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1 Introduction

The particle content of the Standard Model (SM) was confirmed in 2012 with the discov-
ery of the Higgs boson [1, 2]. However there are still some aspects of Nature that can
not be explained by the SM alone and leave room for new physics (NP). In particular,
scalars transforming as doublets under the SU(2)L group, and therefore satisfying the suc-
cessful mass relation MW = MZ cos θ, are appropriate candidates for building extended
electroweak models.

The simplest of these extensions is the two-Higgs doublet model (2HDM), contain-
ing a second Higgs doublet with the same quantum numbers as the SM one. In order to
avoid dangerous flavour-changing neutral-current (FCNC) transitions, the usual implemen-
tations of the model [3–5] assume specific discrete Z2 symmetries to constrain the Yukawa
sector [6], so that only one scalar doublet can couple to a given right-handed fermion.
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However, to comply with the strong phenomenological constraints, it is enough to impose
the much weaker assumption of flavour alignment [7–10], i.e., that the Yukawa couplings
of the two scalar doublets have the same flavour structure. This leads to a more general
framework with minimal flavour violation [11, 12], where FCNC couplings are absent at
tree-level and very suppressed at higher orders [8, 10, 13–15].

Constraints on the 2HDM parameters have been widely studied, taking into account
recent LHC data [16–45], together with other requirements from flavour and LEP physics,
and theoretical considerations. However these analyses normally considered specific 2HDM
models with Z2 symmetries [22, 32, 36, 46–51]. In this work we have performed a global fit
to the relevant experimental and theoretical constraints in the much more general frame-
work of the (flavour) aligned two-Higgs doublet model (A2HDM) [8, 9]. To simplify the
analysis, we have neglected additional sources of CP violation beyond the quark mixing
matrix, i.e., we assume a CP-conserving scalar potential and real alignment parameters.

This paper is organized as follows: section 2 contains a brief overview of the model.
In section 3 the fit setup and the theoretical and experimental constraints considered are
explained. The results of the fit are presented in sections 4 and 5, which discuss the two
possible mass orderings for the observed 125GeV Higgs, being either the lightest CP-even
scalar or the heaviest one. Our main conclusions are finally given in section 6. An appendix
compiles the collider data sources employed in our global fit.

2 The Aligned Two-Higgs-Doublet model

Let us consider the SM extended with a second complex scalar doublet of hypercharge
Y = 1

2 . In general, the neutral components of both doublets can acquire vacuum expecta-
tion values. However, making a global SU(2) transformation in the scalar space spanned
by the two doublets, it is always possible to work in the so-called Higgs basis,

Φ1 =
[

G+

1√
2 (v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2(S2 + i S3)

]
, (2.1)

where only one doublet has non-zero vacuum expectation value, with v = (
√

2GF )−1/2 ≈
246GeV. The field Φ1 plays the role of the SM Higgs doublet with G0 and G± the elec-
troweak Goldstone bosons. The scalar spectrum contains five degrees of freedom: the
charged scalars H± and three neutral fields Si.

The most general scalar potential, invariant under SU(2)L ⊗U(1)Y reads

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 +
[
µ3 Φ†1Φ2 + µ∗3 Φ†2Φ1

]
+ 1

2λ1
(
Φ†1Φ1

)2
+ 1

2λ2
(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

) (
Φ†2Φ1

)
+
[(1

2λ5 Φ†1Φ2 + λ6 Φ†1Φ1 + λ7 Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
, (2.2)

where all parameters are real except µ3, λ5, λ6 and λ7. The minimization of the potential
(in the Higgs basis) gives the relations µ1 = −1

2 λ1v
2 and µ3 = −1

2 λ6v
2. Moreover, one

phase can be reabsorbed into the field Φ2. Thus, the potential is fully characterized by
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eleven real parameters: v, µ2, λ1,2,3,4, |λ5,6,7|, and the two relative phases between λ5,
λ6 and λ7. To simplify the analysis, we will assume a CP-conserving potential with all
couplings real, which reduces the number of degrees of freedom to nine.

The quadratic terms in the potential determine the physical scalar masses [17]:

M2
H± = µ2 + 1

2 λ3 v
2 , M2

A = M2
H± + 1

2 (λ4 − λ5) v2 , (2.3)

M2
h = 1

2 (Σ−∆) , M2
H = 1

2 (Σ + ∆) , (2.4)

where
Σ = M2

H± + 1
2 v

2 (2λ1 + λ4 + λ5) , (2.5)

and

∆ =

√[
M2
H± + 1

2 v
2 (−2λ1 + λ4 + λ5)

]2
+ 4v4(λ6)2 . (2.6)

A = S3 is a CP-odd neutral scalar, while the CP-even neutral mass eigenstates are linear
combinations of S1 and S2, (

h

H

)
=
[

cos α̃ sin α̃
− sin α̃ cos α̃

](
S1
S2

)
, (2.7)

with
tan α̃ = M2

h − λ1v
2

v2λ6
= v2λ6

λ1v2 −M2
H

. (2.8)

The couplings of a single neutral scalar with a pair of gauge bosons are identical to the
SM ones, with the field S1 taking the role of the SM Higgs. Therefore (V V = W+W−, ZZ),

ghV V = cos α̃ gSM
hV V , gHV V = − sin α̃ gSM

hV V , gAV V = 0 . (2.9)

The complete list of gauge couplings and scalar interactions can be found in ref. [17].
In terms of fermion mass eigenstates the Yukawa Lagrangian reads:

LYuk = −
(

1 + S1
v

){
d̄LMddR + ūLMuuR + ¯̀

LM``R
}

− 1
v

(S2 + iS3)
{
d̄LYddR + ūLYuuR + ¯̀

LY``R
}

(2.10)

−
√

2
v
H+

{
ūLVCKMYddR − ūRY †uVCKMdL + ν̄LY``R

}
+ h.c. ,

where all fermionic fields are written as 3-dimensional flavour vectors, Mf (f = d, u, `) are
the diagonal mass matrices and VCKM is the usual Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix. In general, the Yukawa matrices Yf of the second doublet are not
related to the fermion mass matrices and their elements can take arbitrary values, yield-
ing FCNCs which are tightly constrained phenomenologically [52]. The dangerous FCNC
transitions can be easily avoided at tree level, imposing that only a single flavour structure
is present for each right-handed fermion, i.e., that the Yukawa matrices are aligned in the
flavour space [8],

Yd,` = ςd,`Md,` , Yu = ς∗uMu , (2.11)
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where ςf are complex numbers called alignment parameters. This alignment condition
determines the Yukawa Lagrangian of the A2HDM [7–9]:

LYuk = −
√

2
v
H+

{
ū
[
ςdVCKMMdPR − ςuM †uVCKMPL

]
d+ ς` ν̄M`PR`

}
− 1
v

∑
i,f

y
ϕ0

i
f ϕ0

i

[
f̄MfPRf

]
+ h.c. , (2.12)

where PR,L = (1 ± γ5)/2 are the chirality projectors, ϕ0
i = h,H,A the scalar mass eigen-

states and yϕ
0
i

f their Yukawa couplings,

yhd,` = cos α̃+ sin α̃ ςd,` , yHd,` = − sin α̃+ cos α̃ ςd,` , yAd,` = i ςd,` ,

yhu = cos α̃+ sin α̃ ς∗u , yHu = − sin α̃+ cos α̃ ς∗u , yAu = −i ς∗u . (2.13)

To simplify the analysis, we will assume real alignment parameters ςf . Thus, the only
source of CP violation will be the CKM matrix.

The usual 2HDMs based on discrete Z2 symmetries are recovered by setting µ3 =
λ6 = λ7 = 0, and correlating the alignment parameters through one of the following four
possible choices: ςd = ςu = ς` = cotβ (type I); ςd = ς` = − tan β, ςu = cotβ (type II);
ςd = ςu = cotβ, ς` = − tan β (type X); and ςd = − tan β, ςu = ς` = cotβ (type Y). The
particular type-I model with cotβ = 0 is known as inert 2HDM.

3 Fit setup and constraints

For our analysis we consider the CKM matrix as the only source of CP violation. Thus,
we are assuming that the couplings of the scalar potential in eq. (2.2) and the alignment
parameters in eq. (2.11) are real. The parameter space of the A2HDM is then characterized
by twelve real quantities: the three alignment parameters and nine degrees of freedom in
the scalar potential which we choose to be v, the four scalar masses, the CP-even mixing
angle α̃ and the quartic couplings λ5,6,7. Two inputs are already empirically determined:
the vacuum expectation value and the Higgs mass mh = 125.10 ± 0.14GeV [53].1 The
numerical values of the relevant SM parameters entering the fits are compiled in table 1.

Our fits have been performed with the open-source HEPfit package [55, 56],2 which uses
a Markov-Chain Monte-Carlo implementation based on the Bayesian Analysis Toolkit [57].
We assume the following priors for the fitted parameters:

|λ5,6,7| < 10 , α̃ ∈
[
−π2 ,

π

2

]
, M2

A,H± ∈ [102, 15002] GeV2 ,

ςu ∈ [−1.5, 1.5] , ςd ∈ [−50, 50] , ς` ∈ [−100, 100] . (3.1)

The priors of the remaining CP-even scalar mass depend on the scenario studied. Light
(heavy) scenario refers to the case in which the observed Higgs with a mass around 125GeV

1From now on we denote by h the already discovered Higgs-like boson, and use H for the second CP-even
boson, irrespective of their mass ordering.

2The HEPfit version used in this work corresponds to the git revision of 09/2020 with the choice of
model class GeneralTHDM. The version used in this work is available at [56].
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Constant Value Ref. Constant Value Ref.
GF 1.166 378 7 (6) · 10−5 GeV−2 [53] mt 172.4 (7) GeV [53]
MZ 91.1876 (21) GeV [53] mb 4.18 (3) GeV [53]
α 7.297 352 5693 (11) · 10−3 [53] mc 1.27 (2) GeV [53]
mh 125.10 (14) GeV [53] αs(MZ) 0.1179 (10) [53]

∆α(5)
had(MZ) 0.02753± 0.00010 [54]

Table 1. Numerical values for the SM parameters used in the fits. mb and mc denote the bottom
and charm running quark masses, in the MS scheme, at µ = 2 GeV, while mt is the value of the
pole top mass extracted from cross-section measurements.

(h) is the lightest (heaviest) CP-even scalar of the model. In this paper we will focus on
the light scenario, selected with the boolean flag SMHiggs set to true,3 and adopt as mass
priors for the non-SM Higgs (H)

M2
H ∈ [1252, 15002] GeV2 . (3.2)

Nevertheless, in section 5 we will also discuss the implications of our fitted data set on the
heavy scenario, selected with the boolean flag SMHiggs set to false, taking as mass priors

M2
H ∈ [102, 1252] GeV2 . (3.3)

A more detailed analysis of the heavy scenario, including additional data from light scalar
searches is deferred to a future work. The scalar masses are chosen in a range such that
they are relevant for the future LHC searches. The selected priors for the scalar potential
parameters λi are conservative, since larger values are excluded by theoretical constraints.
The mixing angle α̃ is varied in its full domain, and the alignment parameters ςf (f = u, d, `)
are varied within their perturbative ranges, i.e.,

√
2 ςfmf/v ≤ 1.

Bayesian statistics does not provide an unambiguous way to determine the prior dis-
tributions. A rule of thumb would be considering as flat priors the ones appearing linearly
in our observables. However, for the mass parameters this does not give a unique choice:
while direct searches depend linearly on the heavy scalar masses, loop-induced processes
appearing in flavour observables and in the Higgs signal strengths depend on the masses
squared. To avoid a possible bias in the choice of these priors, we have performed fits with
two different mass parametrizations. These two choices of mass priors are selected with
the boolean flag use_sq_mass. If it is set to true (false) squared (linear) mass priors are
used. The effect of the choice of mass priors will be commented in the cases of interest.
When the choice of the mass priors is irrelevant, squared mass priors will be used.

The global fit includes the theoretical and experimental constraints discussed below.
Theoretical constraints, electroweak precision observables and some of the Higgs constraints
and direct searches were already included in the THDM model class and have been adapted

3Note that the SMHiggs flag is not listed in [55], since it was included after this documentation was re-
leased.
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to the more general A2DHM case. The relevant flavour observables and the more recent
experimental information on direct searches and Higgs signal strengths have been imple-
mented in the HEPfit package for this analysis.

3.1 Theoretical constraints

To assure that the scalar potential is bounded from below, one must impose the following
positivity constraints on the quartic couplings λi [58, 59]:

λ1 ≥ 0 , λ2 ≥ 0 ,
√
λ1λ2 + λ3 ≥ 0 ,

√
λ1λ2 + λ3 + λ4 − |λ5| ≥ 0 ,

1
2 (λ1 + λ2) + λ3 + λ4 + λ5 − 2 |λ6 + λ7| ≥ 0 . (3.4)

These necessary conditions restrict the allowed pattern of scalar masses.
By imposing perturbative unitarity of the S-matrix we avoid that a given combination

of parameters results in a too large scattering amplitude that violates the unitarity limit
at a given perturbative order. Thus, we are actually requiring that the perturbative series
does not break down. Here, unitarity is enforced for two-to-two scattering of scalar particles
at leading order (LO), using [60] (

a
(0)
j

)2
≤ 1

4 , (3.5)

where a(0)
j are the tree-level contributions to the j partial wave amplitude. For the high-

energy scattering of scalars, only the S-wave amplitude (j = 0) is relevant at LO. The
corresponding matrix of partial wave amplitudes is given by

(a0)i,f = 1
16πs

∫ 0

−s
dtMi→f (s, t) , (3.6)

and the a(0)
j are the eigenvalues of a0. Again, these conditions are relevant to constrain

the scalar potential parameters λi.

3.2 Electroweak constraints

The electroweak precision observables (EWPOs) measured at LEP and SLC are also in-
cluded in the analysis. Since the choice of nuisance parameters does not affect significantly
the results, we employ best-fit fixed values for the SM inputs MZ , mt, αs and ∆α(5)(MZ).
The study of the oblique parameters S, T and U [61–63], which are very sensitive to the
scalar mass splittings, is not enough to disentangle the A2HDM contributions because of
the presence of additional Z-vertex corrections [64, 65]. The most relevant ones are the
quantum corrections to Γ(Z → bb̄), which are enhanced by the large value of the top-quark
mass [66–68]. We take this into account by making first a combined fit of EWPOs, exclud-
ing the ratio Rb ≡ Γ(Z → bb̄)/Γ(Z → hadrons) [68, 69]. The updated results of this fit
can be seen in table 2, which updates the analysis of ref. [70]. These allowed ranges for the
oblique parameters are then used, together with the measured value of Rb, to constrain
the A2HDM.
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Result Correlation Matrix
S 0.093± 0.101 1.00 0.86 -0.54
T 0.111± 0.116 0.86 1.00 -0.83
U −0.016± 0.088 -0.54 -0.83 1.00

Table 2. Results for the fit of the oblique parameters S, T and U without Rb.

3.3 Higgs constraints

The Higgs signal strengths are defined as the ratio of the production cross section σi times
the branching ratio Bf , over the SM prediction, for a given production channel (i = ggF,
VBF, VH, ttH) and decay mode (f = b̄b, γγ, µ+µ−, τ+τ−, WW, Zγ, ZZ),

µfi =
(σi · Bf )A2HDM

(σi · Bf )SM
= ri · rf∑

f ′ rf ′ · BSM (h→ f ′) , (3.7)

where ri,f are the ratios of the production cross section σi and decay width Γf , respectively,
with respect to their SM predictions.

The signal strengths are calculated in the narrow-width approximation and depend on
the alignment parameters, the mixing angle α̃ and the scalar potential parameters. The
input used contains LHC data (Run I and II) from the ATLAS and CMS collaborations,
and data collected by D0 and CDF at the Tevatron. The data entering our fit are detailed
in appendix A (table 4).

Information about heavy Higgs searches of ATLAS and CMS, both at Run I and II,
is summarized in tables 5, 6, 7 and 8, also in appendix A. The analyses provided are
quoted as 95% upper limits, for different production and decay channels, on either σ · B or
(σ · B) / (σ · B)SM, as functions of the resonance masses in the narrow width approximation.

Since low-energy constraints are not considered in this work, direct searches from LEP
are not included in the fits. Upcoming direct searches from LHC can be easily added and
the fits shown below can be updated.

3.4 Flavour constraints

Since most of the standard CKM fits assume the SM and this would not be consistent with
the study of NP, the choice of the CKM parameters is subtle. To avoid inconsistencies,
a fit to the CKM entries is performed. Vud is extracted from superallowed (0+ → 0+)
nuclear β decays [71]. Given the very small value of Vub, this fixes Vus ≈ λ through
CKM unitarity.4 |Vub| and Vcb ≈ Aλ2 are obtained by combining exclusive and inclusive
measurements of b → uν̄`` and b → cν̄`` transitions [75]. Finally, the apex (ρ̄, η̄) of

4Owing to a recent recalculation of the nucleus-independent radiative corrections to superallowed nuclear
β decays [72, 73], the PDG 2020 [53] value of Vud is about 2σ smaller than the one quoted in the PDG 2018
compilation [74], which implies a large (> 3σ) violation of unitarity in the first row of the CKM matrix. If
confirmed, this violation could not be accommodated within the A2HDM where the unitarity of the CKM
matrix is exact. Improved estimates of radiative corrections are needed to resolve this issue. Meanwhile,
we have adopted the PDG 2018 value of Vud that fits better with the kaon determination of Vus.
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Input Value
λ 0.2256± 0.0009
A 0.829± 0.017
ρ̄ 0.182± 0.016
η̄ 0.360± 0.035
ρλ,A −0.39
ρρ̄,η̄ 0.82

Figure 1 & Table 3. Results of the CKM fit. Fitting only tree-level observables, gives the allowed
regions in yellow. The green regions include ∆MBd

and ∆MBs as separate observables, and the blue
regions the ratio Vtd/Vts from HFLAV [75] used for our fits. Darker and light colours correspond to
68% and 95.5% probability, respectively. The apex of the black triangle is the best fit point from
the SM CKM fit to all observables [74]. The numerical values corresponding to the blue region are
given in table 2. ρi,j denote the correlations between the two parameters i and j.

the unitarity triangle is determined with the additional information of the ratio |Vtd/Vts|,
extracted from ∆MBs/∆MBd

[75] that is not sensitive to charged scalar contributions [13].
The CKM inputs obtained in this way and later used in our global fits are summarized in
table 3 and figure 1.5

Charged-scalar exchanges contribute to neutral meson mixing through one-loop box
diagrams [13, 77, 78]. The corrections induced by virtual top quarks are quite sizeable,
specially for ∆MBs,d

and εK , and provide strong constraints on |ςu| (also Rb) as function
of MH± . The weak radiative decay B → Xsγ [13, 79–84] gives also important correlated
constraints on ςu and ςd, specially for large values of |ςuςd|. The region ςuςd < 0 is ac-
tually excluded, except for very small values of the alignment parameters [13]. NNLO
corrections [85–87] are quite relevant for this observable and should be taken into account.

A complete one-loop calculation within the A2HDM of the decay Bs → µ+µ− was
performed in [88, 89]. This observable involves the b → sµ+µ− four-fermion operators
O10, OS and OP . The decay amplitude receives contributions from both charged and
neutral scalars, and provides complementary information on the alignment parameters
ςu,d,` and the scalar masses. It also includes small contributions from higher-order FCNC
local interactions, needed to reabsorb UV divergences, which are assumed to be negligible
here. A study of these effects can be found in [10]. Our fits include the constraints from
Bs → µ+µ−, B → Xsγ and ∆MBs,d

(and Rb, which is discussed together with electroweak
precision observables).

5This and the rest of the plots of the paper have been generated using Matplotlib [76].
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Figure 2. Left panel: allowed regions for the scalar mass splittings coming from theoretical
constraints at 100% probability (blue), from EWPOs at 95.5% probability (in orange, squared
mass priors and in light purple, linear priors), and combining all constraints at 95.5% probability
(linear mass priors in purple, squared mass priors in red and squared mass priors with lower masses
in brown). The “All constraints” contains only the right-sign branch discussed in section 4.5. Right
panel: two-dimensional bounds on the λ5, λ6 and λ7 parameters of the potential resulting from
imposing theoretical constraints (blue, 100% probability), and considering all constraints (in dark
red 95.5% probability, in red 68% probability).

Finally, the muon anomalous magnetic moment, calculated within the A2HDM in
refs. [90, 91], is of interest because it shows a deviation with respect to the SM that, if
confirmed, would strongly constrain the leptonic alignment parameter ς`. Its implications
will be discussed in section 4.

4 Results: light scenario

In this section, we present our main results, obtained in the light scenario which assumes
that the observed SM Higgs is the lightest CP-even scalar of the model. The complementary
possibility (the observed scalar is the heaviest) will be briefly discussed in section 5. We
analyse first the separate implications of the different types of constraints, before combining
all of them into a final global fit to the data.

4.1 Theoretical constraints

Perturbative unitarity and positivity of the scalar potential set strong limits on the scalar
masses and the quartic parameters λi. The mass differences among H, A and H± are
strongly constrained, as shown by the allowed blue regions in the left panel of figure 2
(electroweak and combined constraints, also present in the plots, will be commented later
in sections 4.2 and 4.5):

|Mi −Mj | ≤ 600 GeV, i, j = H,A,H±, (squared mass priors). (4.1)

– 9 –
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Figure 3. Theoretical constraints (100% probability) obtained with squared mass priors (dark
orange) and linear mass priors (light orange).

There is a clear correlation between the masses of any two scalar particles: a large mass
for one scalar implies that the other scalar mass is also restricted to be large. This effect
is stronger for higher values of the scalar masses. The allowed mass splittings decrease as
the average mass scale increases. This is easily understood from the scalar mass relations
in eqs. (2.3) and (2.4), since MH± , MH andMA become degenerate in the limit µ2 � λiv

2.
The impact of the assumed mass priors is further studied in figure 3. Both linear (light
orange) and squared (dark orange) options give rise to allowed regions with similar shapes,
although they are larger for the squared priors.

The theoretical constraints also restrict the allowed ranges of the scalar quartic cou-
plings. Two-dimensional plots in the space (λ5, λ6, λ7) are shown in the right panel of
figure 2, which displays the correlations among these three parameters of the scalar po-
tential. The positivity relations imply bounds on |λ5| and |λ6 + λ7| because these two
quantities induce negative contributions to the two last conditions in eq. (3.4). This im-
plies an anti-correlation between λ6 and λ7, which is clearly manifest by the allowed blue
area in the λ6−λ7 plane. The blue regions in figure 2 satisfy the bounds derived in previous
works [4].

4.2 Electroweak constraints

The EWPOs restrict the individual masses of the scalar particles in the low-mass range,
and are very useful to constrain their mass splittings. The oblique parameters are very
sensitive to the scalar mass differences, which results in strong limits for the masses. This
can be clearly observed in figures 4 and 7. The information from EWPOs complements in
a very useful way the theoretical constraints discussed before.

The allowed regions obtained from EWPOs present a strong dependence on the mass
priors, as can be seen in figure 4, which displays the limits resulting from different choices of
mass priors. Independently of the priors, large values for the masses and small splittings are
favoured. The light and dark blue regions show a very strong dependence on the assumed
ranges for mass-squared priors. If the scalar masses are varied until 1500GeV, masses
below approximately 750GeV are not allowed at a 68% probability, while if a lower range
below 1000GeV is adopted, scalar masses of 500GeV are allowed at the same probability.

– 10 –
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Figure 4. Allowed mass ranges from EWPOs at a 68% probability. Light and dark blue (purple)
correspond to squared (linear) mass priors with MH±,A ∈ [10, 1500]GeV and MH ∈ [125, 1500]GeV
(lighter regions) and with MH±,A ∈ [10, 1000]GeV and MH ∈ [125, 1000]GeV (darker regions).

The same tendency is observed if lower mass regions are chosen. If the fit is repeated with
linear mass priors (purple regions), masses as low as 10GeV are allowed for the charged and
CP-odd neutral scalars, at a 68% probability. In this case, the dependence on the input
mass ranges is also weaker. The allowed regions for linear mass priors up to 1000GeV
(1500GeV) are indicated in dark (light) purple colour.

The orange and light purple regions in the left panel of figure 2 display the constraints
from EWPOs on the scalar mass splittings with squared and linear priors, respectively.
These allowed regions have been obtained varying the mass priors in their full range up to
1500GeV.

4.3 Higgs constraints

4.3.1 Higgs signal strengths

Since the measured Higgs signal strengths are consistent with the SM, within their current
uncertainties, the gauge and Yukawa couplings of the SM-like Higgs boson should be close
to the SM limit. In particular, the measured data on the WW ∗ and ZZ∗ decay modes
imply that cos α̃ cannot deviate much from one and, therefore, α̃ should be small. A
similar comment applies to the Hff̄ interactions. However, most Higgs observables are
not sensitive to the signs of the Yukawa couplings and, therefore, the LHC data only require
the modulus of |yhf | − 1 to be smaller than about 0.1–0.2. This gives two different types
of solutions for the Yukawa couplings: there will be a broad range of allowed values of ςf
with α̃ ≈ 0, corresponding to yhf ≈ 1, and another region with somewhat larger values of
the mixing angle corresponding to yhf ≈ − 1.

For small values of α̃, eq. (2.13) gives yhf = 1 + α̃ ςf + O(α̃2) (assuming h to be the
lightest CP-even neutral scalar), so that the Yukawa coupling is close to -1 for α̃ ςf ≈ −2.
This effect can be observed in the allowed (α̃, ςf ) regions of figure 5, for the down-quark
and lepton alignment parameters, where separate α̃ ςf � 1 and α̃ ςf ≈ −2 solutions are
clearly visible. The up-quark Yukawa sign ambiguity gets broken by the two-photon decay
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Figure 5. Constraints on the planes α̃− ςf from the Higgs signal strengths at a 68% (dark green),
95.5% (light green) and 99.7% (olive green) probability.

amplitude of the Higgs that involves one-loop contributions from virtual W±, t and H±.
Assuming that the charged-scalar correction is small, the measured H → γγ signal strength
determines the relative sign between yhu and ghWW to be positive. Therefore, only the region
α̃ ςu � 1 is allowed in this case.

In the following we will distinguish among the two different possibilities: the “right-
sign” solution, corresponding to yhd,` ≈ 1 and the “wrong-sign” one corresponding to
yhd,` ≈ − 1. The former was previously analysed in the A2HDM [23] and, more recently,
in the particular case of Z2 symmetric models [47]. For the “right-sign” solution we find
that the value of α̃ is strongly constrained (radian units):

|α̃| ≤ 0.003 (68% probability),
|α̃| ≤ 0.023 (95.5% probability). (4.2)

4.3.2 Direct searches

The negative results from direct searches restrict the masses of the scalar particles. In order
to access to the information that these observables provide, we first calculate the theoretical
production cross section times branching ratio σ · B in the A2HDM. We consider then the
ratio R ≡ (σ ·B)theo/(σ ·B)obs between the theoretical value and the observed limit, to which
we assign a Gaussian likelihood with zero central value, which is in agreement with the
null results obtained so far in the searches of heavy scalars. The corresponding standard
deviation of the likelihood is adjusted in a way that the value R = 1 can be excluded with
a probability of the 95%. The production cross sections and branching ratios for the other
scalar particles are calculated in a similar way to the SM Higgs, taking into account the
kinematically allowed region and the CP quantum number of the particle.

In general, the data from direct searches favour heavier scalars and help us to restrict
lower masses. However, since there are less experimental searches in the low-mass range,
one gets less restrictive constraints for masses below 100GeV. The constraints available so
far seem to indicate that low masses are still allowed, so information from direct searches
in that region would be crucial to understand the phenomenology at low masses.
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Figure 6. Constraints at the 95.5% probability on the alignment parameters from (g − 2)µ (light
pink), Bs → µ+µ− (red), meson mixing (dark pink), B → Xsγ (blue) and all flavour observables
except (g − 2)µ (purple). For clarity observables that do not give relevant constraints in a given
plane are omitted from the plot.

4.4 Flavour constraints

Flavour observables are useful to constrain the Yukawa alignment parameters ςf . Figure 6
displays the allowed (95% probability) two-dimensional regions in the three-dimensional
ςf space from independent analyses of the most relevant flavour measurements: B0 mass
mixing (dark pink), Bs → µ+µ− (red), B → Xsγ (blue) and (g − 2)µ (light pink). For
clarity the observables that do not give relevant constraints in a given plane are omitted
from the corresponding plot.

As already known from previous works [90–92], the (g− 2)µ anomaly requires sizeable
NP contributions, which translates into non-zero values for ς` that are rather large, while
it is insensitive to ςd. This can be clearly seen in the central and right panels of figure 6
where the light-pink regions exclude values of |ς`| below 10–20. The precise size of the
discrepancy with the SM expectation relies, however, in a phenomenological evaluation of
the hadronic contribution to the photon vacuum polarization (and a smaller light-by-light
hadronic correction), involving a very subtle combination of different experimental data
sets, which not always are in good agreement [93]. Thus, the statistical relevance of the
(g − 2)µ anomaly could be magnified by underestimated uncertainties. The most recent
lattice calculations seem in fact to suggest that the SM prediction could be much closer to
the current (g − 2)µ measurement [94]. While waiting for a possible confirmation (or not)
of this intriguing anomaly, and in order not to bias the results, we will not include (g− 2)µ
in the global fit. We will discuss later whether the large values of |ς`| currently required to
accommodate (g − 2)µ are compatible with the parameter ranges emerging from a global
fit to the other observables.

For similar reasons, the recent flavour anomalies observed in b→ cτν and b→ sµ+µ−

transitions [95] will not be included either in our global fit. A recent model-independent
analysis of the b → cτν anomaly has been already given in [96, 97], where references to
previous works can be found. If confirmed, these anomalies would provide clear evidence
of NP with non-universal lepton couplings.
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Figure 7. Allowed regions on the planes MH–MA (left), MH–MH± (middle) and MA–MH±

(right) from theoretical constraints at 100% probability (blue), from EWPOs at 95.5% probability
(in orange, squared mass priors and in light purple, linear priors), and combining all constraints
at 95.5% probability (linear mass priors in purple, squared mass priors in red and squared mass
priors with lower masses in brown). The “All constraints” regions contain only the right-sign branch
solution to the Higgs signal strengths discussed in section 4.3.

The remaining flavour observables do not show significant deviations from the SM
and, therefore, lead to allowed regions in figure 6 with smaller values of the alignment
parameters, including the null SM solution. Bs → µ+µ− is the only observable that
constrains the leptonic couplings, excluding large values for |ςu,dς`| as indicated by the
magenta areas in the figure. A similar restriction on the product |ςuςd| can be appreciated
in the left panel.

The mass differences between the neutral B0 eigenstates, ∆MBd
and ∆MBs , are domi-

nated by virtual top-quark contributions. This results in a strong upper limit on |ςu|, which
corresponds to the vertical pink bands in the left and central panels of figure 6. Similar
limits emerge from εK and Rb [13]. However, it can be seen that values of |ςu| excluded
at a 95.5% probability from ∆MB are no-longer excluded at the same probability when all
flavour observables are combined. A stronger constraint on the ςu− ςd plane can be derived
from the radiative decay b→ sγ. The blue region in the left panel of the figure shows the
strong correlation between the two quark alignment parameters, which prevents them to
be large simultaneously.

4.5 Global fit

After discussing the separate effect of each type of observables, let us analyse the limits
emerging from the global fit to all experimental and theoretical inputs.

The combined constraints on the scalar masses and mass differences are shown in the
left panel of figure 2 and in figure 7. From these plots, it can be seen that theoretical and
EWPOs constraints are complementary and by combining them with the remaining observ-
ables, light values for the masses are disfavoured. As for the electroweak constraints, there
is a clear dependence on the mass priors. The global fits adopting squared mass priors with
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Figure 8. Constraints on the planes ςf − α̃ from the global fit at a 68% (dark red), 95.5% (brown)
and 99.7% (light red) probability. Only the “right-sign” solution is included.

M2
i ≤ 15002 GeV2 and M2

i ≤ 10002 GeV2 are displayed in the figures as red and brown
regions, respectively. These results show that if the fitted mass regions are reduced, lower
values of the scalar masses are allowed at the same probability. The global fit with linear
priors is displayed in purple, for Mi ≤ 1500GeV, showing that lighter masses are allowed
than with squared mass priors. A similar, but weaker effect is observed for the mass split-
tings in figure 2. With the squared mass priors one can set bounds on the mass differences:

|Mi −Mj | ≤ 150 GeV, i, j = H,A,H±, (squared mass priors). (4.3)

However, the strong dependence on the mass priors indicates that these mass constraints
should be taken with some care.

The right panel in figure 2 shows the resulting allowed regions (68% probability in
red and 95.5% probability in dark red) for the scalar potential parameters λi when all
constraints are included in the global fit. The addition of the Higgs signal strengths and the
direct searches restricts significantly the parameter space obtained before from theoretical
observables (blue areas). This effect is specially strong for λ7.

Combining the information from the Higgs signal strengths with the other observables
turns out to be a bit subtle because the fine-tuned “wrong-sign” solutions discussed in
section 4.3 lead to a very slow numerical convergence of the fit algorithm. To solve that,
we have performed the fits shown in this section with the condition yhd,` ≈ 1. The negative
branch solution will be discussed separately in section 4.6.

For the positive branch, once we add the rest of observables to the Higgs signal
strengths, the constraints of figure 5 get modified into the ones of figure 8. The global
fit gives stronger limits for the alignment parameters, as expected, but leaves a somewhat
wider allowed range for the mixing angle (radian units):

−0.015 ≤ α̃ ≤ 0.013 (68% probability),
−0.04 ≤ α̃ ≤ 0.04 (95.5% probability). (4.4)

This counterintuitive statistical effect originates from the fact that the other observables
are not very sensitive to α̃.
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Figure 9. Constraints on the alignment parameters from a fit with only flavour observables (68%
probability, violet; 95.5% probability, purple) and from the global fit with the positive branch
solution (68% probability, red; 95.5% probability, brown).

Figure 9 compares the constraints on the alignment parameters resulting from the
combination of flavour observables (not including (g−2)µ) with the regions allowed by the
global fit at 68% and 95.5% probability. The limits on the down-quark and lepton couplings
become stronger, once all constraints are considered. This is mainly due to the combined
effect of the Higgs and flavour observables. The strong correlation between the up-quark
and down-quark alignment parameters observed before remains also in the global fit, with
tighter upper bounds on |ςd|: larger values of the up coupling require smaller values of the
down coupling and vice versa. A similar but weaker effect can be observed in the ςu − ς`
and ςd − ς` planes.

4.6 “Wrong-sign” solution

The regions allowed by the global fit with the “wrong-sign” solution for the Higgs signal
strengths are displayed in figure 10, at different probabilities. Since these constraints have
been obtained imposing the “wrong-sign” solution, whose probability is smaller than 100%,
the final probability would be (probability of the “wrong-sign” solution)×(probability of
figure 10). The fine-tuned condition α̃ςd,` ∼ −2, emerging from yhd,` ∼ −1, can be only
satisfied in a small portion of the parameter space. The null value for the mixing angle is not
reached, since it corresponds to yhf = 1 and, therefore, belongs to the normal “right-sign”
branch discussed in the previous subsection.

5 Results: heavy scenario

In the previous section we have described the situation in which the observed Higgs cor-
responds to the lightest CP-even scalar of the model. In this section we will analyse the
complementary situation, i.e. the heaviest CP-even scalar is the SM Higgs and there is an
additional neutral scalar with mass below 125GeV.

The theoretical constraints show the same tendency as for the light scenario. Since the
mass of the CP-even scalar is now bounded to be light, the remaining two scalar masses can-
not be heavier than 700GeV. This can be seen in figure 11 for squared mass priors. Linear
mass priors give very similar theoretical constraints, so they are omitted from the plot.
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Figure 10. Two-dimensional constraints on the mixing angle α̃ and the Yukawa couplings yhf
from a global fit with the “wrong-sign” solution for the Higgs signal strengths. The plots show the
allowed regions at 99.7% (brown), 95.5% (orange) and 68% (yellow) probability.

Figure 11. Two-dimensional constraints on the scalar masses in the heavy scenario. The differ-
ent allowed regions correspond to theoretical constraints (blue, squared priors, 100% probability),
EWPOs (95.5% probability; orange, squared priors; violet, linear priors) and the combined global
fit (red, squared priors, 95.5% probability).

The constraints from EWPOs are also similar to the ones of the light scenario. Lower
masses and large mass splittings are excluded when squared priors are adopted. Now MH

is bounded to be smaller than 125GeV, so the allowed regions become narrower. The
worrisome difference between the results obtained with linear and squared mass priors is
also present in this heavy scenario. Squared priors give very strong constraints for light
masses that are no-longer found when linear priors are used. These constraints are displayed
in figure 11, which shows that rather low values for all scalar masses are indeed allowed
by the linear-priors fit. In the plane MA −M±H the allowed regions for linear (violet) and
squared (orange) priors overlap, so it not easy to distinguish them.

The analytical expressions of the gauge and Yukawa couplings of the light and heavy
CP-even neutral scalars in eqs. (2.9) and (2.13) can be shifted with the change of variable
α̃ = β̃− π

2 (notice that this brings β̃ outside our previous convention for α̃), up to a global

– 17 –



J
H
E
P
0
5
(
2
0
2
1
)
0
0
5

Figure 12. Constraints from Higgs signal strengths in the heavy scenario. One can distinguish the
“right-branch” with α̃ ≈ −π2 , corresponding to yhd,` ≈ 1, and the “wrong branch” with (α̃+ π

2 ) ςd,` ≈
−2 for yhd,` ≈ −1.

minus sign in the so-far unmeasured couplings of the additional neutral scalar. Therefore,
the constraints on β̃ from the Higgs signal strengths would be similar to the ones obtained
for α̃ in the light scenario. Adopting the convention that ghV V should be positive, the
hWW ∗ and hZZ∗ measurements imply now that α̃ should be close to −π

2 . The “right-
branch” where yhd,` have the same sign as yhu corresponds also to the region with α̃ ≈ −π

2 ,
while the “wrong-branch” where yhd,` have the opposite sign satisfies (α̃ + π

2 ) ςf ≈ −2. As
for the light scenario, the up Yukawa has always the same sign as ghV V . These allowed
regions are displayed in figure 12. The sharp cut close to α̃ = −π

2 in the negative branch
is a consequence of the correlation between α̃ and the down coupling ςd. Lower values of
the mixing angle would require ςd < −50, which is not allowed by our priors.

Finally, most flavour constraints are independent of the neutral scalar masses, so they
are identical in the light and heavy scenarios. The only relevant dependence appears in
Bs → µ+µ− for large values of ςd,` [88]. The allowed regions in figure 6 remain then also
valid in the heavy scenario, except the magenta areas that get slightly distorted.

The final constraints on the scalar masses from the global fit to this heavy scenario
are displayed in figure 11, assuming squared mass priors (red regions). Large masses for
the neutral CP-odd and charged scalars are not allowed at a 95.5% probability. Since the
CP-even scalar is forced to have a small mass, electroweak constraints restrict the mass
spitting between the two other scalars to be small. This is clearly seen in the MA −MH±

plane of figure 11.
Global fit results for the α̃− ςf planes in the positive branch are similar to the ones in

the light scenario (see figure 8) shifting the mixing angle α̃→ α̃− π
2 .

6 Summary

Several fits to the currently available data have been performed within the A2HDM, using
the HEPfit tool that is based on Bayesian statistics. To reduce the number of fitted param-
eters, we have considered a CP-conserving scalar potential and real alignment couplings.
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We have included in the fit EWPOs, Higgs signal strengths, collider searches for additional
scalars and flavour constraints, together with the theoretical requirements of perturbativity
and vacuum stability. After analysing the separate implications of each type of constraints,
we have combined all of them into a global fit to the model parameters.

Our main fits, discussed in section 4, assume that the observed Higgs at 125GeV is the
lightest CP-even scalar of the model. The theoretical requirements strongly constrain the
mass differences among the three additional scalars, H, A and H±, to be below 600GeV.
This upper bound becomes tighter as the masses increase, as shown in figure 2. The
EWPOs further restrict the masses and mass differences, favouring small mass splittings
and large masses. However, the precise bounds from EWPOs turn out to be very sensitive
to the adopted priors. Taking squared mass priors with masses varied until 1500GeV, one
finds a lower bound around 750GeV for the three masses, which gets reduced to 500GeV
if a lower mass range up to 1000GeV is adopted as prior. Taking instead linear priors in
the same mass range, masses as low as 10GeV become allowed.

The agreement of the measured Higgs signal strengths with the SM expectations trans-
lates into a very strong constraint on the scalar mixing angle, α̃ ≤ 0.023 rad (95.5% proba-
bility), and tight bounds on the alignment parameters, given in figure 5, which are further
reinforced by the flavour constraints shown in figure 6. Combining all constraints into a
global fit, one gets finally the allowed regions shown in figures 8 and 9. The up-quark
alignment parameter must satisfy |ςu| < 1.5 (95.5% probability), while |ςd,`| can take larger
values provided the products |ςu ςd,`| and |ςd ς`| remain small. These figures assume that
the down-quark and lepton Yukawa couplings do not deviate much from their SM values.
However, since the current data on Higgs signal strengths cannot determine the signs of
these two couplings, there is in addition a fine-tuned solution with “wrong-sign” Yukawas,
shown in figure 10.

The global fit to all data does not solve the prior dependence of the fitted mass spec-
trum. As shown in figures 2 and 7, squared mass priors put stronger lower bounds on the
scalar masses that depend on the assumed prior range, while linear priors still allow for
quite low values of the masses. Clearly, the current negative results from collider searches
are not yet stringent enough to discard the presence of new scalar states with masses near
the electroweak scale.

We have also attempted a first study of the opposite scenario, where the 125GeV
Higgs is assumed to be the heaviest CP-even scalar. Using the same data set, we have
found the constraints shown in figures 11 and 12 for the masses and alignment parameters,
respectively. A very strong correlation between MA and MH± is observed at high masses,
as expected, because the mass splittings cannot become large. However, no useful lower
bounds on the scalar masses can be extracted because they are again too sensitive to the
adopted priors. A more detailed analysis of this scenario, including LEP searches and low-
energy data, could provide additional constraints that we plan to study in future works.

Our results are currently the most general global fit to the A2HDM. While previous
phenomenological analyses of two-Higgs doublet models focused on particular cases based
on discrete Z2 symmetries or used only small subsets of observables, we have worked with
a more generic theoretical framework with the only assumptions of flavour alignment and

– 19 –



J
H
E
P
0
5
(
2
0
2
1
)
0
0
5

real scalar and alignment parameters. A more general analysis, including the new sources
of CP violation provided by the A2HDM, will be attempted in future publications.

Concerning the current flavour anomalies, it is worth to compare the fitted constraints
on the alignment parameters in figure 9 with the parameter region able to accommodate
(g − 2)µ, shown in figure 6. The global fit does not exclude the large values of |ς`| which
would be needed. However, in order to fit (g−2)µ one also needs a quite light pseudoscalar
with MA . 50GeV [90–92]. Specific searches for light scalar and pseudoscalar particles
could be very relevant to investigate this possibility.

An explanation of the b → cτν and b → sµ+µ− anomalies within the context of
two-Higgs doublet models would require non-universal lepton couplings. The generalised
A2HDM [10], with family-dependent alignment parameters, provides a viable theoretical
framework to address this type of phenomena. A scalar interpretation of the b → cτν

data [98, 99] seems still possible [96, 97], but it would imply higher values of Br(Bc →
τν) than usually assumed. A detailed analysis of the b → sµ+µ− anomalies within the
generalised A2HDM would provide very useful complementary information.
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A Data compilation

The following tables detail the collider data sources employed in our global fit (data ob-
tained at 2, 8 and 13TeV are marked in green, purple and yellow, respectively). Table 4
compiles the LHC and Tevatron data sources on Higgs signal strengths. The information
on heavy scalar searches at the LHC is collected in tables 5, 6, 7 and 8. These searches
are applied either to the charged Higgs boson H± or to the neutral scalars ϕ0

i = H,A.
Direct searches related to the charged Higgs boson are displayed in table 5. Table 6 con-
tains information about ϕ0

i = H,A decaying into fermions, γγ and Zγ. In table 7 the
final channel is either WW , ZZ or V V = ZZ,WW . Finally, information about a neutral
scalar decaying into the SM Higgs boson is summarized in table 8. Parenthesis indicate an
specific final state and square brackets that limits are quoted on the primary final state,
measured through the second final state.
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Channel bb̄ γγ µ+µ− τ+τ− WW Zγ ZZ

ggF8 [100, 101] [102] [103, 104] [105–107] [108, 109] [110, 111]
ggF13 [112, 113] [114, 115] [116, 117] [118–120] [121, 122] [123–125]
VBF8 [100, 101] [102] [103, 104] [105–107] [108] [110, 111]
VBF13 [126, 127] [112, 113] [114, 115] [116, 117] [118–120] – [123–125]

VH8 [128, 129] [100, 101] [102] [103] [105–107] [108] [110, 111]
VH13 [130, 131] [112, 113] [114, 115] [116, 132] [118–120] [123–125]

ttH8 [133, 134] [100, 101] [102] [108] [110, 111]
ttH13 [135–137] [112, 113] [114, 115] [120] [123–125]

VH2 [138, 139]
ttH2 [138, 139]

Table 4. Higgs signal strengths input used in the fit, for different production and decay channels,
at energies of

√
s = 7, 8TeV (ATLAS and CMS, Run I),

√
s = 13TeV (ATLAS and CMS, Run II)

and
√
s = 2TeV (D0 and CDF collaborations).

Label Channel Experiment Mass range L
[TeV] [fb−1]

Aτν8 pp→ H± → τ±ν ATLAS [140] [0.18;1] 19.5
Cτν8 pp→ H+ → τ+ν CMS [141] [0.18;0.6] 19.7
Aτν13

pp→ H± → τ±ν
ATLAS [142] [0.09;2] 36.1

Cτν13 CMS [143] [0.18;3] 12.9

Atb8 pp→ H± → tb ATLAS [144] [0.2;0.6] 20.3
Ctb8 pp→ H+ → tb̄ CMS [141] [0.18;0.6] 19.7
Atb13 pp→ H± → tb ATLAS [145] [0.2;2] 36.1

Table 5. Direct searches for charged scalars.
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Label Channel Experiment Mass range L
[TeV] [fb−1]

Att13t tt→ ϕ0
i → tt ATLAS [146] [0.4;1] 36.1

Att13b bb→ ϕ0
i → tt ATLAS [147] [0.4;1] 13.2

Cbb8b bb→ ϕ0
i → bb CMS [148] [0.1;0.9] 19.7

Cbb8 gg → ϕ0
i → bb CMS [149] [0.33;1.2] 19.7

Cbb13 pp→ ϕ0
i → bb CMS [150] [0.55;1.2] 2.69

Cbb13b bb→ ϕ0
i → bb CMS [151] [0.3;1.3] 35.7

Aττ8
gg → ϕ0

i → ττ
ATLAS [152] [0.09;1] 20

Cττ8 CMS [153] [0.09;1] 19.7

Aττ8b bb→ ϕ0
i → ττ

ATLAS [152] [0.09;1] 20
Cττ8b CMS [153] [0.09;1] 19.7

Aττ13
gg → ϕ0

i → ττ
ATLAS [154] [0.2;2.25] 36.1

Cττ13 CMS [155] [0.09;3.2] 35.9

Aττ13b bb→ ϕ0
i → ττ

ATLAS [154] [0.2;2.25] 36.1
Cττ13b CMS [155] [0.09;3.2] 35.9

Aγγ8 gg → ϕ0
i → γγ ATLAS [156] [0.065;0.6] 20.3

Aγγ13 pp→ ϕ0
i → γγ ATLAS [157] [0.2;2.7] 36.7

Cγγ13 gg → ϕ0
i → γγ CMS [158] [0.5;4] 35.9

AZγ8 pp→ ϕ0
i → Zγ → (``)γ

ATLAS [159] [0.2;1.6] 20.3

CZγ8 CMS [160] [0.2;1.2] 19.7

A``γ13 gg → ϕ0
i → Zγ[→ (``)γ] ATLAS [121] [0.25;2.4] 36.1

Aqqγ13 gg → ϕ0
i → Zγ[→ (qq)γ] ATLAS [161] [1;6.8] 36.1

CZγ8+13 gg → ϕ0
i → Zγ CMS [162] [0.35;4] 35.9

Table 6. Direct searches for neutral heavy scalars, ϕ0
i = H,A, with quarks, leptons (` = e, µ),

photons and Zγ final states.
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Label Channel Experiment Mass range L
[TeV] [fb−1]

AZZ8 gg → ϕ0
i → ZZ ATLAS [163] [0.14;1] 20.3

AZZ8V V V → ϕ0
i → ZZ ATLAS [163] [0.14;1] 20.3

A2`2L
13 gg → ϕ0

i → ZZ[→ (``)(``, νν)] ATLAS [164] [0.2;1.2] 36.1

A2`2L
13V V V → ϕ0

i → ZZ[→ (``)(``, νν)] ATLAS [164] [0.2;1.2] 36.1

A2L2q
13 gg → ϕ0

i → ZZ[→ (``, νν)(qq)] ATLAS [165] [0.3;3] 36.1

A2L2q
13V V V → ϕ0

i → ZZ[→ (``, νν)(qq)] ATLAS [165] [0.3;3] 36.1

C2`2X
13 pp→ ϕ0

i → ZZ[→ (``)(qq, νν, ``)] CMS [166] [0.13;3] 35.9

C2q2ν
13 pp→ ϕ0

i → ZZ[→ (qq)(νν)] CMS [167] [1;4] 35.9

AWW
8 gg → ϕ0

i →WW ATLAS [168] [0.3;1.5] 20.3

AWW
8V V V → ϕ0

i →WW ATLAS [168] [0.3;1.5] 20.3

A
2(`ν)
13 gg → ϕ0

i →WW [→ (eν)(µν)] ATLAS [169] [0.2;4] 36.1

A
2(`ν)
13V V V → ϕ0

i →WW [→ (eν)(µν)] ATLAS [169] [0.2;3] 36.1

C
2(`ν)
13 (gg+V V )→ ϕ0

i →WW → (`ν)(`ν) CMS [170] [0.2;1] 2.3

A`ν2q
13 gg → ϕ0

i →WW [→ (`ν)(qq)] ATLAS [171] [0.3;3] 36.1

A`ν2q
13V V V → ϕ0

i →WW [→ (`ν)(qq)] ATLAS [171] [0.3;3] 36.1

C`ν2q
13 pp→ ϕ0

i →WW [→ (`ν)(qq)] CMS [172] [1;4.4] 35.9

CV V8 pp→ ϕ0
i → V V CMS [173] [0.145;1] 24.8

A4q
13 pp→ ϕ0

i → V V [→ (qq)(qq)] ATLAS [174] [1.2;3] 36.7

Table 7. Direct searches for neutral heavy scalars, ϕ0
i = H,A, with vector-boson final states.

V = W,Z, ` = e, µ.
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Label Channel Experiment Mass range L
[TeV] [fb−1]

Ahh8 gg → ϕ0
i → hh ATLAS [175] [0.26;1] 20.3

C4b
8 pp→ ϕ0

i → hh→ (bb)(bb) CMS [176] [0.27;1.1] 17.9

C2γ2b
8 pp→ ϕ0

i → hh→ (bb)(γγ) CMS [177] [0.260;1.1] 19.7

C2b2τ
8g gg → ϕ0

i → hh→ (bb)(ττ) CMS [178] [0.26;0.35] 19.7

C2b2τ
8 pp→ ϕ0

i → hh[→ (bb)(ττ)] CMS [179] [0.35;1] 18.3

A4b
13

pp→ ϕ0
i → hh→ (bb)(bb)

ATLAS [180] [0.26;3] 36.1
C4b

13,1 CMS [181] [0.26;1.2] 35.9

C4b
13,2 CMS [182] [1.2;3] 35.9

A2γ2b
13 pp→ ϕ0

i → hh[→ (bb)(γγ)] ATLAS [183] [0.26;1] 36.1

C2γ2b
13 pp→ ϕ0

i → hh→ (bb)(γγ) CMS [184] [0.25;0.9] 35.9

A2b2τ
13 pp→ ϕ0

i → hh→ (bb)(ττ) ATLAS [185] [0.26;1] 36.1
C2b2τ

13,1 CMS [186] [0.25;0.9] 35.9

C2b2τ
13,2 pp→ ϕ0

i → hh[→ (bb)(ττ)] CMS [187] [0.9;4] 35.9

C2b2V
13 pp→ ϕ0

i → hh→ (bb)(V V → `ν`ν) CMS [188] [0.26;0.9] 35.9

A2b2W
13 pp→ ϕ0

i → hh[→ (bb)(WW )] ATLAS [189] [0.5;3] 36.1

A2γ2W
13 gg → ϕ0

i → hh→ (γγ)(WW ) ATLAS [190] [0.26;0.5] 36.1

AbbZ8 gg → ϕ0
i → hZ → (bb)Z ATLAS [191] [0.22;1] 20.3

C2b2`
8 gg → ϕ0

i → hZ → (bb)(``) CMS [192] [0.225;0.6] 19.7
AττZ8 gg → ϕ0

i → hZ → (ττ)Z ATLAS [191] [0.22;1] 20.3

C2τ2`
8 gg → ϕ0

i → hZ → (ττ)(``) CMS [178] [0.22;0.35] 19.7

AbbZ13
gg → ϕ0

i → hZ → (bb)Z
ATLAS [193] [0.2;2] 36.1

CbbZ13,1 CMS [194] [0.22;0.8] 35.9

CbbZ13,2 CMS [195] [0.8;2] 35.9

AbbZ13b
bb→ ϕ0

i → hZ → (bb)Z
ATLAS [193] [0.2;2] 36.1

CbbZ13b,1 CMS [194] [0.22;0.8] 35.9

CbbZ13b,2 CMS [195] [0.8;2] 35.9

C
ϕ0

2Z
8,1 pp→ ϕ0

3 → ϕ0
2Z → (bb)(``) CMS [196] [0.04;1] 19.8

C
ϕ0

2Z
8,2 pp→ ϕ0

3 → ϕ0
2Z → (ττ)(``) CMS [196] [0.05;1] 19.8

Aϕ
0Z

13 gg → ϕ0
3 → ϕ0

2Z → (bb)Z ATLAS [197] [0.13;0.8] 36.1

Aϕ
0Z

13b bb→ ϕ0
3 → ϕ0

2Z → (bb)Z ATLAS [197] [0.13;0.8] 36.1

Table 8. Direct searches for neutral heavy scalars, ϕ0
i = H,A, with final states including the SM

Higgs boson or other neutral scalars. ϕ3 denotes the heaviest scalar, V = W,Z, ` = e, µ.
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