x2) =
∫
S

d2z

(z − x̄2)(z̄ − x1)
= π ln

R

x1 − x̄2
+ iπ2

2
,

J3(x2;x2) =
∫
S

d2z

(z − x̄2)(z̄ − x̄2)
= π ln

R

x2 − x̄2
+ iπ2

2
,

(3.46)

where R is a large cut-off radius of a half-disc located at the upper-half plane. Employing the 
above we find

〈Ja(x1)J̄b(x̄2)〉(1)
uhp = −λ

cGδab

k

δab

(x1 − x̄2)2 ln(−ξ) , (3.47)

in terms of the invariant ratio variable (2.20). Adding up (3.47) with (3.41) we find that 〈J J̄ 〉 to 
order λ/k is given by (3.39). We will not compute the order λ2/k.

3.3. Two-point composite current-bilinear correlation function

We will next examine the two-point function of the composite current-bilinear O(x, x̄) =
Ja(x)J̄a(x̄) to order in λ/k2 and show that it takes the form

〈O(x1, x̄1)O(x2, x̄2)〉(λ)
uhp

= dG

|x12|4
(

1 − 2λcG

k
ln

(1 − ξ)ε2

|x12|2
)

+ dG

|x1 − x̄2|4
(

1 − 2λcG

k
ln

−ξ ε2

|x1 − x̄2|2
)

+ d2
G

(x1 − x̄1)2(x2 − x̄2)2

(
1 − 2λcG

k
ln

ε2

|(x1 − x̄1)(x2 − x̄2)|

)

+ cG

k

dG

|x12|2|x1 − x̄2|2
(

1 − 4λ − 2λcG

k
ln

ε2F̃ (ξ)

|x12(x1 − x̄2)|

)
,

(3.48)

where

F̃ (ξ) = (1 − ξ)

(
1 − 1

ξ

)−ξ

, ξ � 0 , (3.49)

in terms of the invariant ratio variable (2.20). The anomalous dimension of the composite current-
bilinear, it is then read independently from the four terms in (3.48). All of them at order λ/k give

γO = −2cG

k
λ +O(λ2) . (3.50)

This matches the whole plane result, see Eq. (3.7) in [36]. Alternatively we could read its anoma-
lous dimension if we evaluate the one-point function of the composite current-bilinear from 
(3.39), upon identifying x1,2 = x and then summing over a = b

〈O(x, x̄)〉(λ)
uhp = dG

(x − x̄)2

(
1 − λ

cG

k
ln

−ε2

(x − x̄)2

)
. (3.51)

In order to find the exact in λ result using the non-perturbative symmetry (3.4) and demanding 
regularity at the non-Abelian and pseudo-dual limits at λ = ±1 we need to extend the above result 
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to order λ2. This would involve, after using Cardy’s doubling trick, to evaluate an eight-point 
current correlation function, a quite involved computation. Instead, we recall that the anomalous 
dimension is a short-distance effect where in the upper-half plane (see footnote 2) the presence 
of a boundary is irrelevant.

Matching the whole plane result, see Eq. (3.5) in [36], we have that

γO = −2cGλ(1 − λ + λ2)

k(1 − λ)(1 + λ)3 � 0 . (3.52)

In what follows we will work out the various contributions, that is the conformal result (3.53)
and the one-loop result (3.55), whose derivation can be found in Appendix C.

Conformal result: At the conformal point the correlator is given by (2.40) repeated here for 
convenience

〈O(x1, x̄1)O(x2, x̄2)〉uhp =
dG

|x12|4 + dG

|x1 − x̄2|4 + d2
G

(x1 − x̄1)2(x2 − x̄2)2 + cG

k

dG

|x12|2|x1 − x̄2|2 .
(3.53)

One-loop: Away from the conformal point, the one-loop contribution to the two-point function 
is given by

〈O(x1, x̄1)O(x2, x̄2)〉(1)
uhp = − λ

π

∫
S

d2z〈O(x1, x̄1)O(x2, x̄2)O(z, z̄)〉uhp . (3.54)

Since even at the conformal point (3.53) there is an explicit 1/k dependence we proceed to eval-
uate (3.54) up to order 1/k2 so that we can read the anomalous dimension of the composite 
current-bilinear which scales as cG/k. After a rather cumbersome computation which is sketched 
in Appendix C we reach the order λ, but exact in 1/k result (C.19), which we repeat here for the 
reader’s convenience

〈O(x1, x̄1)O(x2, x̄2)〉(1)
uhp = −2λcG

k
×

{
dG

|x12|4 ln
(1 − ξ)ε2

|x12|2

+ dG

|x1 − x̄2|4 ln
−ξ ε2

|x1 − x̄2|2 + d2
G

(x1 − x̄1)2(x2 − x̄2)2 ln
ε2

|(x1 − x̄1)(x2 − x̄2)|

}

+ cG

k

dG

|x12|2|x1 − x̄2|2
(

−4λ − 2λcG

k
ln

ε2F̃ (ξ)

|x12(x1 − x̄2)|
)

,

(3.55)

where ε is the usual short distance cut-off and the function F̃ (ξ) was defined in (3.49). Hence, 
the two-point function of the operator O(x, x̄) to order λ can be read by adding (3.53) and (3.55)
and we find (3.48).

3.4. One-point primary field correlation function

We will next show that the one-point function of the primary field �i,i′(x, x̄) to order λ/k takes 
the form

〈�i,i′(x, x̄)〉(λ)
uhp = δii′

(x − x̄)2hR

(
1 − λ

cR

k
ln

−ε2

(x − x̄)2

)
, (3.56)
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thus extending the CFT result obtained in (2.48). The anomalous dimension of the primary field 
to order λ/k can be read from the above expression after taking into account that hR is also of 
order 1/k, yielding

γ� = cR

k
(1 − 2λ) +O(λ2) . (3.57)

We note that the overall coefficient of the one-point function does not receive a λ-dependent 
contribution to order λ/k, see also footnote 3.

Using (3.57), the non-perturbative symmetry (3.4) and demanding regularity at the non-
Abelian and pseudo-dual limits at λ = ±1, we can constrain the exact in λ-dependence

γ� = 1

k

cR + cλ2 + cRλ4

(1 − λ)(1 + λ)3 , (3.58)

up to the constant c which can be fixed from a two-loop computation. The latter would require, 
after using Cardy’s doubling trick, the evaluation of a six-point function, which is a quite involved 
computation. Alternatively, we recall that the anomalous dimension is determined by the short-
distance behavior where in the upper-half plane the presence of a boundary is irrelevant (see 
footnote 2). This can be read from the whole plane result for the two-point function, as the one-
point function vanishes identically, (see Eq. (4.11) of [31], with cR′ = cR , NI = cR and after 
setting c = −2cR in (3.58))

γ� = cR

k

1 − λ

1 + λ
� 0 , (3.59)

agreeing to order λ with (3.57).
In what follows we shall work out the details in proving (3.56).

Conformal result: At the conformal point the correlator equals to (2.48) which is restated 
here

〈�i,i′(x, x̄)〉uhp = δii′

(x − x̄)2hR
. (3.60)

One-loop: Moving away from the conformal point, we find that the one-loop contribution to 
the one-point function reads

〈�i,i′(x, x̄)〉(1)
uhp = − λ

π

∫
S

d2z〈�i,i′(x, x̄)Ja(z)J̄a(z̄)〉uhp . (3.61)

We can evaluate the above three-point function using Cardy’s doubling trick as follows

〈�i,i′(x, x̄)Ja(z)J̄a(z̄)〉uhp = 〈�i,i′(x, x̄)�̄i′,i (x̄, x)Ja(z)Ja(z̄)〉hol . (3.62)

The latter four-point function can be easily evaluated using (2.45), (2.47) and the discussion at 
the end of Subsection 2.4

〈�i,i′(x, x̄)�̄i′,i (x̄, x)Ja(z)Ja(z̄)〉hol = cR

k

δii′

(x − x̄)2hR

{
1

(z − x)(z̄ − x)

− 1

(z − x̄)(z̄ − x)
− 1

(z − x)(z̄ − x̄)
+ 1

(z − x̄)(z̄ − x̄)

}
+ dG

(x − x̄)2hR

δii′

(z − z̄)2 ,

(3.63)

where the last term can be ignored as it corresponds to a bubble diagram. Next, we insert this 
expression into (3.56), using the integrals (3.33), (3.46), reaching the result
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〈�i,i′(x, x̄)〉(1)
uhp = −λcR

k

δii′

(x − x̄)2hR
ln

−ε2

(x − x̄)2 . (3.64)

Hence, the one-point function to order λ can be read by adding (3.60) and (3.64), yielding (3.56).

4. Free fields

In this section we employ the free field approach to λ-deformed σ -models [39] appropriately 
adapted to the upper-half plane. Using this approach we reproduce the three-point function for 
the current correlators we found before for Dirichlet boundary conditions. We also compute 
the same correlation functions for generalized Neumann boundary conditions, at the free field 
level, which do not preserve the current algebra and thus cannot be reproduced form conformal 
perturbation theory. In addition, we compute one- and two-point correlation function of primary 
operators and extract their anomalous dimension.

Finally, we point out that the structure constants of the Lie algebra in this section are taken to 
be real, matching the conventions used in [39].

4.1. The free field expansion of the action

The expanded action was obtained by parametrizing the group element in terms of normal 
coordinates as

g = eitaxa

, xa = 1√
k

√
1 − λ

1 + λ
φa , (4.1)

where the rescaling is introduced so that the kinetic term is canonically normalized. The action 
obtained by expanding in the number of fields, which is equivalent to the large k-expansion, has 
terms of the form (f n)ab∂+φa∂−φb , combined in a infinite sum with n = 0, 1, 2, . . . , where

fab = fabcφ
c . (4.2)

The relevant coupling coefficients have a specific dependence on λ dictated by the original λ-
deformed action [14]. Keeping a few terms, the action is [39]

Sk,λ = 1

2π

∫
S

d2σ
(
∂+φa∂−φa + g3√

k
fab∂+φa∂−φb + g4

k
f 2

ab∂+φa∂−φb
)

+ · · · , (4.3)

where the couplings are g3,4, assume the form

g3 = −1

3

1 + 4λ + λ2√
(1 − λ)(1 + λ)3

, g4 = 1

12

1 + 10λ + λ2

1 − λ2 . (4.4)

The couplings encode the symmetry of (4.3) under

λ → 1

λ
, k → −k , φa → −φa , (4.5)

which in fact originates from the symmetry of the λ-deformed action, found in [29]. Note that, 
the above symmetry when acting inside square roots is realized as k → eiπk and that (1 − λ) →
eiπ (λ−1 − 1). In this paper we will only need the cubic in the fields term with coupling g3.
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4.2. Boundary conditions and computational conventions

We would like to set up a perturbative expansion around the free theory paying particular 
attention to the appropriate boundary condition they obey in conjunction with preservation of 
integrability. As before we take our boundary to be located at σ = 0.

Passing from the light-cone coordinates to the world-sheet time and space coordinates as in 
footnote 1, it is easy to see that in deriving the equations of motion for the action (4.3) we get the 
boundary term

δφa
(
∂σ φa − g3√

k
fab∂τφ

b
)∣∣∣

σ=0
, (4.6)

up to an overall numerical factor and where we keep only the leading interaction term in the 
action (4.3). Vanishing of this term is achieved either by Dirichlet boundary conditions

δφa
∣∣
σ=0 = 0 ⇒ ∂τφ

a
∣∣
σ=0 = 0 ⇔ (∂+ + ∂−)φa

∣∣
σ=0 = 0 , (4.7)

for some directions or by generalized Neumann boundary conditions

∂σ φa|σ=0 = g3√
k
fab∂τφ

b
∣∣
σ=0 ⇔ ∂+φa|σ=0 = ∂−φa|σ=0 + 2g3√

k
fab∂−φb

∣∣
σ=0 , (4.8)

for the rest. Both boundary conditions preserve the momentum no-flow condition across the 
boundary given in terms of the energy momentum tensor by Tτσ |σ=0 = (T++ − T−−)|σ=0 = 0.4

The above boundary conditions are certainly invariant under the symmetry (4.5).
Among the above boundary conditions the integrable ones form a particularly interesting sub-

set. For the case at hand these are given by a condition on the gauge fields A±’s involved in the 
construction of the λ-deformed σ -model [14]. For a boundary located at σ = 0, it reads

A+
∣∣
σ=0 = A−

∣∣
σ=0 (4.9)

and it was found in [41] (see Eqs. (2.8) & (3.21)).5 Next we would like to investigate the possible 
boundary conditions for free fields under which the above is satisfied. In terms of the normal 
coordinates (4.1) the expressions for the gauge fields are given by [39] (see Eqs. (2.6) & (3.1))

A+ = −i
λ

λef − 1

ef − 1

f
∂+x , A− = −i

λ

ef − λ1

ef − 1

f
∂−x , (4.10)

where the matrix f is given in (4.2) but with xa’s in the place of φa’s, see also (4.1). It is easily 
seen that the integrability preserving boundary condition (4.9) for (4.10) gives rise to

4 The above considerations fall into the general form of possible boundary conditions at ∂S for a general σ -model with 
target space coordinates xμ , background metric Gμν , antisymmetric tensor Bμν given by

Dirichlet : ∂τ xμ|∂S = 0 ,

(Generalized) Neumann : Gμν∂σ xν |∂S = (Bμν + 2πFμν)∂τ xν |∂S ,

where F = dA is the field strength of the gauge field A ending at some brane.
5 In fact a more general integrability preserving boundary condition is allowed in which (4.9) is replaced by A+|∂S =

�A−|∂S , where � is a constant Lie algebra inner automorphism which satisfies �2 = 1 [41], (see Eq. (3.22); in the 
current work η is taken to be the identity matrix. In the limit λ → 0, the above boundary conditions reduce to the current 
algebra preserving D-branes (of type-D) of the WZW model [42–45], as well as those which do not preserve the current 
algebra (of type-N) [44].
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ef − 1

f

(
(1 − λ)(ef + 1)∂τ x + (1 + λ)(ef − 1)∂σ x

)∣∣∣
σ=0

= 0 . (4.11)

Following [42,44], we can analyze this boundary condition in directions which stay intact (or-
thogonal) under the adjoint action of G on the algebra, that is DX⊥ = ef X⊥ = X⊥, and their 
perpendicular complement (parallel). The former corresponds to Dirichlet boundary conditions 
and the latter to generalized Neumann ones, that is

∂τ x
⊥∣∣

σ=0 = 0 , ∂τ x
‖∣∣

σ=0 = 1 + λ

1 − λ

1 − ef

1 + ef
∂σ x‖∣∣

σ=0 . (4.12)

Since the x’s are proportional to the free fields φ’s – see (4.1), it will be technically beneficiary 
to have the same Dirichlet boundary condition for all free fields. Indeed, this is achieved if we 
set all of them to zero at the boundary σ = 0 which would consistent with the Dirichlet boundary 
condition (4.7).

Let’s turn now to the boundary condition (4.8). It is not clear that it preserves integrability as 
it is not consistent with (4.9). Moreover, even if it can be cast in the more general form described 
in footnote 5, integrability issues have to be investigated from scratch. Leaving that aside, given 
(4.8) one expects that a purely Neumann boundary condition ∂σφa

∣∣
σ=0 cannot be imposed. It 

turns out that this is indeed the case, for computations giving rise to order 1/k results such as, the 
two-point function of currents, but as we will shorty explain it can be used to obtain results of 
order 1/

√
k, e.g. three-point function of currents.

Passing now to the Euclidean regime (2.9) we will use the notation

ja(z) = ∂φa(z, z̄) , j̄a(z̄) = ∂̄φa(z, z̄) . (4.13)

In order to perform field theory computations using Wick’s theorem, we need to determine the 
basic two-point function

Gab(z,w) = 〈φa(z, z̄)φb(w, w̄)〉uhp , (4.14)

where z and w are both located at the upper-half plane. The boundary conditions will be imposed 
at σ = 0, which in the Euclidean regime corresponds to z̄ = z. For Dirichlet boundary conditions 
(4.7), we easily find that

Dirichlet b.c. : φa(z, z̄)|z̄=z ⇒ (∂ + ∂̄)Gab|z̄=z = 0 . (4.15)

For the generalized Neumann boundary conditions we obtain that

(Generalized) Neumann b.c. : (∂ − ∂̄)Gab
∣∣
z̄=z

= 2g3√
k

〈fac∂̄φcφb〉∣∣
z̄=z

. (4.16)

Let us estimate the order of magnitude of the right hand side term responsible for deviating from 
the standard Neumann boundary. In order for this term to contribute to the indicated order 1/

√
k

the three-point function, i.e. 〈fac∂̄φcφb〉, computed in the k → ∞ limit has to be non-vanishing. 
However, since it concerns three Abelian bosons it is clearly zero. Hence, this term is at best of 
order 1/k and can be safely ignored to all computations resulting to order 1/

√
k, as are the current 

three-point functions we will compute using free field methods.
Similarly to Subsection 2.2, the solution to the two-point function with the above two different 

boundary conditions can be easily presented in a unified way, including also the case in which 
the theory is defined in the entire plane. It reads that6

6 The two-point function (4.17) is dictated by varying the free part in the action (4.3). In particular, it yields in the 
Euclidean regime (2.9)
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〈φa(z, z̄)φb(w, w̄)〉uhp = −δab
(

ln |z − w|2 + ε ln |z − w̄|2
)

, (4.17)

where, respectively

ε = 0,+1,−1 , for entire plane, Neumann b.c.,Dirichlet b.c. (4.18)

We also have that

〈ja(z)φ
b(w, w̄)〉uhp = −δab

( 1

z − w
+ ε

z − w̄

)
,

〈ja(z)jb(w)〉uhp = − δab

(z − w)2 ,

〈φa(z, z̄)fbc(w, w̄)〉uhp = −fabc

(
ln |z − w|2 + ε ln |z − w̄|2

)
,

〈fab(z, z̄)fcd(w, w̄)〉uhp = −fabefcde

(
ln |z − w|2 + ε ln |z − w̄|2

)
,

〈ja(z)fbc(w, w̄)〉uhp = −fabc

( 1

z − w
+ ε

z − w̄

)
,

〈ja(z)j̄b(w̄)〉uhp = δab
(
C δ(2)(z − w) − ε

(z − w̄)2

)
,

(4.19)

where C = π . We remind the reader that the δ-function term arises from the fact that ∂
1

z̄
=

∂̄
1

z
= πδ(2)(z). We will keep C as a parameter in the intermediate steps of our computations 

in this section, so to keep track of δ-term contributions. Note also that, we have ignored in the 
second line above the term δ(2)(z − w̄) since z located at the upper-half plane and therefore 
cannot equal to w̄, which located at the lower-half plane.

4.3. Correlators with free fields

In general CFT operators are built using the group element g. These operators are expected 
to get modification in the λ-deformed theory as it was explicitly demonstrated in [37]. For the 
case of free currents ja± = ∂±φa this dressing amounts to simply replacing them by the gauge 
fields Aa± which have a non-trivial λ-dependence and are also expressed in terms of free fields. 
In order to have ∓i∂±φa as the leading term in their free field expansion, one rescales the Aa±’s 
in (4.10) by a λ-dependent factor and denote them by J a±,7 in order to distinguish them from the 
CFT currents J±.8

The J±’s have the following free field expansion [39]

J± = ∓i
(
1 ± h1√

k
f + · · ·

)
∂±φ , h1 = 1

2

√
1 + λ

1 − λ
, (4.20)

δL = 1

π

(
δφa∂∂̄φa − ∂t (∂t φ

aδφa) + ∂σ (∂σ φaδφa)
)

.

The propagator Gab is read as usual by 1/π ∂∂̄ Gab = −δab δ(2)(z −w), having the same normalization as that in (2.16), 
and it is subjected to the Dirichlet φa = 0 or to the Neumann ∂σ φa = 0 boundary conditions, at σ = 0.

7 Explicitly, J a± = − 1
λ

√
k(1 − λ2)Aa± with the Aa±’s given in (4.10), see also [39].

8 They are related as J±
∣∣
λ=0 = iJ± , with J+ = i

√
k∂+gg−1 and J− = −i

√
kg−1∂−g. In the Euclidean regime (2.9)

the CFT currents J+ and J− are mapped to J = −√
k∂gg−1 and J̄ = √

kg−1∂̄g respectively, which satisfy the operator 
product expansion (2.33).
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where we have kept only the relevant for this paper terms. In the Euclidean regime the notation 
will be J and J̄ in place of J+ and J−, respectively. Taking into account (2.9) we have that

J =
(
1 + h1√

k
f + · · ·

)
∂φ , J̄ = −

(
1 − h1√

k
f + · · ·

)
∂̄φ . (4.21)

Let us note that the above dressed currents and the real fabc’s are equal to the non-Abelian 
currents and the imaginary fabc’s in (2.33), as

J
∣∣
λ=0 = iJ , J̄

∣∣
λ=0 = iJ̄ , fabc|real = −ifabc|Im . (4.22)

These dressed currents obey

Dirichlet b.c. : J − J̄
∣∣
z̄=z

= 0 , (4.23)

for Dirichlet boundary conditions, corresponding to the case with ε = −1 for the free field prop-
agator (4.17). This is precisely the boundary condition (2.34) for the full non-Abelian currents.

To write an analogous expression for generalized Neumann boundary conditions we will need 
another dressed current defined as

J̄ ′ = −
(
1 − h′

1√
k
f + · · ·

)
∂̄φ , h′

1 = −h1 − 2g3 = 1 + 10λ + λ2

6
√

(1 − λ)(1 + λ)3
. (4.24)

Then we have that

Generalized Neumann b.c. : J + J̄ ′∣∣
z̄=z

= 0 , (4.25)

where (4.8) and (2.9) have been also used. This condition will be used as a consistency check for 
the three-point correlation functions that we will compute below.

4.3.1. The three-point function 〈JJJ 〉
In this section, we will work out the three-point function 〈JJJ 〉 to the leading result O(1/

√
k)

and show that it takes the form

〈Ja(x1, x̄1)Jb(x2, x̄2)Jc(x3, x̄3)〉(λ),exact
uhp = 3α√

k

fabc

x12x13x23

+ ε
β√
k

fabc

(
1

x2
23(x1 − x̄2)

− 1

x2
13(x2 − x̄1)

+ cyclic in 1,2,3

)
,

(4.26)

where the coefficients are given by

α = h1 + C

2π
g3 = h1 + g3

2
= 1

3

1 + λ + λ2√
(1 − λ)(1 + λ)3

,

β = α + g3 = − λ√
(1 − λ)(1 + λ)3

.

(4.27)

This result is precisely the same as in (3.6), taking also (4.22) into account, for Dirichlet boundary 
conditions corresponding to ε = −1. In addition, for ε = 0 our result coincides with the full plane 
correlator found in Eq. (3.29) of [31], after taking into account (4.22) and (4.27).

In what follows, we shall work out the various contributions leading to (4.26). For the 〈JJJ 〉
correlator we have that
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〈Ja(x1, x̄1)Jb(x2, x̄2)Jc(x3, x̄3)〉(λ),exact
uhp = 〈Ja(x1, x̄1)Jb(x2, x̄2)Jc(x3, x̄3)e

−Sint〉uhp ,

(4.28)

where the interaction terms in the Euclidean regime can be read from (4.3) to be

Sint = g3

2π
√

k

∫
S

d2z jafabj̄b +O
(

1

k

)
. (4.29)

Then, expanding the exponential and keeping terms up to O(1/
√

k) we have that

〈Ja(x1, x̄1)Jb(x2, x̄2)Jc(x3, x̄3)〉(λ),exact
uhp

= h1√
k
〈faa1(x1, x̄1)ja1(x1)jb(x2)jc(x3)〉uhp + [

cyclic in (x1, a), (x2, b), (x3, c)
]

− g3

2π
√

k

∫
S

d2z 〈ja(x1)jb(x2)jc(x3)ja1(z)fa1b1(z, z̄)j̄b1(z̄)〉uhp

= 1√
k

(
h1 + C

2π
g3

)
〈faa1(x1, x̄1)ja1(x1)jb(x2)jc(x3)〉uhp

− ε
g3

2π
√

k

∫
S

d2z

(z̄ − x1)2 〈faa1(z, z̄)ja1(z)jb(x2)jc(x3)〉uhp

+ [
cyclic in (x1, a), (x2, b), (x3, c)

]
.

(4.30)

Explicitly, the necessary four-point function is given by

〈faa1(x1, x̄1)ja1(x1)jb(x2)jc(x3)〉uhp = −fabc

x2
12

(
1

x13
+ ε

x̄1 − x3

)
+ fabc

x2
13

(
1

x12
+ ε

x̄1 − x2

)
.

(4.31)

Then we have that

〈faa1(x1, x̄1)ja1(x1)jb(x2)jc(x3)〉uhp + [
cyclic in (x1, a), (x2, b), (x3, c)

]
= 3fabc

x12x13x23
+ εfabc

(
1

x2
12

(
1

x̄2 − x3
− 1

x̄1 − x3

)

+ 1

x2
23

(
1

x̄3 − x1
− 1

x̄2 − x1

)
+ 1

x2
31

(
1

x̄1 − x2
− 1

x̄3 − x2

))
.

(4.32)

The remaining integral in (4.30) is∫
S

d2z

(z̄ − x1)2 〈faa1(z, z̄)ja1(z)jb(x2)jc(x3)〉uhp + [
cyclic in (x1, a), (x2, b), (x3, c)

]
= fabc

(
− I123 + I132 − I231 + I213 − I312 + I321

)
+ εfabc

(
− J123 + J132 − J231 + J213 − J312 + J321

)
,

(4.33)

where we have defined the integrals
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I123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z − x3)
, J123 =

∫
S

d2z

(z̄ − x1)2(z − x2)2(z̄ − x3)
. (4.34)

We have evaluated them in A.1 and (A.2). We recall the result here for the reader’s convenience

I123 = π

x2
23

(
1

x1 − x̄2
− 1

x1 − x̄3

)
, J123 = 0 . (4.35)

Upon substitution and after some rearrangements the three-point function for the J ’s equals to 
(4.26).

4.3.2. The three-point function 〈JJ J̄ 〉
Similarly, for the mixed chirality correlator to leading result O(1/

√
k) the end result reads

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3〉(λ),exact
uhp = − β√

k
fabc×(

x̄12

x2
12x̄13x̄23

+ ε2

(x1 − x̄3)2

(
1

x̄1 − x2
− ε

x23

)
+ ε2

(x2 − x̄3)2

(
1

x1 − x̄2
+ ε

x13

))

+ α√
k
fabc

(
− ε

x12(x1 − x̄3)(x2 − x̄3)

+ ε2

(x1 − x̄3)2

(
1

x2 − x̄3
− ε

x12

)
− ε2

(x2 − x̄3)2

(
1

x1 − x̄3
+ ε

x12

))
,

(4.36)

where the coefficients α, β can be found in (4.27).
In what follows, we shall work out the various contributions leading to (4.36).
Keeping only those terms that potentially contribute to the correlator up to O(1/

√
k), we have 

that

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3)〉(λ),exact
uhp = 〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3)e

−Sint〉uhp

= − h1√
k
〈faa1(x1, x̄1)ja1(x1)jb(x2)j̄c(x̄3)〉uhp + [

(x1, a) ↔ (x2, b)
]

+ h1√
k
〈fcc1(x3, x̄3)ja(x1)jb(x2)j̄c1(x̄3)〉uhp

+ g3

2π
√

k

∫
S

d2z 〈ja(x1)jb(x2)j̄c(x̄3)ja1(z)fa1b1(z, z̄)j̄b1(z̄)〉uhp

= − 1√
k

(
h1 + C

2π
g3

)
〈faa1(x1, x̄1)ja1(x1)jb(x2)j̄c(x̄3)〉uhp + [

(x1, a) ↔ (x2, b)
]

+ h1√
k
〈fcc1(x3, x̄3)ja(x1)jb(x2)j̄c1(x̄3)〉uhp

+ g3

2π
√

k

∫
S

d2z

(z̄ − x̄3)2 〈fca1(z, z̄)ja1(z)ja(x1)jb(x2)〉uhp

+ ε g3

2π
√

k

∫
S

d2z

(z̄ − x1)2 〈faa1(z, z̄)ja1(z)jb(x2)j̄c(x̄3)〉uhp + [
(x1, a) ↔ (x2, b)

]
.

(4.37)
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We need the correlator

〈faa1(x1, x̄1)ja1(x1)jb(x2)j̄c(x̄3)〉uhp = −fabc

(
1

x2
12x̄13

+ C δ(2)(x13)

x12

+ ε
( 1

x2
12(x1 − x̄3)

− 1

x12(x1 − x̄3)2 + C δ(2)(x13)

x̄1 − x2

)
− ε2

(x̄1 − x2)(x1 − x̄3)2

)
,

(4.38)

where we have kept the δ-function terms since in the last integral above may contribute. We also 
need the correlator

〈fcc1(x3, x̄3)ja(x1)jb(x2)j̄c1(x̄3)〉uhp

= − fabc

(x1 − x̄3)2

( 1

x23
+ ε

x2 − x̄3

)(
Cδ(2)(x13) − ε

(x1 − x̄3)2

)
− (x1 ↔ x2)

= fabc

( ε

(x1 − x̄3)2x23
− ε

(x2 − x̄3)2x13

+ ε2

(x1 − x̄3)2(x2 − x̄3)
− ε2

(x2 − x̄3)2(x1 − x̄3)

)
,

(4.39)

where in the second equality we have neglected contact terms since they will not contribute. 
Finally, we need the correlator

〈fca1(z, z̄)ja1(z)ja(x1)jb(x2)〉uhp = fabc

(
1

(z − x1)(z − x2)2 − 1

(z − x2)(z − x1)2

+ ε

(
1

(z̄ − x1)(z − x2)2 − 1

(z̄ − x2)(z − x1)2

))
,

(4.40)

which is the same as (4.31) with the necessary relabeling for the points.
Using the above, the first integral in (4.37) above can be written as∫

S

d2z

(z̄ − x̄3)2 〈fca1(z, z̄)ja1(z)ja(x1)jb(x2)〉uhp = fabc

(
A123 − A213 + ε (B123 − B213)

)
,

(4.41)

whereas the second integral in (4.37) as∫
S

d2z

(z̄ − x1)2 〈faa1(z, z̄)ja1(z)jb(x2)j̄c(x̄3)〉uhp + [
(x1, a) ↔ (x2, b)

]
= −fabc

(
C123 − C213 − C

(x1 − x̄3)2x23
+ C

(x2 − x̄3)2x13

)
− ε fabc

(
D123 − D213 − E123 + E213

− C

(x1 − x̄3)2(x2 − x̄3)
+ C

(x2 − x̄3)2(x1 − x̄3)

)
+ ε2fabc(F123 − F213) ,

(4.42)
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where the various integrals are defined as

A123 =
∫
S

d2z

(z − x1)(z − x2)2(z̄ − x̄3)2 , B123 =
∫
S

d2z

(z̄ − x1)(z − x2)2(z̄ − x̄3)2 ,

C123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z̄ − x̄3)
, D123 =

∫
S

d2z

(z̄ − x1)2(z − x2)2(z − x̄3)
,

E123 =
∫
S

d2z

(z̄ − x1)2(z − x2)(z − x̄3)2 , F123 =
∫
S

d2z

(z̄ − x1)2(z̄ − x2)(z − x̄3)2 ,

(4.43)

whose value is given in (A.2). Summing all the above contributions we find (4.36).
For the whole plane ε = 0, (4.36) simplifies to

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3)〉(λ),exact
R2 = − β√

k
fabc

x̄12

x2
12x̄13x̄23

(4.44)

and coincides with the whole plane result in Eq. (3.33) of [31], after taking into account (4.22)
and (4.27).

For Dirichlet boundary conditions ε = −1, (4.36) simplifies to

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3)〉(λ),exact
uhp = − β√

k
fabc×(

x̄12

x2
12x̄13x̄23

+ 1

(x1 − x̄3)2

(
1

x̄1 − x2
+ 1

x23

)
+ 1

(x2 − x̄3)2

(
1

x1 − x̄2
− 1

x13

))

+ 3α√
k
fabc

1

x12(x1 − x̄3)(x2 − x̄3)
,

(4.45)

which coincides with that in (3.16), after taking into account (4.27) and the map (4.22).
For Neumann boundary conditions ε = 1, (4.36) simplifies to

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄c(x3, x̄3)〉(λ),exact
uhp = − β√

k
fabc×(

x̄12

x2
12x̄13x̄23

+ 1

(x1 − x̄3)2

(
1

x̄1 − x2
− 1

x23

)
+ 1

(x2 − x̄3)2

(
1

x1 − x̄2
+ 1

x13

))

− 3α√
k
fabc

(
1

x12(x1 − x̄3)(x2 − x̄3)
+ 2x12

3(x1 − x̄3)2(x2 − x̄3)2

)
.

(4.46)

We may independently compute the correlator (4.36) with J̄ replaced by J̄ ′ given in terms of 
free fields by (4.24). The end result is

〈Ja(x1, x̄1)Jb(x2, x̄2)J̄ ′
c(x3, x̄3)〉(λ),exact

uhp = − β√
k
fabc×(

x̄12

x2
12x̄13x̄23

+ ε2

(x1 − x̄3)2

(
1

x̄1 − x2
− ε

x23

)
+ ε2

(x2 − x̄3)2

(
1

x1 − x̄2
+ ε

x13

))

+ α√ fabc

(
− ε
k x12(x1 − x̄3)(x2 − x̄3)
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+ ε2

(x1 − x̄3)2

(
1

x2 − x̄3
− ε

x12

)
− ε2

(x2 − x̄3)2

(
1

x1 − x̄3
+ ε

x12

))
− 2ε

h1 + g3√
k

fabc

(
1

(x1 − x̄3)2

(
1

x23
+ ε

x2 − x̄3

)
− 1

(x2 − x̄3)2

(
1

x13
+ ε

x1 − x̄3

))
,

(4.47)

where

h1 + g3 = 1

6

(
1 − λ

1 + λ

)3/2

. (4.48)

Then from (4.47) with ε = 1 and (4.26) we may easily check the consistency relation〈
Ja(x1, x̄1)Jb(x2, x̄2)

(
Jc(x3, x̄3) + J̄ ′

c(x3, x̄3)
)〉(λ),exact

uhp

∣∣∣
x̄3=x3

= 0 . (4.49)

4.4. Anomalous dimensions of primary fields

In this subsection we will compute one- and two-point functions of primary operators using 
free fields with Dirichlet boundary conditions so that we may directly compare with the results 
of Subsection 3.4. The discussion will be similar to that in Section 3.3 of [39], adapted to the 
upper-half plane. Consider the field Dab and its free field expansion

Dab = Tr(tagtbg
−1) = δab + 1√

k

√
1 − λ

1 + λ
fab + 1

2k

1 − λ

1 + λ
f 2

ab + · · · (4.50)

We would like to evaluate its one- and two-point correlation function. Starting with the one-point 
function, it can be easily seen that to O(1/k) the path integral insertions have either vanishing or 
bubble diagram contribution. As a result we are left with

〈Dab(x, x̄)〉(λ),exact
uhp = δab + 1

2k

1 − λ

1 + λ
〈f 2

ab(x, x̄)〉uhp

= δab

(
1 + cG

2k

1 − λ

1 + λ
ln

−ε2

(x − x̄)2

)
.

(4.51)

Similarly, we can evaluate the one-point function of the group element gij (x, x̄) which is a pri-
mary field in an irreducible representation R, with Hermitian matrices ta . Using (4.1) to obtain 
its free field expansion we find that

〈gij (x, x̄)〉(λ),exact
uhp = δij − 1

2k

1 − λ

1 + λ
(tatb)ij 〈φa(x, x̄)φb(x, x̄)〉uhp

= δij

(
1 + cR

2k

1 − λ

1 + λ
ln

−ε2

(x − x̄)2

)
.

(4.52)

Hence, we can read out of (4.51) and (4.52) the corresponding anomalous dimensions

γD = cG

k

1 − λ

1 + λ
, γg = cR

k

1 − λ

1 + λ
, (4.53)

which are in agreement with (3.59) and of course consistent, since Dab belongs to the adjoint 
representation for which cR = cG.
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Similarly, we can evaluate the two-point function for Dab yielding to order 1/k

〈Dac(x1, x̄1)Dbc(x2, x̄2)〉(λ),exact
uhp = δab

(
1 + cG

k

1 − λ

1 + λ
ln

ε2(1 − ξ)

|x12|2
)

, (4.54)

where ξ is the invariant ratio defined in (2.20), as well as that for gij

〈gim(x1, x̄1)g
−1
mj (x2, x̄2)〉(λ),exact

uhp = δij

(
1 + cR

k

1 − λ

1 + λ
ln

ε2(1 − ξ)

|x12|2
)

, (4.55)

from which we read off the same anomalous dimensions as above. Finally, we note that for λ = 0
and to order 1/k, the above two-point correlation functions are in agreement with the generic 
expression (2.19) where

h1,2 = h̄1,2 = h = cR

2k + cG

, F (ξ) = ε4h(1 − ξ)4h , (4.56)

where the invariant ratio ξ was given in (2.20). It is also in agreement with (1.2), where

ψ(ζ ) = ε2�

4�

(
ζ + 2

ζ − 2

)�

, ζ = 2(1 − 2ξ)� 2 , �1,2 = � = 2cR

2k + cG

, (4.57)

which is also consistent with (2.21) and (4.56).

5. Concluding remarks

In the present work we studied quantum aspects of λ-deformed models in spaces with bound-
aries in particular, the model of [14] in the upper-half plane. For Dirichlet type of boundary 
conditions, preserving the current algebra at the conformal point [42–45] and the integrability 
away from it [23], we computed exactly in λ and leading order in 1/k, one-point correlation 
function of affine primaries, two-point functions of currents and composite current-bilinear and 
three-point functions of currents using low order conformal perturbation theory based on current 
algebras and Cardy’s doubling trick, in association with non-trivial symmetries in the coupling 
space of the models and meromorphicity arguments. Moreover, using standard QFT techniques 
based on free fields we arrived at the same results and in addition we were able to consider mixed 
boundary conditions which do not necessarily preserve integrability. The correlation functions 
we computed have a rich structure. We presented our calculations, in particular those involving 
delicate integrations in the upper-half plane, in full detail, which will be useful in further related 
investigations.

The results of this work should be extendable via a conformal mapping to other geome-
tries with boundaries, provided that they share the same current algebra preserving boundary 
conditions. It will be interesting to study correlation functions involving primary fields, using 
conformal perturbation on the upper-half plane, beyond the one-point correlation functions at 
one-loop order presented in the current work. Combining low order conformal perturbation with 
meromorphicity arguments and the non-perturbative symmetry on (λ, k) should yield the same 
correlation functions as these can be found independently using free field techniques on the 
upper-half plane. In addition, the derived anomalous dimensions should match the full plane 
result since it is determined by the short-distance behavior, where in the upper-half plane the 
boundary has no effect (see footnote 2).
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It is also very interesting to consider integrable deformations of coset CFTs on the upper-half 
plane. A priori, we still have the two approaches at our disposal, namely conformal perturbation 
and that using free fields. A posteriori, it is way more difficult to use conformal perturbation 
when the underlying CFT is a coset one. The reason is that in such CFTs, the building blocks 
are parafermions which have more complicated operator product expansions than currents and 
as a result they contain Wilson-like phases in their expressions in terms of target space fields. 
However, we can still use the free field expansion as it was done in [40] for the full plane. In this 
case one might expect the anomalous dimension of the single parafermion may still stay intact 
as it is governed by the short-distance behavior. However, the non-local phase played a crucial 
rôle in determining the anomalous dimension of the parafermion in [40]. Hence, the effect of 
the boundary could be significant in the anomalous dimension of the parafermion and a detailed 
computation should be done.

A potential extension of the current work is to consider λ-deformations of currents algebras 
at unequal levels [18]. This class of models smoothly interpolates between a product of current 
algebras at levels k1 and k2 in the UV towards a product of current algebras or coset CFTs in 
the IR [18]. To study this class of models on the upper-half plane we can either use conformal 
perturbation or the usual QFT perturbation, based on free fields adapted to the appropriate bound-
ary conditions. In the CFT approach, the set of boundary conditions which preserve the current 
algebras are again given by (2.34) but for each of the copies separately. In terms of a D-brane 
world-volume point of view, this boundary condition simply describes two identical copies of 
the conjugacy classes of the group G [42–45].

A further possible extension includes studying Yang–Baxter deformations of principal chi-
ral models constructed in [58,59]. This class of models are related to the λ-deformed ones via 
Poisson–Lie T-duality and analytic continuation of the coordinates and parameters of the σ -
model [60,61,20,62,63]. In these modes there is no conformal point in contrast to the λ-ones. 
Nevertheless, in studying the Yang–Baxter models on the upper-half plane we can still use QFT 
techniques based on free fields. This study will include deriving their β-function, correlation 
functions and anomalous dimensions starting with the case with no boundaries and extending 
it in its presence. Concerning correlation functions, a natural choice for η-dressed fields to be 
pursued are the ones appearing in the Lax connection of the Yang–Baxter models [59].
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Appendix A. A quiver of integrals in the upper-half plane

In this Appendix we present the various integrals appearing on the main text of the current 
work which we group them accordingly. The domain of integration is the half-disc located at the 
upper-half plane and will be denoted by S = {Im(z) � 0} and R parameterizes its radius which 
is taken much larger (or even infinite) than the modulus of the external points, that is |x1,2,3|. We 
keep R large, but finite, when a corresponding integral diverges.

Integrals appearing in the evaluation of the 〈JJJ 〉 and 〈JJJ 〉 correlators

I123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z − x3)
= π

x2
23

(
1

x1 − x̄2
− 1

x1 − x̄3

)
,

J123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z̄ − x3)
= 0 .

(A.1)

Integrals appearing in the evaluation of the 〈JJ J̄ 〉 and 〈JJ J̄ 〉 correlators

A123 =
∫
S

d2z

(z − x1)(z − x2)2(z̄ − x̄3)2 = − πx̄12

x2
12x̄13x̄23

− π

(x1 − x̄3)(x2 − x̄3)2 ,

B123 =
∫
S

d2z

(z̄ − x1)(z − x2)2(z̄ − x̄3)2

= π

x23(x1 − x̄3)2 + π

x12

(
1

(x1 − x̄3)2 − 1

(x2 − x̄3)2

)
,

C123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z̄ − x̄3)
= π

(x1 − x̄3)2

(
1

x2 − x̄3
− 1

x23

)
, (A.2)

D123 =
∫
S

d2z

(z̄ − x1)2(z − x2)2(z − x̄3)
= π

(x2 − x̄3)2

(
1

x1 − x̄2
− 1

x1 − x̄3

)
,

E123 =
∫
S

d2z

(z̄ − x1)2(z − x2)(z − x̄3)2

= − π

(x1 − x̄2)(x2 − x̄3)2 − π

x12

(
1

(x1 − x̄3)2 − 1

(x2 − x̄3)2

)
,

F123 =
∫
S

d2z

(z̄ − x1)2(z̄ − x2)(z − x̄3)2 = π

(x2 − x̄3)(x1 − x̄3)2 .
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Integrals appearing in the evaluation of the 〈JJ 〉 and 〈J J̄ 〉 correlators

I1(x1;x2) =
∫
S

d2z

(z − x1)(z̄ − x2)
= π ln

R

x̄1 − x2
+ iπ2

2
,

I1|1(x1;x2) =
∫
S

d2z

(z − x1)2(z̄ − x2)2 = 0 ,

J1(x1;x2) =
∫
S

d2z

(z − x1)(z̄ − x̄2)
= π ln

R(x̄2 − x1)

|x12|2 − iπ2

2
,

J1|1(x1;x2) =
∫
S

d2z

(z − x1)2(z̄ − x̄2)2 = π

(x1 − x̄2)2 + π2δ(2)(x12) ,

J2(x1;x2) =
∫
S

d2z

(z − x̄2)(z̄ − x1)
= π ln

R

x1 − x̄2
+ iπ2

2
,

J2|1(x1;x2) =
∫
S

d2z

(z − x̄2)2(z̄ − x1)2 = − π

(x1 − x̄2)2 ,

J3(x1;x2) =
∫
S

d2z

(z − x̄1)(z̄ − x̄2)
= π ln

R

x2 − x̄1
+ iπ2

2
.

(A.3)

The above integrals are evaluated with heavy use of Stokes’ theorem. For a two-dimensional 
vector with components V1,2, Stokes’ theorem is∫

S

dx1dx2 (∂1V2 − ∂2V1) =
∮
∂S

(V1dx1 + V2dx2) . (A.4)

Defining z = x1 + ix2, its complex conjugate z̄ = x1 − ix2, as well as A = V2 − iV1 and B =
V2 + iV1 we obtain the form of the theorem suitable for the purposes of this paper∫

S

d2z (∂zA + ∂z̄B) = i

2

∮
∂S

(Adz̄ − Bdz) , (A.5)

where d2z = dx1dx2. Subsequently the loop integral, on the right-hand side of the above ex-
pression, is evaluated for an appropriate choice of contour. In what follows, we shall explicitly 
evaluate some of the above integrals using the above ingredients. Note that the choice of the 
functions A and B is to a certain extent arbitrary and depending on the two-dimensional integral 
we wish to evaluate, it is chosen to our convenience.

A.1. The integral I123

Let us consider the integral

I123 =
∫

d2z

(z̄ − x1)2(z − x2)2(z − x3)
. (A.6)
S
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Fig. 1. Contour of integration ∂S for the integral (A.6) with R → ∞.

In this case we will use Stokes’ theorem (A.5) with

A = 0 , B = − 1

(z̄ − x1)(z − x2)2(z − x3)
, (A.7)

so we have that

I123 = − i

2

∮
∂S

dzB = − i

2

⎛⎜⎝∫
�

dzB +
∫
III

dzB +
∮
cε′

dzB +
∫
IV

dzB

+
∫
I

dzB +
∮
cε

dzB +
∫
II

dzB −
+∞∫

−∞

dx

(x − x1)(x − x2)2(x − x3)

⎞⎠ ,

(A.8)

where the contour of integration ∂S is depicted in Fig. 1. Note that due to the choice of the 
integration contour we ignore a term proportional to δ(2)(z − x3) which arises in evaluating ∂z̄B , 
since x3 lies outside the domain surrounded by the contour of integration, as seen in Fig. 1.

The integrals on I and II cancel each other and similarly for the integrals of III and IV. In 
addition, the integral on � vanishes as well as. Finally, using Cauchy’s theorem on the lower-half 
plane, the last integral on the real line is also vanishing since Im(x1,2,3) > 0. Hence, we are left 
with the integrals on cε and cε′ which can be easily evaluated∮

cε

dzB = 2πi

(x1 − x̄2)x
2
23

,

∮
cε′

dzB = − 2πi

(x1 − x̄3)x
2
23

. (A.9)

Using the above in (A.8) we find the result

I123 = π

x2
23

(
1

x1 − x̄2
− 1

x1 − x̄3

)
. (A.10)

A.2. The integral J123

Let us now consider the integral

J123 =
∫

d2z

(z̄ − x1)2(z − x2)2(z̄ − x3)
. (A.11)
S
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Fig. 2. Contour of integration ∂S for the integral (A.11) with R → ∞.

To evaluate it we will use again the Stokes’ theorem (A.5) with

A = − 1

(z̄ − x1)2(z − x2)(z̄ − x3)
, B = 0 , (A.12)

so that we have that

J123 = i

2

∮
∂S

dz̄A = i

2

⎛⎝∫
�

dz̄A +
∫
I

dz̄A +
∮
cε

dz̄A +
∫
II

dz̄A

−
+∞∫

−∞

dx

(x − x1)2(x − x2)(x − x3)

⎞⎠ ,

(A.13)

where the contour of integration ∂S is depicted in Fig. 2. Note that a term proportional to δ(2)(z−
x̄3) resulting from evaluating ∂zA has been ignored since z and x̄3 are located the upper- and 
lower-halves of the plane, respectively.

The integrals on I and II cancel each other and the integrals over the contours � and cε vanish. 
Finally, the last integral on the real line which can be easily seen to vanish using Cauchy’s 
theorem on the lower-half plane, with Im(x1,2,3) > 0. Using the above in (A.13) we find that

J123 = 0 . (A.14)

A.3. The integral I1(x1, x2)

Let us now consider the integral

I1(x1, x2) =
∫
S

d2z

(z − x1)(z̄ − x2)
. (A.15)

To evaluate it we use Stokes’ theorem (A.5) with

A = 0 , B = ln(z̄ − x2)

z − x1
, (A.16)

so that we have
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Fig. 3. Contour of integration ∂S for the integral (A.17).

Fig. 4. Contour of integration ∂S′ for the integral (A.20).

I1(x1, x2) = − i

2

∮
∂S

dzB = − i

2

⎛⎝∫
�

dzB +
∫
I

dzB +
∮
cε

dzB +
∫
II

dzB

+
+R∫

−R

dx
ln(x − x2)

x − x1

⎞⎠ ,

(A.17)

with the contour of integration as in Fig. 3. Note that, similarly to before, we have ignored a 
δ(2)(z − x1) term in evaluating ∂z̄B since it vanishes for our choice of integration contour.

The integrals on I and II cancel and the loop integral on cε equals to∮
cε

dzB = −2πi ln(x̄1 − x2) . (A.18)

Also the integral on � equals to∫
�

dzB = iπ lnR + π2

2
. (A.19)

To evaluate the integral on the real line in (A.17) we use Cauchy’s theorem for the following 
integral and the indicated contour in the lower-half plane is depicted in Fig. 4 so that we avoid 
branch cuts, yielding
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∮
∂S′

dz
ln(z − x2)

z − x1
= 0 =⇒

∫
�′

dz
ln(z − x2)

z − x1
+

+R∫
−R

dx
ln(x − x2)

x − x1
= 0 . (A.20)

We may evaluate the line integral on �′ by letting z = Reiφ , R � 1 and φ ∈ [2π, π]. The 
choice of the range for the angle φ is dictated by the fact that we should restrict to the lower-half 
plane in the transversing the curve �′. We find that∫

�′
dz

ln(z − x2)

z − x1
= −iπ lnR + 3π2

2
. (A.21)

Employing the above in (A.17) we find the result

I1(x1, x2) = π ln
R

x̄1 − x2
+ iπ2

2
. (A.22)

A.4. The integral J1(x1, x2)

Let us now consider the integral

J1(x1;x2) =
∫
S

d2z

(z − x1)(z̄ − x̄2)
. (A.23)

To evaluate it we use Stokes’ theorem (A.5) with

A = ln |z − x1|2
z̄ − x̄2

, B = 0 , (A.24)

so we have that

J1(x1;x2) = i

2

∮
∂S

dz̄A = i

2

⎛⎝∫
�

dz̄A +
∫
I

dz̄A +
∮
cε

dz̄A +
∫
II

dz̄A

+
+R∫

−R

dx
ln |x − x1|2

x − x̄2

⎞⎠ ,

(A.25)

where the contour of integration ∂S is depicted in Fig. 2 with the radius R kept finite. The 
integrals on I and II cancel each other and the loop integral on cε equals to∮

cε

dz̄ A = 2πi ln |x12|2 (A.26)

and the integral along � equals to∫
�

dz̄A = −iπ lnR2 . (A.27)

Hence, we are left with the integrals on the real line
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+R∫
−R

dx
ln |x − x1|2

x − x̄2
=

+R∫
−R

dx
ln(x − x1)

x − x̄2
+

+R∫
−R

dx
ln(x − x̄1)

x − x̄2
. (A.28)

These can be evaluated via Cauchy’s theorem on the lower- and upper-half plane, respectively. 
Doing so one easily finds

+R∫
−R

dx
ln(x − x1)

x − x̄2
= −2iπ ln(x̄2 − x1) + iπ lnR − 3π2

2
,

+R∫
−R

dx
ln(x − x̄1)

x − x̄2
= −iπ lnR + π2

2
.

(A.29)

Combining all the above, one finds

J1(x1;x2) = π ln
R(x̄2 − x1)

|x12|2 − iπ2

2
. (A.30)

Appendix B. Two-point function 〈JJ 〉 at two-loop

In this Appendix we sketch the proof of (3.38). Our starting point will be (3.37) which using 
Cardy’s doubling trick we rewrite as

〈Ja(x1)Jb(x2)〉(2)
uhp = λ2

2π2

∫
S

d2z12〈Ja(x1)Jb(x2)Jc(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉 . (B.1)

To evaluate the above six-point current correlation function on the full plane we will use Ward 
identity and the Kac–Moody current algebra (2.33) in order to reduce it to four- and five-point 
functions

〈Ja(x1)Jb(x2)Jc(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉 =
〈Jb(x2)Ja(z̄1)Jd(z2)Jd(z̄2)〉

(x1 − z1)2 + face〈Jb(x2)Je(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉√
k(x1 − z1)

+ 〈Jb(x2)Ja(z1)Jd(z2)Jd(z̄2)〉
(x1 − z̄1)2 + face〈Jb(x2)Jc(z1)Je(z̄1)Jd(z2)Jd(z̄2)〉√

k(x1 − z̄1)

+ 〈Jb(x2)Jc(z1)Jc(z̄1)Ja(z̄2)〉
(x1 − z2)2 + fade〈Jb(x2)Jc(z1)Jc(z̄1)Je(z2)Jd(z̄2)〉√

k(x1 − z2)

+ 〈Jb(x2)Jc(z1)Jc(z̄1)Ja(z2)〉
(x1 − z̄2)2 + fade〈Jb(x2)Jc(z1)Je(z̄1)Jd(z2)Je(z̄2)〉√

k(x1 − z̄2)

(B.2)

and we have dismissed two terms corresponding to bubble diagrams. This expression can be 
written schematically as

〈Ja(x1)Jb(x2)Jc(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉 =
〈Jb(x2)Ja(z̄1)Jd(z2)Jd(z̄2)〉

(x1 − z1)2 + face〈Jb(x2)Je(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉√
k(x1 − z1)

+ (z ↔ z̄ ) + (z ↔ z ) + (z ↔ z̄ ) ,

(B.3)
1 1 1 2 1 2
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where the replacements address to the four- and five-point correlation functions as well. Note that 
the latter two replacements, namely z1 ↔ z2 and z1 ↔ z̄2 can be obtained from the second line 
of (B.3) in conjunction with the replacement z1 ↔ z̄1 upon relabeling the integration variables. 
Hence, upon inserting in (B.1) we obtain the following simplified expression

〈Ja(x1)Jb(x2)〉(2)
uhp = 2 × λ2

2π2

∫
S

d2z12

{ 〈Jb(x2)Ja(z̄1)Jd(z2)Jd(z̄2)〉
(x1 − z1)2

+face〈Jb(x2)Je(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉√
k(x1 − z1)

+ (z1 ↔ z̄1)

}
,

(B.4)

where again the replacement z1 ↔ z̄1 addresses to the four- and five-point correlation functions. 
The four-point function contribution in (B.3) is

〈Jb(x2)Ja(z̄1)Jd(z2)Jd(z̄2)〉
(x1 − z1)2 = δabdG

(x1 − z1)2(x2 − z̄1)2(z2 − z̄2)2

+ δab

(x1 − z1)2(x2 − z2)2z̄2
12

+ δab

(x1 − z1)2(x2 − z̄2)2(z̄1 − z2)2

+ cGδab

k

1

(x1 − z1)2(x2 − z2)(x2 − z̄2)z̄12(z̄1 − z2)
.

(B.5)

Also, the five-point function contribution in (B.3) to order 1/k reads

face〈Jb(x2)Je(z1)Jc(z̄1)Jd(z2)Jd(z̄2)〉√
k(x1 − z1)

= cGδab

k

1

(x1 − z1)(z2 − x2)2(z1 − z̄1)(z1 − z̄2)z̄12

+ cGδab

k

1

(x1 − z1)(z̄2 − x2)2z12(z̄1 − z2)(z1 − z̄1)

− cGδab

k

1

(x1 − z1)z
2
12z̄

2
12

(
1

x2 − z̄1
− 1

x2 − z̄2
− 1

x2 − z1
+ 1

x2 − z2

)
− cGδab

k

1

(x1 − z1)(z1 − z̄2)2(z̄1 − z2)2

(
1

x2 − z̄1
+ 1

x2 − z̄2
− 1

x2 − z1
− 1

x2 − z2

)
− cGδab

k

dG

(x1 − z1)(z1 − z̄1)2(z2 − z̄2)2

(
1

x2 − z̄1
− 1

x2 − z1

)
.

(B.6)

Next, we insert (B.5), (B.6) into (B.4) and we perform the double integrals in the upper-half 
plane. We can organize the various terms in k-independent Abelian ones and 1/k-terms as 
they appear in (B.5) and (B.6). Doing so, we find that (B.4) takes schematically the following 
form

〈Ja(x1)Jb(x2)〉(2)
uhp = λ2

π2 (Abelian terms + 1/k-terms) . (B.7)

The various contributions are listed below.

Abelian terms: These terms appear in (B.5), and upon integration over z1 and z2 they can be 
written as
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Abelian terms = δab

3∑
i=1

(Pi + P̃i) , (B.8)

where the corresponding integrals are defined as they appear in (B.5)

P1 =
∫
S

d2z12

(x1 − z1)2(x2 − z̄1)2(z2 − z̄2)2 = 0 ,

P2 =
∫
S

d2z12

(x1 − z1)2(x2 − z2)2z̄2
12

= π2

x2
12

,

P3 =
∫
S

d2z12

(x1 − z1)2(x2 − z̄2)2(z̄1 − z2)2 = 0 .

(B.9)

The P̃i ’s which are related to the Pi ’s upon the replacement z1 ↔ z̄1 in the corresponding inte-
grands

P̃1 =
∫
S

d2z12

(x1 − z̄1)2(x2 − z1)2(z2 − z̄2)2 = 0 ,

P̃2 =
∫
S

d2z12

(x1 − z̄1)2(x2 − z2)2(z1 − z̄2)2 = 0 ,

P̃3 =
∫
S

d2z12

(x1 − z̄1)2(x2 − z̄2)2z2
12

= 0 .

(B.10)

The above integrals were evaluated using the results of (A.3). Inserting the above into (B.8), we 
easily find that

Abelian terms = π2 δab

x2
12

. (B.11)

1/k-terms: These terms appearing in (B.5) and (B.6) upon integration over z1 and z2 can be 
written as

1/k-terms = δab

cG

k

6∑
i=1

(Qi + Q̃i) , (B.12)

where the integrals in order of appearance are

Q1 =
∫
S

d2z12

(z1 − x1)2(z2 − x2)(z̄2 − x2)z̄12(z̄1 − z2)

= π2

x2
12

ln
|x1 − x̄2|2

(x1 − x̄1)(x̄2 − x2)
+ π2

x12(x̄1 − x2)
,

Q2 =
∫

d2z12

(x1 − z1)(z2 − x2)2(z1 − z̄1)(z1 − z̄2)z̄12
= K + π2

x12(x2 − x̄2)
,

S
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Q3 =
∫
S

d2z12

(x1 − z1)(z̄2 − x2)2z12(z̄1 − z2)(z1 − z̄1)
= 0 ,

Q4 = −
∫
S

d2z12

(x1 − z1)z
2
12z̄

2
12

(
1

x2 − z̄1
− 1

x2 − z̄2
− 1

x2 − z1
+ 1

x2 − z2

)

= π2

x2
12

(
ln

|x1 − x̄2|2
(x1 − x̄1)(x̄2 − x2)

+ ln
x̄1 − x2

x̄1 − x1
+ ln

ε2

|x12|2 − x12

x̄1 − x2

)
,

Q5 = −
∫
S

d2z12

(x1 − z1)(z1 − z̄2)2(z̄1 − z2)2

(
1

x2 − z̄1
+ 1

x2 − z̄2
− 1

x2 − z1
− 1

x2 − z2

)

= −2K + π2x̄12

x12|x1 − x̄2|2 ,

Q6 =
∫
S

dG d2z12

(x1 − z1)(x2 − z1)(x2 − z̄1)(z1 − z̄1)(z2 − z̄2)2 , (B.13)

where in Q2 and Q5 we have introduced

K = π

∫
S

d2z

(x1 − z)(z − x2)(z̄ − x2)(z − z̄)
. (B.14)

Furthermore, the Q̃i ’s appearing in (B.12) are related to the Qi ’s in (B.13) upon the replacement 
z1 ↔ z̄1 in the corresponding integrands

Q̃1 =
∫
S

d2z12

(z̄1 − x1)2(z2 − x2)(z̄2 − x2)(z1 − z̄2)z12
= 0 ,

Q̃2 = −
∫
S

d2z12

(x1 − z̄1)(z2 − x2)2(z1 − z̄1)z̄12(z1 − z̄2)
= K̃ − π2

(x1 − x̄2)(x2 − x̄2)
,

Q̃3 = −
∫
S

d2z12

(x1 − z̄1)(z̄2 − x2)2(z̄1 − z2)z12(z1 − z̄1)
= 0 , (B.15)

Q̃4 = −
∫
S

d2z12

(x1 − z̄1)(z̄1 − z2)2(z1 − z̄2)2

(
1

x2 − z1
− 1

x2 − z̄2
− 1

x2 − z̄1
+ 1

x2 − z2

)
= −2K̃ ,

Q̃5 = −
∫
S

d2z12

(x1 − z̄1)z
2
12z̄

2
12

(
1

x2 − z1
+ 1

x2 − z̄2
− 1

x2 − z̄1
− 1

x2 − z2

)

= − π2

x2
12

ln
x̄1 − x2

x̄1 − x1
− π2

(x1 − x̄2)x12
+ π2

x2
12

ln
|x1 − x̄2|2

(x1 − x̄1)(x̄2 − x2)
,

Q̃6 = −
∫

dG d2z12

(x1 − z̄1)(x2 − z̄1)(x2 − z1)(z1 − z̄1)(z2 − z̄2)2 ,
S
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where in Q̃2 and Q̃4 we have introduced

K̃ = −π

∫
S

d2z

(x1 − z̄)(z − x2)(z̄ − x2)(z − z̄)
. (B.16)

The above integrals (B.13) and (B.15) can be evaluated by an extensive use of the Stokes’s 
theorem (A.5) and of (A.3). Before inserting the various pieces into (B.12), we focus on the 
contributions of Q6 and Q̃6 which we add them up

Q6 + Q̃6 = dG

∫
S

d2z12

(x1 − z1)(x2 − z1)(x1 − z̄1)(x2 − z̄1)(z2 − z̄2)2

= dG

π

x2
12

ln
|x1 − x̄2|2

(x1 − x̄1)(x̄2 − x2)

∫
S

d2z2

(z2 − z̄2)2 .

(B.17)

Hence we dismiss it since it corresponds to a bubble diagram. In addition, we note that the 
integrals K and K̃ , defined in (B.14) and (B.16) respectively, are divergent but their sum is finite 
and equals to

K + K̃ = π

∫
S

d2z

(z − x1)(z − x2)(z̄ − x1)(z̄ − x2)
= π2

x2
12

ln
|x1 − x̄2|2

(x1 − x̄1)(x̄2 − x2)
, (B.18)

where in the last step we have used the integral (3.34).
Inserting (B.13), (B.15) into (B.12), we find that

1/k-terms = π2 cG

k

δab

x2
12

(
− ξ

1 − ξ
+ ln

(1 − ξ)2ε2

|x12|2
)

, (B.19)

where we have also used (B.18), ignored the bubble diagram (B.17) and expressed the various 
quantities in terms of the invariant ratio (2.20). Finally, we insert (B.11) and (B.19) into (B.7)
and we find (3.38) which is repeated here for the reader’s convenience

〈Ja(x1)Jb(x2)〉(2)
uhp = λ2

(
1 − cG

k

ξ

1 − ξ

)
δab

x2
12

+ cGλ2

k

δab

x2
12

ln
(1 − ξ)2ε2

|x12|2 . (B.20)

Appendix C. Two-point function 〈OO〉 at one-loop

In this Appendix we sketch the proof of (3.55). We consider the integrand of (3.54) which cor-
responds to a six-point current correlation function and can be evaluated using Cardy’s doubling 
trick and the Kac–Moody current algebra (2.33)

〈O(x1, x̄1)O(x2, x̄2)O(z, z̄)〉uhp = 〈Ja(x1)Ja(x̄1)Jb(x2)Jb(x̄2)Jc(z)Jc(z̄)〉
= 〈Ja(x̄1)Jb(x2)Jb(x̄2)Ja(z̄)〉

(z − x1)2 + 1√
k

fcae

z − x1
〈Je(x1)Ja(x̄1)Jb(x2)Jb(x̄2)Jc(z̄)〉

+ (second line : x1 ↔ x̄1)

+ (second and third line : x1 ↔ x2) ,

(C.1)

where we have ignored a term which would correspond to a bubble diagram. Next, we focus on 
the four-point function in the second line of (C.1)
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〈Ja(x̄1)Jb(x2)Jb(x̄2)Ja(z̄)〉
(z − x1)2 = dG

(x̄1 − x2)2(x̄2 − z̄)2(z − x1)2 + dG

x̄2
12(x2 − z̄)2(z − x1)2

+ d2
G

(x̄1 − z̄)2(x2 − x̄2)2(z − x1)2 + cG

k

dG

(x̄1 − x2)x̄12(x2 − z̄)(x̄2 − z̄)(z − x1)2 .

(C.2)

Then we move on to the five-point function in the second line of (C.1), which can be organized 
in 1/k and 1/k2 terms, namely

1√
k

fcae

z − x1
〈Je(x1)Ja(x̄1)Jb(x2)Jb(x̄2)Jc(z̄)〉

∣∣∣∣
1/k-terms

=

+ cGdG

k

1

x̄12x
2
12|z − x1|2(x̄2 − z̄)

+ cGdG

k

1

(x̄1 − x2)(x1 − x̄2)2|z − x1|2(x2 − z̄)

+ cGdG

k

1

(z − x1)(x̄1 − x2)2(x̄2 − z̄)2

(
1

x1 − x̄1
− 1

x12
+ 1

x1 − x̄2
− 1

x1 − z̄

)
+ cGdG

k

1

(z − x1)x̄
2
12(x2 − z̄)2

(
1

x1 − x̄1
+ 1

x12
− 1

x1 − x̄2
− 1

x1 − z̄

)
+ cGd2

G

k

1

(z − x1)(x̄1 − z̄)2(x2 − x̄2)2

(
1

x1 − x̄1
− 1

x1 − z̄

)

(C.3)

and

1√
k

fcae

z − x1
〈Je(x1)Ja(x̄1)Jb(x2)Jb(x̄2)Jc(z̄)〉

∣∣∣∣
1/k2 terms

=

+c2
GdG

k2

1

(x1 − x̄1)x̄12(x̄1 − x2)(z − x1)(z̄ − x2)(z̄ − x̄2)

+c2
GdG

2k2

1

|x12|2(x̄1 − x2)(z − x1)(z̄ − x2)(z̄ − x̄2)

−c2
GdG

k2

1

x12(x2 − x̄2)(x̄1 − x2)|z − x1|2(z̄ − x̄2)

+c2
GdG

2k2

1

|x1 − x̄2|2x̄12(z − x1)(z̄ − x2)(z̄ − x̄2)

+c2
GdG

k2

1

(x1 − x̄2)(x2 − x̄2)x̄12|z − x1|2(z̄ − x2)

+c2
GdG

k2

1

x̄12(x̄1 − x2)(z − x1)(z̄ − x1)(z̄ − x2)(z̄ − x̄2)
. (C.4)

Inserting (C.1), (C.2), (C.3) and (C.4) into (3.54) we find schematically

〈O(x1, x̄1)O(x2, x̄2)〉(1)
uhp = − λ

π
(Abelian terms + 1/k-terms + 1/k2-terms) , (C.5)

where the various terms are listed below.
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Abelian terms: There are three such terms appear in (C.2) and upon integration over z they 
can be written as

Abelian terms = dG

3∑
i=1

(Ri + R̃i) + (x1 ↔ x2) , (C.6)

where the corresponding integrals are defined in order of appearance in (C.2) and read

R1 =
∫
S

d2z

(x̄1 − x2)2(x̄2 − z̄)2(z − x1)2 = π

|x1 − x̄2|4 ,

R2 =
∫
S

d2z

x̄2
12(x2 − z̄)2(z − x1)2

= 0 ,

R3 = dG

∫
S

d2z

(x̄1 − z̄)2(x2 − x̄2)2(z − x1)2 = π dG

(x1 − x̄1)2(x2 − x̄2)2

(C.7)

and we have dismissed terms involving contact terms of external points. The integrals denoted 
by R̃i ’s are related to the Ri’s upon the replacement x1 ↔ x̄1 in the corresponding integrands

R̃1 =
∫
S

d2z

x2
12(x̄2 − z̄)2(z − x̄1)2

= 0 ,

R̃2 =
∫
S

d2z

(x1 − x̄2)2(x2 − z̄)2(z − x̄1)2 = − π

|x1 − x̄2|4 ,

R̃3 = dG

∫
S

d2z

(x1 − z̄)2(x2 − x̄2)2(z − x̄1)2 = − π dG

(x1 − x̄1)2(x2 − x̄2)2 .

(C.8)

The above integrals (C.7) and (C.8) can be easily evaluated using the results of (A.3). Next we 
insert (C.7) and (C.8) into (C.6) and we find that there is no contribution

Abelian terms = 0 . (C.9)

1/k-terms: There are six such terms appear in (C.2) and (C.3), and upon integration over z they 
can be written as

1/k-terms = cGdG

k

6∑
i=1

(Si + S̃i ) + (x1 ↔ x2) , (C.10)

where the corresponding integrals are as usual defined in order of appearance in (C.2), (C.3) and 
read

S1 =
∫
S

d2z

(x̄1 − x2)x̄12(x2 − z̄)(x̄2 − z̄)(z − x1)2 = π

|x12|2|x1 − x̄2|2 ,

S2 =
∫

d2z

x̄12x
2
12|z − x1|2(x̄2 − z̄)

= π

|x12|4 ln

(
ε2

|x12|2
x1 − x̄2

x1 − x̄1

)
,

S
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S3 =
∫
S

d2z

(x̄1 − x2)(x1 − x̄2)2|z − x1|2(x2 − z̄)
= π

|x1 − x̄2|4 ln
ε2

(x1 − x̄1)(x̄1 − x2)
,

S4 =
∫
S

d2z

(z − x1)(x̄1 − x2)2(x̄2 − z̄)2

(
1

x1 − x̄1
− 1

x12
+ 1

x1 − x̄2
− 1

x1 − z̄

)

= π

|x12|2|x1 − x̄2|2 + π

|x1 − x̄2|4 ln
|x12|2

(x̄1 − x1)(x1 − x̄2)
,

S5 =
∫
S

d2z

(z − x1)x̄
2
12(x2 − z̄)2

(
1

x1 − x̄1
+ 1

x12
− 1

x1 − x̄2
− 1

x1 − z̄

)

= π

(x1 − x̄1)x̄12|x1 − x̄2|2 + π

|x12|4 ln
x̄1 − x2

x̄1 − x1
,

S6 = dG

∫
S

d2z

(z − x1)(x̄1 − z̄)2(x2 − x̄2)2

(
1

x1 − x̄1
− 1

x1 − z̄

)

= π dG

(x1 − x̄1)2(x2 − x̄2)2 ln
ε2

|x1 − x̄1|2 . (C.11)

The S̃i ’s are related to the Si’s upon the replacement x1 ↔ x̄1 in the corresponding integrands

S̃1 =
∫
S

d2z

x12(x1 − x̄2)(x2 − z̄)(x̄2 − z̄)(z − x̄1)2 = 0 ,

S̃2 =
∫
S

d2z

(x1 − x̄2)(x̄1 − x2)2|z − x̄1|2(x̄2 − z̄)
= π

|x1 − x̄2|4 ln
x1 − x̄1

x2 − x̄1
,

S̃3 =
∫
S

d2z

x12x̄
2
12|z − x̄1|2(x2 − z̄)

= π

|x12|4 ln
x1 − x̄1

x2 − x̄1
,

S̃4 =
∫
S

d2z

(z − x̄1)x
2
12(x̄2 − z̄)2

(
1

x̄1 − x1
− 1

x̄1 − x2
+ 1

x̄12
− 1

x̄1 − z̄

)

= π

|x12|4 ln
x2 − x̄1

x1 − x̄1
,

S̃5 =
∫
S

d2z

(z − x̄1)(x1 − x̄2)2(x2 − z̄)2

(
1

x̄1 − x1
+ 1

x̄1 − x2
− 1

x̄12
− 1

x̄1 − z̄

)

= π

|x1 − x̄2|4 ln
x̄1 − x2

x̄1 − x1
− π

|x1 − x̄2|2(x1 − x̄1)x̄12
,

S̃6 = dG

∫
S

d2z

(z − x̄1)(x1 − z̄)2(x2 − x̄2)2

(
1

x̄1 − x̄1
− 1

x̄1 − z̄

)
= 0 .

(C.12)

The above integrals (C.11) and (C.12) can be easily evaluated using the results of (A.3). Inserting 
(C.11) and (C.12) into (C.10), we find that
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1/k-terms = cGdG

k

(
2π

|x12|4 ln

(
ε2

|x12|2 (1 − ξ)

)
+ 2π

|x1 − x̄2|4 ln

( −ε2ξ

|x1 − x̄2|2
)

2πdG

(x1 − x̄1)2(x2 − x̄2)2 ln
ε2

|(x1 − x̄1)||(x2 − x̄2)| + 4π

|x12|2|x1 − x̄2|2
)

.

(C.13)

1/k2-terms: There are four such terms appearing in (C.4), one for each line, and upon integra-
tion over z they can be written as

1/k2-terms = c2
GdG

k2

4∑
i=1

(Ti + T̃i ) + (x1 ↔ x2) , (C.14)

where in order of appearance in (C.4) the corresponding integrals read

T1 =
∫
S

d2z

(x1 − x̄1)x̄12(x̄1 − x2)(z − x1)(z̄ − x2)(z̄ − x̄2)

= π

(x1 − x̄1)(x2 − x̄2)(x1 − x̄2)x̄12
ln

|x12|2
|x1 − x̄2|2 ,

T2 =
∫
S

d2z

(
1

2|x12|2(x̄1 − x2)(z − x1)(z̄ − x2)(z̄ − x̄2)

− 1

x12(x2 − x̄2)(x̄1 − x2)|z − x1|2(z̄ − x̄2)

)
= π

2|x12|2(x2 − x̄2)(x̄1 − x2)
ln

(x1 − x̄2)
2ε4

|x1 − x̄2|2|x12|2(x1 − x̄1)2 ,

T3 =
∫
S

d2z

(
1

2|x1 − x̄2|2x̄12(z − x1)(z̄ − x2)(z̄ − x̄2)

+ 1

(x1 − x̄2)(x2 − x̄2)x̄12|z − x1|2(z̄ − x2)

)
= π

2|x1 − x̄2|2x̄12(x2 − x̄2)
ln

|x12|2(x1 − x̄1)
2(x̄1 − x2)

2

|x1 − x̄2|2ε4 , (C.15)

T4 =
∫
S

d2z

x̄12(x̄1 − x2)(z − x1)(z̄ − x1)(z̄ − x2)(z̄ − x̄2)

= π

|x12|2|x1 − x̄2|2 ln
|x12|2

(x1 − x̄2)(x̄1 − x1)
− π

|x12|2(x̄1 − x2)(x2 − x̄2)
ln

|x12|2
|x1 − x̄2|2 .

The T̃i ’s are related to the Ti’s upon the replacement x1 ↔ x̄1 in the corresponding integrands

T̃1 =
∫
S

d2z

(x̄1 − x1)(x1 − x̄2)x12(z − x̄1)(z̄ − x2)(z̄ − x̄2)
= 0 ,

T̃2 =
∫
S

d2z

(
1

2|x1 − x̄2|2x12(z − x̄1)(z̄ − x2)(z̄ − x̄2)

− 1
2

)

(x̄1 − x2)(x2 − x̄2)x12|z − x̄1| (z̄ − x̄2)
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= − π

|x1 − x̄2|2(x2 − x̄2)x12
ln

x2 − x̄1

x1 − x̄1
,

T̃3 =
∫
S

d2z

(
1

2|x12|2(x1 − x̄2)(z − x̄1)(z̄ − x2)(z̄ − x̄2)

+ 1

x̄12(x2 − x̄2)(x1 − x̄2)|z − x̄1|2(z̄ − x2)

)
= π

|x12|2(x2 − x̄2)(x1 − x̄2)
ln

x2 − x̄1

x1 − x̄1
, (C.16)

T̃4 =
∫
S

d2z

(x1 − x̄2)x12(z − x̄1)(z̄ − x̄1)(z̄ − x2)(z̄ − x̄2)
= π

|x12|2|x1 − x̄2|2 ln
x2 − x̄1

x1 − x̄1
.

The above integrals (C.15) and (C.16) can be easily evaluated using the results of (A.3). Inserting 
(C.15) and (C.16) into (C.14), we find

1/k2-terms = 2π

|x12|2|x1 − x̄2|2 ln
ε2F̃ (ξ)

|x12(x1 − x̄2)| , (C.17)

where

F̃ (ξ) = (1 − ξ)

(
1 − 1

ξ

)−ξ

, ξ � 0 . (C.18)

Finally, inserting (C.9), (C.13) and (C.17) into (C.5) we find

〈O(x1, x̄1)O(x2, x̄2)〉(1)
uhp = −2λcG

k
×

{
dG

|x12|4 ln
(1 − ξ)ε2

|x12|2

+ dG

|x1 − x̄2|4 ln
−ξ ε2

|x1 − x̄2|2 + d2
G

(x1 − x̄1)2(x2 − x̄2)2 ln
ε2

|(x1 − x̄1)(x2 − x̄2)|

}

+ cG

k

dG

|x12|2|x1 − x̄2|2
(

−4λ − 2λcG

k
ln

ε2F̃ (ξ)

|x12(x1 − x̄2)|
)

,

(C.19)

where the function F̃ (ξ) was defined in (C.18).
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