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SCFT to its weakly coupled gauge theory or quiver descriptions and demonstrate that the
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of this graph into the CFD that is associated to an SCFT provides a systematic way to

enumerate all possible consistent weakly coupled gauge theory descriptions of this SCFT.

Furthermore, different embeddings of gauge theory graphs into a fixed CFD can give rise
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1 Introduction

Supersymmetric gauge theories are an ideal setup to explore strongly-coupled aspects of

quantum field theories. In less than five dimensions they are renormalizable theories,

whereas in higher (five and six) dimensions they can be effective descriptions at low energy.

Thanks to the additional structure provided by supersymmetry, one can study features such

as electric-magnetic dualities or renormalization group flows even in the absence of pertur-

bative control at all energy scales. In practice, they can be used to probe strongly coupled

regimes, giving insights about the non-perturbative dynamics of quantum field theories.

A particularly interesting class are five dimensional (5d) N = 1 gauge theories, which

can be low energy descriptions of superconformal field theories (SCFTs). More specifi-

cally, by studying the space of one-loop corrected couplings, parametrized by the Coulomb

branch, one can argue necessary conditions for the existence of a strongly coupled ultravi-

olet (UV) fixed point [3]. Another motivation to study these theories at present is recent
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progress in 6d SCFTs, where it is believed that a full classification of all UV-complete

supersymmetric theories exists [4–7]. Indeed, recent works [1, 2, 8–14] have suggested that

all 5d N = 1 UV-complete theories arise from appropriate circle reductions, possibly with

holonomies for the global symmetries of 6d theories, thus conjecturing a classification of

5d theories.

Like their six dimensional cousins, 5d SCFTs are inherently strongly coupled. In

the absence of a Lagrangian description, methods from or inspired by string theory have

proved to be invaluable in their studies [3, 15–26]. One of the important lessons we have

learned from these methods is that many different 5d gauge theories can have the same

SCFT as UV-completion, thus being UV-dual (or, simply, dual) to each other. Another

crucial aspect, which manifests itself at strong coupling, is that the flavor symmetry of

the gauge theory description can enhance at the UV-fixed point. This fact is due to the

presence of non-perturbative instanton operators, which quantum mechanically enhance

the classical flavor symmetry at the SCFT point. The state-of-the-art method to calculate

the SCFT’s flavor symmetry typically involves a localization computation in field theory

or a description in terms of 5-brane webs [27–38].

In recent works [1, 2] we proposed an alternative approach that arose out of the well-

established geometric engineering via M-theory on a non-compact Calabi-Yau threefolds [8–

10, 12, 39–42]. One of the key insights of [1, 2] is that there is a succinct description of the

CFT data in terms of graphs, and transitions between graphs correspond to mass deforma-

tions and subsequent RG-flows. These graphs, the combined fiber diagrams (CFDs), not

only capture how 5d SCFTs are interconnected, but more importantly, they encode the

strongly-coupled flavor symmetry of the UV fixed point SCFT, as well as the BPS states.

The central idea connecting the CFDs and 5d SCFTs is as follows: given a marginal1

theory whose UV completion is a given 6d SCFT, all its descendant 5d SCFTs are obtained

via mass deformations and RG-flows. These field theoretic transitions can be encoded via

simple graph-theoretic operations on the CFDs, that is associated with each SCFT, and

from which the complete tree of descendants is obtained straightforwardly. The CFDs can

be thought of as characterizing physically inequivalent M-theory geometries, which are in

general non-flat resolutions (see [43] for an in-depth discussion) of the non-compact elliptic

Calabi-Yau threefold underlying the F-theory realization of the given 6d SCFT.

The goal of the present paper is to put this into the context of a gauge theoretic de-

scription. In particular, we connect the Coulomb branch phases of the effective theory [40],

described in terms of representation-theoretic graphs [44], to the CFD-characterization of

the SCFT limit. The focus here is three-fold:

1. Constraining the possible weakly-coupled gauge theory descriptions of a 5d SCFT

given in terms of a CFD,

2. Derivation and constraints on UV-dualities using the CFD description,

3. Bootstrapping CFDs for marginal theories, in cases where no CFD-description is

known, but weakly-coupled descriptions are available.
1In this paper, we will consider theories that are both marginal and have a 6d UV fixed point. As such

we will use the notation interchangeably, however see [9] for exceptions.
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Geometry and CFDs. Before expanding on these points, let us briefly recapitulate the

relation between the geometry of non-compact elliptically fibered Calabi-Yau threefolds

with canonical singularities and 5d SCFTs. The 5d SCFT arising from the canonical sin-

gularity can be identified by virtue of the M-/F-theory duality [45–47] with circle reductions

of the 6d theory realized in F-theory, including possible holonomies in the flavor symmetry.

The resolutions of the canonical singularities consist of a collection of intersecting compact

surfaces, and, field theoretically, their volumes parametrize the Coulomb branch of the

theory. These surfaces shrink to a point in the singular limit, which corresponds to the UV

fixed point. When these divisors are ruled (P1 fibered over a curve) and intersect along

sections of the rulings, the collection of surfaces may be collapsed to a curve of singularities

after the ruling curves are collapsed to zero volume. The additional light states appearing

from M2-branes wrapping the fibers of these rulings give rise to a gauge theory. Finally,

when a bouquet of surfaces shrinks to a collection of intersecting curves of singularities,

the underlying low energy description is generically given by a quiver gauge theory.

The starting point of our analysis is the so-called 5d marginal theory, which is obtained

by taking the 6d theory compactified on a circle (or alternatively M-theory on the same

elliptically fibered Calabi-Yau), without any holonomy for the flavor symmetry. This the-

ory usually has an effective gauge theory description, which has a 6d SCFT as its UV fixed

point. Starting from the marginal theory we can turn on mass deformations. This proce-

dure allows one to obtain all descending 5d SCFTs corresponding to partial blow-downs

of the fully resolved geometry, and these descendants can be enumerated combinatorially.

From the gauge theory point of view this procedure corresponds to decoupling matter hy-

permultiplets, whereas from a strongly coupled perspective, the resulting descendants are

the end-products after renormalization-group (RG) flows that are triggered by the mass

deformations. The set of descendant 5d SCFTs linked by RG flow leads to a connected

tree of theories. One of the main advantages of our approach is that the complete tree

of descendants is obtained from the CFD associated to the marginal 5d theory by simple

operations on the graphs, and can be fully automated.

A complete classification of all 5d SCFTs that descend from 6d SCFTs by circle-

reductions requires as input the set of all marginal theories, the associated CFDs (usually

computed by resolving the geometry). From this the procedure determines the descen-

dants uniquely. The single gauge node marginal theories were determined in [9], and we

will discuss this class of theories in the present paper. Another class that already featured

prominently in [1, 2] are 5d theories descending from 6d minimal conformal matter theo-

ries [48]. One of the outputs of this paper are proposals for weakly coupled descriptions

of these theories, as well as dualities among these. In many instances we can substantiate

these weakly coupled descriptions as well as dualities by determining the associated rulings

in the resolved elliptic Calabi-Yau geometry.

Gauge theories, Coulomb branches, dualities and CFDs. The strength of the

approach that we proposed in [1, 2] lies in its combinatorial nature, which at the same

time captures not only the network of 5d SCFTs that descend from a 6d theory, but also

the flavor symmetry of the UV-fixed point. While the latter is often enhanced compared
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to the classical gauge theory descriptions, our previous discussions were focused primarily

on the SCFT itself.

In this work, we extend the scope of this approach by explicitly studying the effective

gauge descriptions of the SCFTs.

A central tool to achieve this is a representation-theoretic object, the box graph, in-

troduced in [44], which captures all Coulomb branch phases of a given 5d gauge theory.

The Coulomb branch on the other hand is intimately linked to the relative Mori cone

of the elliptic Calabi-Yau threefold [44, 49–51]2 The box graphs fully encode the sets of

consistency conditions on the Coulomb branch of a gauge theory with matter, where the

matter classically transforms under a flavor group, GF,cl as well as the gauge group Ggauge.

In particular, we couple the gauge theory to a non-trivial background connection for the

flavor symmetry, by weakly gauging it. This leads to a set of cone inequalities not only for

the Coulomb branch parameters, but also to consistency conditions for the possible masses

of the flavor hypermultiplets. This description is very convenient, since the mass deforma-

tions of the gauge theory are characterized in terms of simple operations on the box graphs.

In brief, a Coulomb branch phase is given in terms of a representation graph (encoding

the transformation of the matter under both the gauge and classical flavor symmetries),

as well as a sign-assignment or decoration, which specifies the Coulomb branch phase.

We will define a class of graphs, which characterize 5d gauge theories: they encode

the classical flavor symmetry of the gauge theory. These graphs, the box graph CFDs

(BG-CFDs), encode equivalence classes of Coulomb branch phases, which all carry the

same classical flavor symmetry. We first determine these for all possible gauge groups and

matter contents. From this we can then build the corresponding BG-CFDs for quivers.

We then use these to constrain the possible weakly coupled gauge theory descriptions

of a given CFD (starting with the CFD for a marginal 5d theory, but also for all its de-

scendants), by embedding the BG-CFDs into the CFDs. This, for instance, implies that

for rank two 5d SCFTs, the known weakly-coupled descriptions are a comprehensive list.

More interestingly, however, we can predict new weakly coupled gauge theory or quiver

descriptions for theories where only few such descriptions exist, such as the (En, En) min-

imal conformal matter theories as well as (E8, SU(n)), and (E7, SO(7)) conformal matter.

In all these cases a geometric derivation of the marginal CFD exists. Another implication

of the relation between CFDs and BG-CFDs is that we can predict a large class of new

dualities, i.e., gauge theories or quivers, which have the same UV fixed point.

There are 6d theories, where no known elliptic fibration in terms of a Weierstrass

model for the fully singular geometry exists. In such instances we can turn the arguments

around and use our approach to constrain the marginal CFD, by using known gauge theory

descriptions as well as flavor symmetry enhancements of the 5d descendants.

The plan of the paper is as follows: to set the stage, we give a lightning review of 5d

Coulomb branches in the language of box graphs in section 2. We then propose how to use

this approach to study 5d gauge/quiver theories with matter and introduce the concept

2This structure has played an important role also F-theory on elliptic fourfolds and fivefolds in the

context of G4-fluxes and chiralitiy [44, 49–55].
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of flavor equivalence classes of Coulomb branch phases (or box graphs) and the BG-CFDs

in section 3. This is done for all types of gauge theories and matter in 5d that have an

SCFT in the UV. In section 4 we use this to constrain the weakly-coupled descriptions of

marginal theories for all rank two 5d theories, as well as the marginal theories associated to

minimal conformal matter theories of type (Dk, Dk), (En, En), (E8, SU(n)). For all these

models, we computed the CFDs of the marginal theories from geometry. In section 5.1 we

turn this around and discuss theories, which do not have a known description in terms of a

fully singular Tate or Weierstrass model. Nevertheless, we find that we can bootstrap the

candidate marginal CFD using the information about known weakly coupled descriptions,

and their flavor symmetry enhancements. Interestingly, these are precisely the theories that

are relatively easily accessible using other methods (such as 5-brane webs), whereas for the

models where we can determine the marginal CFD from geometry, the weakly coupled

descriptions are often somewhat sparse (e.g., the (En, En) conformal matter theories).

Descendant 5d SCFTs and dualities among weakly coupled descriptions that can be

infered from the CFDs are the topic of section 6. We first discuss two cases where the dual-

ities have a geometric underpinning: the marginal theories from (E6, E6) and (E7, SO(7))

conformal matter and their descendants. We propose new quiver descriptions for these the-

ories as well as the complete network of descendants and their gauge theory descriptions,

whenever these exist. This is backed by a geometric analysis in appendix C.

Finally, in sections 7 and 8 we return to geometry to tie up some loose ends, and

show how all three strands of our analysis — the resolved elliptic Calabi-Yau, the CFDs

and the gauge theory Coulomb branch phases — are connected. In particular we quantify

how the gauge theory description needs to be supplemented to see, for instance, the full

superconformal flavor symmetry manifest in geometry. We conclude with a summary and

outlook in section 9. In appendix A, we summarize all gauge theory phases (and associated

BG-CFDs) for the rank two 5d theories. Appendix C contains details of the resolutions for

marginal and descendant theories.

2 Coulomb phases, box graphs, and 5d SCFTs

In this section, we summarize some of the basic ingredients that will be combined in this

paper. For starters, we discuss the structure of the Coulomb branch of 5d gauge theories —

supplementing the material in Part I [2], where some aspects of this were already discussed.

Here our focus will be to characterize the Coulomb branch of a 5d gauge theory with matter,

using the underlying representation-theoretic structure, based on the classic [40] as well as

the box graph description in [44].

2.1 The Coulomb branch of 5d gauge theories

The Coulomb branch of a 5d N = 1 supersymmetric gauge theory coupled to matter can

have an intricate structure. Let us consider a gauge theory with reductive gauge group,

Ggauge, written as a product

Ggauge =
∏
i

Grii ×U(1)rA , (2.1)
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where Gi are simple groups, the superscript indicates the rank, and further

rA = r −
∑
i

ri , (2.2)

is the rank of the abelian subgroup transverse to the Cartan subgroup of the non-abelian

factors. In this notation the Coulomb branch is isomorphic to(∏
i

Rri/WGi

)
× RrA , (2.3)

where WGi is the Weyl group of Gi. The quotient is the Weyl chamber, defined by

Ci = Rri/WGi , (2.4)

and it has the structure of a cone. Thus the grossest feature of the Coulomb branch of 5d

supersymmetric gauge theory is that it is a collection of cones; this property comes only

from considering the gauge group itself, and this structure is further refined in a theory

that also incorporates matter [40].

We can choose a basis such that the Ci are the fundamental Weyl chambers of the Gi.

Let α
(i)
j be the positive simple roots of Gi, then we can write3

Ci =
{
φ ∈ Rri | 〈φ, α(i)

j 〉 > 0 for all j
}
. (2.5)

Consider now a hypermultiplet, H, transforming in a representation R of G. On the

Coulomb branch of the theory the gauge group is broken to U(1)r. The hypermultiplets

transform as a collection of dim(R) hypermultiplets under the U(1)r in the representation

defined by the weights of R. Let us, for the moment, consider a representation Ri of Gi
and highlight the induced structure on the Coulomb branch from the presence of these

hypermultiplets. A hypermultiplet carrying the charges under U(1)r corresponding to the

weight λ of Ri becomes massless at the point in the Coulomb branch where

〈φ, λ〉 = 0 . (2.6)

It is easy to see that for each λ in Ri this gives rise to a wall inside the Coulomb branch,

and along this wall there exist additional massless hypermultiplets. We can then describe

the subchambers, or subwedges, of C as defined by these walls. A phase of the gauge theory

is defined as a non-empty subwedge of the Coulomb branch such that each

〈φ, λI〉 has a definite sign for each λI ∈ R . (2.7)

Determining the phase structure of the Coulomb branch involves determining these sub-

wedges, and the adjacency relations between them.

3Appropriate care must be taken here with respect to weight and coweight lattices, which we are pairing

between.
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2.2 Phases for 5d gauge theory via box graphs

It is useful to formulate the problem of finding the Coulomb branch phases of a 5d gauge

theory in terms of so-called Box Graphs [44], which provide a succinct combinatorial way

to list all phases.

The set of weights of each irreducible representation R of a group G is generated

by starting with a highest weight and from that highest weight one repeatedly subtracts

positive simple roots, following a simple prescription. That is, if λ is a weight of R then it

can be written as the linear combination

λhw −
∑
j

njαj , (2.8)

where the nj are non-negative integers and λhw is the highest weight of R. This action

of generating all the weights of a representation from the highest weight forms the weight

diagram [56] of the representation. For an irreducible representation the weight diagram

is a connected directed graph where the nodes are the weights of the representation and

there exists an edge between two nodes if the two weights differ only by a single positive

simple root. We will use a particular presentation of this weight diagram, as explained in

the following definition.

Definition 2.1. An undecorated box graph is a graphical depiction of the weight dia-

gram [56] for a representation R for a Lie algebra g. Each weight of R is represented by

a box, and if two weights differ by the addition of a single simple positive root of g then

their boxes are adjacent.

As we have discussed above, each phase of the Coulomb branch of a 5d N = 1 Ggauge

gauge theory with matter transforming in a representation R of Ggauge is specified by

the signs of 〈φ, λ〉 for each λ ∈ R. We mark the sign assignment for the phase onto the

undecorated box graph for the weight diagram as in the following definition.

Definition 2.2. A (decorated) box graph is an assignation of ± signs to each weight, λ,

represented in an undecorated box graph such that

{±〈λ, φ〉 > 0} ∩ {〈αi, φ〉 > 0} , (2.9)

has non-zero solutions for φ. We will write λ± for the weight appearing in the decorated

box graph together with the assigned sign of 〈λ, φ〉. In this way one can see that a decorated

box graph is defined such that it corresponds to a non-empty phase of the Coulomb branch

of a 5d gauge theory with gauge algebra g and matter transforming in the representation R.

In practice we will represent the positive and negative weights by blue/yellow boxes.

It is clear to see that if the weight λ is assigned the sign + in the decorated box graph,

then all weights λ̃ such that

λ = λ̃− njαj , (2.10)

for nj non-negative must also be assigned +. Explicitly, there only exists a non-zero value

of φ solving

〈φ, λ〉 = 〈φ, λ̃〉 − nj〈φ, αj〉 , (2.11)

– 7 –
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subject to the assumptions that

〈φ, λ〉 > 0 , 〈φ, αj〉 > 0 , (2.12)

if one also has

〈φ, λ̃〉 > 0 . (2.13)

Similarly, one can show that if λ is assigned a − sign in the decorated box graph the all

weights λ̃ which satisfy

λ̃ = λ− njαj , (2.14)

again for nj non-negative, must also be assigned a − sign.

As we have just seen, not all the weights of the representation can be assigned signs

independently, in fact it is usually the case that once the signs are associated to a few

weights the signs of all the other weights follows of necessity. We will refer to these weights

as extremal, and they are defined as follows.

Definition 2.3. A weight λ+ in a decorated box graph is extremal if there does not exist

a weight λ̃+ in the decorated box graph such that

λ̃ = λ− njαj , (2.15)

for nj non-negative. Similarly a weight λ− is extremal if there does not exist a λ̃− such that

λ = λ̃− njαj , (2.16)

again for nj non-negative integers.

Definition 2.4. In a decorated box graph a root, αj , of the gauge group G is said to split

if we have two weights related in the box graph as

λ̃ = λ− αj , (2.17)

such that λ̃ is assigned the sign − and λ is assigned +. For such split roots we can use

〈φ, λ〉 − 〈φ, λ̃〉 = 〈φ, αj〉 , (2.18)

to see that 〈φ, αj〉 > 0 is automatically satisfied by the sign assignment of λ and λ̃. Gen-

erally the λ̃+ and λ− may be further rewritten as a positive linear combination of the

extremal weights and the non-split roots.

The motivation for the previous two definitions is as follows. The signs associated to

the non-extremal weights and the split roots are determined from the signs associated to

the extremal weights and the non-split roots. In this manner each subwedge for a simple

gauge group G and matter in an irreducible representation R can be minimally written as

Wi =
{
φ ∈ Rrank(G) | ± 〈φ, λextremal

j 〉 > 0 and 〈φ, αnon-split
k 〉 > 0 for all j, k

}
, (2.19)

where the indices run over all extremal (the ± is given by the sign of the extremal weight)

and non-split roots in the particular subwedge under consideration. In this way we can

– 8 –
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see that it is this restricted set of weights and roots that are the “irreducible“ objects

generating the subwedge.

In the pictorial decorated box graphs this leads to the following definition of flow rules,

which follow directly from the above consistency requirements for the sign assignments in

the box graphs:

Definition 2.5. The flow rules state that if we assign the sign + to a weight of an

undecorated box graph then we must assign + also to every box up and to the left of that

weight. Similarly if we assign — to a particular weight then we must assign — to every

weight that is down and to the right. This is captured graphically by

+

+ + - -

-

. (2.20)

Definition 2.6. A flop transition exists between two decorated box graphs if a single

weight differs in assigned sign. These weights are necessarily extremal weights, and a

flop transition is changing precisely one sign assignment of an extremal weight. Generally

we will be considering representations that contain weights λ and −λ, for example self-

conjugate representations, and when we say that a single weight differs in sign we mean

that the signs associated to λ and −λ are swapped. Two Coulomb phases are adjacent

inside of the Coulomb branch if the associated box graphs are related by a flop transition.

For a more in depth discussion of box graph and Coulomb phases we refer the reader

to [44] and [49–51].

2.3 Box graphs and flavor symmetries

Although box graphs are used to characterize the Coulomb branch phases of gauge theories

in 5d (or 3d) with matter, we can equally apply them to determine the structure of the

extended Coulomb branch, of a gauge theory with classical flavor symmetry GF, cl. Consider

a gauge theory with matter in (R,RBG) of Ggauge × GBG. To determine which matter

multiplets can be given masses and can be decoupled from the theory, recall that the

prepotential has a contribution

F ⊃ − 1

12

∑
RBG

∑
λRBG

|λi φi +mf |3 , (2.21)

where φi are the scalars in the vector multiplet, which are coordinates on the Coulomb

branch, and mf are masses for hypermultiplets. The sum runs over the weights of the

representation. Promoting the masses mf as parameters of the Coulomb branch, corre-

sponds to weakly gauging part of the flavor symmetry. In practice, this is equivalent to

studying the Coulomb branch, or box graphs, for bifundamental matter of (Rgauge,RBG)

of Ggauge ×GBG.

Our strategy will be to determine all phases of the extended Coulomb branch using box

graphs, starting with a marginal 5d theory, i.e., the gauge theory description of a circle-

reduction of a 6d SCFT. This determines all descendant gauge theories, that can be reached
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Gauge Group Matter Flavor Group GF,cl

Nf × fund

SU(n ≥ 3) +Na × anti-sym U(Nf )×U(Na)×U(Ns)

+Ns × sym

Sp(n)
Nf × fund

SO(2Nf )× Sp(Na)
+Na × anti-sym

SO(n) Nv × vector Sp(Nv)

G2 N7 × 7 Sp(N7)

F4 N26 × 26 Sp(N26)

E6 N27 × 27 U(N27)

E7 N56 × 56 SO(2N56)

Table 1. Flavor symmetries of 5d gauge theories with simple gauge groups. The matter content

has been restricted to representations that allow for the gauge theory to have an honest 5d SCFT

limit. For this reason, there is no E8 theory with non-trivial matter in this table. Note that for

SU(n ≥ 3) gauge theories, the Ni hypermultiplets transforming in the (anti-)fundamental of the

SU(Ni) ⊂ U(Ni) flavor factor have charges (−)1 under the baryonic U(1) ⊂ U(Ni).

by successively decoupling hypermultiplets. As we shall see in section 3, equivalence classes

of box graphs will then characterize all 5d SCFTs that admit a weakly coupled gauge theory

description. We will illustrate the box graph approach in section 2.4 with the rank one

theories. This class of 5d theories, descend from a single marginal theory, which is the

dimensional reduction of the rank one E-string.

We list for convenience the flavor group for all possible 5d gauge theories which can

have a non-trivial UV fixed point,4 following [40]. For gauge theories with a simple gauge

group, the data is summarized5 in table 1.

For a quiver gauge theory, consisting of Q gauge factors GI , there are Q − 1 hyper-

multiplets in the bifundamental of GI ×GI+1

G1

N1
1R

1
1 ... N1

nR
1
n

G2

N2
1R

2
1 ... N2

kR
2
k

... GQ

NQ
1R

Q
1 ... NQ

sR
Q
s

. (2.22)

Furthermore, there can be NfI hypermultiplets transforming in a representation RGI
of

the gauge group GI . Typically, one represents such a quiver as a set of nodes, each corre-

4These are only the matter fields that we consider in this paper. In addition one can have the triple

antisymmetric of SU(n) and the spinor/conjugate spinor of SO(n) for low ranks of the gauge group; one

can also include adjoint matter, which may have a 6d fixed point with sixteen supercharges. See [9] for

more details.
5We note that we rectify the typographical error in [40] whereby the classical flavor symmetry rotating

N27 fundamental hypermultiplets of E6 was written as SU(N27) rather than U(N27).
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sponding to one gauge factor GI . Bifundamental matter are showing as lines connecting

two nodes, and additional hypermultiplets are indicated by lines attached to a single node.

The global symmetry group can be thought as coming from 3 different contribution:

• Each of the Q gauge group nodes in the quiver has an associated U(1)T .

• For each full hypermultiplet transforming in the bifundamental of GI ×GI+1, there

will be a baryonic U(1)B, which is an SU(2)B for an hypermultiplet in the fundamental

of two SU(2) gauge nodes.

• The symmetry rotating the NfI hypers can be read off from the single simple gauge

group classical flavor symmetries.

The total global symmetry is a product of these factors.

2.4 Intermezzo: gauge theory phases for rank one 5d SCFTs

To illustrate the inner workings of box graphs, let us first consider the simplest example: the

rank one theories in 5d, which e.g. arise as dimensional reductions and mass deformations

of the 6d rank one E-string theory. The marginal theory admits an Sp(1) = SU(2)gauge

gauge theory description with 8 fundamental flavors [3]

SU(2) + 8F . (2.23)

The flavor symmetry at weak coupling is then SO(16) = GBG. In other words, the theory

has matter in the (2,16) representation of the SU(2)gauge× SO(16). This induces a wedge

structure on the Coulomb branch of the theory when we weakly gauge the SO(16), as

explained earlier.

To study the different phases of this Coulomb branch, and the corresponding fiber

structure, we denote the positive simple roots in the Cartan-Dynkin basis by

SO(16) :


α1 = (0;2,−1,0,0,0,0,0,0) ,

α3 = (0;0,−1,2,−1,0,0,0,0) ,

α5 = (0;0,0,0,−1,2,−1,0,0) ,

α7 = (0;0,0,0,0,0,−1,2,0) ,

α2 = (0;−1,2,−1,0,0,0,0,0)

α4 = (0;0,0,−1,2,−1,0,0,0)

α6 = (0;0,0,0,0,−1,2,−1,−1)

α8 = (0;0,0,0,0,0,−1,0,2)

SU(2) : αSU(2) = (2;0,0,0,0,0,0,0,0) ,

(2.24)

and in this notation the highest weight of the (2,16) is

L1,1 = (1; 1, 0, 0, 0, 0, 0, 0, 0) . (2.25)

The undecorated box graph for this representation is given in figure 1. In particular we

denote by

Li,j = L2
i + L16

j , (2.26)

the sum of fundamental weights of 2 and 16. The simple roots of SO(16) can be written as

αi = L16
i − L16

i+1 , i = 1, · · · , 7 , α8 = L16
7 + L16

8 . (2.27)
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L1,1 L1,8L1,7L1,6L1,5L1,4L1,3L1,2

L1,9 L1,10 L1,15L1,14L1,13L1,12L1,11 L1,16

L2,1 L2,8L2,7L2,6L2,5L2,4L2,3L2,2

L2,9 L2,10 L2,15L2,14L2,13L2,12L2,11 L2,16

�1 �2 �3 �4 �5 �6 �7

8

�1�2�3�4�5�6�7

�
SU(2)

Figure 1. The representation graph (or undecorated box graph) for the (2,16) representation

of SU(2)gauge × SO(16). The simple roots of SO(16) are αi, and for SU(2)gauge the simple root

is αSU(2). The arrows indicate how weights are mapped into each other under the addition of the

roots. The weights are Li,j = L2
i +L16

j , where LR
i are the fundamental weights of the representation

R. The action of the roots is indicated by the arrows. Note that L16
i+8 = −L16

9−i for i = 1, . . . , 8.

Starting with the marginal theory, we determine all the consistent phases using the box

graphs. The marginal theory is such that all roots of the weakly gauged flavor symmetry

SO(16) are contained in the splitting of the SU(2). In this case the two 16 representation

graphs that are part of the box graph in this case have the same coloring, i.e. coloring the

+/− sign assignments in blue/yellow, the decorated box graph associated to this phase is

, (2.28)

where each box corresponds to a weight as in figure 1. Consistency with the flow rules

determine then all further phases, by applying flops. Lets illustrate this by performing one

flop on the box graph (2.28). The only extremal weights/boxes are L1,16 and L2,1 (recall

that this representation is self-conjugate so each flop will require changing the color of one

box in each of the two 16s). After the flop transition, the new box graph is

. (2.29)

Continuing along these lines results in figure 2.

This chain is of course precisely the phases of the rank one theories in 5d rank as

described in the classic works of [3, 39], and each flop corresponds to decoupling a funda-

mental hypermultiplet. In particular, the chain obtained from the box graphs also captures

the two possible ways of decoupling the only hypermultiplet of an SU(2) + 1F theory to

flow either to an SU(2)θ=0 or SU(2)θ=π theory. Indeed, as we will discuss in section 3, there

is a natural way of interpreting the flop transitions as decoupling of matter multiplets in

the limit where we restore the coupling of GBG to 0, which also establishes a subgroup of

GBG as the physical weakly coupled flavor symmetry after decoupling the matter.
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SU(2) + 8F , which is shown at the top of the tree. Connections indicate ‘flop transitions’, which

in the gauge theory correspond to different phases of the extended Coulomb branch, and from the

point of view of the SU(2) gauge theory, corresponds to decoupling fundamental hypermultiplets.

3 Gauge theory phases and box graphs for arbitrary quivers

In this section we will determine the set of 5d gauge theories that arise as mass deformations

of a given theory with gauge group Ggauge. We will find that the structure of mass defor-

mations amongst these form a tree of theories with varying matter content charged under

Ggauge. These theories will not necessarily be distinct, in that they may still admit, what

we will call, “discrete dualities”; examples of such dualities are shifting the Chern-Simons

level, k → −k, or shifts of θ-angles in such a way that the theories are identical. More gen-

erally, we will also discover such discrete dualities to incorporate simultaneous modification

of the number of hypermultiplets coming from different flavor nodes in a quiver.

As we are interested in gauge theories with an SCFT limit, we will focus either on

theories where Ggauge is a simple group that appears in table 1, or on quiver gauge theories

where the nodes carry one of these simple factors, together with some of the matter listed
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in the aforementioned table. For low ranks of the gauge group there can be matter fields

transforming in more exotic representations, which still flow to an interacting UV fixed

point; one example is the triple anti-symmetric representation of SU(N), for sufficiently

small values of N . Some of these exceptional gauge theories are pointed out in [9], however

we will not consider them further here, as the number of descendant gauge theories can

straightforwardly be determined by the methods explained here.

For the simple gauge theories in table 1 the phases of the Coulomb branch has been

often studied. For SU(N) gauge theories the Coulomb phases are enumerated for general

N in [40, 44, 50] and for specific low values of N in [49, 51, 54, 57–61], for Sp(N) in [40,

44, 62], for SO(N) in [40, 44, 63, 64], and for the exceptional cases, G2, F4, E6, and

E7 in [63, 65], [66], [44], and [44, 67], respectively. In this paper we will not require an

understanding of the full set of Coulomb phases, but, as we shall see momentarily, only

of certain equivalence classes of the extended Coulomb phases for the theory after weakly

gauging the classical flavor symmetry rotating the hypermultiplets, as it is these that can

be related each to a distinct descendant gauge theory. To specify a Coulomb phase we

shall use the object known as a box graph that was introduced in [44], and that has been

summarized in section 2, and for the equivalence classes that we shall define it is necessary

to know such box graphs for the fundamental or vector reprensetations of U(N), Sp(N)

and SO(N), which are determined in the aforementioned paper.

The procedure followed in this section to obtain the set of descendant gauge theories

is as follows. We will first weakly gauge the classical flavor symmetry that rotates the

hypermultiplets associated to a flavor node in a 5d gauge theory quiver. This theory has

a Coulomb branch, Cw.g., and in the limit where we take the gauge coupling of the weakly

gauged flavor symmetry to zero, this Coulomb branch fractionates. The result is a set of

Coulomb branches of all of the descendant gauge theories arising as mass deformations of

the original gauge theory. There may be redundancies in this description as, for instance,

the same Coulomb branch for a descendant can appear multiple times within this set. It

is vital, therefore, to, after determining in a redundant way all of the descendant theories,

identify those identical Coulomb branches as belonging to the same theory. We refer to

these identifications as “discrete dualities”, although this is something of a misnomer since

they are often not dualities but directly equivalent descriptions of the same theory. In

this section we will determine the larger set of descendants, where there are still these

redundencies. This will first be carried out for the single node gauge theories, as the logic

therein will extend multiplicatively across arbitrary quivers.

The key concepts that we will define and determine for all gauge theories, are equiva-

lence classes of box graphs called a flavor-equivalence class, and associated graphs, the Box

Graph Combined Fiber Diagram (BG-CFD), as a collection of vertices and edges; these

definitions appear in section 3.1. In sections 3.4, 3.5, and 3.6 we will consider all of the

gauge theoretic descendants for single gauge node quivers of the form

N
R
R Ggauge , (3.1)
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where Ggauge is a simple Lie group and the representation R is, respectively, complex,

quaternionic, or real. Each of these descendants will be in a one-to-one correspondence to

a flavor-equivalence class, and will have an associated BG-CFD. In section 3.7 we show how

this analysis extends simply to determine all of the descendant gauge theories associated

to arbitrary quiver gauge theories with building blocks (3.1), by gluing together such gauge

nodes with bifundamental hypermultiplets, by attaching multiple flavor nodes to a given

gauge node, or combinations of both of these constructions.

3.1 Flavor-equivalence classes and box graph CFDs

In section 2.4 we discussed the gauge theory phases for the SU(2) gauge theory with a

weakly gauged SO(16) flavor symmetry and matter transforming in the (2,16) represen-

tation. The set and structure of the Coulomb phases was in a one-to-one correspondence

with the set of SU(2) gauge theories that arise from mass deformations of SU(2) + 8F . For

more general gauge theories this will not always be the case, indeed the Coulomb phases

after weakly gauging the classical flavor symmetry rotating the hypermultiplets will be in

a many-to-one map onto the mass deformations of the original gauge theory. The reason

for this is that there will be distinct phases in the weakly gauged theory where the dis-

tinction is only moving amongst the Coulomb phases of the original gauge theory; we are

not interested in the distinction between these phases as they do not correspond to mass

deformations of the original theory, but instead to moving on its Coulomb branch. To

remove this redundancy and to restore a one-to-one relationship, we define an appropriate

equivalence class.

Definition 3.1 Flavor-equivalence class of box graphs. Consider two box graphs associated

to Coulomb phases of a gauge theory with symmetry groups Ggauge×GBG, where the GBG is

considered as a weakly gauged flavor symmetry. Denote the simple roots of Ggauge by αgauge
i

and those of GBG by αBG
j . Then, these two box graphs are flavor-equivalent if the splitting

of the αBG
j contains, in total, the same subset of roots αgauge

i of Ggauge. Furthermore, if

none of the αBG
j split in the box graphs then the two box graphs are flavor-equivalent if

and only if they are identical.

It is easy to see that, for an irreducible representation (Rgauge,RBG) of Ggauge×GBG,

the flavor-equivalence class is completely determined by the decoration of the weights of

RBG associated to the highest and lowest weights of Rgauge, as they appear in the tensor

product of the weights that form the product representation (Rgauge,RBG). Furthermore,

when there are multiple different matter representation of Ggauge there is a different flavor

symmetry associated to each matter field, and so the flavor-equivalence classes are mul-

tiplicative across the different matter fields; a prominent example of this will appear in

section 3.7.

To determine the structure of the tree of mass deformations we need in addition the

following definitions.

Definition 3.2 Flop transitions for flavor-equivalence classes . Two flavor-equivalence

classes of box graphs are related by a flop transition if there exist representatives of each

equivalence class which are related by a flop transition.
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Definition 3.3 F-extremal weights. A weight is F-extremal, if it is an extremal weight

which, when flopped, changes the flavor-equivalence class.

Definition 3.4 F-extremal weights inside the combined roots of the gauge group. The

flavor-equivalence class is associated to the splitting∑
j

αgauge
j →

∑
`

αBG
` +

∑
m

εmL
εm
m , (3.2)

where Lεm, with ε = ± are, by definition, a subset of the F-extremal weights of this flavor-

equivalence class. We refer to the Lεmm that appear in (3.2) as F-extremal weights inside

the combined roots of the gauge group.

Moreover, this splitting associated with a reduced (flavor-equivalent) box graph defines

the box graph CFD (BG-CFD). This is a sub-graph of the full CFD [1] that is associated

to the UV fixed point of the flavor-equivalence class.

Definition 3.5 Box graph CFD (BG-CFD). Given a flavor-equivalence class the BG-CFD

is the intersection graph of the F-extremal weights inside the combined roots of the gauge

group and the flavor roots αBG
` that appear in (3.2).

An example of a BG-CFD is shown in figure 5. The BG-CFD encodes the part of

the flavor symmetry of an SCFT that is manifest in the weakly-coupled gauge theory

description. It forms generically a strict subgraph of the CFD associated to said SCFT. A

complete set of them is listed in table 2.

Given these definitions in the remainder of this section we are going to determine the

flop graph of all flavor-equivalence classes of box graphs for an arbitrary gauge theory

quiver built out of nodes corresponding to the simple gauge theories listed in table 1.

Furthermore we will determine the (disconnected) graphs, the BG-CFDs, associated to

each quiver gauge theory. We proceed by first determining the flavor-equivalence classes,

and the BG-CFDs, for the single node quivers listed in the aforementioned table.

We summarize the results of this section, the number of flavor-equivalence classes for

the gauge theories with a simple gauge algebra as listed in table 1, and arbitrary quivers

built therefrom. Similarly, for each possible classical flavor group, we summarize the BG-

CFDs in table 2.

3.2 An example: SU(3) + 9F

To fill these definitions with some life, before studying the single gauge node quivers com-

prehensively, we first work through an example in some detail. Consider the rank two

theory SU(3) + 9F . The classical flavor symmetry is U(9) and we consider box graphs for

the (3,9) of SU(3)gauge×U(9)BG. The representation graph is shown in figure 3. The com-

plete set of flavor-equivalence classes for this theory are shown in figure 30. To understand
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α1

α2
gauge

gauge

α1 α8α7α6α5α4α3α2

L1,1 L1,2 L1,4L1,3 L1,7L1,6L1,5 L1,8 L1,9

L2,1 L2,2 L2,4L2,3 L2,7L2,6L2,5 L2,8 L2,9

L3,1 L3,2 L3,4L3,3 L3,7L3,6L3,5 L3,8 L3,9

Figure 3. Representation graph for (3,9) of SU(3)gauge×U(9)BG. Li,j = L
SU(3)
i +L

SU(9)
j , where Lk

indicates the fundamental weights of the respective groups. αi are the simple roots of the classical

flavor symmetry U(9), and αgauge
i those of the gauge group SU(3).

them in more detail, consider the flavor-equivalence class

α1

α2
gauge

gauge

α1 α8α7α6α5α4α3α2

L1,1 L1,2 L1,4L1,3 L1,7L1,6L1,5 L1,8 L1,9

L2,1 L2,2 L2,4L2,3 L2,7L2,6L2,5 L2,8 L2,9

L3,1 L3,2 L3,4L3,3 L3,7L3,6L3,5 L3,8 L3,9

. (3.3)

The middle row has no sign assignment, as any consistent sign-assignment, which is subject

to the flow rules, given the top and bottom rows, gives a representative of this equivalence

class. It follows, e.g., immediately from the flow rules that the sign assignment for L2,1

and L2,2 has to be + (blue), whereas L2,8 and L2,9 have − (yellow). The complete set of

flavor-equivalent box graphs associated to this equivalence class are shown in figure 4.

These are all flavor-equivalent in the sense that the splitting of the sum of roots of the

gauge group contain the same roots of the flavor symmetry — in this case α3, α4, α5, α6.

Note that α2 and α7 split, into the sum of weights L3,2 + (−L3,3) and L1,7 + (−L1,8); these

are F-extremal weights, cf. definition 3.3. In each representative of the flavor-equivalence

class, the splitting of αgauge
i is different, however the sum of them always contain the same

set of flavor roots. That is, the splitting (3.2) for this flavor-equivalence class is

αgauge
1 + αgauge

2 → α3 + α4 + α5 + α6 + (−L3,3) + L1,7 . (3.4)

Note that −L3,3 and L1,7 are the F-extremal weights inside the combined gauge roots,

cf. definition 3.4 As one can check using αi = Li − Li+1, this is indeed true, and follows

directly from the sign assignments indicated in the box graph. The different representatives

in the flavor-equivalence class differ by those precisely the splitting is distributed among

αgauge
1 and αgauge

2 .

Finally, the BG-CFD (see definition 3.5) is given by the chain of −2 vertices corre-

sponding to the roots α3, α4, α5, α6, as well as the two F-extremal weights, which are −1

vertices. This is shown in figure 5.

– 18 –



J
H
E
P
0
3
(
2
0
2
0
)
0
5
2

α1

α2
gauge

gauge

α1 α8α7α6α5α4α3α2

Figure 4. An example of a flavor-equivalence class for SU(3)+9F . The equivalence class is shown

on the left-hand side — there we indicate in green the key characteristics of the associated box

graph: the splitting of both roots of the gauge group αgauge
i , i = 1, 2 combined will contain all the

roots α3, α4, α5, α6. On the right-hand side, we show the complete set of box graphs that comprise

the flavor-equivalence class. E.g., the top diagram corresponds to the case where the splitting of

αgauge
1 contains all αi, i = 3, 4, 5, 6. In the second one, which is related by a flop to the top one,

αgauge
1 does not contain α6, which is now part of the splitting of αgauge

2 , etc.

3.3 From box graphs to 5d gauge theories and SCFTs

We will now make the connection between box graphs, which capture the Coulomb branch

phases of 5d gauge theories, and the flavor-equivalence classes of these box graphs, to five-

dimensional superconformal field theories. So far, we characterized the Coulomb branch

phases of a 5d Ggauge theory, whose classical flavor symmetry GBG has been weakly gauged.

The key idea to relate these concepts to 5d gauge theories with gauge symmetry Ggauge

and their SCFT limits is to identify the GBG with the classical flavor symmetry of the

marginal Ggauge theory.

To obtain a theory that has a UV fixed point in 5d, we need to decouple hypermultiplets

from the marginal theory. That is, we add mass terms to matter charged under Ggauge and

formally send the mass to infinity. In terms of the extended Coulomb branch, where we treat

the classical flavor symmetry GBG as a weakly gauged symmetry, this is achieved by passing

to a new flavor-equivalence class — i.e., performing a flop transition on the box graph.
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Figure 5. Flavor-equivalence class and BG-CFD: in this figure we show an example for a flavor-

equivalence class of Coulomb branch phases for SU(3) with 9F . The top graph is the box graph

reduced to its flavor-equivalence class by omitting the sign assignments in the middle row: all sign

assignments consistent with the standard box graph rules would correspond to the same combined

gauge root splitting. This is encoded in the CFD-subgraph that we refer to as BG-CFD: the roots

αi, i = 3, 4, 5, 6 of GBG = U(9) that participate in the splitting of the roots αgauge
i of Ggauge = SU(3)

are (−2)-vertices in the CFD — shown at the bottom. The (−1)-vertices of the CFD correspond

to the F-extremal weights (−L3,3) and L1,7.

More precisely, we can rephrase the key property of the marginal theory as follows.

Points in the extended Coulomb branch where Ggauge is unbroken correspond to the

marginal theory, where the manifest flavor symmetry is GBG, when the group GBG is also

unbroken. In terms of the Coulomb branch parameters φ, gauge enhancement to Ggauge

occurs when6 〈φ, αgauge
i 〉 = 0 for all gauge roots. Therefore, the subset of the extended

Coulomb branch (with weakly gauged GBG) describing the marginal theory in the above

sense is one where we have

∀i : 〈φ, αgauge
i 〉 = 0 and ∀j : 〈φ, αBG

j 〉 = 0 , (3.5)

which is nothing other than the point in the extended Coulomb branch

φ = 0 . (3.6)

In terms of the box graphs, this condition applies exactly when the combined split-

ting of the gauge roots (3.2) contain all roots of GBG. In this case, 〈φ, αgauge
i 〉 = 0

implies 〈φ, αBG
j 〉 = 〈φ,Lm〉 = 0. (Note that the signs in (3.2) are precisely such that

〈φ, εmLεmm 〉 ≥ 0.) This means that also linear combinations λ out of Lm and αBG
j , which

fill out representations of GBG [44, 49–51], have 〈φ, λ〉 = 0. Physically, this characterizes

the Coulomb phases of the marginal theory as those where, when the gauge symmetry

Ggauge is restored, the massless charged matter transforms under the full GBG — which by

definition was the classical flavor symmetry of the marginal Ggauge theory.

6Note that when we write an expression like 〈φ, αj〉 we are silently extending the root αj of G to the

root lattice of the full semi-simple gauge group.
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In the example of the last subsection, SU(3) + 9F , the marginal theory is thus char-

acterized by flavor-equivalence class represented by the box graph

α1

α2
gauge

gauge

α1 α8α7α6α5α4α3α2

L1,1 L1,2 L1,4L1,3 L1,7L1,6L1,5 L1,8 L1,9

L2,1 L2,2 L2,4L2,3 L2,7L2,6L2,5 L2,8 L2,9

L3,1 L3,2 L3,4L3,3 L3,7L3,6L3,5 L3,8 L3,9

(3.7)

where the representatives of the equivalence class have any sign assignment that is consis-

tent with the flow rules (2.20). Indeed, the box graph rules stipulate that all roots αi of

the SU(9) ⊂ U(9)BG appear in the splitting (3.2) of αgauge
1 + αgauge

2 .

A mass deformation that decouples a hypermultiplet requires a mass term that re-

mains non-zero (and can be sent to ±∞) when 〈φ, αgauge
i 〉 = 0. This results in a smaller

flavor symmetry GF,cl ⊂ GBG, whose rank is lowered by one compared to GBG. In the

context of having weakly gauged GBG, this must therefore correspond to a phase on the

extended Coulomb branch, where there is one flavor root αBG
j with 〈φ, αBG

j 〉 6= 0 even when

〈φ, αgauge
i 〉 = 0. The associated box graph of such a phase thus implies a combined splitting

of the gauge roots which leaves out one flavor root, whose mass may be identified with the

non-zero Coulomb branch parameter.

Starting from the flavor-equivalence class of the marginal theory, such a phase is ob-

tained from a flop, i.e., a change of sign assignment of an F-extremal weight. After the flop,

the resulting Ggauge theory has less matter, and correspondingly a smaller classical flavor

group GF,cl ⊂ GBG, specified by the roots αBG
j which are still contained in the splitting of

the gauge roots.

Returning to our SU(3) example, we recognize L1,9 and −L3,1 to be the two F-extremal

weights in the box graph (3.7). For concreteness consider changing the sign assignment

of L1,9. In the field theory picture, without the gauging of the flavor symmetry, this

corresponds to the decoupling of a hypermultiplet associated with this weight, under the

flavor symmetry group. After the flop the flavor-equivalence class is

α1

α2
gauge

gauge

α1 α8α7α6α5α4α3α2

L1,1 L1,2 L1,4L1,3 L1,7L1,6L1,5 L1,8 L1,9

L2,1 L2,2 L2,4L2,3 L2,7L2,6L2,5 L2,8 L2,9

L3,1 L3,2 L3,4L3,3 L3,7L3,6L3,5 L3,8 L3,9

(3.8)

The flow rules imply that the sign assignment for L2,9 is − as well, and in the splitting

of αgauge
1 + αgauge

2 , only the roots α1, · · · , α8 appear. This means that we have decoupled

one fundamental flavor and ended up with an SU(3) + 8F theory. Consistently, the flavor

symmetry of this descendant gauge theory is GF,cl = U(8), whose roots are precisely

α1, · · · , α7. If on the other hand we flop −L3,1, then L2,1 has fixed sign assignment + by

the flow rules, and the flavor roots αi that appear in the splitting of the gauge roots are
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α2, · · · , α8. Continuing in this fashion, we can eventually reach the phase (3.3) described

earlier, after having flopped L1,9, L1,8, −L3,1 and −L3,2.

Note that after flopping either L1,9 or −L3,1, both phases define a SU(3) + 8F theory

with classical GF,cl = U(8) flavor symmetry. On the other hand, the different embedding

of it into the original U(9)BG flavor group will lead to a different superconformal flavor

enhancement as we approach the SCFT limits of these two descendant gauge theories. In

fact, in case of SU(3) (or any SU(n)) gauge theories in 5d, the box graphs must be sup-

plemented by the discrete Chern-Simons level k, which we have neglected so far. However,

it is crucial that |k| = 3
2 for SU(3) + 9F to be a marginal theory [9]. The two different

descendants, flopping either on L1,9 or −L3,1, then correspond to SU(3) + 8F with |k| = 1

or |k| = 2, respectively. The different superconformal flavor enhancements of these theories

cannot be described by the box graphs alone, but requires a little geometric input related to

M-theory realizations of 5d gauge theories, see sections 7 and 8. However, a more succinct

portrayal of this process can be developed using the embedding of the BG-CFDs into the

CFD description of 5d SCFTs developed in [1, 2]. This will be one of the main themes of

the present work.

In summary, flops (or changes of sign assignments) in the Ggauge × GBG flavor-

equivalence classes of box graphs provides an alternative description of decoupling a matter

hypermultiplet of a Ggauge gauge theory. Starting with the weakly coupled marginal de-

scription with gauge group Ggauge and matter transforming under the flavor symmetry

GBG, successive flop transitions of flavor-equivalence classes map out all descendants with

a Ggauge description, while simultaneously keeping track of their classical flavor symme-

try GF,cl ⊂ GBG. Each of these gauge theories has a UV fixed point, and thus each

flavor-equivalence class corresponds to a 5d SCFT. As noted before, there can be discrete

identifications between the flavor-equivalence classes, which then correspond to the same

5d SCFT; this will be discussed later.

3.4 Complex representations

In this section we will discuss the gauge theory descendants in terms of flavor-equivalence

classes of box graphs for single node quivers of the form (3.1), where the representation R

is complex. We will be concerned with the following theories

Ggauge R

SU(N ≥ 3) F

SU(N ≥ 5) AS

SU(N ≥ 3) Sym

E6 27

, (3.9)

where F , AS, and Sym refer to the fundamental, anti-symmetric, and symmetric rep-

resentations, respectively. We point out, however, that the analysis herein applies to any

such quiver where R is complex, including, for example, the single node gauge theories

with exceptional matter that appear for low ranks of the gauge group in [9].
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In each of the above cases the classical flavor group that rotates the hypermultiplets

arising from the flavor node of the quiver is

GBG = U(NR) . (3.10)

After weakly gauging this global symmetry we are determining the structure of the flavor-

equivalences classes of the box graphs for the theory with gauge group

Ggauge ×U(NR) , (3.11)

with matter transforming in the

(R,F ) (3.12)

representation, where F is the fundamental representation of U(NR). As we have seen in

section 3.1, the flavor-equivalence classes are agnostic as to the particular R and Ggauge

above, and thus they are completely determined by the classical flavor group which is

weakly gauged. Since all complex representations have the same classical flavor group, the

only parameter that enters is the number of hypermultiplets on the flavor node, NR.

Let us consider the illustrative example where we take Ggauge = SU(N) and NRR =

NfF . The flavor-equivalence classes and the tree structure amongst them will be identical

for all of the other combinations of gauge groups and matter appearing in (3.9).

After weakly gauging the classical U(Nf ) flavor symmetry rotating the hypermultiplets

we are studying the product gauge theory

SU(N)×U(Nf ) with (N ,Nf )q ⊕ (N ,Nf )−q . (3.13)

For complex representations, R⊕R, it is necessary only to determine the signs associated

to the weights of R, as this will completely specify the signs associated to the weights of

the R. The positive simple roots for SU(N) are

αn1 = (2,−1, 0, 0, · · · , 0, 0, 0, 0)

αn2 = (−1, 2,−1, 0, · · · , 0, 0, 0, 0)

· · ·
αnn−2 = (0, 0, 0, 0, · · · , 0,−1, 2,−1)

αnn−1 = (0, 0, 0, 0, · · · , 0, 0,−1, 2) ,

(3.14)

and similarly for SU(Nf ), the semi-simple part of the U(Nf ). The highest weight of the

(N,Nf ) representation is given by

L1,1 = (1, 0, · · · , 0; 1, 0, · · · , 0) , (3.15)

where the semi-colon in the middle denotes the join between the highest weight of the

fundamental representation of each of the SU(N) and SU(Nf ) factors. The representation

graph for this representation is represented in figure 6. This is the weight diagram for the

(N,Nf ) representation displayed as a box graph.
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Figure 6. In (a) is the representation graph, or weight diagram, for SU(N)k × U(Nf ) with

(N,Nf )q ⊕ (N,Nf )−q. Notice that we simply write the (N,Nf )q half of the representation, as

the decoration thereon will imply the decoration on the conjugate half. The Coulomb phases are

given by all decorations of this box graph subject to the flow rules. In (b) we give the subgraph

(marked in boldface in (a)) of the box graph that contains only the weights whose signs are required

to be specified to determine the flavor-equivalence class. Any box graphs with the same coloring

for the weights in (b) are flavor-equivalent.

The phases are determined by all decorations of the box graph in figure 6 with signs

subject to the flow rules (2.20). Equivalently each phase can be characterized by a mono-

tonic path between the lower left and the upper right corners on the Nf ×N grid that the

representation graph defines. An elementary computation reveals that the total number of

such phases is (
N +Nf

N

)
. (3.16)

Of course, the determination of the total number of gauge theory phases of this weakly

gauged product gauge theory is not the goal of this section. This quantity will vary

depending on the type of matter representation on the flavor node; it will not just depend

on NR in the same manner for all complex representations.

We now turn to the sorting of these phases into flavor-equivalence classes of box graphs.

It is clear from figure 6 that, regardless of the coloring in the middle rows, the sum over

all of the αBG can always be written as

N−1∑
j=1

αgauge
j → L1,ku − LN,kl +

ku∑
i=kl

αBG
i + · · · , (3.17)

where the · · · represents weights that appear in the central N − 3 rows of the box graph,

and where L1,ku is the rightmost box on the upper row decorated with a plus, and LN,kl
is the leftmost box on the lower row decorated with a minus. It is clear that the set of

αBG
i that are included in the splitting of the αgauge

j depends only on the ku and the kl, and

therefore the flavor-equivalence class depends only on the choice of consistent decoration
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Figure 7. The flop graph for the flavor-equivalence classes of Coulomb phases associated to

SU(N) gauge theory with Nf fundmental hypermultiplets. This is identical to the flop graph for

the Coulomb branches of all descendant gauge theories with matter in complex representations, as

shown in (3.9).

for the uppermost and lowermost rows in the box graph,7 corresponding to weights that

carry, respectively, the highest and the lowest weight of SU(N). The flavor-equivalence

class is then completely defined by the consistent decoration of the subdiagram of the box

graph that is depicted in figure 6(b).

It is straightfoward to see that the total number of consistent decorations that give

the flavor-equivalence classes is

# flavor-equivalence classes for SU(N) with NfF =
1

2
(Nf + 1)(Nf + 2) , (3.18)

and furthermore one can study the flop transitions between these flavor-equivalence classes

to see that they form together in the tree structure that is depicted in figure 7.

3.5 Quaternionic representations

In this section we consider quivers (3.1), where the hypermultiplets transform in a quater-

nionic, or pseudo-real, representation of the gauge group Ggauge. There are only two such

kinds of quiver that we need to consider for the purposes of this paper, which are

Ggauge R

Sp(N ≥ 1) F

E7 56

. (3.19)

7Note that even in the case where none of the αgauge
j split, the values of (ku, kl = ku) specify the

flavor-equivalence class, as per the definition.
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In this section we shall consider as an example the Sp(N) +NfF , and, as in the case

of SU(N), the analysis shall also apply to E7 + Nf56 because the two representations

are quaternionic. In the case of the Sp(N) there is an anomaly that requires Nf to be

integer, so to say, that there is an even number of half-hypermultiplets in the fundamental

representation of Sp(N). For E7 there is no such anomaly, and Nf can be half-integer;

since SO(even) is particularly distinct from SO(odd) we shall consider the former first, and

then move on to the case of E7 with an odd number of half-hypermultiplets. In either case

the flavor-equivalence class will be specified by the decorated subdiagram of the full box

graph that corresponds to the highest and the lowest weights of the representaton of the

Sp(N) or E7.

The highest weight of the fundmental representation of Sp(N) is given by

(1, 0, · · · , 0) , (3.20)

in terms of the usual Cartan-Dynkin labels, and the lowest weight, as the representation is

self-conjugate, is given by

(−1, 0, · · · , 0) . (3.21)

To each of these two weights is associated a decoration of the vector representation of the

weakly gauged classical flavor group SO(2Nf ). The vector representation of SO(2Nf ) has

highest weight

(1, 0, · · · , 0) , (3.22)

and is also a self-conjugate representation. Because of this self-conjugacy there is a relation

between the weights appearing in the representation (2N ,2Nf ) of Sp(N) × SO(2Nf ), in

particular for the weights that appear in the flavor-equivalence class, that is

L1,j = −L2N,2Nf+1−j . (3.23)

In figure 8 we have drawn the subdiagram of the box graph that specifies the flavor-

equivalence class, and further we have decorated those weights appearing in the flavor-

equivalence class that cannot be consistently decorated in any other way, and all consistent

decorations are given by applying the flow rules (2.20) and (3.23) to this box graph. It is

straightforward to see that this yields

Nf + 2 , (3.24)

flavor-equivalence classes when Nf > 0, and when Nf = 0 there is exactly 1 flavor-

equivalence class. This distinction is a consequence of the fact that when an Sp(N) gauge

theory has no fundamental hypermultipelts it has an additional physical discrete parameter,

the θ-angle, which must be specified. The tree structure generated by the flop transitions

amongst these flavor-equivalence classes is as given in figure 9.

In fact, in this case the total number of Coulomb phases is straightforward to determine,

and we include the number here for the purposes of later making a comparison between

how the number Coulomb phases and the number of flavor-equivalence classes of Coulomb
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Figure 8. We show the subdiagram of the box graph for which the consistent decoration spec-

ifies the flavor-equivalence classes of Sp(N) with m = Nf fundmental hypermultiplets. We have

decorated all of the weights whose decoration is fixed by (3.23) and the flow rules (2.20).
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Figure 9. The tree of flop transitions of flavor-equivalence classes, and thus also of the descendant

gauge theories, starting from Sp(N)+NfF . The tree structure is identical for the flavor-equivalence

classes for E7 +N5656, as they both have a special orthogonal group as flavor group.
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Figure 10. The flavor-equivalence classes associated to E7 with Nf56, where Nf is a half-integer,

involve the flavor-equivalence classes of E7 × SO(2Nf ) with matter in the (56,2Nf ). The flavor-

equivalence classes depend only on the weights written here, and the sign associated to some of them

is fixed, as shown. The boxes marked with crosses correspond to the weights that are zero-weights

under the 2NF representation, which cannot be consistently assigned a sign.

phases scale when considering quivers that combine such Sp(N) single gauge nodes. The

total number of phases for Sp(N)× SO(2Nf ) with matter in the (2N,2Nf ) is given by(
N +Nf − 1

Nf − 1

)
+

N∑
k=1

2

(
N − k +Nf − 1

Nf − 1

)
=

(2N +Nf )Γ(N +Nf )

Γ(N + 1)Γ(Nf + 1)
, (3.25)

where Γ is the Euler gamma function.

We now turn to the case where there are an odd number of half-hypermultiplets trans-

forming in a quaternionic representation. This can only occur, in the cases we consider, for

E7 with matter in the 56 representation. Since 2Nf is odd we can write it as 2k + 1 and

then we are considering the classical flavor group SO(2k+ 1) or Bk. The Cartan matrix of

this algebra is rank k and looks like

2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0

· · ·
0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −2

0 0 0 · · · 0 −1 2


. (3.26)

The highest weights of the fundmental representation of SO(2k + 1) is

(1, 0, · · · , 0) . (3.27)

This representation is depicted, in the usual way, in the undecorated flavor-equivalence

box graph that appears in figure 10. Such a representation has the novel feature that it

contains a zero-weight, to which a sign cannot be assigned — the weights appearing in the

flavor-equivalence class box graph in figure 10 with a cross through them are exactly those

such weights that are zero-weights under the weakly gauged SO(2n+ 1) factor.

As previously discussed, the 56 of E7 is a self-conjugate representation and so the

weights appearing in the flavor-equivalence class of box graphs are not independent, and
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Figure 11. The tree of descendants for E7 with Nf56 where Nf is a half-integer. Decoupling one

full hypermultiplet descends down the tree.

thus cannot be assigned a sign independently; this interdependence is shown in figure 10,

where we also color the boxes for which the sign is fixed a priori, for all phases, by this

interdependence together with the flow rules.

The tree of descendants, or flop diagram for the flavor-equivalence classes, is shown in

figure 11, and shows that descendants that arise when decoupling one full hypermultiplet of

the 56 at a time. One cannot consistently decouple an odd number of half-hypermultiplets,

as there is no possible real mass term, see e.g. [68].

3.6 Real representations

In this final case we consider the single gauge node quivers (3.1) where R is in a real

representation of Ggauge:

Ggauge R

Sp(N ≥ 2) AS

SO(N ≥ 5) V

SU(4) AS

G2 7

F4 26

, (3.28)
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Figure 12. We show the box graph for the flavor-equivalence class of Sp(N) with k = Na hyper-

multiplets transforming in the anti-symmetric representation. The boxes whose decoration is fixed

by (3.33) are colored. All consistent colorings of the remaining boxes give rise to all consistent

flavor-equivalence classes of this theory. Since the structure of the flavor-equivalence box graph is

dependent on the Sp(2Na) symmetry rotating the Na hypermultiplets, and not on the particular

highest and lowest weights of the anti-symmetric representation of the Sp(N) but only that they

are conjugate, the same structure exists for all theories that have a sympletic symmetry group that

acts as rotations on hypermultiplets that transform in a self-conjugate representation of the gauge

group. This includes the SO(N), G2, and F4 theories of interest in this section.

where we further add that the representaion V is the vector representation. Such theories

have a classical flavor group rotating the NR hypermultiplets being

GBG = Sp(NR) . (3.29)

As such, after weakly gauging this flavor group we are interested in determining the flavor-

equivalence classes of box graphs for the gauge theory

Ggauge × Sp(NR) , (3.30)

with matter transforming in the representation

(R,F ) , (3.31)

where F here denotes the fundamental representation of the Sp(NR) rotation group of the

hypermultiplets.

The example that we will consider in this section, that will reveal the structure of the

flavor-equivalence classes when we have real representations will be Sp(N)+NaAS. These

Na hypermultiplets are rotated by an Sp(Na) flavor symmetry and thus we are considering

the (Λ22N,2Na) representation of Sp(N) × Sp(Na). The highest and lowest weights of

the Λ22N are given by

(0,±1, 0, · · · , 0) , (3.32)

which is again a self-conjugate representation, similarly to the fundamental represention of

a symplectic group as has already been discussed. The weight diagram which will capture

all of the flavor-equivalence classes for this gauge theory is shown in figure 12.

Again, because the representation (Λ22N,2Na) is self-conjugate there is a relation-

ship amongst the weights of the representation. For the weights relevant for the flavor-

equivalence class this is

L1,i = −L2N+1,2Na+1−i . (3.33)
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Figure 13. The tree of flavor-equivalence classes for Sp(N) +NaAS, SO(N) +NV V , G2 +N77,

and F4 +N2626. What is shown are the decorations/colorings of the undecorated part in figure 12.

All of these theories have a symplectic group acting as rotations on the hypermultiplets, this is the

key feature that controls the flavor-equivalence classes, and thus each of these theories has the same

structure for their flavor-equivalence classes.

Similarly to the case of fundamental matter, there are weights that can only be consistently

decorated with one particular sign due to (3.33) combined with the flow rules (2.20).

These weights are shown with their necessary decoration in figure 13, and the rest of the

flavor-equivalence classes come from the consistent decoration of the remaining undecorated

boxes. The total number of flavor-equivalence classes is

Na + 1 , (3.34)

and furthermore these flavor-equivalence classes arrange themselves, via flop transitions,

into the tree shown in figure 13.

To give an explicit example, for the gauge theory G2 + 1 × 7 the extended Coulomb

phases were written down from a geometric realization in [65], and one can see that the

four phases found there sort themselves into two flavor-equivalence classes with three and

one representatives, respectively.

3.7 Flavor-equivalence classes for quiver gauge theories

The quivers that we will consider are those that are built out of gauge nodes that correspond

to the gauge theories described in table 1. There are two ways to build such quivers out of
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the previously analyzed quivers (3.1). Either we chain together gauge nodes of that form,

potentially also without any associated flavor node, or else we add more flavor nodes on to

a given single gauge node. The number of flavor-equivalence classes is multiplicative across

constructing quivers with arbitrary numbers of gauge nodes, out of the single nodes in the

table, via gluing two gauge nodes together with bifundamental matter. Such bifundamental

matter is uncharged under any of the flavor symmetries, and thus the flavor-equivalence

classes, which are defined as those box graphs with the same set of flavor roots contained

inside of the gauge roots, are unchanged. So the total number of weakly gauged phases

will increase in an intricate way upon gluing, but the flavor-equivalent phases will simply

be all ways of choosing one flavor-equivalence classes from the equivalence class associated

to each gauge node. The total number of flavor-equivalence classes attached to a quiver,

Q, is then

nQ =
∏
G

nG , (3.35)

where G runs over all the gauge nodes in the quiver, and nG is the number of flavor-

equivalence classes for that gauge node, as given above, and which depends on the flavor

nodes attached to that gauge node.

The quantity nG is determined above in the cases where the gauge node has at most

one flavor node attached. We will now show that, when multiple flavor nodes are attached,

which can only occur for SU(N) or Sp(N) gauge nodes if we wish to have a interacting

SCFT in the UV limit, the number of flavor-equivalence classes, and thus the number of

descendants (counting redundantly) is multiplicative.

We will consider first the set of flavor-equivalence classes from the 5d N = 1 gauge

theory with the following matter fields

SU(N)k with NfF +NaAS +NsSym , (3.36)

where F , AS, and Sym, respectively, refer to hypermultiplets that transform in the fun-

damental, anti-symmetric, and symmetric representations of the SU(N). For the purposes

of the flavor-equivalence classes the Chern-Simons level, k, will be immaterial, as the box

graph is not sensitive to such discrete data. The classical flavor symmetry of this theory is

U(Nf )×U(Na)×U(Ns) . (3.37)

After weakly gauging the first three factors, which are the perturbative flavor symmetry

groups, the theory contains matter that transforms in the

(N,Nf ,1,1)qf ⊕ (Λ2N,1,Na,1)qa ⊕ (Sym2N,1,1,Ns)qs ⊕ c.c , (3.38)

where the subscripts indicate the charges of the matter fields under the U(1) factor of the

U(NR) symmetry that rotates the hypermultiplets transforming in the representation R.

As before, we will assume that qR 6= 0 as otherwise this would lead to the decoupling of

the U(1) and thus a changing of the phase structure; this is of course true when the U(1)

is part of a U(k) global rotation group. It is with respect to these representations that we

must determine the flavor-equivalence classes.
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Each of the irreducible representations in (3.38) are charged under different gauge

groups, after the weak gauging, and so the subsectors of the Coulomb branch that cap-

ture moving the vacuum expectation values of the matter fields of different irreducible

representations are orthogonal to each other. As such we can consider the fundamental,

anti-symmetric, and symmetric matter under the SU(N) independently, and the number

of flavor-equivalence classes for each of these was determined in section 3.4.

Now we are considering the more general case, where Nf , Na, and Ns are all, in

principle, non-zero. As the Coulomb branch has the stucture of the product of the four

Coulomb branches give by the Weyl chambers of the SU(N) and of the three weakly gauged

flavor symmetries, and that the vevs under consideration are orthogonal in this space, the

total number of flavor-equivalence classes (and indeed the number of Coulomb phases) is

simply the product of the total number from each irreducible matter representation. The

total number of flavor-equivalence classes is then given by the expression

nSU(N) =
1

8
(1 +Na)(2 +Na)(1 +Nf )(2 +Nf )(1 +Ns)(2 +Ns) . (3.39)

Each of these flavor-equivalence classes can be represented by a triplet of consistently

decorated diagrams as in figure 6(b), where the length of each is Nf − 1, Na − 1, and

Ns − 1. This simple structure follows because each of the different kinds of SU(N) matter

all have an U(NR) flavor symmetry which rotates the respective hypermultiplets under

their fundamental representation. The flop graph of these equivalence classes then has the

form of figure 7, extended into a space spanned by two additional transverse planes, which

we do not attempt to draw here.

For Sp(N) gauge theories one can only have matter transforming in the fundmamental

and anti-symmetric representations if one wishes to have a non-trivial interacting fixed

point in the UV. We will consider such theories, which we write as

Sp(N) with NfF +NaAS . (3.40)

We note that if Nf = 0 then we must, in addition, specify a discrete θ-parameter for the

Sp(N), being either 0 or π. The classical flavor symmetry of the theory is

SO(2Nf )× Sp(Na) , (3.41)

and when one weakly gauges the first two factors one has matter, which determines the

phase structure of the Coulomb branch, transforming in the

(N,2Nf ,1)⊕ (Λ2N,1,2Na) , (3.42)

representations of Sp(N) × SO(2Nf ) × Sp(Na). Again, each of these representations can

be considered seperately for the purposes of the flavor-equivalence classes and the result

follows from sections 3.5 and 3.6. Putting everything together we can determine that the

total number of flavor-equivalence classes for Sp(N) gauge theories with arbitrary Nf and

Na is

nSp(N) =

{
(Na + 1) if Nf = 0

(Nf + 2)(Na + 1) otherwise
. (3.43)
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One example of a multi-node quiver which we will explore more in appendix A is when

the gauge theory is given by the two-gauge-node quiver

M1F − Sp(1)− Sp(1)−M2F , (3.44)

where Mi ≥ 1. Such a theory has

(M1 + 2)(M2 + 2) , (3.45)

flavor-equivalence classes of phases. The total number of gauge theory phases is given by

2(M1 + 2)(M2 + 2) , (3.46)

where the factor of 2 comes from the two different phases of the bifundamental of the two

Sp(1) factors. In this example we can see that whilst determining the number of Coulomb

phases for an arbitrary quiver may be quite involved, the number of flavor-equivalence

classes is obtained by a simple combination of the number for each individual gauge node.

4 Weakly-coupled descriptions from CFDs

In the previous section we have determined the set of descendants for a given 5d N = 1

quiver gauge theory. In [1, 2] one determined a geometric object, a graph known as a

Combined Fiber Diagram, or CFD, that is associated in principle to any 5d or 6d SCFT.

Therein it was observed that, if one knows a weakly coupled gauge theory description for

a 5d SCFT, then any global symmetry enhancement at the superconformal point, and

furthermore the tree of all of the descendants of that SCFT, and thus of the gauge theory,

is captured in the CFD.

In this section we will demonstrate that given a CFD the set of weakly coupled quiver

gauge theory descriptions that have the associated SCFT at the UV fixed point are heavily

constrained. Of particular interest will be to constrain the marginal8 5d quiver gauge

theory descriptions of a given 6d SCFTs, as these are conjectured to source all of the 5d

SCFTs as descendants. One then has to know the “marginal CFD,” which is the CFD

associated to a 6d SCFT, of which many interesting cases are known from [1, 2].

Let us briefly recap some of the salient details of 5d N = 1 quiver gauge theories. A

quiver consists of nG gauge nodes, each of which supports some simple non-abelian9 gauge

group Gi, such that the total gauge algebra is

G =

nG∏
i=1

Gi . (4.1)

8The set of marginal 5d gauge theories and the set of 5d gauge theories which have a UV fixed point

that is a 6d SCFT are closely overlapping but distinct sets [9]. In this paper the marginal theories that we

consider will have 6d fixed points, and thus we will utilize the adjective “marginal” without including the

further qualification.
9Gauge nodes carrying a U(1) gauge group will not be considered, as quivers with such nodes cannot

give rise to an interacting SCFT in the UV [40].
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The rank of this gauge algebra will be denoted rG. Two gauge nodes can be connected

by including matter transforming in the bifundamental10 representation of the two gauge

algebras. We will assume that any gauge nodes are connected in the most minimal way

possible, with the bifundamental matter being either a single hypermultiplet or a single

half-hypermultiplet, depending on what is least allowed. Furthermore, we will assume that

the quivers under discussion do not have loops. For most of the analysis in this section

these two assumptions will be unnecessary, and the analysis is essentially unchanged by

relaxing them. In addition a quiver can have matter transforming in a representation R of

a single gauge factor; this is the matter captured in the flavor nodes of the quiver.

The global symmetry group of the quiver has three contributions, which can be sum-

marized by writing the rank of the flavor group as

rF = nF + nG + nb . (4.2)

The most obvious contribution is from the number of gauge nodes, nG; each simple gauge

factor has an associated topological symmetry, U(1)T . The other two factors, nF and nb
come from the classical flavor group rotating the charged hypermultiplets of the quiver.

These rotation groups depend on the type of representation under which the hypermulti-

plets transform. They are:

k hypermultiplets in a complex representation ⇒ U(k) ,

k hypermultiplets in a real representation ⇒ Sp(k) ,

k half-hypermultiplets in a quaternionic representation ⇒ SO(k) ,

(4.3)

where the hypermultiplets rotate under the fundamental representation of the global sym-

metry group. We define nF to be the rank of this combined group for all of the flavor

nodes of the quiver. The last quantity, nb, is defined to be the rank of flavor group of the

bifundamentals connecting the gauge nodes; since k = 1 for such matter the contribution

to nb is zero when the bifundamental is real ⊗ quaternionic, and one in all other cases.

The key thrust of this section lies in the fact that the flavor nodes of any marginal quiver

description are highly constrained by the structure of the CFD, as the BG-CFD, defined

in 3.5, associated with classical flavor of the quiver must be a subgraph of the marginal

CFD. Recall that all types of BG-CFDs these are listed in table 2. The reason is that

both graphs represent features of the same geometry underlying the M-theory realization.

Thus, a necessary condition for a gauge theory to be a consistent effective description of

an SCFT is for the BG-CFD of the former to embed into the CFD of the latter.

The geometric details of this relationship will be spelled out in sections 7 and 8. To

get across our main points here, we will review the definition of the CFDs in section 4.1,

followed by listing what constraints apply to the prospective quiver from a known CFD

in section 4.2; we will find that the possible flavor nodes of any quiver are constrained to

be one of a small finite list from the embedding of the BG-CFD inside the CFD, further

10Adding hypermultiplets charged under different non-trivial representations of the two gauge algebras,

or indeed of any number of simple gauge factors, is a priori possible, however we will not consider such

quivers here.
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usage of the gauge rank and flavor rank, together with the single node constraints of [9]

will often allow one to specify the complete quiver more restrictively. We determine the

constraints on the possible 5d quiver descriptions for many of the known marginal CFDs

and thus for their associated 6d SCFTs.

4.1 Recap: CFDs

The CFD [1, 2] is a marked undirected graph, where each vertex Ci is associated with

two integers (ni, gi) and each edge between the two vertices Ci and Cj is marked with an

integer mi,j . In the context of elliptic Calabi-Yau geometries, a CFD can be interpreted

as a flop equivalence class among a family of reducible complex surfaces S. Under this

interpretation, each vertex Ci is a complex curve with self-intersection number ni and

genus gi, and the integer mi,j is equal to the intersection number Ci ·S Cj .
Qualitatively, the vertices can be classified into the following three classes:

1. The marked vertices, which correspond to flavor curves Fi, and are usually colored

green. Typically, they have labels (ni, gi) = (−2, 0), and are called “(−2)-vertices”.

However, sometimes they are associated with (ni, gi) = (−1, 0) instead, see the

(E8, SU(2)) CFDs in [2]. The subgraph of such vertices always form the Dynkin

diagram of the flavor symmetry of the UV fixed point, GF.

In the presence of some non-simply laced Lie algebra G (such as the (E7, SO(7))

case in (5.13)), the flavor curve corresponding to the short root is a collection of p

green (−2)-vertices that are identical,11 where p is the ratio between the length of

the long root and the short root of the Lie algebra G. Specifically, for G = Bk,

the single short root will be assigned to a reducible vertex, represented by with two

(−2)-vertices that are encircled. For G = G2, the short root will be assigned to

a reducible vertex with three (−2)-vertices that are encircled. For G = Ck, there

is only a single long root, along with (k − 1) short roots. In principle, we need

to draw (k − 1) reducible vertices which are each containing two (−2)-vertices that

are encircled, and a single vertex with (nk, gk) = (−2, 0), while these vertices are

connected with mi,i+1 = 2 (i = 1, . . . , k − 1). However, in practice we can simplify

the CFD by taking “half” of this diagram, which ends up with (k − 1) vertices with

(ni, gi)) = (−2, 0) (i = 1, . . . , k−1) and a single flavor vertex with (nk, gk) = (−1, 0),

while they are connected with mi,i+1 = 1 (i = 1, . . . , k − 1). This explains the

convention of BG-CFDs for non-simply laced G5d
F,cl in table 2.

2. The unmarked vertices with labels (ni, gi) = (−1, 0) will be denoted by “(−1)-

vertices”, and corresponds to an extremal curve in the geometry. A transitions

between CFDs, and thus 5d SCFTs, is realized by removing such a curve. Cer-

tain extremal curves will correspond to the F-extremal weights in a gauge theory

description of the SCFT.

11Geometrically, there are p curves with normal bundle O +O(−2) that are homologous in the resolved

Calabi-Yau threefold.
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Sometimes, there will be a reducible vertex comprised of multiple (−1)-vertices con-

nected to a reducible vertex containing multiple (−2)-vertices, which each describe

homologous curves in the Calabi-Yau threefold that have to be flopped simultane-

ously. In the CFD language, one has to remove all the (−1)-vertices in the reducible

vertex at the same time.

3. Other vertices with ni > 0, are unmarked, and are determined from the resolution of

the singular geometry. However, they cannot be directly seen from the gauge theory

description.

We also list the rule of CFD transitions here. After the (−1)-vertex Ci is removed, the

new graph is constructed from the original CFD with the following rules:

1. For any vertex Cj with label (nj , gj) that connects to Ci (mi,j > 0), the updated

vertex C ′j in the resulting CFD’ has the following labels:

n′j = nj +m2
i,j

g′j = gj +
m2
i,j −mi,j

2
.

(4.4)

2. For any two vertices Cj , Ck, j 6= k, that connect to Ci, the new label on the edge

(j, k) is given by

m′j,k = mj,k +mi,jmi,k . (4.5)

3. If there are multiple Cjs connected to Ci, then the rule 2 applies for each pair of

vertices.

The starting point of the CFD transitions is called a marginal CFD, which corresponds

to a 5d marginal theory that only has a UV fixed point in 6d. The flavor (marked) vertices

in a marginal CFD can form affine Dynkin diagrams, but it is required that none of the

affine Dynkin diagrams is present after any CFD transition is applied to the marginal CFD.

The 5d BPS states from the M2 brane wrapping modes can be read off from the linear

combinations of the vertices in the CFD. For the 5d hypermultiplets, which can correspond

to the matter fields in our gauge theory descriptions, they are read off from the unmarked

vertices Ci with (ni, gi) = (−1, 0).

If the SCFT has an effective gauge theory description, then its perturbative states are

also formed by M2 branes wrapping certain curves that are encoded by the CFD. As will

become more apparent in sections 7 and 8, these curves precisely form the BG-CFD, which

therefore must be contained inside the CFD.

4.2 Constraints on quiver gauge theories

To determine which quiver gauge theories are consistent with any marginal CFD one can

proceed in the following manner. Determine all possible embeddings of (possibly discon-

nected) BG-CFDs into the marginal CFD as subgraphs. These must be embedded in such

a way that they are non-overlapping, and furthermore such that the marked/flavor vertices
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in any connected BG-CFD are not adjacent to the vertices of the embedding of any other

connected BG-CFD. Such an embedding is necessary if we want to obtain a quiver which

has a consistent classical flavor symmetry.

Since the BG-CFDs are associated to the classical flavor symmetry rotating the hyper-

multiplets at any flavor vertex, the BG-CFDs which can be embedded gives immediately the

set of flavor symmetry groups that can be realized as rotation groups of the flavor verticess.

This fixes the kinds of representations that can be realized on the flavor vertex, whether

they are complex, real, or quaternionic, and also fixes the number of hypermultiplets that

can appear there.

Since the CFD is, by construction, agnostic towards the details of the precise config-

uration of surfaces in the geometry, and thus to the details of any particular gauge sector

that is disconnected from the global symmetry groups that the CFD is sensitive to, we

shall find that there is often a pure-gauge12 sub-quiver in any putative quiver description.

This Qs is generally unfixed, but of course constrained,13 however the precise details of

its structure are irrelevant for the tree of descendant SCFTs, except for possible discrete

dualities that depend on those details.

In addition to this we further know that the flavor rank of the SCFT must be replicated

in the rank of the classical flavor symmetry of the quiver description of the marginal theory.

Similarly we know the gauge rank, rG, required of any prospective quiver from the SCFT

which realizes the CFD in question. Thus we have a further constraint on quiver gauge

theory descriptions from knowledge of the pair of ranks (rG, rF ).

A further set of constraints, which we refer to as the “constraints on the number of

hypermultiplets”, comes from the analysis of single gauge node quivers in [9]. In that paper

it was shown that if a 5d single gauge node quiver was to lead to an interacting SCFT in

the UV then the matter content (and where relevant the Chern-Simons level) must satisfy

the following constraints:14

(#Sym,#AS,#F ; k) of SU(N) ≤ (1, 1, 1; 0), (1, 0, N − 2; 0), (1, 0, 0;N/2),

(0, 2, 8; 0), (0, 2, 7; 3/2), (0, 1, N + 6; 0),

(0, 1, 8;N/2), (0, 0, 2N + 4; 0)

(#AS,#F ) of Sp(N) ≤ (1, 8), (0, 2N + 6)

#V of SO(N) ≤ N − 2

#7 of G2 ≤ 6

#26 of F4 ≤ 3

#27 of E6 ≤ 4

#56 of E7 ≤ 3 .

(4.6)

12We remind the reader that by a “pure-gauge” quiver we mean a quiver consisting only of gauge nodes

— there remain bifundamental matter fields between these gauge nodes.
13For low ranks these constraints will, in fact, generally be enough to completely fix Qs.
14We will not consider here some of the outlier options for matter representations that can appear at low

rank. These are the triple anti-symmetric representations of SU(N) and the spinor and conjugate spinor

representations of SO(N). The methods given throughout this paper apply with little modification to these

cases also, however to prevent a proliferation of subcases we do not write of them here.
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When we write ≤ in this context we mean that the possible data associated to the gauge

node must be that of a descendant of the gauge theory with the data on the right-hand

side. For almost all gauge groups except SU(N), this is equivalent to stating that there

must be fewer hypermultiplets transforming in one or more of the representations appear-

ing on the right. In the case of SU(N), which has a non-trivial cubic Casimir, one must

also consider how the Chern-Simons level is shifted when decoupling a hypermultiplet in a

representation R,

k → k ±A(R)/2 . (4.7)

For the representations of interest in this paper the quantities A(R) are

A(F ) = 1 , A(AS) = N − 4 , A(Sym) = N + 4 . (4.8)

In this way all of the descendant gauge theories of a single gauge node quiver can be deter-

mined (one can also see them in section 3), and each individual gauge node must have the

data of a descendant of one of the above right-hand side theories. In fact, for small values

of the rank of the gauge algebra there are additional options. For the representations that

we will consider these additional possibilities are exhausted by the following

(#AS,#F ) of Sp(2) ≤ (3, 0), (2, 4)

(#AS,#F ) of Sp(3) ≤ (2, 0)

(#F ; k) of SU(3) ≤ (6; 4), (3; 13/2), (0; 9)

(#AS,#F ; k) of SU(4) ≤ (4, 0; 4), (3, 4; 2), (3, 0; 5), (2, 0; 6),

(1, 0; 7), (0, 8; 3), (0, 0; 8)

(#AS,#F ; k) of SU(5) ≤ (3, 3; 0), (3, 1; 3), (3, 2; 3/2), (0, 5; 11/2)

(#AS,#F ; k) of SU(6) ≤ (3, 0; 3), (0, 0; 9) .

(4.9)

Any other gauge algebras or matter outside of that satisfying the above will not lead to

an interacting SCFT as the UV fixed point of the gauge theory. This is determined by

studying the Coulomb branch of the gauge theory, and as such these constraints will, in

general, apply to any gauge node of an arbitrary quiver.

A further constraint is given by the positivity of the metric and the string tensions of the

full quiver, which comes from study the second and first derivatives of the prepotential with

respect to the Coulomb branch scalar vevs. The requirement that the metric is positive,

provided that the tensions of the BPS strings do not change sign, sets sharper bounds

on the possible quiver nodes and the amount of matter on them [9]. In this paper we

present quivers which, based on their classical flavor symmetry embeddings in the CFDs,

are possible IR description of a given CFT, and in this sense we provide a set of necessary

conditions for these quivers to exist as such. It would be interesting to further restrict

these bounds by studying these Coulomb branch metric constraints. We plan to come back

to this general analysis in the future.

4.3 Consistent quivers for the rank one E-string

To illustrate this procedure of constraining weakly coupled quiver gauge theory descriptions

for the SCFTs associated to a CFD, let us consider the CFD that is associated to the 6d
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rank one E-string theory. By considering the marginal CFD that has a 6d, rather than

5d, SCFT as its fixed point we are constraining the possible marginal 5d quiver gauge

theories that flow to this 6d theory in the UV. While we can of course determine possible

quiver gauge theories for a non-marginal CFD we shall not do so here; this is because if a

gauge theory description exists for a descendant SCFT then a similar description, with an

increased number of matter hypermultiplets, should exist for the marginal theory.

In this section we will show how the three different constraints laid out in section 4.2

leads to a unique possible weakly-coupled quiver description for the rank one E-string. The

marginal CFD for this theory has been determined in [1], and it is

-1 -2 -2-2-2-2-2

-2

-2 -2 . (4.10)

We can see that there is only exactly one way to embed disjoint unions of the BG-CFDs

into the marginal CFD, that being the BG-CFD association to an SO(16) global symmetry

group. This embedding can be drawn as

, (4.11)

where, as in the previous section, the BG-CFD is the colored part, with turquoise denoting

flavor (−2)-, and gray denoting (−1)-vertices. This global symmetry group can only arise

from a flavor vertex associated to m = 8 full hypermultiplets transforming in either the

fundamental representation of Sp(n) for some n, or the 56 of E7. However, since the rank

one E-string has a single tensor multiplet, and no gauge algebras on its tensor branch in

6d, its 5d descendants can only have a single vector multiplet coming from the reduction of

the tensor. Likewise, the rank rF of the global gauge symmetry group is rank(G6d)+1 = 9,

where G6d is the global symmetry group of the 6d SCFT. This leaves only one option for

the quiver, which is

8F − Sp(1) . (4.12)

The final set of constraints, those coming from the number of hypermultiplets allowed for

each gauge node, are not required to nail down this quiver, however we can see that the

constraint

#F of Sp(n) ≤ 2n+ 6 , (4.13)

is saturated for this quiver. This is, of course, nothing other than SU(2) with eight fun-

damental hypermultiplets which has long since been known to have the rank one E-string

as a UV fixed point [3]. Furthermore what we show here, which is also long since known,

is that this is the only possible 5d quiver gauge theory description to have the rank one

E-string as a UV fixed point.

In the next section we shall perform the same analysis for a variety of other, much more

non-trivial, 6d SCFT starting points, and determine their heretofore unknown consistent

5d quiver gauge theory descriptions.

– 40 –



J
H
E
P
0
3
(
2
0
2
0
)
0
5
2

4.4 Consistent quivers for (Dk, Dk) minimal conformal matter

In [1] we considered the descendants of the 6d SCFT known as minimal (Dk, Dk) conformal

matter. Based on the known (quiver) gauge theory descriptions for theories that have this

SCFT at their UV fixed point, we were able to determine a host of superconformal flavor

symmetry enhancements for said theories.

In this section we will show that these quiver gauge theories descriptions discussed

therein, and previously known, are found as consistent quivers satisfying the three following

constraints, as laid out previously,

• the BG-CFDs for the quiver can be embedded into the marginal CFD in a non-

adjacent way,

• the gauge and flavor ranks of the quiver match (rG, rF ) = (k − 3, 2k + 1),

• each gauge node of the quiver satisfies the constraints on the number of hypermulti-

plets as written in [9] and summarized in (4.6) and (4.9).

Furthermore, we will see that, up to a caveat with a reordering of the “pure-gauge” part of

the quiver that we will discuss anon, the known theories saturate the options for marginal

theories consistent with the above constraints. The marginal CFD, for arbitrary k ≥ 5,15

was determined in [1] to be

-1 -1
...

-2 -2-2-2

-2

-2 -2-2

-2

-2

{2k-5

. (4.14)

We must determine all of the possible embeddings of the BG-CFDs into this CFD. We

write, for each possible embedding, the flavor symmetry group that rotates the hypermulti-

plets at each flavor node, for which the BG-CFD must embed, together with the subquiver

associated to that embedded BG-CFD in the following table,

Subgroup of GF,cl (Sub)quivers

U(2k) 2kF − SU(k − 2)

SO(4k) 2kF − Sp(k − 2)

SO(8)× SO(8)

(
4F − Sp(n1)

)
⊕
(

4F − Sp(n2)

)
SO(8) 4F − Sp(n)

. (4.15)

In this table we write only the part of the quiver that is directly implied by the existence of

an embedding of the BG-CFD into the marginal CFD. We have also used the constraints

on the number of hypermultiplets associated to any gauge node to rule out, for example,

4 × 56 − E7 from appearing. The ⊕ means that these are two subquivers which are part

of whatever the complete quiver is that would describe this marginal theory.

15The smallest k such that there is a 6d SCFT is k = 4, which however is an alternative realization of

the rank one E-string discussed above.
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Let us consider each of these possible subquivers in turns and determine whether or not

there exist complete quivers, satisfying all of the constraints, for which these are subquivers.

The first example is

2kF − SU(n) , (4.16)

for which we can see that it is not possible to add any further gauge nodes without violating

the constraint on the flavor rank, rF = (2k + 1). As such the gauge rank constraint,

rG = k − 3 fixes n, and we can see that the quiver

2kF − SU(k − 2) , (4.17)

is a consistent quiver for a marginal theory which has, as UV fixed point, the minimal

(Dk, Dk) conformal matter theory. The second possible subquiver is

2kF − Sp(n) , (4.18)

which we can see, by exactly the same arguments as applied for the first example, that the

only possible quiver containing this subquiver and satisfying all of the constraints is

2kF − Sp(k − 2) . (4.19)

We will now study all of the remaining cases simultaneously. Let us consider a subquiver,

Qs, of the full prospective quiver, where the full quiver is formed by adding either one

or two flavor nodes, as in (4.15), to Qs. We can see that Qs must satisfy the following

properties

rG(Qs) = rG = k − 3 , rF (Qs) ≥ rF − 8 = 2k − 7 . (4.20)

The latter inequality follows as the maximal number of hypermultiplets associated to the

flavor nodes is eight, as one can see from the third line of (4.15). For any quiver without

loops and where each gauge node is connected to other gauge nodes by only a single

(half-)hypermultiplet in the bifundamental representation, the rank of the subgroup of the

global symmetry group that rotates these bifundamentals is bounded by the number of

gauge nodes,

nb(Qs) ≤ nG(Qs)− 1 . (4.21)

Furthermore, the bound on the rank of the gauge algebra also bounds the total number of

gauge nodes of the quiver

nG(Qs) ≤ k − 3 . (4.22)

Putting all this together we find that there are two inequalities that Qs must satisfy.

These are
rF (Qs) = nG(Qs) + nb(Qs) ≤ 2k − 7 ,

rF (Qs) ≥ 2k − 7 ,
(4.23)

for which there is only one solution: any such Qs must be a quiver formed out of k−3 gauge

nodes each carrying gauge group Sp(1). The total quiver which may be a marginal theory

for the minimal (Dk, Dk) conformal matter theory is then any such Qs where the flavor
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nodes 4F and 4F are attached to any two distinct Sp(1) gauge nodes. These must be dis-

tinct nodes as otherwise the constraint that any Sp(1) gauge node must have at most 8 total

fundamental hypermultiplets is violated. As we can see this gives a great variety of potential

quiver gauge theory descriptions for the marginal theory, based on all the different configu-

ration of the Sp(1) nodes in the “pure-gauge” quiver Qs. That the quiver is not unqiue, but

this is expected, as the CFD, by construction, does not contain the information about the

gauge algebra; the algebra itself depends on the details of the decomposition of the reducible

surface of the CFD into irreducible surfaces. This goes above and beyond the purpose of

the CFD, and as such we can see that the CFD itself constrains only which flavor nodes

(and thus the attached gauge nodes) can appear, and combined with the rank constraints

and the constraints from the number of hypermultiplets, one can determine a set of possible

quivers. This is highly restrictive, but it remains a superset of the 5d quiver gauge theory

descriptions which are marginal descriptions of the particular 6d SCFT under consideration.

4.5 Consistent quivers for rank two “Model 3”

The rank two theory that was referred to as “Model 3” in [2], i.e. SU(3) on a (−1) curve

with 12 hypers, was found to have a marginal CFD being

-2

-1 -2 -1-2-2-2-2

-1

 2

, (4.24)

and the ranks of the gauge and classical flavor groups for any 5d gauge theory description

of this theory are known to be

(rG, rF ) = (2, 7) . (4.25)

We again carry out the same procedure of determine possible weakly coupled gauge the-

ory descriptions for this theory: we study all possible ways of embedding the BG-CFDs

into (4.24). There are eight possible combinations of embeddings, and these are depicted

in figure 14. First of all, let us just utilize the gauge rank, rG, and the embedding of the

BG-CFDs inside of the marginal CFD to write down all of the potential quivers that may

be marginal descriptions of this 6d SCFT. These are

6F − SU(3)k ,

m1F − Sp(2)−m2AS , m1 = 0, 4 ,m2 = 0, 2 ,

6F − Sp(2) ,

m7−G2 , m = 2, 6 ,

mF − Sp(1)− Sp(1)θ , m = 4, 6 .

(4.26)
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-2

-1 -2 -1-2-2-2-2

-1

 2

U(6)

SO(8) x Sp(2) Sp(6) SO(12)

Sp(2)SO(8)

Figure 14. Embedding of BG-CFDs into the marginal CFDs of Model 3 of the rank 2 classification.

From the embedding the classical flavor symmetry, and thereby GBG can be read off.

Compatibility with the fixed flavor rank, rF = 7, leaves only five possible quivers

6F − SU(3)k ,

4F − Sp(2)− 2AS ,

6× 7−G2 ,

6F − Sp(2) ,

4F − Sp(1)− Sp(1)θ .

(4.27)

Of these five theories the latter two are known to be descendants of

10F − Sp(2) and 4F − Sp(1)− Sp(1)− 4F , (4.28)

respectively, which are both marginal gauge theory descriptions of minimal (D5, D5) confor-

mal matter. As descendants of marginal theories they cannot, in themselves, be marginal,

and thus we must rule them out of the set of possible marginal quiver descriptions asso-

ciated to the Model 3 CFD. This leaves only the three previously known gauge theory

descriptions as the complete set of options,

6F − SU(3)k ,

4F − Sp(2)− 2AS ,

6× 7−G2 .

(4.29)

Furthermore, for the SU(3) description the Chern-Simons level can be fixed to k = 4 by

compatibility with the constraints on the number of hypermultipets as given previously.

4.6 Consistent quivers for rank two “Model 4”

Continuing with our study of the possible rank two quiver gauge theory descriptions of 6d

SCFTs, we now turn to the 6d SCFT starting point referred to as “Model 4” in [2], i.e.
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SU(3) theory on a (−2)-curve with 6 hypers. There, the marginal CFD for such a CFD

was determined to be

-1 -1-2-2

-2  0

 6 , (4.30)

and the gauge and flavor ranks of any 5d quiver gauge theory description are required to be

(rG, rF ) = (2, 4) . (4.31)

We can see that, after looking only at the embedding of possible BG-CFDs inside of the

marginal CFD there is only one option for the embedded BG-CFD, corresponding to

, (4.32)

which comes from an Sp(3) flavor group. Restricting such that the ranks match those given

above, the only possible 5d quiver gauge theory descriptions of this marginal CFT are

3AS − Sp(2) ,

3× 7−G2 .
(4.33)

The latter quiver is a descendant of 6×7−G2, which is a known marginal theory describing

Model 3. As such it cannot be associated to a marginal theory, and thus our analysis leaves

the only possible quiver description 3AS − Sp(2) for Model 4.

4.7 Consistent quivers for (E6, E6) minimal conformal matter

Let us now consider the case of minimal (E6, E6) conformal matter. As before, to determine

possible quiver descriptions of the marginal theory it is of the first importance to determine

which possible BG-CFDs associated to any classical flavor group can be embedded into the

marginal CFD. As it turns out, there are a limited number of options. Since the marginal

CFD is simply-laced, in the sense that all of the marked green vertices have label n = −2,

the only types of connected BG-CFDs that can be embedded are those associated to U(k)

and SO(2k) flavor factors.

The marginal CFD was determined in [1, 2] from geometric considerations, and it is

-1 -2-2-2-2

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2

 

, (4.34)

and only allows gauge descriptions with gauge and flavor ranks given by

(rG, rF ) = (5, 13) . (4.35)

All of the different possible embeddings are shown in figure 15. We see immediately that if

there is a U(k) factor in the classical flavor group then there can only be one such factor,
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-1 -2-2-2-2

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2

(E6,E6)

  

 

 

SO(10) x SO(10)

SO(4)

U(6) x SO(10)

SO(4) x SO(4) x SO(4)

U(6) x SO(4)

U(6)

SO(4) x SO(4)

 

SO(10)

Figure 15. Embedding of potential BG-CFDs into the (E6, E6) marginal CFD. Below each

embedding of the BG-CFD into the marginal CFD we list the classical flavor symmetry.

and furthermore it must have k = 6; it is apparent even from this immediate result that the

structure of the marginal CFD powerfully constrains possible quiver gauge theories that

have minimal (E6, E6) conformal matter as a UV fixed point.

Let us now combine this analysis with the full set of constraints that were previously

described. The possible flavor nodes of any quiver description are one of the following

6F − SU(n) ,(
6F − SU(n1)

)
⊕
(
mF − Sp(n2)

)
, m = 2, 5 ,

mF − Sp(n) , m = 2, 5 ,(
mF − Sp(n1)

)
⊕
(
mF − Sp(n2)

)
, m = 2, 5 ,(

2F − Sp(n1)

)
⊕
(

2F − Sp(n2)

)
⊕
(

2F − Sp(n3)

)
,

(4.36)

We will now write down some explicit quivers with the maximal rank of the global

symmetry group rotating the hypermultiplets at each flavor nodes. Such a quiver will

extend down the maximal depth inside of the CFD tree, and thus have a wide variety of 5d

SCFTs at the UV fixed points of its descendants. It is immediately clear that the subquiver

corresponding to (
6F − SU(n1)

)
⊕
(

5F − Sp(n2)

)
, (4.37)

cannot be combined into a quiver satisfying rF = 13. The maximal quivers that we can

attempt to determine must be constructed from the subquiver option(
5F − Sp(n1)

)
⊕
(

5F − Sp(n2)

)
. (4.38)

One option is to consider the quiver

5F − Sp(n1)− Sp(n2)− 5F , (4.39)
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which has the correct global symmetry group rank. The constraints that such a quiver is

consistent with the gauge rank and with the constraints on the number of hypermultiplets

are

#F of Sp(n1) : 2n2 + 5 ≤ 2n1 + 6

#F of Sp(n2) : 2n1 + 5 ≤ 2n2 + 6

rG = 5 : n1 + n2 = 5 ,

(4.40)

for which it is straightforward to see that there is no solution. The second possible quiver is

5F − Sp(n1)−G− Sp(n2)− 5F , (4.41)

where G has a real (for consistency with rF = 13) even-dimensional (for consistency

with the anomaly requiring Sp gauge algebras to have an even number of fundamental

half-hypermultiplets) fundamental representation. Furthermore, the rank of G must be

rank(G) ≤ 3) for consistency with rG = 5. This leaves precisely one option, which is

indeed a consistent quiver description satisfying all of the constraints,

5F − Sp(1)− SO(6)− Sp(1)− 5F . (4.42)

This is the only possible maximal depth quiver which may be a marginal theory for (E6, E6)

minimal conformal matter.

4.8 Consistent quivers for (E7, E7) minimal conformal matter

In this subsection we will consider potential marginal quiver gauge theories that flow to 6d

minimal (E7, E7) conformal matter at the UV fixed point. Any such theory must satisfy

(rG, rF ) = (10, 15) , (4.43)

and the marginal CFD for this CFT is known to be [2]

-1  -1

-2 -2-2-2-2 -2 -2

0

-2

-2

-2-2-2 -2 -2 -2-2 . (4.44)

All possible combinations of embedding the BG-CFDs into this marginal CFD are shown

in figure 16. The possible flavor nodes of the quivers can be completely classified by the

possible embeddings of the BG-CFDs into the marginal CFD, and the following options
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-1  -1

-2 -2-2-2-2 -2 -2

0

-2

-2

-2-2-2 -2 -2 -2-2

(E7,E7)

SO(12)xSO(12)SO(12)xSO(4)

U(8)SO(4)xSO(4)

SO(12)

SO(4)

Figure 16. Embedding of potential BG-CFDs into the (E7, E7) Marginal CFD.

for the flavor nodes are found:

8F − SU(n) ,

mF − Sp(n) , m = 2, 6 ,(
m1F − Sp(n1)

)
⊕
(
m2F − Sp(n2)

)
, mi ∈ {2, 6} ,

2× 56− E7 ,(
mF − Sp(n1)

)
⊕
(

2× 56− E7

)
, m = 2, 6 .

(4.45)

There are many quivers which can be found with these as the flavor nodes, which also

satisfy the constraints imposed by rG, rF , and those described earlier as the constraints

on the number of hypermultiplets. The enumeration of all such quivers is unenlightening,

however, we can determine some interesting potential quiver descriptions. One kind of

description of interest, as in the (E6, E6) case just discussed, is a quiver with the maximal

number of matter hypermultiplets associated to flavor nodes. Here this would be any

quivers associated to (
6F − Sp(n1)

)
⊕
(

6F − Sp(n2)

)
. (4.46)

There are only two possibilities to connect these two subquivers together while satisfying

the constraint from rF and that is either to write

6F − Sp(n1)− Sp(n2)− 6F , (4.47)
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or

6F − Sp(n1)−G− Sp(n2)− 6F , (4.48)

where G has a real fundamental representation. We consider the case of (4.47) first. The

constraints on the number of hypermultiplets require that

2n2 + 6 ≤ 2n1 + 6

2n1 + 6 ≤ 2n2 + 6 ,
(4.49)

and, together with the gauge rank constraint that

n1 + n2 = 10 , (4.50)

one finds that the only possible solution is

6F − Sp(5)− Sp(5)− 6F . (4.51)

Now we turn to maximal depth quivers of the form (4.48). It is immediate to see that

G cannot be either of SO(2k+ 1) or G2 as these groups have odd-dimensional fundamental

representations, which is incompatible with the anomaly requirement that Sp(n) gauge

groups must come with an even number of fundamental hypermultiplets. If we take G = F4

then the constraints on the number of hypermultiplets become

#F of Sp(n1) : 6 +
1

2
× 26 ≤ 2n1 + 6

#F of Sp(n2) : 6 +
1

2
× 26 ≤ 2n2 + 6

#26 of F4 :
1

2
× (2n1 + 2n2) ≤ 3 ,

(4.52)

which, together with the gauge rank constraint that n1 + n2 = 6, clearly has no solutions.

If we instead consider the case where G = SO(2r) then the set of constraints is

#F of Sp(n1) : 6 + r ≤ 2n1 + 6

#F of Sp(n2) : 6 + r ≤ 2n2 + 6

#F of SO(2r) : n1 + n2 ≤ 2r − 2

rG = 10 : n1 + n2 + r = 10 .

(4.53)

This system of equations has only two solutions

(n1, n2, r) = (3, 3, 4) or (2, 4, 4) . (4.54)

In short, we deduce that there are three potential marginal quiver gauge theories for mini-

mal (E7, E7) conformal matter which have the maximum rank of the flavor nodes. These are

6F − Sp(5)− Sp(5)− 6F

6F − Sp(3)− SO(8)− Sp(3)− 6F

6F − Sp(2)− SO(8)− Sp(4)− 6F .

(4.55)
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0-1  -1

-2 -2 -2-2-2-2

-2

-2 -2

-2

-2-2-2 -2 -2 -2-2-2

(E8,E8)

U(9)

SO(16) xSO(10)

SO(4) xSO(4) SO(4) xSO(10)

SO(10)  SO(4)

SO(16) 

Figure 17. Embedding of potential BG-CFDs into the (E8, E8) Marginal CFD.

4.9 Consistent quivers for (E8, E8) minimal conformal matter

Minimal (E8, E8) conformal matter is a 6d SCFT with associated marginal CFD [2]

0-1  -1

-2 -2 -2-2-2-2

-2

-2 -2

-2

-2-2-2 -2 -2 -2-2-2

. (4.56)

Any 5d quiver gauge theory that realizes minimal (E8, E8) conformal matter at its UV

fixed point must have the rank of the gauge algebra and the rank of the classical flavor

symmetry being

(rG, rF ) = (21, 17) . (4.57)

All of the possible embeddings of the BG-CFDs into this marginal CFD are given in

figure 17, and from this one can determine that the possible flavor nodes of any quiver that

may be a marginal theory for minimal (E8, E8) conformal matter are the following

9F − SU(n) ,

mF − Sp(n) , m = 2, 5, 8 ,

2× 56− E7 ,(
m1F − Sp(n1)

)
⊕
(
m2F − Sp(n2)

)
, (m1,m2) = (2, 2), (2, 5), (5, 8) ,(

mF − Sp(n1)

)
⊕
(

2× 56− E7

)
, m = 2, 5 ,(

2× 56− E7

)
⊕
(

2× 56− E7

)
.

(4.58)
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As in the other cases of (En, En) conformal matter, we will be interested in determining

precise possible quivers for the theories which have the deepest descendants; that is, the

quivers for which a gauge theory description exists farthest down the CFD-tree. In this

case such a quiver is one with flavor nodes(
8F − Sp(n1)

)
⊕
(

5F − Sp(n2)

)
. (4.59)

There are two possible options to connect this into a complete quiver satisfying that

rF = 17. The first option is to connect the two Sp(n) factors via a bifundamental hyper-

multiplet, and add an additional gauge node connecting to one of the Sp(n) in such a way

that the bifundamental gluing those two nodes is quaternionic, and thus does not provide

any additional classical flavor symmetry. A straightforward analysis from the constraints

on the number of hypermultiplets shows that such a quiver does not have an interacting

5d SCFT fixed point.

There are then three possible options if we consider only quivers without loops, and

where each gauge node is glued to another gauge node by only a single bifundamental

(half-)hypermultiplet. One of these is

G(2)

|
8F − Sp(n1)−G(1) − Sp(n2)− 5F

. (4.60)

The other options involve attaching the group G(2) to one of the Sp(ni) factors instead

of G(1), however, for brevity, we shall not consider those options here. G(1) is required to

be a group with a real, even-dimensional, fundamental representation and G(2) one with a

quaternionic fundamental representation. It is straightforward to see that neither of these

groups can consistently be exceptional groups, and the only option is

(G(1), G(2)) = (SO(2r1), Sp(r2)) . (4.61)

Such a quiver satisfies the constraints coming from rF = 17 and the remaining constraints

are
#F of Sp(n1) : 8 + r1 ≤ 2n1 + 6 ,

#F of Sp(n2) : 5 + r1 ≤ 2n2 + 6 ,

#F of SO(2r1) : n1 + n2 + r2 ≤ 2r1 − 2 ,

#F of Sp(r2) : r1 ≤ 2r2 + 6 ,

rG = 21 : n1 + n2 + r1 + r2 = 21 .

(4.62)

There are many explicit quivers that exist as solutions of these constraints. Therefore there

are potential maximal depth quivers for minimal (E8, E8) conformal matter of the form

Sp(r2)

|
8F − Sp(n1)− SO(2r1)− Sp(n2)− 5F

, (4.63)
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where
(n1, n2, r1, r2) = (5, 4, 8, 4) , (5, 5, 8, 3) , (5, 7, 8, 1) , (5, 6, 8, 2) ,

(6, 4, 8, 3) , (6, 5, 8, 2) , (6, 6, 8, 1) , (7, 4, 8, 2) ,

(7, 5, 8, 1) , (8, 4, 8, 1) , (6, 4, 9, 2) .

(4.64)

4.10 Consistent quivers for (E8, SU(2k + 1)) minimal conformal matter

The marginal CFD for (E8, SU(2k+ 1)) minimal conformal matter, which is a theory with

(rG, rF ) = (2k2 + k + 1, 2k + 9) , (4.65)

was determined in appendix D of [2]. There it was found to be

-2 -2 -2-2-2-2

-1

-2

 0

-2 -2

-1

-2

-2

-2

-2

-2

-2

-2

...

...

. (4.66)

By studying the embeddings of the BG-CFDs in this marginal CFD one can again determine

that the possible flavor nodes of any quiver are

mF − SU(n) , m = 8, k + 2, k + 3 ,

mAS − SU(n) , m = k + 2, k + 3 , (if k = 1, 2) ,

m27− E6 , m = k + 2, k + 3 , k ≤ 2 ,

mF − Sp(n) , m = 2, 3, 4, 8 , (m = 3 only if k > 1) ,

m56− E7 , m = 2, 3 , (m = 3 only if k > 1) ,(
m1F − Sp(n1)

)
⊕
(
m2F − Sp(n2)

)
, m1 ∈ {2, 3} , m2 ∈ {2, 3, 4} ,(

mF − Sp(n1)

)
⊕
(

2× 56− E7

)
, m = 2, 3, 4 ,(

2× 56− E7

)
⊕
(

2× 56− E7

)
.

(4.67)

In the latter three quivers the general values of mi given are only potential options for

sufficiently large k. We find that the following are not allowed

(m1,m2) or (m2,m1) 6=(3, 4) , (2, 2) when k ≤ 1 ,

(2, 3) when k ≤ 2 ,

(3, 3) when k ≤ 3 .

(4.68)

Let us now write down some explicit potential quivers for the marginal theory associated

to (E8, SU(2k + 1)) minimal conformal matter for some particular small values of k. We

– 52 –



J
H
E
P
0
3
(
2
0
2
0
)
0
5
2

will take k = 1, which was discussed from the geometric point of view in [2]. In fact 6d

theory has a further enhancement of the superconformal flavor symmetry, to E8 × G2,

and thus to determine the full superconformal flavor symmetry of the descendants it was

useful to introduce a different marginal CFD that captured this enhancement. Of course,

by studying the (E8, SU(3)) marginal CFD and its descendants one can still determine a

non-trivial enhancement of the superconformal flavor symmetry directly from the CFD,

and when computing the BPS spectrum, as in [2], one observes that the states organize

into representations of the larger flavor symmetry group. This is to say, a potential quiver

derived from the (E8, SU(3)) marginal CFD is a necessary condition for the quiver to

describe the marginal theory, regardless of the further symmetry enhancement.

We are considering a theory with

(rG, rF ) = (4, 11) . (4.69)

We now attempt to determine a quiver with the maximal depth of descendants. After

little reflection one can see that any quiver with a flavor node charged under an SU(n ≥ 3)

gauge group cannot be consistent with the ranks and the constraints on the number of

hypermultiplets. The maximal quiver would then involve an Sp(n) gauge node with 8F ,

and it is straightforward to see that there is only one such possible quiver, being

8F − Sp(3)− Sp(1)θ . (4.70)

Furthermore, if one is interested in quivers corresponding to the flavor nodes(
m1F − Sp(n1)

)
⊕
(
m2F − Sp(n2)

)
, (4.71)

then one can determine that the only options are when m1 = 4 and m2 = 2, for which there

are precisely nine different complete quivers satisfying all of the consistency requirements.

4.11 Consistent quivers for (E8, SU(2k)) minimal conformal matter

The marginal CFD for minimal (E8, SU(2k)) conformal matter is [2]

-2 -2 -2-2-2-2

-2

-2 -2

-1

-2

-2

-2

-2

-2

...

...
-1

-2

-2

-1

. (4.72)

Any 5d quiver gauge theory description that flows in the UV to this 6d SCFT must have

(rG, rF ) = (2k2 − k + 1, 2k + 8) . (4.73)
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By determining all of the possible embeddings of BG-CFDs into the marginal CFD one

finds the following set of possible flavor nodes for 5d quiver descriptions of this 6d SCFT

9F − SU(n) ,

mF − Sp(n) , m = 2, 3, 5, 8 ,

m56− E7 , m = 2, 3 ,

mF − Sp(n)− 1AS , m = 2, 3, 8 ,(
mF − Sp(n)

)
⊕
(

1AS − Sp(r)

)
, m = 2, 3, 8 ,(

mF − Sp(n)

)
⊕
(

1V − SO(r)

)
, m = 2, 3, 8 ,(

mF − Sp(n)

)
⊕
(

1× 7−G2

)
, m = 2, 3, 8 ,(

mF − Sp(n)

)
⊕
(

1× 26− F4

)
, m = 2, 3, 8 ,(

2× 56− E7

)
⊕
(

1AS − Sp(r)

)
,(

2× 56− E7

)
⊕
(

1V − SO(r)

)
,(

2× 56− E7

)
⊕
(

1× 7−G2

)
,(

2× 56− E7

)
⊕
(

1× 26− F4

)
,

kAS − Sp(r) ,

kV − SO(r) ,

k7−G2 ,

k26− F4 ,(
5F − Sp(n1)

)
⊕
(
mF − Sp(n2)

)
, m = 2, 3 ,(

5F − Sp(n1)

)
⊕
(

2× 56− E7

)
.

(4.74)

Furthermore, quivers with classical flavor symmetry

SO(10)× SO(6) or SO(6) or SO(4) × Sp(1) , (4.75)

rotating the hypermultiplets attached to the flavor nodes requires one to have

k > 1 , (4.76)

and similarly we find that

SO(6)× Sp(1) requires k > 2 . (4.77)
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When k = 1 this 6d N = (1, 0) SCFT is the rank two E-string theory, for which 5d

quiver gauge theory descriptions are known. We can now reproduce this set of descriptions

from our approach, and thus show that all possibilities are realized. It is immediate on

checking all options in (4.74) that the only potential quiver descriptions, consistent with the

gauge and flavor ranks, together with the constraints on the number of hypermultiplets are

9F − SU(3)

8F − Sp(2)− 1AS

5F − Sp(1)− Sp(1)− 2F .

(4.78)

These are exactly the set of known quiver gauge theory descriptions that have the rank

two E-string as their UV fixed point.

We stress that while all potential quivers are realized for ranks one and two 6d SCFTs,

we do not expect this to generalize to higher ranks — it is essentially an accident that the

low rank combined with the restrictions on the flavor nodes is exceptionally constraining.

As we have seen, for higher ranks in general there are many more potential quivers than

there are known gauge theory descriptions. It remains to determine which of these quivers

are, in fact, realized, however we do not expect that a pure CFD approach is capable of

answering this question. The CFD is, by definition, defined in terms of a reducible surface,

and the details of the “pure gauge” part of any quiver description is contained precisely

inside of the details of how that reducible surface is glued together from irreducible sur-

faces. However, at all ranks we can see that the embedding of the BG-CFDs inside of the

marginal CFD is extremely constraining on what possible flavor nodes can appear in any

quiver description.

5 Bootstrapping CFDs

5.1 Constraining marginal CFDs of single gauge node theories

In this section, we demonstrate the power of BG-CFDs as an alternative approach to con-

strain and “derive” the actual CFDs. In certain instances, there is no known geometric real-

ization of the marginal theory in 6d F-theory language. In such instances, we can neverthe-

less ‘bootstrap’ the marginal CFD using consistency requirements with known properties.

1. The marginal CFD has a marked subgraph, which is given by the Dynkin diagram

of the 6d superconformal flavor symmetry (generically these will be affine Dynkin

diagrams).

2. The rules for constructing CFD-descendants need to work in parallel with the mass

deformations. Along with the known superconformal flavor symmetries, this condi-

tion will largely fix the location of (−1)-vertices in the marginal CFD.

3. The classical flavor symmetry determines a set of BG-CFDs, which have to be em-

beddable into the CFDs. If there are multiple non-Abelian factors, the corresponding

BG-CFDs cannot intersect each other. This rule also applies to the marginal CFD.

4. Applying any mass deformation (i.e. CFD-transition to any (−1)-vertex) to the

marginal CFD has to result in a CFD, whose marked sub-graph is a Dynkin dia-

gram (without any affine marked subgraphs).
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These conditions do not necessarily constrain the CFDs entirely and uniquely, but they

give at worst a subgraph that encodes a subset of mass-deformations. Nonetheless, we will

try to reconstruct the conjectural marginal CFD in this way.

In this section, we will focus on the subclass of marginal theories which have a descrip-

tion in terms of a gauge theory with a simple gauge algebra SU(N), (N ≥ 4), which has

the matter contents of 2AS + 8F and the following 6d tensor branch [9]:

N odd: [SO(16)]−
sp(1)

1 −
su(2)

2 − · · · −
su(2)

2 − [SU(2)] ,

N ≥ 6 even: [E7]− 1−
su(2)

2
[SU(2)]

−
su(2)

2 − · · · −
su(2)

2 − [SU(2)] ,

N = 4 : [E7]− 1−
su(2)

2 − [SO(7)] .

(5.1)

The 6d flavor symmetries are [9, 69]

N ≥ 5 odd: SO(16)× SU(2)2 ,

N ≥ 6 even: E7 × SU(2)3 ,

N = 4 : E7 × SO(7) .

(5.2)

For N ≥ 5, there is an extra SU(2) flavor symmetry at the 6d superconformal point

comparing to the tensor branches in (5.1). This is related to the unique linear combination

of the baryonic SU(2)s, which remains non-anomalous.

The N = 4 case corresponds to the (E7, SO(7)) conformal matter theory. For N > 4,

they do not have a known singular Weiertrass model in the 6d F-theory description, and we

will apply the bootstrap methodology to get a conjectural marginal CFD. Finally, we see

that the resulting marginal CFD has in general more descendants than those realized by

known gauge theory descriptions, which are indicators for dual gauge/quiver descriptions.

Such quiver gauge theory descriptions and dualities are extensively discussed in section 6.

5.2 SU(2n)0 + 2AS + 8F

Consider the marginal theory

SU(2n)0 + 2AS + 8F , n > 2 . (5.3)

The classical flavor symmetry is U(2)×U(8), and the associated BG-CFD needs to embed

into the marginal CFD.

In the following it will be useful to recall some of the known flavor symmetry enhance-

ment for 5d SU(N) gauge theories with NAAS +NfF matter fields at the their UV fixed

points. For NA = 2 and Nf ≤ 8, the flavor symmetry enhancements were determined in

the appendix of [21]. For the cases of NA = 1, the UV flavor symmetry enhancements are

implicitly given in [33], and we summarize them here explicitly in appendix B. Finally, for

the cases of NA = 0, the superconformal flavor symmetries were determined in [1, 38].

We will first constrain the CFDs by fitting the flavor symmetries of the descendant

CFDs with the known ones after decoupling the fundamental flavors. Comparing with the
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flavor symmetry enhancements predicted in [21], we find that the following graph should

be a subgraph of the actual marginal CFD:

-1
-1 . (5.4)

The CFD tree generated by decoupling fundamental flavors is shown in figure 18.

To see that this is the only way the SU(2) nodes can attach, consider the first de-

scendant. From the enhancements of the flavor symmetry [21] there are two enhancement

patterns:

SU(2n)0 + 2AS + 6F : GF = E6 × SU(2)×U(1)2

SU(2n)1 + 2AS + 6F : GF = SO(12)× SU(2)3 .
(5.5)

To get the first, it is clear that two SU(2) nodes have to attached with a single (−1) vertex to

the longer tail of E7. From the latter it is clear that another (−1) vertex has to be attached

to the short tail of the E7 diagram. Note that decoupling only the fundamental matter

retains an SU(2) factor in the flavor symmetry. We will see that additional constraints

on this node follow from the decoupling of the anti-symmetric matter. The subtree that

corresponds to the models with a fixed number of 2AS and decoupling F is consistent

indeed with all the known flavor symmetry enhancements.

On the other hand, if we decouple the anti-symmetric hypermultiplets, we obtain the

following gauge theories:

SU(2n)0+2AS+8F → SU(2n)±(n−2)+1AS+8F →


SU(2n)2n−4+0AS+8F

SU(2n)0+0AS+8F

SU(2n)−2n+4+0AS+8F

(5.6)

Further decoupling a fundamental flavor, we should get:

SU(2n)2n−4 + 8F → SU(2n)2n−4±1/2 + 7F

SU(2n)0 + 8F → SU(2n)±1/2 + 7F

SU(2n)−2n+4 + 8F → SU(2n)−2n+4±1/2 + 7F .

(5.7)

According to [1, 38], the flavor symmetry enhancements for the theories without AS are

SU(2n)±(2n−4) + 8F : GF = U(8)× SU(2)

SU(2n)0 + 8F : GF = U(8)×U(1)

SU(2n)±(2n−4+ 1
2) + 7F : GF = U(7)× SU(2)

SU(2n)±(2n−4− 1
2) + 7F : GF = U(7)×U(1)

SU(2n)± 1
2

+ 7F : GF = U(7)×U(1)

(5.8)
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-1 -1
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2

-1-1

2

3

-1-1

2

-1

4 3 2

Figure 18. CFD-tree consistent with the decoupling of fundamental flavors of SU(2n)0+2AS+8F .

The gauge theory descriptions and superconformal flavor symmetry GF are labeled.
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With 1AS, the superconformal flavor symmetries are [33]

SU(2n)±(n−2) + 1AS + 8F : GF = U(8)× SU(2)×U(1)

SU(2n)0 + 1AS + 8F : GF = U(8)×U(1)×U(1)

SU(2n)±(n−2+ 1
2) + 1AS + 7F : GF = U(7)× SU(2)×U(1)

SU(2n)±(n−2− 1
2) + 1AS + 7F : GF = U(7)×U(1)×U(1)

SU(2n)± 1
2

+ 1AS + 7F : GF = U(7)×U(1)×U(1)

(5.9)

Besides the consistency requirements with the known flavor symmetry enhancements,

the other constraints for this marginal CFD are:

• Embedding of the BG-CFDs for the classical global symmetry U(8)×U(2)×U(1)T .

• The marginal CFD contains the Dynkin diagrams for Ê7 × ŜU(2)
2
× SU(2) that was

observed in [9].

• Mass deforming the marginal CFD (i.e., CFD-transitioning on any of the −1-vertices)

results in marked subdiagram that is a collection of non-affine Dynkin diagrams.

Finally, the resulting marginal CFD is highly constrained to be the following

-1 -1 -1 -1

(5.10)

There are four (−1)-vertices in this graph. From left to the right, removing these

vertices will correspond to the following four different ways of decoupling matter fields:

1. Decoupling 1F , shifting the CS level k by 1
2 .

2. Decoupling 1AS, shifting the CS level k by (n− 2).

3. Decoupling 1AS, shifting the CS level k by −(n− 2).

4. Decoupling 1F , shifting the CS level k by −1
2 .

We list all the possible maximal embedding of BG-CFDs into this marginal CFD in

figure 20. Together with the classical flavor symmetry shown in table 2, this put constraints

on the possible quiver gauge theory descriptions. We will return to this and the resulting

dualities in section 6.

From this proposed marginal CFD, we obtain the tree of descendants, part of which

is shown in figure 19. The sub-tree with gauge theory descriptions SU(2n)k + 1AS +mF

is shown in figure 21. Besides the SU(2n) gauge theory descriptions, in figure 19 there is

already a descendant theory with GF = U(4)2×SU(2) with a different quiver gauge theory

description.
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GF=E7xSU(2)3

GF=E6 x SU(2)xU(1)2 GF=SO(12)xSU(2)3

SU(2n)0+2AS + 6F

GF=U(7)xU(1)2

SU(2n)1+2AS + 6F

SU(2n)0+2AS + 8F

-1 -1 -1 -1

-1 -1 -1

-1

-1

-1

SU(2n)n-2+1AS + 8F

GF=U(8)xSU(2)xU(1)

-1

-1

-1 -1-1

-1

-1

-1

-1

-1 -1

-1

-1

-1

-1

-1

-1 -1 -1

-1

 2

SU(2n)n-5/2+1AS + 7F

-1

-1

-1-1

-1

-1

-1

-1

SU(2n)n-3/2+1AS + 7F

GF=U(7)xSU(2)xU(1)

-1

-1

-1 -1-1

-1

...

...{

SU(2n)k+2AS+ NfF Sub-Tree

{
SU(2n)k+1AS+ NfF Sub-Tree

GF=U(4)2xSU(2)

-1

-1

-1

-1

Quiver Sub-Tree

{...

SU(2n)0+ 8F

GF=U(8)xU(1)

-1

-1

-1-1

-1

-1

-1

{...

SU(2n)k +NfF Sub-Tree

Figure 19. CFD-tree consistent with the decoupling of antisymmetric flavors of SU(2n)0 + 2AS +

8F . On the l.h.s. , the decoupling of fundamental flavors results in the sub-tree shown in figure 18.

The mass deformations removing the anti-symmetric representations is consistent with the enhance-

ment of flavor symmetries. The models with 1AS are consistent with the gauge theory description

in tables 8 and 11.

5.3 SU(2n + 1)0 + 2AS + 8F

We can apply similar logic to the case with SU(N = 2n+ 1)0 gauge group and 2AS + 8F .

Note that in this case the marginal theory in 5d has flavor symmetry [9]

Gmarginal
F = ŜO(16)× ŜU(2)× SU(2) . (5.11)

Using the known UV flavor symmetry enhancements as before, we conjecture the marginal

CFD for this class of models to be

-1

-1 -1

-1

. (5.12)

It contains the BG-CFDs for the classical flavor symmetries U(8) and U(2), and furthermore

the marked vertices in the CFD realize Gmarginal
F . There are four (−1)-vertices in this graph.

From upper left to the bottom right, removing these vertices will correspond to:
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-1 -1 -1 -1

U(6)xSO(4) SO(8)xSO(4) SO(12)xSO(4)U(8)xU(2)

SO(4)xSO(4) U(2)xSO(4) U(2)xU(2) U(1)4

Figure 20. At the top we show the CFD for the marginal theory SU(2n) + 2AS + 8F , and below,

using the notation of section 4 the possible embeddings of the BG-CFDs into the marginal CFD.

Below the diagrams we note the classical flavor symmetry of the corresponding weakly coupled

description.

1. Decoupling 1F , shifting the CS level k by 1
2 .

2. Decoupling 1F , shifting the CS level k by −1
2 .

3. Decoupling 1AS, shifting the CS level k by (n− 3
2).

4. Decoupling 1AS, shifting the CS level k by −(n− 3
2).

The descendants are in agreement with the 2AS+NfF flavor symmetry enhancements

in [21] and the ones with one AS (as listed in appendix B) and no AS in [1, 33, 38]. The

CFD-descendants that model the theories with 1 or 2 AS are shown in figure 22. Note

that there are more descendants, which will correspond to other gauge theory descriptions.

The possible BG-CFD embeddings, are shown in figure 23, from which we can determine

alternative weakly coupled descriptions, which in particular should model some of the other

descendants.
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Figure 21. Sub-trees of the CFD-tree figure 19: SU(2n)0 + 1AS + NfF , Nf ≤ 7 decoupling the

fundamental flavors results in the sub-tree shown in this figure. The enhancements are consistent

with the ones.
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Figure 23. The possible embeddings of the BG-CFDs into the marginal CFD, which is shown at

the top, for SU(2n+ 1) + 2AS + 8F . Below the diagrams we note the classical flavor symmetry for

the putative weakly coupled description.

5.4 SU(4)0 + 2AS + 8F and (E7, SO(7)) conformal matter

A special case of the theories discussed in section 5.2 is n = 2: SU(4)0 + 2AS + 8F .

In this case there is an enhanced superconformal symmetry Gmarginal
F = Ê7 × ŜO(7) for

the marginal theory, which has its origin in the 6d realization in terms of the (E7, SO(7))

minimal conformal matter.

The marginal CFD can in this case in fact be computed directly using a geometric

resolution from the conformal matter description, which is done in appendix C.3. From

this we determine the marginal CFD to be:

-1 -1

-1 -1 . (5.13)

Note that the in the middle of the graph, there is a reducible vertex containing two

(−1)-vertices, which are encircle to indicate that they are homologous, and that they

have to be removed simultaneously.16 Likewise, the reducible vertex below it contains two

16In the resolved Calabi-Yau threefold geometry, they correspond to two curves with normal bundle

O(−1) +O(−1) that are homologous in the Calabi-Yau threefold but not on the surface components.
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(−2)-vertices that are encircled and homologous curves in the geometry, and are part of

the SO(7) affine Dynkin diagram.

This graph indeed contains the BG-CFDs for 8F with classical flavor symmetry U(8)

and 2AS with classical flavor symmetry Sp(2), see table 2:

-1 -1

-1 -1 . (5.14)

Thus if we were to bootstrap this theory as we did in the general case of SU(2n), we would

arrive at precisely this diagram. Consistency with the known flavor symmetry enhance-

ments can also be checked.

On the other hand, there is another way of embedding the BG-CFD with classical

flavor symmetry SO(12) and SO(4):

-1 -1

-1 -1 , (5.15)

which corresponds to the quiver gauge theory 6F − Sp(2) − Sp(1) − 2F , see section 6 for

more details.

Some of the descendants of the (E7, SO(7)) marginal CFD are shown in figure 24. For

example, after removing the reducible vertex containing the two (−1)-vertices, we arrive

at the theory (3), where the reducible vertex below it will contain two (−1)-vertices and

the vertex above it will become a (−1)-vertex. Then if we remove the reducible vertex

containing two (−1)-vertices in the graph (3) to get graph (8), the reducible vertex below

it will become a 0-vertex because of the double connection in (3).

We list the SU(4) gauge theory descriptions of these theories in table 3, which can be

compared with the flavor symmetry enhancements in the literature [21, 33]. For the CFDs

(2), (4) and (6) with 2AS, the enhanced flavor symmetry matches the table 3 in [21].

For the cases (3) and (7) with 1AS, the flavor symmetry was correctly predicted in [33].

For the case 8, which does not have any anti-symmetric matter, the CFD matches the

descendant from (D6, D6) marginal CFD [1] with flavor symmetry SU(8)×SU(2)×SU(2).

Especially, there should not be any additional extremal (−1)-curve in the middle part of

the picture. Finally, for the case (5), the CFD transition from case (2) does not correspond

to the decoupling of a matter multiplet in the SU(4) gauge theory. Hence this theory with

GF = E7 × SU(2)× SU(2) is not expected to have an SU(4) gauge theory description. On
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Figure 24. (E7, SO(7)): the figure shows the first few descendants of the marginal CFD (5.13) for

the (E7, SO(7)) theory, including the enhanced superconformal flavor symmetries GF.

CFD No. Matter fields κ GF

(1) 2AS + 8F 0 –

(2) 2AS + 7F 1/2 E7 × SO(7)

(3) 1AS + 8F 0 SU(4)× SU(8)

(4) 2AS + 6F 1 SO(7)× SO(12)

(5) – – E7 × SU(2)× SU(2)

(6) 2AS + 6F 0 Sp(2)× E6 ×U(1)

(7) 1AS + 7F 1/2 SU(7)× SU(3)×U(1)

(8) 8F 0 SU(8)× SU(2)× SU(2)

Table 3. The SU(4)κ gauge theory description and superconformal flavor symmetry GF of the

descendant theories from the (E7, SO(7)) marginal CFD. The CFD numbering corresponds to that

in figure 24. Model (5) does not have a description in terms of an SU(4) gauge theory, but it has a

6F − Sp(2)− Sp(1) quiver gauge theory description instead.

the other hand, from the quiver gauge theory 6F − Sp(2) − Sp(1) − 2F of the marginal

theory, the CFD (5) is generated by decoupling the 2F of the Sp(1) gauge group. Hence

we expect this theory to have a 6F − Sp(2)− Sp(1) quiver gauge theory description.
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6 Descendants and dualities

A 5d SCFT can be effectively described by multiple gauge theories at low-energy, equiv-

alently different gauge theories can have the same UV-fixed point. Such theories can be

viewed as dual effective descriptions of the same UV 5d SCFT. In particular, because of

the IR effective nature of 5d gauge theories, these are called UV-dualities.

In this section we study UV-dualities among quiver gauge theories from the point of

view of the CFDs. More precisely, by embedding the BG-CFDs into the marginal CFDs we

are able to predict possible dual gauge theory phases, which UV-complete to a 6d SCFT.

We then check if these gauge theories are consistent geometrically, by studying the ruling

of the resolutions corresponding to different descendants. From these resolutions, we also

consistently blow up the collection of surfaces to get a candidate resolved geometry for the

marginal theory. We then compute the triple intersection numbers and check them against

the prepotential computed from the gauge theory.

Having set the dual effective descriptions for the marginal theory we can immediately

predict many novel dualities for the descendant theories. In many cases, we support these

by explicitly finding the corresponding rulings in the resolved Calabi-Yau threefolds engi-

neering the 5d theories. In addition, we also compute the prepotential of the candidate

duals. For many theories, which are not distinguished by non-trivial physical theta angles,

we check that the prepotentials match in some region of the Coulomb branches. This,

together with the prediction of the superconformal flavor symmetries supplied by the CFD

and BG-CFD embeddings, provides a good test for these novel proposed UV-dualities.

6.1 Descendants and dualities for minimal (E6, E6) conformal matter

As we showed in [2], the known weakly coupled quiver description of the (E6, E6) minimal

conformal matter theory only captures a very small subset of descendant SCFTs in 5d.

Starting with the CFD, we have seen that there are multiple ways that BG-CFDs can

be embedded. This results in new dualities, both for the marginal theory as well as the

descendants. In this class of theories, all dualities can be checked by comparing with the

geometry and finding the corresponding “dual” rulings of the surfaces.

6.1.1 An asymmetric quiver

In this section we will consider quiver gauge theories that are descendants of the quiver

6F − SU(4)0 − Sp(1)0 − Sp(1)− 2F . (6.1)

This quiver is derived from geometric considerations, in appendix C.2 and shown to be

marginal, and to have as 6d UV fixed point the minimal (E6, E6) conformal matter theory.

While the θ-angle of the central Sp(1) gauge node is not directly fixed by the geometry,17

the superconformal flavor symmetries for the alternate case where θ = π are not consistent

17If we assume the following empirical evidence that a trivial theta angle leads to an enhancement of

flavor symmetry at strong coupling, whereas a non-trivial one leads to an abelian factor, we can actually

present a criterion to compute the theta angle at least for a SU(2) gauge theory factor: if the surface is

ruled over a curve corresponding to a green node in the CFD, then θ = 0, otherwise θ = π.
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with the quiver being a descendant of (E6, E6) conformal matter [70], and thus we are led

inexorably to the conclusion that the only option is θ = 0.

The descendants of this quiver have the form

(m1, k,m2) : m1F − SU(4)k − Sp(1)0 − Sp(1)−m2F . (6.2)

If m2 = 0 then we must specify a θ-angle for the rightmost Sp(1) factor, we shall, without

ambiguity, use the shorthand m2 = 0, π for these two options.

The classical flavor group of the marginal theory is U(6) × SO(4) × SU(2) × U(1)4,

where the first two factors are the global symmetry groups rotating the hypermultiplets

on each of the two flavor nodes. The BG-CFDs associated to these two flavor groups must

then be embedded into the marginal (E6, E6) CFD, which was given in (4.34). Up to the

symmetry of the CFD there is a unique form of such an embedding, which is

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2-2

-1

-1

-1

. (6.3)

Quivers of the form (6.2) admit dualities amongst theories with different (m1, k,m2),

and these can be observed from the symmetry of the descandent CFDs. Let us consider the

first descendant of the marginal CFD as an illustrative example; despite the fact that there

are three (−1)-curves, each of which gives a CFD-transition to a descendant CFD, all of

these three descendants are the same CFD up to a reordering in the 2d-plane in which we

draw the image. However if we consider the CFD together with the marked BG-CFDs, as

in (6.3), then there would appear to be three distinct gauge theory descendants, for which

the embeddings of the BG-CFDs are

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2-2

-1

-1

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2-2

-1

-1

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2-2

-1

-1

-1

-1

-1

-1

.

(6.4)

These correspond to the three gauge theory descriptions

(m1, k,m2) = (5,+1/2, 2) , (5,−1/2, 2) , (6, 0, 1) . (6.5)

Since the underlying CFD for each of these theories is the same then these theories have

the same interacting SCFT as their UV fixed point, and as such they are all dual to each

other. To be extremely explicit, the CFD implies that the three quiver gauge theories

5F − SU(4)1/2 − Sp(1)0 − Sp(1)− 2F

5F − SU(4)−1/2 − Sp(1)0 − Sp(1)− 2F

6F − SU(4)0 − Sp(1)0 − Sp(1)− 1F ,

(6.6)

flow to the same 5d N = 1 SCFT in the UV. In this way one can see that novel dualities

between quiver gauge theories, with the same gauge algebra, can be observed from the CFD.
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We determine the superconformal flavor symmetry for every descendant of the quiver (6.1),

and furthermore we determine for what values of (m1, k,m2) the descendant quivers (6.2)

are dual.

More generally, if we compute the prepotential for the two sets of quiver specified by

(m1, k,m2) and (m̃1, k̃, m̃2), it matches in a non-trivial region of the two gauge theories

respectively, if the following conditions are satisfied,

m̃1 = 1− k +m2 +
m1

2
, m̃2 =

1

2
(m1 + 2k − 2) k̃ =

1

4
|m1 − 2m2 − 2− 2k| (6.7)

Since the prepotenial analysis is not sensitive to the θ-angles these expressions involve some

care when m2 = 0, π. For m2 = 0 they capture the dualities as determined from the CFD.

These results for the descendants of the marginal quiver with (m1, k,m2) = (6, 0, 2) are

summarized in table 4.

6.1.2 Maximal quivers

As a proof of principle we present here a prospective dual marginal description of (E6, E6)

conformal matter on a circle and its descendants, which satisfy the classical flavor symmetry

embedding in the CFD diagrams in figure 15. This IR effective description was already

introduced in 4.7, and it has ten full hypermultiplets, the maximal number possible. This

feature makes this possible description very interesting, since it would provide the IR

effective gauge theories for as many descendants as possible. It reads

5F − Sp(1)− SO(6)− Sp(1)− 5F . (6.8)

While there is no evidence from geometry that this is indeed a quiver description of (E6, E6)

conformal matter, we will, in this section, determine the descendants and their superconfor-

mal flavor symmetries under the assumption that this quiver is indeed a realized description.

It would be interesting to study the Coulomb branch metric and the BPS string tensions

of the full quiver in order to verify the validity of this effective theory.

To express the global symmetries in a concise way we first introduce a helpful notation

for the E-type exceptional simple groups

E(k) =

{
Ek+1 for k = 0, · · · , 7
Ẽ1 = U(1) for k = π

. (6.9)

The descendant quivers have the form

m1F − Sp(1)− SO(6)− Sp(1)−m2F , (6.10)

where we again allow the abuse of notation to write m1,m2 = 0, π to describe the θ-angle

when the respective flavor nodes become trivial. If we write the tuple (m1,m2) to describe

one of these descendant quivers we find, from an analysis of the CFD and its descendants,
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(m1, k,m2) Superconformal Flavor Symmetry

(5,±1/2, 2), (6, 0, 1) E6 × E6

(4,±1, 2), (6, 0, 0), (6, 0, π) E6 × SU(6)

(5,±1/2, 1), (4, 0, 2) SO(10)2 ×U(1)

(3,±3/2, 2) E6 × SU(3)2

(3,±1/2, 2), (4,±1, 1), (5,±1/2, 0), (5,±1/2, π) SO(10)× SU(5)×U(1)

(4, 0, 1) SO(8)2 ×U(1)2

(2,±2, 2) E6 × SU(2)2 ×U(1)

(2,±1, 2), (3,±3/2, 1) SO(10)× SU(3)× SU(2)×U(1)

(2, 0, 2), (4,±1, 0) SO(10)× SU(4)×U(1)

(4,±1, π) SU(5)2 ×U(1)

(3,±1/2, 1), (4, 0, 0), (4, 0, π) SO(8)× SU(4)×U(1)2

(1,±5/2, 2) E6 × SU(2)×U(1)

(1,±3/2, 2), (2,±2, 1) SO(10)× SU(2)×U(1)2

(1,±1/2, 2) SO(10)× SU(3)×U(1)

(2,±1, 1) SO(8)× SU(2)2 ×U(1)2

(2, 0, 1), (3,±1/2, 0) SO(8)× SU(3)×U(1)2

(3,±3/2, 0) SO(10)× SU(3)×U(1)

(3,±3/2, π) SU(5)× SU(3)× SU(2)×U(1)

(3,±1/2, π) SU(4)2 ×U(1)2

(0,±3, 2) E6 × SU(2)

(0,±2, 2) SO(10)× SU(2)×U(1)

(1,±5/2, 1) SO(10)×U(1)2

(0,±1, 2), (2,±2, 0) SO(10)× SU(2)×U(1)

(0,±3/2, 1) SO(8)×U(1)3

(2,±2, π) SU(5)× SU(2)×U(1)2

(1,±1/2, 1), (2,±1, 0) SO(8)× SU(2)×U(1)2

(0, 0, 2) SO(10)× SU(3)

(2,±1, π) SU(4)× SU(2)2 ×U(1)2

(2, 0, 0) SO(8)× SU(2)×U(1)2

(2, 0, π) SU(4)× SU(3)×U(1)2

(0,±3, 1) SO(10)×U(1)

(0,±2, 1) SO(8)×U(1)2

(0,±1, 1), (1,±3/2, 0) SO(8)×U(1)2

(0, 0, 1) SO(8)× SU(2)×U(1)

(1,±5/2, 0) SO(10)×U(1)

(1,±5/2, π) SU(5)×U(1)2

(1,±3/2, π) SU(4)×U(1)3

(1,±1/2, 0) SO(8)×U(1)2

(1,±1/2, π) SU(4)× SU(2)×U(1)2

(0,±3, 0) SO(10)

(0,±2, 0) SO(8)×U(1)

(0,±1, 0) SO(8)×U(1)

(0, 0, 0) SO(8)×U(1)

(0,±3, π) SU(5)×U(1)

(0,±2, π) SU(4)×U(1)2

(0,±1, π) SU(4)×U(1)2

(0, 0, π) SU(4)× SU(2)×U(1)

Table 4. Dualities among and superconformal flavor symmetries for quivers of the form m1F −
SU(4)k−Sp(1)0−Sp(1)−m2F that are descendants of the quiver 6F−SU(4)0−Sp(1)0−Sp(1)−2F .

We abuse notation and capture the θ-angle of the rightmost Sp(1) when it has no fundamental

hypermultiplets by allowing m2 = 0, π.
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that the superconformal flavor symmetries are,

(4, 5) : E6 × E6

(3, 5) : SU(6)× E6

(2, 5) : SU(3)2 × E6

(1, 5) : SU(2)2 ×U(1)× E6

(θ, 5) : SU(2)×U(1)× E6 for θ = 0, π

(m1,m2) : E(m1) × E(m2) ×U(1) for m1,m2 = 0, π, 1, 2, 3, 4 .

(6.11)

6.1.3 Dualities between different quivers

We have two known quiver gauge theories that are marginal for the minimal (E6, E6)

conformal matter theory. These are

[2F ]− SU(2)−

[2F ]

|
SU(2)

|
SU(3)0 − SU(2)− [2F ] , (6.12)

and

6F − SU(4)0 − Sp(1)0 − Sp(1)− 2F . (6.13)

The first gauge theory description comes from string dualities, namely the circle compacti-

fication of an M5-brane probing an R5/E6 singularity. We also find these two gauge theory

descriptions geometrically by studying some resolutions and their rulings, as well as match-

ing the triple intersection numbers with the putative quiver gauge theory prepotential, see

appendix C. Furthermore there is a prospective description in terms of the quiver

5F − Sp(1)− SO(6)− Sp(1)− 5F , (6.14)

for which we stress that there is no geometric underpinning. Curiously, this quiver can be

obtained by gluing two marginal theories of the rank one E-string, by gauging a diagonal

SO(6),

5F − Sp(1)− 3F
gauge diag. SO(6)←−−−−−−−−−→ 3F − Sp(1)− 5F

= 5F − Sp(1)− SO(6)− Sp(1)− 5F .
(6.15)

For (6.13) and (6.14) we have discussed the descendants and the dualities amongst those

descendants in sections 6.1.1 and 6.1.2, and for (6.12) these were discussed in [2]. In

this section we will determine, again from the structure of the CFDs in the CFD-tree,

the dualities not only amongst descendants of the same marginal quiver, but also the

dualities amongst the descendants of all three marginal quivers. As we have previously

stated, descendants of (6.12) are captured by the tuple (m1,m2,m3), those of (6.13) by

(m1, k,m2), and finally the data of the descendants of the quiver (6.14) can be specified

by (m1,m2). For the first two class of quiver gauge theories, we further find that the

prepotentials agree in some region of the respective Coulomb branches. The dualities

amongst all these descendants are shown in table 5.
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(m1, |k|,m2) (m1,m2,m3) (m1,m2)

(6, 0, 2) (2, 2, 2) (5, 5)

(5, 1/2, 2), (6, 0, 1) (1, 2, 2) (4, 5)

(5, 1/2, 1), (4, 0, 2) (1, 1, 2) (4, 4)

(4, 1, 2), (6, 0, 0), (6, 0, π) (0, 2, 2), (π, 2, 2) (3, 5)

(4, 0, 1) (1, 1, 1) –

(3, 3/2, 2) – (2, 5)

(3, 1/2, 2), (4, 1, 1), (5, 1/2, 0), (5, 1/2, π) (0, 1, 2), (π, 1, 2) (3, 4)

(2, 0, 2), (4, 0, 1) (0, 0, 2), (π, π, 2) –

(4, 1, π) (0, π, 2) (3, 3)

(3, 1/2, 1), (4, 0, 0), (4, 0, π) (0, 1, 1), (π, 1, 1) –

(3, 3/2, 1) – (2, 4)

(2, 2, 2) – (1, 5)

(2, 0, 1), (3, 1/2, 0) (0, 0, 1), (π, π, 1) –

(3, 1/2, π) (0, π, 1) –

(3, 3/2, π) – (2, 3)

(2, 0, 0) (0, 0, 0), (π, π, π) –

(2, 0, π) (0, 0, π), (0, π, π) –

(2, 1, 2), (3, 3/2, 1) – –

(1, 3/2, 2), (2, 2, 1) – (1, 4)

(1, 5/2, 1) – (0, 4)

(0, 2, 2) – (π, 4)

(0, 1, 2), (2, 2, 0) – –

(2, 2, π) – (1, 3)

(1, 1/2, 1), (2, 1, 0) – –

(1, 5/2, π) – (0, 3)

(0, 1, 1), (1, 3/2, 0) – –

Table 5. Dualities amongst marginal quiver gauge theory descriptions of minimal (E6, E6) confor-

mal matter. The three columns correspond to the quiver gauge theories (6.13), (6.12) and (6.14),

respectively. We do not write explicitly the obvious duality between (m1, k,m2) and (m1,−k,m2),

and simply write the Chern-Simons level in terms of an absolute value.

6.2 Descendants and dualities for minimal (E7, E7) conformal matter

In section 4.8 we speculated as to maximal quivers that may be marginal theories for

minimal (E7, E7) conformal matter. We found, from the embeddings of the BG-CFDs into

the marginal CFD, that there are precisely two symmetric options. These were

6F − Sp(5)− Sp(5)− 6F

6F − Sp(3)− SO(8)− Sp(3)− 6F .
(6.16)

In this section we will first show that the former quiver is, in fact, inconsistent with the

CFD-tree, and thus cannot be a marginal description of the (E7, E7) theory. Secondly,
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we shall consider the latter quiver, which is consistent, and determine the superconformal

flavor symmetry of its descendant quiver gauge theories.

First we rule out the quiver containing two Sp(5) gauge nodes. Since the bifundamental

representation between the two Sp(5) nodes is real then there is an SU(2) classical flavor

symmetry factor rotating that bifundamental. The descendant quiver

5F − Sp(5)− Sp(5)− 5F , (6.17)

has classical flavor symmetry

SO(10)2 ×U(1)2 × SU(2) , (6.18)

and a study of the descendants of the marginal CFD informs that the superconformal flavor

symmetry, if the quiver were indeed a description of minimal (E7, E7) conformal matter,

would be

E2
6 ×U(1) . (6.19)

However, there does not exist an inclusion of this classical global symmetry group into

the superconformal flavor symmetry group, and thus we find a contradiction with the

assumption that the quiver 6F −Sp(5)−Sp(5)−6F does have minimal (E7, E7) conformal

matter at its UV fixed point. As such, this quiver must be ruled out as a possibility.

The potential marginal quiver 6F − Sp(3) − SO(8) − Sp(3) − 6F does not have such

an issue as there are no real bifundamental hypermultiplets which would have an SU(2)

rotation group. From the CFD, (4.44), one finds that quivers of the form

m1F − Sp(3)− SO(8)− Sp(3)−m2F , (6.20)

are descendants of this putative marginal quiver. For each of the following parameters

(m1,m2), they have superconformal flavor symmetries, which enhance from the classical

flavor symmetry18

SO(2m1)× SO(2m2)×U(1)3 , (6.21)

to the superconformally enhanced values for (m1,m2) given by

(5, 6) : E7 × E7

(4, 6) : SO(12)× E7

(3, 6) : SU(6)× E7

(2, 6) : SU(4)× SU(2)× E7

(1, 6) : SU(3)×U(1)× E7

(0, 6) : SU(3)×U(1)× E7

(π, 6) : SU(2)×U(1)× E7

(m1,m2) : E(m1) × E(m2) ×U(1) for m1,m2 = 0, π, 1, 2, 3, 4, 5 .

(6.22)

Note that we have again used the E(k) shorthand for the exceptional groups, as defined

in (6.9). We stress that these dualities are only determined under the assumption that the

putative marginal quiver is, in fact, a quiver gauge theory which realizes minimal (E7, E7)

conformal matter at its UV fixed point. One approach to verify these dualities from first

principles would be to find the associated rulings in resolutions of the (E7, E7) geometry.

18To make sense of this expression we use the shorthand that the groups SO(0) and SO(π) are trivial.
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6.3 Descendants and dualities for minimal (E7, SO(7)) conformal matter

As shown in [21], the marginal theory for (E7, SO(7)) minimal conformal matter theory

has a single gauge node description of the form SU(4)0 + 2AS + 8F . Here we propose a

dual description as the quiver, which will be supported geometrically as well as from the

CFD and by matching the prepotential, given by

6F − Sp(2)− Sp(1)− 2F . (6.23)

In this section we use the CFD to determine the superconformal flavor symmetries of and

the dualities amongst the descendants of this quiver. Such quivers take the form

m1F − Sp(2)− Sp(1)−m2F . (6.24)

This gauge theory description (as well as the SU(4)0+2AS+8F ) is supported by the rulings

of the geometric resolutions as shown in appendix C, and the triple intersection numbers

match the putative gauge theory prepotential. As a further outcome of the prepotential

analysis, we notice that there are regions of the Coulomb branch of SU(4)k + 2AS +mF

and (6.24), where the prepotential coincide, provided that

m1 = 2± k +
m

2
, m2 = ∓k − 2 +

m

2
. (6.25)

The superconformal flavor symmetries and the dualites for such gauge theories are19

(m, |k|) (m1,m2) GF

(7, 1
2) (5, 2), (6, 1) SO(7)× E7

(6, 1) (4, 2), (6, 0) SO(7)× SO(12)

(6, 0) (5, 1) SO(5)× E6 ×U(1)

(5, 3
2) (3, 2) SO(7)× SU(6)

(4, 2) (2, 2) SO(7)× SU(4)× SU(2)

(3, 5
2) (1, 2) SO(7)× SU(3)×U(1)

− (0, 2) SO(7)× SU(3)

(2, 3) (π, 2) SO(7)× SU(2)×U(1)

(5, 1
2) (4, 1), (5, 0) SO(5)× SO(10)×U(1)

(1 +m, 5−m
2 ) (m, 1) SO(5)× Em+1 ×U(1) m = 1, 2, 3

(1, 5
2) (π, 1) SO(5)×U(1)×U(1)

− (0, 1) SO(5)× SU(2)×U(1)

(m, 4−m
2 ) (m, 0) SO(5)× SO(2m)×U(1) m = 1, · · · , 4

(0, 2) (π, 0) SO(5)×U(1)

− (0, 0) SO(5)×U(1)

− (6, π) SU(2)2 × E7

− (m,π) SU(2)× E(m) ×U(1) m = 0, π, 1, · · · , 5

(6.26)

19Recall once more our convention that SO(x) for x not a positive integer is the trivial group.
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6.4 Dualities for the marginal theory of SU(2n + 1)0 + 2AS + 8F

The gauge theory, SU(2n + 1)0 + 2AS + 8F , and its 6d origin have been discussed in

section 5.3, where we have also shown all the possible embeddings of classical flavor sym-

metries for putative dual theories, see figure 23. To test examples in this infinite class of

dualities via checks of the prepotential, we specialize to n = 2 and compare the proposed

dual theories. In fact, the prepotential matches in non-trivial regions of the respective

Coulomb branches for the following quivers:

4F − Sp(2)− Sp(1)θ − Sp(1)− 2F

4F − SU(3)2 − Sp(1)θ − Sp(1)− 2F

8F − Sp(3)− Sp(1)θ

8F − SU(4)1 − Sp(1)θ

4F − Sp(2)− Sp(2)− 4F

2F − Sp(1)− Sp(1)θ −

[2F ]

|
Sp(1)− Sp(1)θ

(6.27)

The dualities should hold for specific values of the θ-angles, even if the prepotential match-

ing is not sufficient to resolve this ambiguity. This gives strong evidence that our method

of embedding the BG-CFDs of a 5d gauge theory with classical flavor symmetry into the

CFD is particularly useful and efficient in predicting candidate 5d UV-dual theories.

6.5 Dualities for the marginal theory of SU(2n)0 + 2AS + 8F

Similarly to the previous section, we now focus on the following theory SU(2n)0+2AS+8F ,

which has been already discussed in section 5.2. In particular, we test here the predictions

for the existence of alternative effective gauge theory descriptions, which come from em-

bedding the classical flavor symmetry into the CFD, (5.10). These embeddings have been

proposed in figure 20. Specializing to the case n = 3, we can explicitly compute the prepo-

tential, and, for instance, we find that the prepotential for SU(6)0 +2AS+8F is consistent

with the following quivers:

6F − SU(4)1 − Sp(1)θ − Sp(1)θ

6F − SU(4)1 − Sp(2)− 2F

2F − Sp(2)− Sp(3)− 6F .

(6.28)

Again, the dualities will hold for specific values of the θ-angles, which have to be deter-

mined by alternative methods. We observe here, that the proposed duals match with the

embeddings of the classical flavor symmetry as dictacted by the embedding of BG-CFDs

into the CFDs as shown in figure 20.
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7 Fibers from Coulomb branch phases

In the previous sections, we have heavily employed the description in terms of the BG-

CFDs, which are graphs associated to gauge theories, in order to study their SCFT limits

in terms of CFDs. The connection between these two related concepts is based on the

M-theory description underlying both. In particular, we will discuss in this section how

the box graphs encode the geometry for the BG-CFDs, and how, with minimal additional

input, it also determines the superconformal flavor symmetry enhancement.

To begin with, we briefly recall the necessary background material on non-minimal

singularities in elliptic fibrations, their (possibly non-flat) resolutions, and their role in

engineering 5d SCFTs, and refer to [2, 12] for more details.

7.1 5d SCFTs and M-theory on elliptic Calabi-Yau threefolds

We can associate a singular, non-compact elliptic Calabi-Yau threefold π : Y → B to each

marginal theory, whose 6d UV-completion is described by F-theory compactified on Y .

Different mass deformations of the marginal theory, which results in different 5d SCFTs

pushed onto their Coulomb branches, correspond to different crepant resolutions Ŷ → Y .

The resolution introduces compact and non-compact surfaces/divisors, Sj and D
(ν)
i , re-

spectively. In fact, the compact reducible surface S =
⋃
j Sj , j = 1, · · · , r, fully determines

the (local) geometry and completely characterizes the 5d SCFT. In particular, the gauge

group Ggauge is determined by how each surface Sj is ruled, i.e., fibered by P1
j ≡ fj [40].20

There are generally multiple compatible rulings, denoted by f
(n)
j ↪→ Sj , which correspond

to different effective gauge theories with the same SCFT limit, i.e., that are UV-dual to

each other.

The smooth geometry Ŷ corresponds to a generic point on the Coulomb branch, where

the effective description is just a U(1)r theory with no charged light states. By partially

blowing down all rulings fj of the compact surfaces, thus shrinking Sj to a curve, the gauge

symmetry enhances to the full non-abelian group Ggauge. M2-branes wrapping holomorphic

curves that collapse in this limit give rise to massless charged hypermultiplets and the W-

bosons of Ggauge. By further collapsing Sj to a point, the theory becomes a strongly coupled

5d SCFT, as the volume is inversely proportional to the gauge coupling.

At each stage of the two-step collapse, it can happen that non-compact divisors D
(ν)
i are

also forced to shrink, leading to canonical surface singularities along a non-compact curve

in the threefold, whose singularity type encodes the flavor symmetry [42]. In particular,

the singularity type can at most become worse when Sj is collapsed first to a curve and

then to a point. This reflects the field theory intuition on the enhancement GF,cl ⊆ GF

from classical to superconformal flavor symmetry.

The key proposal of [12] to read off the flavor symmetry geometrically, which was sys-

tematized and condensed into CFDs in [1, 2], is to track how the non-compact divisors D
(ν)
i

intersect S. More precisely, these divisors are P1-fibered over a non-compact curve Wν ⊂ B.

Over a generic point on Wν , the fibers F
(ν)
i intersect in an affine Dynkin diagram Ĝ

(6d)
F,ν . In

20See also section 2.2 of [2] for a summary in the same notation as here.
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F-theory, these determine the 6d superconformal flavor symmetry G
(6d)
F =

∏
ν G

(6d)
F,ν . By

construction, a non-compact divisor D
(ν)
i intersects the compact surfaces

⋃
j Sj = S over

isolated points p ∈ Wν . Depending on the resolution, the P1 fiber F
(ν)
i may or may not

be contained in S. Those F
(ν)
i that are contained form the non-affine Dynkin diagram of

GF,ν . Since these fibers shrink everywhere over Wν when S is collapsed to a point, they de-

termine the non-abelian part of the 5d superconformal flavor symmetry, GF,na =
∏
ν GF,ν .

We will refer to these curves, as in [2], as flavor curves.

Abelian factors of the full 5d superconformal flavor symmetry GF come from non-

compact divisors D
(ν)
i whose fibers are not fully contained in S, but nevertheless intersects

S in curves. In general, there can be linear redundancies amongst different such divisors,

which can be inferred from the intersection numbers of all curves inside S and all divisors,

see [2, 12]. In practice, we know on general grounds the full rank of GF from the classical

flavor symmetry GF,cl and the number N of topological U(1)s,

rank(GF) = rank(GF,cl) +N , (7.1)

so that the number of U(1) factors is determined as rank(GF)− rank(GF,cl).

7.2 Fibers from box graphs

Consider now a marginal theory with symmetry Ggauge ×GBG (where GBG is the classical

flavor symmetry of the marginal theory). We now determine from the box graphs, that

are associated to each descendant theory, the intersection structure amongst the divisors

Sj and D
(ν)
i , which in particular specifies which codimension one fibers F

(ν)
i are contained

in S, i.e., which are flavor curves. Both Sj and D
(ν)
i are ruled surfaces, compact and

non-compact, respectively. The fibers are denoted by fj and F
(ν)
i , respectively and we

introduce the notation

D` ∈
{
Sj , D

(ν)
i

}
, F` ∈

{
fj , F

(ν)
j

}
(7.2)

for all divisors and fibral curves. Next, recall the relationship between the representation

theory of a Lie group G and intersection theory in M-theory on a smooth Calabi-Yau

threefold Ŷ : to each ruled surface F` ↪→ D`, we associate a simple root α` to the curve F`
(with normal bundle O ⊕O(−2) inside Ŷ ), and its coroot α∨` to the divisor D`, such that

CG`κ ≡ 〈α∨κ , α`〉 = −Dκ · F` , (7.3)

where CG`κ is the Cartan matrix of G. In our setup, the (co-)roots of Ggauge arise from

D` = Sj , whereas those of GBG come from D` = Di.

The pairing between weights and coweights is identified with the intersection pair-

ing between divisors and curves. Consider a box graph associated to a representation of

Ggauge ×GBG. To an extremal weight L in the box graph (see definition 2.3) we associate

a curve C with normal bundle O(−1) ⊕ O(−1), and refer to such a curve as an extremal

curve. Denote by L± = ±L, where in a given box graph only one of these is in the cone
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αi αi+1

L+ L-3 4

=-L2
-+L3

++αi+αi+1

1L
+

2L
-

α
gauge

α
gauge

Figure 25. Example box graph for SU(n)gauge × U(m)BG: the root αgauge of the gauge algebra

SU(n) splits. The extremal weights are boxed in red. The splitting of αgauge into the extremal

weights L−2 and L+
3 , as well as the roots of GBG, αi, is determined from the box graph. The arrows

indicate, as usual for box graphs, addition of roots. In the geometry, we associate to αgauge the

curves fi and to αj the curves Fj .

defining the Coulomb branch, and associated to that the curve C± = ±C (which is an

effective curve if the corresponding weight is in the cone), related by

(L±)` ≡ ±〈α∨` , L〉 = ∓D` · C± . (7.4)

All other weights are then realized as the linear combination of extremal curves and F`.
A curve F associated to a root, which can be either a codimension one fiber F

(ν)
i or

a ruling fj of the surface Sj , is reducible in codimension two, if the associated box graph

indicates a splitting

F =
∑
a

naC
εa
a +

∑
ν

∑
i

ω
(ν)
i F

(ν)
i +

∑
j

ηjfj , ωi, ηj ≥ 0 . (7.5)

The first sum is over all extremal curves Cεaa , where εa = ±. An example is shown in

figure 25.

If F = fj is the ruling of a compact divisor Sj , then we can immediately deduce that

all curves appearing on the right-hand side of (7.5) must be contained in Sj , and thus

in S. In particular, the simple roots of the classical flavor symmetry GF,cl are precisely

those F
(ν)
i into which an fj splits via (7.5). In the example of figure 25 these are the roots

associated to Fi and Fi+1.

As for the superconformal flavor symmetry, recall that the Dynkin diagram of GBG —

which is also the classical flavor symmetry of the marginal theory — fills only a subpart of

the affine Dynkin diagram Ĝ
(6d)
F ≡

∏
ν Ĝ

(6d)
F,ν . We denote divisors that are not captured in

the box graph, but are also ruled non-compact surfaces, by

FΦl
↪→ DΦl

. (7.6)

In order to distinguish them from the roots/Cartans of GBG, these will be denoted by

Fi ↪→ Di in the following. To encode in the box graph approach the full superconformal
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flavor symmetry requires determining how these additional nodes are attached to the part

of the fiber that we reconstruct from the box graph.

Physically, these “missing” divisors either correspond to abelian factors of the classical

flavor symmetry (and hence have no roots that appear in the box graph), or even the non-

perturbative instanton U(1)s associated with each simple factor of Ggauge. Nevertheless,

they can be fully contained in S (as (multi-)sections of the rulings), and thus lead to an

enhanced superconformal flavor group.

The precise nature of the curves FΦl
(e.g., the information on how they split, or in

which surface Sj they are contained) is dictated by consistency conditions from intersection

theory. For that, we need one piece of information which is not contained in the box graphs,

namely the intersection numbers DΦl
· C, where C is an extremal curve. These numbers

depend on the resolution phase, as the extremal curves C are different in each phase.

However, what remains invariant throughout all phases is DΦl
· C(L), where C(L) is the

curve (possibly reducible) associated to a particular weight L in the box graph. This is

because the linear combinations of divisors corresponding to abelian flavor symmetries

must give rise to well-defined charges for all weights L ∈ R of the box graph. These linear

combinations do not change across different resolutions, as they are — similar to the Shioda-

map for U(1)s in F-theory — divisorial, i.e., codimension one data. Correspondingly, the

charges of the individual weights R under each DΦl
must remain invariant. In practice, we

therefore compute DΦl
· C(L) for all l and weights L. This has to be done in one specific

resolution, e.g., for the marginal theory having a Ggauge gauge description, or indeed for

any other resolution.

This data can also be phrased representation-theoretically. We can extend the (co-

)weight lattice by additional (co-)roots Φ∨l and Φl, such that every weight Lm carries

additional charges given by the pairing

〈Φ∨l , Lm〉 . (7.7)

The holomorphic curve C(Lεmm ) that corresponds to a decoration εm = ±1 of Lm then has,

as in (7.4), the intersection

El,m = DΦl
· Cεmm = −εm〈Φ∨l , Lm〉 . (7.8)

In concrete examples, we will provide the numbers El,m, as determined by any one specific

resolution, for the associated undecorated box graph.

With these numbers, the fiber geometry can be deduced from well-known intersection

properties of elliptically fibered threefolds. Firstly, we know that the intersection numbers

Ĉ(6d)
`κ = −F` · Dκ , with F` ∈ {Fi, FΦl

} and Dκ ∈ {Di, DΦl
} , (7.9)

form the affine Cartan matrix of Ĝ
(6d)
F . Secondly, we have

Sj · F` = 0 for F` ∈ {Fi, FΦl
} . (7.10)

Finally, we know from the factorization Ggauge ×GBG that

Di · fj = Sj · Fi = 0 for all i, j . (7.11)
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With the above information, we can apply in each phase the following rules from

intersection theory to determine the fiber structure:

1. If an irreducible curve has negative intersection with a divisor, C · D < 0, then C

must be contained in D.

2. If a ruling of a surface (compact or not) splits as in (7.5), then all curves into which

it splits must form a connected curve.

3. If a codimension one fiber F` does not split, then D` · C ≥ 0 for any curve C 6= F`,
such that C is not contained inside of D`. If D` ·C = n > 0, then C and F` intersect

in n points.

4. If a non-splitting codimension one fiber F intersects a curve C contained in a compact

surface Sj , then F ⊂ Sj , and is a flavor curve.

While the first three points follow from basic algebraic geometry, the last point is due to

the intersection number (7.10): if F intersects a curve C ⊂ S, the only way to preserve

this intersection number is if F is also contained. By these rules, it is straightforward to

reconstruct the configurations of the compact surfaces Sj and the relative positions of the

codimension one fibers F = Fi, FΦl
.

As a last comment, note that the intersection pattern of extremal curves and the

roots Fi of GBG contained in S precisely form the BG-CFD. These curves shrink when

we blow down the surfaces Sj to curves in order to have non-abelian gauge enhancement.

Conversely, if a geometry is supposed to contain a specific gauge description, then it must

contain the BG-CFD as a subset of curves.

In summary our strategy will be as follows:

For the marginal 5d theories, we determine the geometric resolution. The flavor symmetry

G
(6d)
F of the parent 6d theory will be manifest in this description. Different rulings of the

surfaces yield different weakly coupled gauge theory descriptions with Ggauge ×GBG. The

geometric resolution provides the following data:

• The embedding of the BG-CFD of GBG into G
(6d)
F (i.e., the information about how

the curves FΦl
are attached to the curves associated to the roots of GBG),

• Pairings 〈Φ∨l , L〉 for all weights L.

To determine the descendant 5d SCFTs with an effective Ggauge description, we first con-

struct all (flavor equivalence classes of) Coulomb branch phases. For each descendant,

self-consistency of the box graphs and intersections of Φ` fixes the fiber, and thus the full

superconformal flavor symmetry enhancement in the SCFT limit.

7.3 Fiber reconstruction for rank one SCFTs

In the following, we will first discuss in detail how these methods apply to 5d SCFTs

of rank one. The marginal geometry, descending from the 6d rank one E-string, has an

SU(2)gauge×SO(16)F gauge theory description. The corresponding SU(2)gauge×SO(16)BG

box graphs have been presented previously in section 2.4.
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To translate them into geometry, we first associate to the simple roots the rational

curves

SO(16)BG : Fi ↔ −αi , i = 1, · · · , 8 ,
SU(2)gauge : f ↔ −αSU(2) ,

(7.12)

where f ↪→ S is the ruling of the compact surface introduced in the resolution of the

non-minimal singularity of the elliptic threefold at the (E8, I1) collision (see [2] for more

details). The Fi rule non-compact divisors Di resolving the codimension one E8 singularity

and intersect in the non-affine Dynkin diagram of SO(16). They are embedded into the

affine E8 fiber as follows:

Φ

α7

α1 α5α4α3α2 α8α6

SO(16)
(7.13)

The intersection numbers (Di · Fj)ij give the negative Cartan matrix of SO(16). The

additional node FΦ ↪→ DΦ corresponds to the “extra” root of E8 missed by the SO(16)BG

embedding (see (7.13)) and has intersection numbers

DΦ · FΦ = −2, Di · FΦ = DΦ · Fi = δi8 . (7.14)

These intersection numbers are independent of the resolution phase, as they pertain to the

codimension one fibers. Likewise, we have for every phase

Di · f = S · Fi = S · FΦ = 0 , i = 1, · · · , 8 . (7.15)

The different phases are given by the decorated box graphs in figure 2. In the following,

we construct the fibers for these phases. The result, including the flavor group GF of

the SCFT (if existent), is listed in table 6, together with the decorated box graphs for

completeness.

Phase I. The box graph for phase I is

. (7.16)

The only curve that splits in codimension two is the root of the SU(2), i.e., f , which

maps from the lower representation graph of the 16 to the upper. There are two extremal

weights, which are identified due to the pseudo-reality of the representation

L+
1,16 = L−2,1 . (7.17)

For definiteness, we will work with L−2,1, and associate a minus-sign with the corresponding

extremal curve C−2,1 ≡ C−.
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Phase Topology of S Codim. 2 Fiber Box Graph GF

I gdP9

-1

II gdP8

-1 -1

E8

III gdP7

-1-1

E7

IV gdP6

-1-1

E6

V gdP5

-1 -1

SO(10)

VI gdP4

-1 -1

SU(5)

VII gdP3

-1 -1

SU(2)× SU(3)

VIII gdP2
-1-1

-1-1

-1-1

SU(2)×U(1)

IX dP1
0

-1

-1 U(1)

X gdP1
∼= F2

-1     0 SU(2)

Table 6. Box graphs and codimension two fibers corresponding to the rank one 5d SCFTs. The sur-

face S with given topology, which in an M-theory realization would supply the SU(2) gauge theory

description, contains the codimension two fiber that is shown. Obtained in [2] from non-flat resolu-

tions, all curves have self-intersection −2 inside S, except when otherwise noted. The orange colored

rational curves are those contained in the surface component S. The flavor curves are the fully con-

tained (−2)-curves (colored and unlabeled). We furthermore list the box graph/Coulomb branch

phase for the gauge theory description of SU(2)gauge × SO(16)BG with matter in the (2,16). The

last column contains the enhanced flavor symmetry GF of the 5d SCFT obtained from shrinking S.
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The box graph dictates the following splitting for f

f → 2C− + 2F1 + 2F2 + 2F3 + 2F4 + 2F5 + 2F6 + F7 + F8 , (7.18)

where the only non-zero intersections of C− are

〈α∨1 , L2,1〉 = D1 · C− = 1 , 〈α∨SU(2), L2,1〉 = S · C− = −1 . (7.19)

Thus, the extremal curve C− is attached to F1, and is contained in S. By rule 4 in the

previous subsection, all Fi must be contained in S as well.

It remains to analyze the fate of FΦ — the extra curve, that is not contained in the

data of the gauge theory description. Without any further input, we have to consider the

explicit resolution presented in Part I [2], where the geometry was determined to be gdP9.

The geometry implies that FΦ is irreducible and is fully contained in S. The corresponding

fiber is depicted at the top of table 6.

With this geometric input, we can compute the intersections 〈Φ∨, Li,j〉 for all weights

Li,j of SU(2)gauge×SO(16)BG, which we can use for the subsequent phases. First, there are

sixteen effective curve classes corresponding to the weights L−2,j , j = 1, . . . , 16 (see figure 1)

corresponding to the eight SU(2)gauge flavors which transform as a half-hypermultiplet in

the bifundamental of SU(2)gauge× SO(16)BG. In the decorated box graph (7.16), they are:

L−2,1 ↔ C−

L−2,2 ↔ C− + F1

...

L−2,8 ↔ C− +
7∑
i=1

Fi

L−2,9 ↔ C− +
6∑
i=1

Fi + F8

L−2,10 ↔ C− +

6∑
i=1

Fi + 2F7 + F8

L−2,11 ↔ C− +

5∑
i=1

Fi +

7∑
i=6

2Fi + F8

...

L−2,16 ↔ C− +
7∑
i=1

2Fi + F8 .

(7.20)

From the codimension one affine E8 fiber, we know that DΦ · F8 = 1 and DΦ · Fi = 0

for i 6= 8, and furthermore we determined that DΦ · C− = 0. Thus, the curves in (7.20)

associated to the weights L2,j of the box graphs have intersections with the additional

divisor DΦ as follows

DΦ · C(L−2,j) = 〈Φ∨, L2,j〉 =

{
0 , if j < 9 ,

1 , if j ≥ 9 .
(7.21)
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Finally, the box graphs also determine the charges of the conjugate states via

L1, j+8 = −L2, 9−j .

Phases II–VII. Denote the phase given by the Roman numeral corresponding to n+ 1

by the Arabic numeral n, i.e., phase II corresponds to n = 1, phase III to n = 2, etc. Then

the splitting dictated by the box graph is

Fn → C+
1,16−n + C−1,17−n ,

f → 2C+
1,16−n + F7 + F8 +

6∑
j=n+1

2Fj .
(7.22)

Recall Fi are the curves associated to the roots of the SO(16)BG, which act along the 16

representation, and f the one of the SU(2)gauge. The intersections of the curves with the

Cartan divisors Di and S can be read off from the associated weight in the box graph.

From figure 1, the non-zero numbers are

(Dn−1, Dn, Dn+1, S) · C+
1,16−n = (0,−1, 1,−1) ,

(Dn−1, Dn, Dn+1, S) · C−1,17−n = (1,−1, 0, 1) .
(7.23)

For n = 1 there is of course no D0, and these terms are thus ignored. Furthermore, (7.21)

implies DΦ · C+
1,16−n = DΦ · C−1,17−n = 0 for 1 ≤ n ≤ 6. This means FΦ does not split into

any of these components. Similarly as in the case for Phase I, the curve F8 is contained

inside of S, and thus FΦ, since it does not split, must also be contained. The fibers and

box graphs are shown in table 6.

The weakly coupled 5d gauge theory of these phases is SU(2)gauge+(8−n)F. Therefore

the weakly coupled flavor group is GF,cl = SO(16 − 2n), which including the U(1)T gives

rank M = 9 − n for GF. In these phases, all ranks are accounted for by the shrinking

simple roots including Φ, so there is no abelian factor and one has GF = E9−n.

Phase VIII. In this phase the splitting is

F7 → C+
1,9 + C−1,10 ,

F8 → C+
1,8 + C−1,10 ,

f → C+
1,8 + C+

1,9 ,

(7.24)

with non-trivial intersection numbers

(D6, D7, D8, S) · C+
1,8 = (0, 1,−1,−1) ,

(D6, D7, D8, S) · C+
1,9 = (0,−1, 1,−1) ,

(D6, D7, D8, S) · C−1,10 = (1,−1,−1, 1) .

(7.25)

By (7.21), we then have

DΦ · C+
1,9 = DΦ · C−1,10 = 0 , DΦ · C+

1,8 = 1 . (7.26)
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These intersection numbers are again consistent with a non-splitting of FΦ, which intersects

the split curve F8 at the component C+
1,8. Because C+

1,8 is contained in S, so FΦ must be

contained (see table 6).

At weak coupling, this phase has a 5d SU(2)gauge+1F description with flavor symmetry

GF,cl = SO(2) ∼= U(1) as well as the U(1)T symmetry, consistent with no Fi fully wrapped.

However, by passing to strong coupling, there is a non-trivial enhancement induced by the

U(1)T , leading to a non-abelian SU(2)F part indicated by FΦ being wrapped. To preserve

rank, we must then have GF = SU(2)×U(1).

Phase IX. The box graph for phase IX implies the splitting

F7 → 2C−1,8 + F8 + f . (7.27)

These three curves arrange as

. . .− F6 − F8 − C−1,8 − f , (7.28)

in order to comply with the intersection numbers S · F7 = S · F8 = D7 · f = 0, as well as

the weights of the curve C−1,8:

(D7, D8, S) · C−1,8 = (−1, 1, 1) . (7.29)

These intersection numbers in turn determine, as we know from (7.21),

DΦ · C−1,8 = −1 . (7.30)

This means that DΦ contains C−1,8, and hence the fiber component FΦ must split,

FΦ → C−1,8 + Γ . (7.31)

Since we know S · FΦ = 0, we can compute the intersection numbers of the new curve Γ,

(D1, · · · , D8, DΦ, S) · Γ = (0, 0, 0, 0, 0, 0, 1, 0,−1,−1) . (7.32)

Thus Γ ⊂ S. Since Γ is not a curve appearing in the box graph, it has to be a (multi-)section

of the ruling, and hence Γ ·S f ≥ 1.21

On the other hand, Γ and C−1,8 must be also attached due to the splitting (7.31).

Naively, it would appear as if C−1,8, which lies outside of S, had two different intersection

points with each f and Γ that are in S. This is clearly in violation of S · C−1,8 = 1. The

resolution of this puzzle is that the point in which S and C−1,8 intersect is also an intersection

point of f and Γ inside S. The resulting fiber picture is depicted in table 6. Since the

weak coupling SU(2)gauge description has no matter, there is only the topological U(1)T .

As FΦ splits off C−1,8 which is not wrapped, there is no non-abelian enhancement, and we

have GF = U(1).

Note that because the (−1)-curve Γ is not part of the box graph, the gauge theory

description of the geometry does not see the transition corresponding to flopping this

21In the explicit resolution, cf. Part I [2], one can explicitly show Γ ·S f = 1.
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curve. Nevertheless, to consistently embed the SO(16)F box graph splittings into the affine

E8 Dynkin diagram requires the existence of this curve, which we can now flop. The

resulting Phase XI has no gauge theory description and no flavor symmetry. Obviously,

this phase is not visible in the gauge theoretic approach, but nevertheless part of the

geometric classification, see [2, 10, 12, 39].

Phase X. The splitting is

F8 → 2C−1,9 + F7 + f . (7.33)

From the intersections,

(D7, D8, S) · C−1,9 = (1,−1, 1) , (7.34)

it follows that C−1,9 is not contained inside the surface S. Furthermore, we have D7 ·C−1,9 = 1

and D7 · f = 0, corresponding to a fiber with

. . .− F6 − F7 − C−1,9 − f − . . . . (7.35)

Now, because we have DΦ · C−1,9 = DΦ · F7 = 0, FΦ does not split. However, since

DΦ · F8 = 1, we see that FΦ must attach to the above chain at the curve f to preserve the

intersection number. Then, because f is contained in S as its ruling, FΦ must as well be

a curve in S to satisfy S · FΦ = 0. We can see the structure in table 6.

The wrapped (−2)-curve FΦ gives the SU(2)F flavor group in the SCFT limit of the

pure SU(2)gauge gauge theory. Note that in this case, we see that the surface S does not

contain any (−1)-curves. This not only explains the absence of any massless charged matter

at weak coupling, but also why this phase cannot be further flopped geometrically, i.e., the

SCFT does not have any further mass deformations.

7.4 Classification of rank 2 theories from box graphs

From the Coulomb branch phases/box graphs of the rank one 5d gauge theories we learned

two things: the box graphs give a succinct representation-theoretic description of all the

Coulomb branch phases — and thereby characterization of all 5d SCFTs with a weakly-

coupled gauge theory description, as well as the mass deformations and RG-flows connecting

them. Secondly, the box graphs reconstruct the geometry, in particular curves that are

contained in the compact divisors of the M-theory realization. These in turn determine

flavor symmetries of the 5d UV fixed point theories. The only additional input that is

necessary is the embedding of the weakly-coupled flavor symmetry of the marginal theory

GBG, which is fixed with one geometric input (in rank one, this is the embedding of SO(16)

into Ê8, which determines how the additional curve FΦ is attached). This approach also

provides a gauge theoretic counterpart to the geometric classification and properties of

the rank two 5d SCFTs [2, 10]. The corresponding marginal theories have weakly-coupled

gauge theory descriptions as summarized in Part I, appendix A [2].
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7.4.1 Marginal theories and box graphs

We present all rank two gauge/quiver descriptions, and determine their box graphs and

descendant trees in appendix A. Let us briefly summarize the theories here.

The marginal 5d theory arising from the rank two E-string theory on S1 has the

following weakly coupled gauge theory descriptions:

• SU(3) 3
2

+ 9F ,

• Sp(2) + 8F + 1AS,

• 5F − SU(2)− SU(2)− 2F .

The box graphs for these theories are shown in figures 30, 31, and 32, respectively.

For the minimal (D5, D5) conformal matter theory on S1, there are also three weakly

coupled descriptions of the marginal theory:

• SU(3)0 + 10F ,

• Sp(2) + 10F ,

• 4F − SU(2)− SU(2)− 4F .

The box graphs for these, and the descendant theories are shown in figures 33, 34, and 35,

respectively.

There are additional 5d marginal gauge theories which act as starting points for RG-

flows, which are discussed in appendix A. There are a few observations to be made: the

tree structure matches that of the geometric transitions/flops as well as CFD-transitions

for rank two SCFTs. Furthermore, the theories match precisely with those that are known

to have a gauge theory description. This is strong evidence that the flavor-equivalence

classes of box graphs captures these theories correctly.

To make further use of these Coulomb branch descriptions, we need to add, much like

in the rank one case, the information about the embedding of the flavor symmetry of the

marginal theory into the 6d flavor symmetry. Once we have supplemented the box graphs

with this information, the superconformal flavor symmetries of all descendants can be read

off as well — this is already included in the figures in appendix A.

7.4.2 Phases to fibers

We exemplify this now by studying the rank two E-string and (D5, D5) minimal conformal

matter theories, that have both a description in terms of a marginal SU(3) gauge theory.

Recall that geometrically, the theories descending from the rank two E-string are ob-

tained from M-theory on an elliptically fibered Calabi-Yau threefold, with a non-minimal

singularity from an (E8, SU(2)) collision. Let us denote the affine E8 fiber components and

corresponding non-compact divisors by FE8
i ↪→ DE8

i , i = 1, · · · , 9 as shown in (7.36),22 and

the two SU(2) components by F
SU(2)
i ↪→ D

SU(2)
i , i = 1, 2.

22We choose this slightly non-standard enumeration as this is more natural when identifying the embed-

ding of the U(9) flavor symmetry.
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Figure 26. The pairings nl = 〈α∨l , L〉 between the (3,9)-weights L and the coroots α∨l that are

not part of U(9)BG. For any decoration of this box graph, these numbers encode via (7.4) the

geometric intersections with additional non-compact divisors DΦl
over the affine E8 and SU(2)

fibers. Specifically, nΦ denotes the pairing with the coroot DΦ (the additional E8 coroot), and n1,2

those with D
SU(2)
1,2 .

The 5d theories descending from circle compactifications of this 6d model have rank

two. From an explicit blow-up resolution (see appendix C.1) one can read off the three

different 5d gauge theory descriptions listed above. In the following we will discuss the

fiber reconstruction from the box graphs from the SU(3) gauge theory description.

For the rank two E-string on S1, the marginal theory is SU(3)+9F , and the descendants

are characterized in terms of box graphs for SU(3) × U(9)BG. There is essentially one

unique way to embed the eight roots Fi of SU(9) ⊂ U(9) into the codimension one fibers of

E8 × SU(2), namely, into the connected chain of eight nodes inside the affine E8 diagram.

We fix the ambiguity of ordering by the identification:

, (7.36)

where FΦ ≡ FE8
9 is the additional node that the gauge theory phase does not capture. This

leaves codimension one fibers FE8
Φ ↪→ DE8

Φ and F
SU(2)
1,2 ↪→ D

SU(2)
1,2 out of the box graphs,

which may be interpreted as additional coroots Φ∨ ≡ Φ∨0 and Φ∨1,2, respectively. As in

the rank one cases, we first determine the intersections 〈Φ∨l , Lm〉 of the box graph weights

Lm. We do this in the explicit resolution detailed in appendix C.1. From the intersection

numbers (C.3) between the extremal curves associated with these sign assignments and the

divisors DE8
Φ and D

SU(2)
1,2 , we can then infer the intersections of all the curves. We collect

this information in the representation graph in figure 26.

To clarify the process, we provide three concrete examples in figure 27. The fibers

are precisely the ones we discussed in Part I [2] from a direct resolution computation of

non-minimal singularity.
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(a) SU(3)×U(9) Box Graph. (b) Rank 2 E-string codim 2 fiber for (a)

(BU
(E8,SU(2))
1 ).

α1 α7α6α5α4α3α2 α8
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(c) SU(3)×U(9) Box Graph. (d) Rank 2 E-string codim 2 fiber for (c)

(BU
(E8,SU(2))
2 ).

α1 α7α6α5α4α3α2 α8

α1

α2
gauge

gauge

(e) SU(3)×U(9) Box Graph. (f) Rank 2 E-string Codim 2 fiber for (e)

(BU
(E8,SU(2))
3 ).

α1 α7α6α5α4α3α2 α8 α9

α1

α2
gauge

gauge

(g) SU(3)×U(10) Box Graph. (h) (D5, D5) Codim 2 fiber for (g)(BU
(D10,I1)
1 ).

Figure 27. Examples, (a) to (f), of box graphs and the associated codimension two fibers for

SU(3)gauge×U(9)BG phases of the rank two E-string, as well as one example, (g) and (h), for (D5, D5)

conformal matter; these examples have appeared in Part I, [2], in terms of explicit resolutions. Note

that (a) and (c) are in the same flavor equivalence class. The roots for GBG are denoted αi and

associated curves Fi. The roots of the gauge group are αgauge
i , which are dual to the compact

surfaces Si, i = 1, 2. The colors cyan/orange on the r.h.s. indicate which codimension one curves

Fi are contained in which Si. Note that for the rank two E-string the SU(2) part of the fiber also

splits, but does not contribute in these examples to the flavor symmetry and we omit to draw it.

We can repeat the exercise for the marginal SU(3) + 10F gauge description of the

S1-reduction of the (D5, D5) minimal conformal matter theory. The box graphs for all

descendants are shown in figure 33. To reconstruct the fiber in these cases, we consider

the embedding of the classical flavor symmetry U(10)BG into 6d superconformal flavor

symmetry, i.e., the affine SO(20) Dynkin diagram

. (7.37)
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Let us denote the curves associated to the “extra” nodes of the affine SO(20) codimension

one fiber as FΦ ↪→ DΦ and F
Φ̃
↪→ D

Φ̃
, where we fix the ordering by

DFΦ
· F2 = D2 · FΦ = 1 , D

Φ̃
· F8 = D8 · FΦ̃

= 1 , (7.38)

and zero intersection with all other components of the affine SO(20) fiber. These cor-

responds to roots Φ, Φ̃ that do not feature in the flavor group U(10)BG of the marginal

SU(3)gauge description. From a concrete resolution, one can determine the corresponding

coroots having the following pairings with the (3,10) weights Li,j in the top and bottom

row of a decorated SU(3)gauge ×U(10)BG box graphs:(
〈Φ∨, L±1,j〉
〈Φ̃∨, L±1,j〉

)
= ∓

(
1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0

)
, (7.39)

and (
〈Φ∨, L±3,j〉
〈Φ̃∨, L±3,j〉

)
= ∓

(
0 0 −1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 −1 −1

)
. (7.40)

Using the same methods as for the SU(3)gauge × U(9)BG phases above, one can determine

with this information whether the fibers FΦ, F
Φ̃

are contained in the compact surface for

any decorated SU(3)gauge × U(10)BG box graph. An example is shown in figures (g) and

(h) of 27.

8 SCFTs/CFDs from box graphs

As we have already argued in section 3, the box graphs can be condensed into so-called flavor

equivalence classes. In this section, we show explicitly how this reduction of redundant

information is mimicked in the (BG-)CFD representation of the geometry.

To begin with, let us first recall from section 3 that the flavor equivalence classes

are characterized by a set αBG
j of flavor roots which are contained in the combined split-

ting (3.2) of gauge roots in this equivalence class. This splitting can be inferred from the

reduced box graphs. Geometrically, these flavor roots correspond to the set of codimension

one curves Fi which are contained in the sum of all the rulings fj which split according

to (7.5). Since flops between flavor equivalent phases by definition do not change this

overall splitting, the particular set of flavor roots remain parts of the rulings on S in all

phases, and hence collapse in the non-abelian gauge enhancing limit, giving rise to the

classical flavor symmetry GF,cl of this equivalence class. Moreover, the set of (−1)-curves

corresponding to the F-extremal weights also remain, by definition, invariants within a

flavor equivalence class. Note that in some phases, the curve may be reducible; however —

again by definition — there always exists a phase in which the curve does not split. Thus,

the BG-CFDs precisely correspond to the intersection pattern of the curves associated with

the F-extremal weights and the flavor roots contained in the splitting of gauge roots.

The embedding of the BG-CFDs into the full CFD also played an important role in

our discussion of constraining possible gauge descriptions of SCFTs. Again, this is based

on the underlying geometry and intersection theory. In the following, we will show how
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the reduced box graphs, that specify the BG-CFDs, also determine superconformal flavor

symmetry once we specify the attachments of the “missing” codimension one components

FΦl
↪→ DΦl

.

8.1 Box graphs to superconformal flavor symmetry and CFDs

The argument follows the same logic as in the previous section, where we have discussed in

detail how to determine the explicit fiber structure from a decorated box graph. Namely,

we need to clarify if the extra roots Φl are part of the CFD or not. This requires the

minimal geometric input in form of the pairings

El,n = 〈Φ∨l , Ln〉 (8.1)

between the extra coroots Φ∨l and the F-extremal weights Lεnn , which translates into ge-

ometric intersections between F-extremal curves Cεnn and divisors DΦl
. At the level of

flavor equivalence classes, consistency of intersection numbers and the reduced box graphs

themselves implies the following rules on how to attach the node Φl to the BG-CFD:

1. If −εn El,n < 0 for an F-extremal weight Lεnn , that is not contained in the BG-CFD,

then Φl is not part of the CFD. This is because the inequality implies Φl → Lεnn + · · · ,
and Lεnn is not in the BG-CFD.

2. If −εn El,n ≥ 0 for all Lεnn that are not part of the BG-CFD, but there exists one

Lεmm that is a (−1)-vertex in the BG-CFD, such that −εm El,m > 0, then FΦl
has

a non-empty intersection with a curve in the CFD. Because it does not split into

anything outside the BG-CFD, Φl is a (−2)-vertex inside the full CFD.

3. If −εn El,n ≥ 0 for all F-extremal weights Lεnn that are not in the BG-CFD, and

−εm El,m ≤ 0 for all F-extremal weights Lεmm that are part of the BG-CFD, with

at least one m such that −εm El,m < 0, then Φl becomes reducible and splits into

weights/roots in the BG-CFD, and thereby has to also be contained as a (−2) vertex.

4. Finally, if El,m = 0 for all F-extremal weights Lεmm in the BG-CFD, then Φl is a (−2)-

vertex of the CFD if and only if there is a (−2)-vertex F` in the BG-CFD ` such that

DΦl
· F` > 0.

With these rules we can reconstruct a CFD, which captures the non-abelian part of the

superconformal flavor symmetry, from which it is then easy to infer the abelian factors

from the classical flavor symmetry and the number of instanton U(1)s, see (7.1).

Note however, that the CFDs we construct in this way — which we will refer to as

reduced CFDs — are generically sub-graphs of the full CFDs that we defined in [1] and de-

rived from the geometry in [2]. There are (−1)-vertices corresponding to non-perturbative

states of the gauge description associated with the BG-CFD, as well as unmarked ver-

tices with ni ≥ 0, which cannot be reconstructed in this way. What we capture using the

present gauge theoretic approach is the superconformal flavor symmetry (encoded in the

(−2)-vertices) and tree-structure (captured by the (−1)-vertices, upon which we can apply
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the standard CFD-transitions) of the reduced CFDs, which have the gauge description of

the chosen BG-CFD. However, as we have discussed in section 6, one can access other

branches of the descendant tree by passing to a dual gauge description, and consider the

BG-CFDs of such theories.

In summary: the reduced CFDs are constructed from the flavor-equivalence classes of

Ggauge × GBG box graphs, in conjunction with minimal input from the geometry, which

specifies how the BG-CFD of the marginal Ggauge-theory is embedded into the fiber of the

elliptic model that describes the marginal theory. The reduced CFDs contain

• marked subgraph (and thereby the Dynkin diagram of the superconformal flavor

symmetry) of the full CFD,

• (−1) vertices, which in the full CFD have an interpretation as matter hypermultiplets

charged under Ggauge.

It does not contain those (−1) curves (and higher self-intersection curves), which transition,

when flopped, to a geometry without a compatible ruling, and thus to an SCFT that does

not have a weakly coupled Ggauge description.

8.2 Rank two CFDs from box graphs

We now use the above approach to determine for all rank two theories the superconformal

flavor symmetry, starting from the box graphs and the minimal information from the fibers.

The results are summarized in appendix A.

To start with, let us again consider the SU(3)gauge × U(9)BG example we studied in

section 3.2, and shown in figure 28 (see also 27, (a) and (c)). On the right hand side

of figure 28, there are three box graphs that are in the same flavor equivalence class.

The reduced box graph for this equivalence class is given by simply deleting the middle

row, as shown on the left hand side of figure 28. The splitting dictated for the whole

flavor equivalence class is given by the F-extremal weights23 L+
1,7, L

−
1,8, L

+
3,2, L

−
3,3, and the

following roots become reducible

F2 → L+
3,2 + L−3,3

F7 → L+
1,7 + L−1,8 .

(8.2)

Note that in the full box graphs on the r.h.s. of figure 28, the F-extremal weights are not

always extremal (can be flopped in the box graph). An example is in model (b) the weight

L+
1,7 and in (c) the weight L−3,3. We will see momentarily that this is however immaterial

in determining the flavor symmetry.

Recall that the SU(3)gauge × U(9)BG box graph provide a gauge theory description

of the rank two E-string (realized by a (E8, SU(2)) collision of singularities), where the

SU(9)BG ⊂ U(9)BG fully embedded inside the affine E8 Dynkin diagram as in (7.36).

The BG-CFD is already determined for this flavor equivalence class in figure 5.

In particular the CFD contains the roots αi, i = 3, . . . , 6 as (−2)-vertices and, since

23We use the same labeling for weights as in figure 6.
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Reduced Box Graph Box Graphs in the same 
Flavor Equivalence Class

Extremal Weights

(a)

(b)

(c)

Figure 28. An example of a reduced box graph (r.h.s.) and elements in the same flavor equivalence

class (box graphs shown on the right) for SU(3)×U(9). The F-extremal curves are marked in red,

the extremal curves of the box graphs are marked by a cross. This shows that F-extremal curves

are not necessarily always extremal for every box graph of the flavor equivalence class. The key

is that changing the sign assignment of the F-extremal curves results in a different SCFT and

superconformal flavor symmetry. The box graphs in a given flavor equivalence class are all distinct

gauge theory descriptions that have the same UV fixed point.

〈α∨3 , L3,3〉 = −〈α∨6 , L1,7〉 = −1, the two weights L+
3,3 and L−1,7 as (−1)-vertices. We next

need to determine whether there are any additional vertices Φl from the geometry.

For this note that we determined already the pairings El,n between the weights Ln and

the additional roots Φl for this case in figure 26. These were determined from the marginal

resolution geometry. Denoting by Φ and Φl, l = 1, 2 the roots associated with the three

extra nodes, first observe that

〈Φ∨, Li,j〉 = 0 , (8.3)

for all F-extremal weights Li,j in the flavor equivalence class. Furthermore, DΦ · F6 = 1.

As F6 is part of the BG-CFD, Φ is a (−2)-vertex in the CFD as well, and will contribute

thereby to GF.

To determine whether the roots Φ1,2 of the affine SU(2) are part of the CFD, note that

〈Φ∨1 , L3,2〉 = 1 . (8.4)

Since in this reduced box graph, the sign of L3,2 (which is not part of the BG-CFD) is +,

rule 1. above implies that Φ1 not part of the CFD either. Likewise,

〈Φ∨2 , L1,8〉 = −1 , (8.5)

which, together with the sign (−) and the fact that L1,8 is not in the BG-CFD, implies

that Φ2 does not contribute, either. What we obtain is the CFD shown in figure 29.

To conclude this example, the non-abelian part of the superconformal flavor symmetry

is GF,na = SU(6). For this particular flavor equivalence class, the associated 5d effec-

tive gauge theory is SU(3)gauge + 5F , so its total global symmetry (at weak coupling) is
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Figure 29. The BG-CFD of the SU(3)gauge theory presented in figure 5, including the additional

node, inferred from the geometric data. The non-abelian part of the superconformal flavor symmetry

is determined by the (−2) (marked/green) vertices, and is SU(6). The mass deformations that lead

to new SCFTs with effective SU(3)gauge descriptions are indicated in terms of the (−1) vertices,

to which we can apply CFD-transitions. While it is not the full CFD, this reduced CFD, contains

the same marked subgraph, and the (−1) vertices of the reduced graph are also present in the full

CFD, which are the central ingredients for the flavor symmetry and the descendant tree.

U(5)×U(1)I . To match the total rank, the superconformal flavor symmetry then must be

GF = SU(6)×U(1) . (8.6)

We can repeat this process for all rank two theories and determine the flavor equiva-

lence classes, associated BG-CFDs, and the reduced CFDs. The results are presented in

appendix A. Note that the reduced CFDs contain the full non-abelian part of the flavor

symmetry, as above, but may not contain information about additional non-flavor curves.

These are therefore sub-graphs of the CFDs, which however contain the complete marked

subgraph of the CFD. Furthermore, the (−1) vertices in the reduced CFD are also part of

the full CFD, and the resulting descendant tree is therefore a subtree.

9 Conclusions and outlook

In this series of papers, the “appetizer” [1], Part I [2], and the present Part II, we made

the case that 5d SCFTs which descend from 6d SCFTs by circle compactifications plus

mass deformations have a concise description in terms of graphs, the so-called CFDs.

These graphs encode some of the salient physical properties of these superconformal field

theories:

• They tell us about the network structure of descendant SCFTs from a given 5d

marginal theory.

• The marked vertices of a CFD form subgraphs that are Dynkin diagrams, which

encode the strongly-coupled flavor symmetry GF of the UV fixed point that the CFD

characterizes.
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• The spectrum of BPS states (Gopakumar-Vafa invariants) is computed by taking suit-

able combinations of the vertices (i.e., curves). Intersections with divisors associated

to the marked subgraph graphs determines the representation under GF.

• They constrain the possible weakly coupled gauge theory or quiver descriptions for

the associated SCFT.

• They predict dualities among these weakly coupled descriptions.

In summary, the CFDs seem to crystallize some of the important features of 5d SCFTs!

This approach is particularly powerful when applied to theories that descend from 6d

models whose geometric description has a known construction in terms of a fully singu-

lar Tate or Weierstrass model. This was important in order to compute the CFD of the

marginal theory — from which all the above properties of the descendants can be deter-

mined in a combinatorial fashion. Examples of such theories are all the minimal conformal

matter theories, as well as some lower rank theories with automorphisms (e.g., those that

occur in the rank two classification [10, 26]). It is in these instances that we can derive

the CFDs and substantiate all claims regarding weakly coupled descriptions, and dualities

among these, by performing a complementary geometric computation — a class of exam-

ples where these the details were worked out are the (E6, E6) and (E7, SO(7)) minimal

conformal matter theories. This geometric confirmation provides backing for other setups,

where the geometric computations become less feasible. Some dualities appeared very re-

cently in [71] and it would be interesting to study the relation with the dualities presented

in the present paper.

In particular, there are 6d SCFTs which do not have a known description in terms of a

singular Weierstrass model. Specifically, 5d marginal theories with known 6d tensor branch

descriptions, e.g., SU(N)+2AS+8F for N > 5, as well as their descendants, were studied

using five-brane webs. In these cases we can “bootstrap” the marginal CFD by using

the constraints of known gauge theory descriptions including their superconformal flavor

enhancements. Perhaps most interestingly, the resulting marginal CFD in turn predicts

new branches of the descendant tree, which would indicate a yet unknown sequence of

SCFT descendants with different gauge descriptions. Thus, combining the requirement of

the embedding of the gauge theoretic BG-CFDs, the known flavor enhancements for parts

of the descendant tree, and the constraint that these all descend from a single marginal

CFD by applying the CFD-transition rules, results in new predictions for these theories. It

would clearly be very exciting to test these predictions either by constructing the associated

Weierstrass models or by alternative methods such as a five-brane web realization.

As already alluded to in the conclusions to Part I [2], the next step in the program to

determine all 5d SCFTs that descend from 6d is to develop a gluing procedure for CFDs.

Similar to the classification in 6d, where the most general theory is built out of a generalized

quiver based on a small set of building blocks (the flavor nodes as well as non-Higgsable

clusters), a similar gluing is expected to exist in 5d. Given the fundamental role that the

CFDs seem to play, it is very natural to expect them to be (part of) the building blocks

from which the most general 5d SCFT is glued. This will be investigated in the future.
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A Coulomb branch and reduced CFDs for rank two 5d SCFTs

This appendix summarizes the box graphs (and flavor-equivalence classes of box graphs)

for the rank two 5d SCFTs, which have a weakly coupled gauge theory description. We also

note down in each case the reduced CFDs, which were obtained by using minimal input

from the resolution geometry to reconstruct the fiber from the box graphs, as explained in

section 8.

A.1 Descendants of rank 2 E-string and (D5, D5) conformal matter

For the rank two E-string on S1, these are shown in figure 30, 31, 32. For minimal (D5, D5)

conformal matter, they are in figure 33, 34, 35.

Each of these theories will be specified by a gauge theory/quiver with a rank two gauge

group together with some matter transforming under some flavor group. In the main text

we provide a detailed description of the SU(3) gauge theory description of the rank two

E-string in section 3.2. Furthermore we will specify the reduced CFD: as explained in

section 8, we can reconstruct the relevant parts of the fiber from the box graphs and flavor-

equivalence classes, once we specify the embedding into the fiber of the marginal theory.

From this we can further derive the marked vertices of the CFD, i.e., the subgraph that

encodes that flavor symmetry at the UV fixed point, as well as the (−1)-vertices, which

correspond to decoupling hypermultiplet matter. Note that in general this determines only

a sub-graph of the full CFD, and may miss curves with self-intersection number ≥ 0 or (−1)-

curves, which do not correspond to hypermultiplets of the chosen gauge description. An

example is for instance the rank one CFDs, which have 10 descendants from the marginal

theory, from which only 9 have an SU(2) gauge description. The complete CFDs that

are derived from the geometry capture all these descendants, irrespective of whether they

admit a weakly coupled description. However, the reduced CFDs that are constructed

based on a given gauge theory description, only capture in general a subset. Using the

methods in section 8 we can however determine the full superconformal flavor symmetry.
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Figure 30. Rank two E-string: the marginal 5d gauge theory description as SU(3)3/2 + 9F . The

flavor-equivalence classes of this marginal theory can be written in terms of box graphs, and each

box graph corresponds to a descendant 5d gauge theory. All of the descendant theories have 5d

superconformal fixed points. Below the box graph equivalence classes we show the reduced CFDs

which encode the superconformal flavor symmetry.

A.2 SU(3) on a (−1)-curve with 12 hypermultiplets

The marginal theory has three gauge theory descriptions

• SU(3)4 + 6F

• Sp(2) + 2AS + 4F

• G2 + 6F .

The box graphs and descendants for these are shown in figures 36, 37, and 38.
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Figure 31. Rank two E-string with the marginal gauge theory described as Sp(2)+8F +1AS. The

figure shows the tree of descendant theories, together with their superconformal flavor symmetry,

GF. We furthermore specify the reduced CFDs, which encode the flavor symmetry and the (−1)

vertices that correspond to hypermultiplet matter in the Sp(2) description.
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Figure 32. Rank two E-string: descendants of the marginal theory 5F −SU(2)−SU(2)−2F , with

their flavor-equivalence class of Coulomb phases of (SU(2)× SU(2))gauge× (SO(10)× SO(4))BG. In

addition we also note the reduced CFDs.
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Figure 33. (D5, D5) Conformal Matter: 5d marginal gauge theory description as SU(3)0 + 10F .

The (flavor-equivalence classes of) box graphs encode the SU(3) gauge theory description of the

descendant theory — this is written at the top of each box in the above graph. Knowing that the

marginal theory enhances in the UV to the 6d theory of (SO(10), SO(10)) minimal conformal matter,

which is described by an affine SO(20) fiber, one can determine which of the curves corresponding to

the weights of the (3,N) representation (where N is the number of flavors in that flavor-equivalence

class), and which of the Fi associated to the roots of the affine SO(20) are contained inside of the

non-flat surfaces. The intersection pattern of these curves is depicted via a dual graph in the lower

half of each box. The superconformal flavor symmetry, GF is obtained from the reduced CFDs,

shown below the box graphs.
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Figure 34. (D5, D5) Conformal Matter: marginal theory description as Sp(2) + 10F . The figure

shows the tree of descendant theories, together with their superconformal flavor symmetry, GF.

A.3 SU(3) on a (−2)-curve with 6 hypermultiplets

This theory has a marginal description in terms of

Sp(2) + 3AS . (A.1)

In this case we are considering the phase structure for a theory with gauge group

Sp(2)gauge × Sp(3)BG , (A.2)

with matter transforming in the (5,6) representation. The highest weight of the (5,6) can

be written as

L1,1 = (0, 1; 1, 0, 0) . (A.3)

– 101 –



J
H
E
P
0
3
(
2
0
2
0
)
0
5
2

[4]-SU(2)-SU(2)-[4]

[3]-SU(2)-SU(2)-[4]

[2]-SU(2)-SU(2)-[4][3]-SU(2)-SU(2)-[3]

[1]-SU(2)-SU(2)-[4][2]-SU(2)-SU(2)-[3]

[2]-SU(2)-SU(2)-[2] [1]-SU(2)-SU(2)-[3] SU(2)
π
-SU(2)-[4] SU(2)0-SU(2)-[4]

[1]-SU(2)-SU(2)-[2] SU(2)
π
-SU(2)-[3] SU(2)0-SU(2)-[3]

[1]-SU(2)-SU(2)-[1] SU(2)
π
-SU(2)-[2] SU(2)0-SU(2)-[2]

SU(2)
π
-SU(2)-[1] SU(2)0-SU(2)-[1]

SU(2)
π
-SU(2)

π
SU(2)0-SU(2)

π
SU(2)0-SU(2)0

-2 -2 -2 -2 -2 -2 -2 -2 -2

-2-1 -2 -1

-2 -2 -2 -2 -2 -2 -2 -2

-2

-1

-2 -1

-2 -2 -2 -2 -2 -2 -2

-2

-1

-2 -1

-2 -2 -2 -2 -2 -2 -2

-2

-1

-2

-1

-2 -2 -2 -2 -2 -2

-2

-1

-2

-1 -2 -2 -2 -2 -2 -2-1

-2 -1-1

-2 -2 -2 -2 -2 -2

-2 -1

-2 -2 -2 -2 -2

-2 -1

-2 -2 -2 -2 -2-1

-2

-1

-1

-2 -2 -2 -2 -2

-2

-1

-2

-1

-2 -2 -2 -2 -2

-2

-1-2 -2 -2 -2

-2

-1-2 -2 -2 -2-1

-2

-1

-1

-2 -2 -2 -2

-2

-1-2 -2 -2

-2

-1-2 -2 -2-1

-1

-1

-1

-2 -2 -2 -1

-1

-2 -2 -1

-1

-2 -2 -2 -2-2 -2

Figure 35. (D5, D5) Conformal Matter: the marginal theory in the description as the quiver

4F − SU(2) − SU(2) − 4F . All of the descendant 5d theories of such a 5d marginal theory are

given in the tree above, as determined through the flavor-equivalence classes of box graphs. The

codimension two fiber, which is a splitting of affine SO(20), can be reconstructed in each case, and

we draw the curves inside the fiber that are also contained inside of the compact surfaces in the

lower half of each box. The reduced CFDs are shown from, which we determine the superconformal

flavor symmetry.
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Figure 36. The tree of descendants for SU(3)4 + 6F , which is gauge theory description for the

marginal theory obtained from SU(3) on a (−1)-curve with 12 hypermultiplets.
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Figure 37. The tree of descendants for Sp(2) + 6F + 2AS, which is gauge theory description for

the marginal theory obtained from SU(3) on a (−1)-curve with 12 hypermultiplets.
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Figure 38. The tree of descendants for G2 +6F , which is gauge theory description for the marginal

theory obtained from SU(3) on a (−1)-curve with 12 hypermultiplets.

The five simple roots of this semi-simple Lie algebra are, in the Cartan-Weyl basis,

α2
1 = (2,−1; 0, 0, 0) , α2

2 = (−2, 2; 0, 0, 0)

α3
1 = (0, 0; 2,−1, 0) , α3

2 = (0, 0;−1, 2,−1) , α3
3 = (0, 0; 0,−2, 2) ,

(A.4)

where the superscript indicates which Sp(n) factor that it acts as the simple root of.

The undecorated box graph, or the weight diagram, of this representation is depicted in

figure 39. Furthermore, we can see directly from the self-conjugacy of the representation

that determining all of the phases corresponds to determining the different consistent ways

that signs can be assigned to the weights of the subgraph marked in red on figure 39.

The consistent phases can be determined by the application of the flow rules to the

decoration of the red-boxed subgraph. The total number of phases can be seen to be

Nphases = 10 , (A.5)

and the adjacency graph can be determined in the usual manner. We are interested in

the equivalence class of the phases where the same set of Sp(3) simple roots are contained

inside of the splitting of the Sp(2) simple roots. Since the weight −L3,3 is always associated

to a minus sign we can see that this equivalence class is entirely specified by the signs of

L1,4, L1,5, and L1,6. The flop chain of these equivalence classes is drawn on the right in

figure 39.

B Flavor symmetry enhancements for SU(N)k + 1AS + NfF

In this appendix we summary some of the known flavor symmetry enhacements of 5d gauge

theories of the type SU(N)k+1AS+NfF at their UV fixed points. These were determined
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Figure 39. In (a) is the weight diagram of the (5,6) representation of Sp(2)× Sp(3). We can see

that, because the representation is self-conjugate, that the signs associated to Li,j for i, j = 1, · · · , 3
are required to be all plus. The subdiagram enclosed in red is then the only weights for whom the

sign needs to be specified to fix the phase. The equivalence class of phases relevant in the limit

where the gauge coupling of the Sp(3) is taking to zero is specified by the signs of the weights L1,4,

L1,5, and L1,6. In (b) is depicted the flop graph of these equivalence classes of phases.

from field theoretic methods, are contained implicitly in [33]. In particular, we focus on

the cases, which descend from SU(2n)0 + 2AS + 8F and SU(2n + 1)0 + 2AS + 8F . We

spell these out here, in order to facilitate the comparison with the CFDs. These flavor

symmetry enhancements are summarized in tables 7, 8, 9, 10, 11.

For N even, i.e. N = 2n and n > 2 we always have that Nf < N+4, since Nf ≤ 8. The

superconformal flavor symmetry is related to the one of the theory where 1AS is decoupled

in the following way

GF = GF(SU(2n)k+n−2 +NfF )×U(1), (B.1)

where the extra U(1) is the classical symmetry acting on antisymmetric hypermultiplet,

and k shifts due to this decoupling, k → k′ = k + n − 2. The flavor symmetries for

SU(2n)k′=k+n−2 +NfF can be obtained from [1, 38]. In fact, in our cases, we have that∣∣∣∣2n− 4−
(8−Nf )

2

∣∣∣∣ ≤ |k′| ≤ 2n− 4 +
(8−Nf )

2
. (B.2)

According to [1, 38], we have the following two distinct cases:

2n−
Nf

2
> |k′| → GF(SU(2n)k′=k+n−2) = SU(Nf )×U(1)×U(1)

2n−
Nf

2
= |k′| > 1

2
→ GF(SU(2n)k′=k+n−2) = SU(Nf )× SU(2)×U(1) .

(B.3)

For N odd, i.e. N = 2n+ 1 and n ≥ 2, Nf < N + 4, since again we have that Nf ≤ 8.

The superconformal flavor symmetry is

GF = GF(SU(2n+ 1)k+n− 3
2

+NfF )×U(1), (B.4)
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k shifts, k → k′ = k+n− 3
2 when decoupling an antisymmetric hypermultiplet. The flavor

symmetries for SU(2n+ 1)k′=k+n− 3
2

+NfF can read from [1, 38]. In fact, we have that

∣∣∣∣2n− 3−
(8−Nf )

2

∣∣∣∣ ≤ |k′| ≤ 2n− 3 +
(8−Nf )

2
. (B.5)

From [1, 38], we have

2n+ 1−
Nf

2
> |k′| → GF(SU(2n)k′=k+n− 3

2
) = SU(Nf )×U(1)×U(1)

2n+ 1−
Nf

2
= |k′| > 1

2
→ GF(SU(2n)k′=k+n− 3

2
) = SU(Nf )× SU(2)×U(1) .

(B.6)

C Details for geometric resolutions

C.1 Rank two E-string

Here we present an explicit fiber geometry that resolves the non-minimal singularities of

the (E8, SU(2)) collision. It is obtained from a flop transition of the marginal geometry

in figure 22 of [2]. Namely, the (−1)-curve u8 · S2 on S2 is flopped into S1. The resulting

non-flat surfaces Si = {δi = 0} are shown in figure 40. Here, affine E8 and SU(2) fiber

components resolving the codimension one E8 and SU(2) singularities, respectively, are

(
FE8

0 , FE8
1 , FE8

2 , FE8
3 , FE8

4 , FE8
5 , FE8

6 , FE8
7 , FE8

8

)
←→ (U, u8, u7, u11, u13, u14, u15, u9, u5) ,(

F
SU(2)
0 , F

SU(2)
1

)
←→ (V, v1) .

(C.1)

As one can see from figure 40, the codimension one nodes u7 and v1 split into two

components, each contained in one of the two surfaces S1,2. The intersection numbers can

be inferred from the homology classes, which we choose to represent in the basis of del

Pezzo surfaces, i.e., h2 = 1, h ·ei = 0, ei ·ej = −δij . In order to determine the gauge phases,

it is important to remember that displayed curves are rational, and so we can compute for

a curve C ⊂ Si the following intersection numbers in the three-fold:

C · Si = −2− (C · C)|Si , C · Sj = (C · δj)|Si , where i 6= j . (C.2)

Note that the surfaces S1 and S2 contain the (−1) curves labeled e2 and h − e1 −
e7, respectively, which do not arise from intersections with exceptional codimension one

divisors. Together with the split products of F
SU(2)
1 ↔ v1 and FE8

2 ↔ u7, and the gluing

curve S1 ∩ S2, they form the extremal curves in this phase. For convenience, we list their
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Figure 40. One concrete resolution of the (E8, SU(2)) model that corresponds to a marginal theory

in 5d. This geometry is obtained by a sequence of flops from the tensor branch resolution of the 6d

rank two E-string. One of these flops change the genus of the gluing curve S1∩S2 = {δ1}∩{δ2} from

1 to 0. Each depicted node is rational curve generating the Mori cone of each the corresponding

surface.

intersection numbers with all divisors:

S1 S2 DE8
0 DE8

1 DE8
2 DE8

3 DE8
4 DE8

5 DE8
6 DE8

7 DE8
8 D

SU(2)
0 D

SU(2)
1

e2|S1 −1 0 1 0 0 0 0 0 0 0 0 1 0

(h− e1 − e7)|S2 0 −1 0 0 0 0 0 0 0 1 0 0 1

v1|S2 2 −1 0 0 0 0 0 0 0 0 0 0 −1

u7|S1 −1 1 0 1 −1 0 0 0 0 0 0 0 0

u7|S2 1 −1 0 0 −1 1 0 0 0 0 0 0 0

S1 ∩ S2 −1 −1 0 0 1 0 0 0 0 0 0 0 2

(C.3)

SU(3) gauge description. The rulings that give the SU(3)gauge gauge theory are

S1 ←↩ f1 = (h− e1)|S1 = (e2 + U + u8 + u7)|S1 ,

S2 ←↩ f2 = (h− e7)|S2 = (u7 + u11 + u13 + u14 + u15 + u9 + (h− e1 − e7))|S2 .
(C.4)

The codimension one fibers that are part of these rulings are the E8 roots (FE8
0 , · · · , FE8

7 ),

which give rise to the non-abelian SU(9)BG part of the flavor symmetry U(9)BG. We order

the Cartan generators of SU(3)gauge as (S2, S1), and those of SU(9)BG as (F1, · · · , F8) ↔
(FE8

0 , · · · , FE8
7 ), such that the geometry realizes hypermultiplets in the (3,9) representa-

tion, and not (3̄,9). Furthermore, the extremal curves e2|S1 , u7|Si , and (h− e1− e7)|S2 are

special fiber components which shrink when we collapse f1,2, and give rise to the bifunda-

mental matter.
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Sp(2) gauge description. We obtain an Sp(2)gauge gauge theory with the rulings

S1 ←↩ f1 = (h− e1)|S1 = (e2 + U + u8 + u7)|S1 ,

S2 ←↩ f2 = (v1 + (h− e1 − e7))|S2 = (u5 + u15 + 2 (u14 + u13 + u11 + u7))|S2 .
(C.5)

Here, the codimension one fibers (FE8
0 , · · · , FE8

6 , FE8
8 ) and F

SU(2)
1 are parts of the ruling,

giving rise to the flavor symmetry SO(16)BG× SU(2)BG. Under the total symmetry group

Sp(2)gauge × SO(16)BG × SU(2)BG, the extremal curves e2|S1 and u7|Si give rise to states

in the (4,16,1), while v1|S2 and (h− e1 − e7)|S2 support (5,1,2) states.

SU(2)2 gauge description. The rulings for this gauge theory are

S1 ←↩ f1 = (δ2 + u7)|S1 = (U + 2e2 + V )|S1 ,

S2 ←↩ f2 = (δ1 + u7)|S2 = (u5 + u13 + 2 (u14 + u15 + u9 + (h− e1 − e7)))|S2 .
(C.6)

The codimension one fibers contained in these rulings are (FE8
0 , FE8

2 , FE8
4 , FE8

5 , · · · , FE8
8 )

and F
SU(2)
0 , which span the flavor symmetry (SO(4) × SU(2) × SO(10))BG. The extremal

curves that give rise to matter are:

curves SU(2)gauge1
× SU(2)gauge2

SO(4)BG
∼= (SU(2)2)BG SU(2)BG SO(10)BG

δ2|S1 = δ1|S2 ,
(2 , 2) (1,1) 2 1

u7|S1 , u7|S2

e2|S1 (2,1) (2,2) 1 1

(h− e1 − e7)|S2 (1,2) (1,1) 1 10

(C.7)

C.2 Resolutions with different rulings for (E6, E6) conformal matter

The singular Tate model of (E6, E6) conformal matter is

y2 + b1UV xy + b3U
2V 2y = x3 + b2U

2V 2 + b4U
3V 3 + b6U

5V 5 . (C.8)

Here we present two example resolutions, which have different ruling and quiver gauge

theory descriptions. The first one is

BU1(E6,E6) =

{{x,y,U,u1} ,{x,y,V,v1} ,{x,y,u1,u2} ,{y,u1,u2,u3} ,{y,u1,u4} ,{y,u2,u5} ,{v1,u5, δ1} ,
{δ1,y,δ2} ,{v1,u4, δ3} ,{v1, δ2, δ4} ,{u3,u4,u6} ,{y,u3,u7} ,{x,y,v1,v2} ,{y,v1,v2,v3} ,
{y,v1,v4} ,{y,v2,v5} ,{v3,v4,v6} ,{y,v3,v7} ,{u7,v1, δ5}}.

(C.9)

The following exceptional divisors form the Dynkin diagram of (E6, E6):

u6 u7u3

u1

U

u2 u5
v6 v7v3

v1

V

v2 v5 . (C.10)
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We list some of the triple intersection numbers here:

Si ·D2
j U u1 u6 u3 u2 u7 u5 V v1 v6 v3 v2 v7 v5 δ1 δ2 δ3 δ4 δ5

S1 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 8 0 0 2 0

S2 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 8 0 2 0

S3 0 −1 −2 −1 0 −1 0 0 0 0 0 0 0 0 0 0 6 0 −2

S4 0 0 0 −1 0 −1 0 0 0 −2 −2 −2 −2 −2 −4 −4 0 0 −2

S5 0 0 0 1 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 8

n(Fj) 0 −1 −2 −2 −2 −2 −2 0 −2 −2 −2 −2 −2 −2 − − − − −

(C.11)

n(Fj) is the “wrapping number” of each Cartan node inside the non-flat fiber, intro-

duced in [2]. If n(Fj) = −2, then such node is fully wrapped and regarded as a flavor

curve. In this case, the actual wrapping number n(Fj) are computed with the following

non-trivial multiplicities [2]:

ξ
(u)
i = (1, 1, 1, 1, 2) , ξ

(v)
i = (1, 1, 1, 2, 1). (C.12)

As a reminder, any intersection numbers Si · u2
j needs to be multiplied by ξ

(v)
i , while any

intersection numbers Si · v2
j needs to be multiplied by ξ

(u)
i (including the affine nodes U

and V ).

We draw the configuration of curves on the five surface components in figure 41. The

corresponding CFD is read off as

-2 0-1

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2 . (C.13)

In this case, the assignment of ruling and section for each surface and each curve is

uniquely determined. Recall that the ruling curve on each surface needs to be a linear

combination of curves with self-intersection number 0 and genus 0. Since S1, S2 and S5 are

Hirzebruch surfaces, the 0-curves on them have to be ruling curves. Then we can conclude

that S1 · S4, S2 · S4 are section curves, while S3 · S5 and S4 · S5 are a part of ruling curves.

If the geometry has a quiver gauge theory description, then the assignment of section and

ruling needs to be identical for a curve Si ·Sj on both Si and Sj . With these requirements,

the only consistent assignment of section/ruling is shown in figure 41. We also list the

linear combinations of curves on each surface component that correspond to the ruling:

S1 : f (1) ≡ x = u3 ,

S2 : f (2) ≡ x = u7 ,

S3 : f (3) ≡ V = δ5 + 2u3 + u6 ,

S4 : f (4) ≡ u3 + δ5 + u7 = C1 + v2 + v3 + v6 + v7 + v5 + C2 ,

S5 : f (5) ≡ δ4 = δ3 .

(C.14)

From this information, we see that the quiver gauge theory has a SU(4) × SU(2)(1) ×
SU(2)(2) gauge group. The three Cartans generators of SU(4) correspond to S1, S4 and S2,

while the Cartan generators of SU(2)(1) and SU(2)(2) correspond to S5 and S3 respectively.
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u3/u7Section
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C1 C2

Figure 41. The configuration of curves on Si(i = 1, . . . , 5) in the geometry BU1(E6,E6). The

number in the bracket denotes the self-intersection number of the curve. The letter denotes an

intersection curve with the corresponding divisor. The “/” symbol means that the curves are in the

same homology class. The assignment of section/ruling of each curve is marked by red/blue colors.

The massless matter fields are generated by M2 brane wrapping over (−1)-curves that

are apart of the rulings, which shrinks to zero size in the gauge theory limit. The two

unlabeled (−1)-curves on S2, along with their linear combinations with the string of five

(−2)-curves, in total give six copies of (4,1,1) and (4̄,1,1) under SU(4) × SU(2)(1) ×
SU(2)(2). Additionaly, the curves u3 · S2 and u7 · S2 give rise to bifundamentals (4̄,1,2)

and (4,1,2). Moreover, the curve u3 · S3 gives the bifundamental (1,2,2).

In conclusion, the quiver gauge theory description of the geometry BU1(E6,E6) is

[6]− SU(4)− SU(2)(1) − SU(2)(2) . (C.15)

From the geometry in figure 41, we can blow up the surface component S3 twice and

get the following configuration:

S1

(2)

(-2)

(0)(0)

u5

u7x
S2

u3
u7

v5

v7
v6

v3

v2

(-2)
(-2)

(-2)
(-2)

(-2)

(-1) (-1) (-1)(-1)

(-4) (-4)

S3

(-2)

(-1)

(0)

(-2)

(-1)

u3/u7

u6

u1
V

v1

v1

(-2)

(0)

S4

(2)

(-2)

(0)(0)

u2

u3x

S5

(1)

(-1)

(0)(0)

v1

u3/u7Section

Ruling
(-2)

(-2)
U

(-2)

z

. (C.16)
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Because of the appearance of new fibral (−1)-curve z · S3 on S3 and its two adjacent

(−2)-curves, the quiver gauge theory description is now

[6]− SU(4)− SU(2)(1) − SU(2)(2) − [2] , (C.17)

with two fundamental flavors on the SU(2)(2) gauge node. Moreover, the corresponding

CFD of (C.16) is exactly the marginal CFD of (E6, E6) conformal matter theory:

-1 -2-2-2-2

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2 . (C.18)

Hence we conclude that the geometry (C.16) describes the (E6, E6) marginal theory,

and the quiver description (6.1) in section 6.1.1 indeed appears.

From the geometry (C.16), there are two ways to flop a (−1)-curve outside of these

surfaces. One can shrink the (−1)-curve z · S3 on S3, and get the following geometry:

S1

(2)

(-2)

(0)(0)

u5

u7x
S2

u3
u7

v5

v7
v6

v3

v2

(-2)
(-2)

(-2)
(-2)

(-2)

(-1) (-1) (-1)(-1)

(-4) (-4)

S3

(-2)

(-1)

(0)

(-2) u3/u7

u6

u1
V

v1

v1

(-2)

(0)

S4

(2)

(-2)

(0)(0)

u2

u3x

S5

(1)

(-1)

(0)(0)

v1

u3/u7Section

Ruling
(-2)U(-1)

(-1)

. (C.19)

It has quiver gauge theory description

[6]− SU(4)− SU(2)(1) − SU(2)(2) − [1] . (C.20)

Alternatively, one can flop the (−1)-curve connected to v2 · S4 on S4 into S1 and then

shrink it. After this birational transformation, the surface geometry becomes

S1

(2)

(-2)

(0)(0)

u5

u7x
S2

u3
u7

v5

v7
v6

v3

v2

(-2)
(-2)

(-2)
(-1)

(-2)

(-1) (-1) (-1)

(-3) (-4)

S3

(-2)

(-1)

(0)

(-2)

(-1)

u3/u7

u6
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v1
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(-2)

(0)
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(1)

(-1)

(0)(0)
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u3x

S5

(1)

(-1)

(0)(0)

v1
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(-2)

(-2)
U

(-2)

z

. (C.21)
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Comparing to (C.16), the number of fundamental flavors for the SU(4) gauge group is

decreased by one, and we have the quiver gauge theory description

[5]− SU(4)− SU(2)(1) − SU(2)(2) − [2] . (C.22)

Notably, the two different geometries (C.19) and (C.21) have the same CFD:

-2-1-1-2

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2 , (C.23)

with superconformal flavor symmetry GF = E6 × E6.

This confirms the non-trivial UV duality between the two quiver gauge theory descrip-

tions [6]−SU(4)−SU(2)−SU(2)− [1] and [5]−SU(4)−SU(2)−SU(2)− [2] in section 6.1.1,

from the geometric perspective.

Furthermore, we can flop the (−1)-curve connected to v2 · S4 on S4 into S1 and then

shrink it, resulting in the geometry

(2)

(-2)

(0)(0)

u5

u7x
S2

S3

(-2)

(-1)

(0)

(-2) u3/u7
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(-1)

(0)(0)
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u3/u7Section
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(-2)U(-1)

(-1)
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(-1)

(0)(0)
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u3x u3
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v5

v7
v6

v3

v2

(-2)
(-2)

(-2)
(-1)

(-2)

(-1) (-1) (-1)

(-3) (-4)

v1

(-2)

(0)

S4

(C.24)

with the quiver gauge theory description

[5]− SU(4)− SU(2)(1) − SU(2)(2) − [1] . (C.25)

From (C.21), we can shrink the (−1)-curve U · S3 on S3 to get the geometry (C.24).

Alternatively, we can flop the (−1)-curve v2 ·S4 on S4 into S1 and then shrink it, resulting

in the geometry
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(C.26)
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with the quiver gauge theory description

[4]− SU(4)− SU(2)(1) − SU(2)(2) − [2] . (C.27)

The geometries with quiver gauge theory descriptions [6] − SU(4)− SU(2)− SU(2) in

figure 41 and [4]− SU(4)− SU(2)− SU(2)− [2] in (C.26) correspond to the same CFD:

-2 0-1

-1 -2-2-2-2

-1 -2-2-2-2

-2 -2 , (C.28)

with the same GF = E6×SU(6). Hence we can perceive the UV duality between these two

quiver gauge theories.

One the other hand, the geometry (C.24) with quiver gauge theory description [5] −
SU(4)− SU(2)− SU(2)− [1] corresponds to a different CFD:

-2-1-1-2

-2-1-1-2

-1 -2-2-2-2

-2 -2 , (C.29)

with GF = SO(10)2 ×U(1).

Apart from this class of resolution geometries, we can also choose another resolution

sequence:

BU2(E6,E6) =

{{x,y,V,v1} ,{x,y,U,u1} ,{x,y,u1,u2} ,{x,y,v1,v2} ,{y,u1,u2,u3} ,{y,v1,v2,v3} ,
{y,v1,v4} ,{u2,v4, δ1} ,{y,δ1, δ2} ,{δ1,v4, δ4} ,{v4,u3, δ5} ,{v4,u1, δ3} ,
{y,u1,u4} ,{y,u2,u5} ,{u3,u4,u6} ,{y,u3,u7} ,{y,v2,v5} ,{v3,v4,v6} ,{y,v3,v7}}.

(C.30)

The multiplicities are the same as (C.12), and we have the following intersection

numbers:

Si ·D2
j U u1 u6 u3 u2 u7 u5 V v1 v6 v3 v2 v7 v5 δ1 δ2 δ3 δ4 δ5

S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

S2 0 0 0 0 0 −1 0 0 0 −1 0 0 −1 0 0 6 0 −2 −1

S3 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8 0 0

S4 0 0 0 −1 0 0 0 0 0 −1 −1 0 0 0 −2 0 0 6 −1

S5 0 −1 −2 0 0 −1 0 0 −1 0 0 0 0 0 0 −1 −2 −1 5

n(Fj) 0 −2 −2 −2 0 −2 0 0 −1 −2 −1 0 −1 0 − − − − −

(C.31)

The corresponding CFD is

-2 0-1

-20-1

-2 0-1

-2 -2 . (C.32)

We plot the configuration of curves on the five non-flat surface components in figure 42.

For this geometry, the assignment of ruling on each surface component is uniquely fixed by
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Figure 42. The configuration of curves on Si(i = 1, . . . , 5) in the resolution geometry BU2(E6,E6).

The number in the bracket denotes the self-intersection number of the curve. The letter denotes

an intersection curve with the corresponding divisor. The “/” symbol means that the curves are in

the same homology class. The assignment of ruling/section on each surface component is denoted

by blue/red colors.

the requirement that each intersection curve Si · Sj is a ruling/section on both Si and Sj .

We list the rational ruling curves with self-intersection 0 on each surface component:

S1 : f (1) ≡ u2 = δ4 ,

S2 : f (2) ≡ u5 = v6 + δ4 + δ5 ,

S3 : f (3) ≡ U = δ5 ,

S4 : f (4) ≡ δ2 = u3 + δ1 + v3 ,

S5 : f (5) ≡ u3 = u7 + δ2 = u1 + δ3 + v1 .

(C.33)

Hence we conclude that this geometry describes a quiver gauge theory with gauge

groups SU(3) × SU(2)(1) × SU(2)(2) × SU(2)(3). The Cartan divisors of the SU(3) factor

correspond to the surface components S4 and S5, while the Cartan divisors of SU(2)(1),

SU(2)(2) and SU(2)(3) correspond to the surface components S1, S2 and S3 respectively.

The matter fields of this quiver gauge theory can be read off from the (−1)-curves in

figure 42 that are a part of ruling (colored by blue). Their representations under SU(3) ×
SU(2)(1) × SU(2)(2) × SU(2)(3) are:

v6 · S2 : (3,1,2,1)

S2 · S5 : (3̄,1,2,1)

u3 · S4 : (3,2,1,1)

v3 · S4 : (3̄,2,1,1)

u1 · S5 : (3,1,1,2)

v1 · S5 : (3̄,1,1,2)

u7 · S5 : (3,1,2,1)

(C.34)
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Thus we conclude that the quiver description is:

SU(2)−

SU(2)

|
SU(3) − SU(2) , (C.35)

since all the matter fields in (C.34) are bifundamentals of this quiver gauge theory.

From the geometry in figure 42, we can blow up the surfaces S1, S2 and S3 to get the

geometry corresponding to the marginal CFD:
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u1 v1
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(-1)(-1) (-1)(-2)

(-2)

(0)
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U

Section
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(-1)

(-2)

(0)

(0)

(-1) (-2)

u3

v3

u2

v2

(-1)

(-1)

(-2)

v6

(-1)u7

u5
(-2)

(-1)

(-2) (-2)
v7

v5

(-1)

(-2)

(0)

(0)

(-1) (-2)u1

v1 V

. (C.36)

The quiver gauge theory description of this geometry is

[2]− SU(2)−

[2]

|
SU(2)

|
SU(3) − SU(2)− [2] , (C.37)

and the removal of fundamental flavors charged under the three SU(2)s will exactly corre-

spond to shrinking the unlabeled (−1)-curves on S1, S2 and S3 in (C.36).

As a summary, we confirmed that the proposed CFD tree with the star-shaped

SU(3)×SU(2)×SU(2)×SU(2) quiver in [1, 2] is indeed backed up with a solid Calabi-Yau

threefold geometry.

C.3 Marginal geometry for (E7, SO(7)) minimal conformal matter

In this section we present a marginal geometry of minimal (E7, SO(7)) conformal matter

that manifestly has the two dual gauge descriptions SU(4)0 + 2AS + 8F and 6F −Sp(2)−
Sp(1)− 2F . The codimension one affine fibers of E7 and SO(7) are labelled as:

U u8 u7 u11

u4

u10 u9 u3 V

v3

v4v2
. (C.38)
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Figure 43. The configuration of curves Sj ∩ {d = 0} ≡ d on the compact surfaces Sj =

{δj = 0} (j = 1, . . . , 3) in the marginal (E7, SO(7)) geometry, where {d = 0} are (possibly non-

compact) divisors in the resolved Calabi-Yau threefold. The number in the bracket denotes the self-

intersection number of the curve. There are reducible curves C ⊂ S that satisfy C · (KS +C) = −4,

which we formally label as curves with genus g = −1. All other curves have genus 0. The dashed

line in S1 indicates an intersection number of −1; this reflects the fact that the two involved curves,

which are reducible, share irreducible components. The precise structure of these irreducible com-

ponents are, however, immaterial to our discussion here.

Note that locally, the fiber of {v3 = 0} is formed by two disconnected P1s, which

are identified via monodromy effects and reflect the folding of SO(8) to SO(7). Thus,

the condition for {v3} to be fully wrapped requires the self-intersection inside the three

compact surfaces S =
⋃3
j=1 Sj to be −4, rather than −2. Concretely, the curves on the

Sj ’s are show in figure 43.

The rulings f
SU(4)
j ↪→ Sj giving rise to the SU(4) gauge description are given by the

curves

f
SU(4)
1 ≡ z + U + u8 = y + v3 + v4 ,

f
SU(4)
2 ≡ y = u4 + u11 + u10 + u9 + u3 + x ,

f
SU(4)
3 ≡ y = u8 + u7 ,

(C.39)

where the equalities are understood as rational equivalence relations on each surface. To

realize the SU(4), the surfaces are glued as S1 − S3 − S2. Each gluing curve is a 1-section

with respect to the rulings (C.39): we have(
δ3 · fSU(4)

1

)∣∣∣
S1

=
(
δ1 · fSU(4)

3

)∣∣∣
S3

=
(
δ2 · fSU(4)

3

)∣∣∣
S3

=
(
δ3 · fSU(4)

2

)∣∣∣
S2

= 1 . (C.40)

The rulings fquiver
j ↪→ Sj realizing the Sp(2)× Sp(1) quiver are

fquiver
1 ≡ U + 2z + V = δ3 + δ2 + v2 ,

fquiver
2 ≡ y = u4 + u11 + u10 + u9 + u3 + x = f

SU(4)
2 ,

fquiver
3 ≡ δ1 = u4 + u7 .

(C.41)
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The Sp(2) is supported on S2 − S3. The non-simply laced nature is reflected by the

intersection numbers of the gluing curves with these rulings:(
δ3 · fquiver

2

)∣∣∣
S2

= 1 ,
(
δ2 · fquiver

3

)∣∣∣
S3

= 2 . (C.42)

To have an consistent, independent Sp(1) factor on S1, the gluing curves S1∩S2 and S1∩S3

need to be fibers on all three surfaces, which indeed is the case.

These two gauge descriptions can be verified by matching the prepotentials with the

cubic intersection numbers,

S3
1 = 2 , S2

1 · S2 = 0 S1 · S2
2 = −4 , S2

1 · S3 = 0 , S1 · S2
3 = −2 ,

S3
2 = 3 , S2

2 · S3 = 3 , S2 · S2
3 = −5 , S3

3 = 7 , S1 · S2 · S3 = 2 .
(C.43)
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[50] A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions II: From Coulomb Phases

to Fiber Faces, Nucl. Phys. B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE].
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