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We study the structure of galactic halos within a scalar dark matter model, endowed with a repulsive 
quartic self-interaction, capable of undergoing the superfluid phase transition in high-density regions. 
We demonstrate that the thermalized cores are prone to fragmentation into superfluid droplets due to 
the Jeans instability. Furthermore, since cores of astrophysical size may be generated only when most of 
the particles comprising the halo reside in a highly degenerate phase-space, the well-known bound on 
the dark matter self-interaction cross section inferred from the collision of clusters needs to be revised, 
accounting for the enhancement of the interaction rate due to degeneracy. As a result, generation of kpc-
size superfluid solitons, within the parameter subspace consistent with the Bullet Cluster bound, requires 
dark matter particles to be ultra-light.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The cold dark matter (CDM) paradigm, in which dark matter 
is incorporated as a non-relativistic fluid composed of collisionless 
particles, is in spectacular agreement with observations at large 
scales. However, it presents several challenges when it comes to 
galactic scale phenomena [1]. Among those, the mismatch between 
the Navarro-Frank-White (NFW) density profile in inner regions 
of galaxies and clusters obtained from CDM simulations [2] and 
the density profile inferred from observations, known in the lit-
erature as ‘the core-cusp problem’, appears to be a central one 
and its resolution will most likely affect the status of some of 
the other puzzles as well. In particular, there have been claims 
regarding the excess of the dynamical friction predicted by CDM 
[3–6], which is a sensitive function of the dark matter density-
profile (a potentially ameliorating discussion within CDM, in some 
cases, can be found in [7,8]). Furthermore, observations seem to 
indicate a significant correlation between the gravitational acceler-
ation of baryons and their distribution in disk galaxies [9,10]. This 
is usually referred to as the mass discrepancy acceleration relation, 
which is the generalized version of the baryonic Tully-Fisher re-
lation [11,12], see also [13] and references therein. These are well 
accounted for by Milgrom’s empirical law [14–16], which was orig-
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inally suggested as a modification of gravity. The origin of these 
observed relations is not yet understood, but seems to be indica-
tive of some form of interaction between baryons and the dark 
sector. However, it must be pointed out that depending on the 
mass-range for dark matter particles, the cosmological constraints 
on such interactions could be significant [17]. Although it is still 
unclear whether a purely gravitational interaction present in CDM, 
without invoking self- or cross-species interactions, is sufficient for 
generating such correlations, it seems to be an unlikely scenario 
[18] (the possibility of reconciliation has been argued [19]).

These and other related observations have motivated extensions 
of the standard paradigm, by giving dark matter some additional 
properties that could be reflected in a more desirable galactic scale 
behaviour. One of the directions that has attracted much atten-
tion recently concerns self-interacting dark matter [20]. If strong 
enough, interactions could affect the density distribution of central 
regions of the halo significantly, due to a higher number density 
of dark matter particles. In particular, numerical simulations have 
revealed that the density profile starts deviating from the NFW 
profile in regions where particles had the chance to interact at 
least once throughout the lifetime of the halo [21]. The main effect 
of those interactions is the dark matter redistribution, alleviating 
the central cusp of the NFW profile. At large distances from the 
centre of the halo, where dark matter particles have not had a 
chance to interact yet due to low densities, the density profile is 
similar to the one in CDM.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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An interesting version of self-interacting dark matter was con-
sidered in [22,23]1 in the form of a repulsive, sub-eV, scalar field 
exhibiting superfluidity in galaxies, motivated by theoretical sim-
plicity and the capacity for an additional suppression of the dy-
namical friction. The considered structure of the dark matter halo 
had a superfluid core enclosed by an isothermal envelope. In that 
scenario, dark matter was assumed to be in thermal equilibrium 
which led to the formation of the superfluid core in the central re-
gion, where the temperature of the substance is subcritical (due to 
high densities). The presence of repulsive self-interaction was vi-
tal for the stability of the core, as well as for superfluidity, as we 
will discuss shortly. The envelope, on the other hand, was stabi-
lized by the thermal pressure of dark matter particles, with the 
junction condition determined in terms of the finite-temperature 
equation of state. Imposing the Bullet Cluster constraint and the re-
production of the observed features of rotational curves, the model 
was claimed to be ruled out in [23]. See [24] for a more recent 
discussion of a spherically symmetric density profile for a thermal-
ized halo, derived from an improved finite-temperature equation of 
state. The core profile and galactic rotation curves within the Bose-
Einstein condensate dark matter scenario have been discussed in 
[25] as well. The same scalar dark matter model has been also 
considered in the context of its gravitational production at the end 
of inflation [26,27].

For attractive bosons, which is the case for axions, one lacks 
positive pressure and consequently the condensate formed at sub-
critical temperatures is prone to fragmentation [28]. The only pos-
sibility for sustaining the macroscopic homogeneous core is to con-
sider the case of ultra-light particles. Achieving macroscopic homo-
geneity in such a way, in the core of the dark matter halo, was first 
suggested by [29], and was coined as Fuzzy Dark Matter. There, the 
scale of homogeneity is set by the de Broglie wavelength, and the 
presence of a kpc-size core requires particles lighter than 10−21eV. 
The detailed analysis of phenomenological implications of such a 
scenario was performed in [30] (see [31] for recent numerical 
simulations of the structure formation). The idea of substructure 
formation has been discussed in the context of the superfluid dark 
matter scenario as well, see [32,33] and references therein.

Recently, the idea of dark matter superfluidity was revitalized 
in [34,35] as a novel mechanism that could be behind the above-
mentioned long-range correlations in galactic dynamics. The idea 
is to have a superfluid dark matter core in galaxies and utilize 
phonons to mediate an emergent long-range interaction between 
baryons submerged within this quantum liquid.2 It was demon-
strated in [39] that in this incarnation of the superfluid dark mat-
ter scenario it was more natural to give up global thermal equi-
librium and instead to require thermalization within the central 
neighbourhood of a halo. However, there much freedom was given 
in specifying the profile by keeping the superfluid pressure not 
very closely related to the 2 → 2 scattering cross section.3

In this work, we study the structure of galactic halos within 
the simplest model of dark matter superfluidity combining ideas 
of [22,28,32] and [39] together. The additional ingredient added 

1 See also [25] for the discussion of the core profile and galactic rotation curves 
within the Bose-Einstein condensate dark matter scenario.
2 The idea of emergent long-range interactions within an ideal Bose-Einstein con-

densate and the cosmological implications for the scalar dark matter scenario was 
first considered in [36,37]. Recently, the idea was revisited for superfluids [38]. It 
was demonstrated that superfluidity shortens the range, but still keeping it much 
longer than the Compton wavelength of dark matter particles. The potential signifi-
cance of the mechanism for the galactic dynamics, in the context of the ultra-light 
dark matter scenario (like Fuzzy Dark Matter), was studied as well.
3 The reason behind this was the assumption that the thermalization could have 

been governed by two-body interactions (i.e. in the disordered phase the 2 → 2
scattering was considered to be dominant), while the superfluid pressure was con-
sidered to be determined by three-body interactions.
2

to the pre-existing ideas being the proper application of the Bul-
let Cluster bound to sub-eV particles, by including the Bose-
enhancement factor in the calculation of scattering rates. The re-
sult is the inevitable fragmentation of the thermalized core into 
superfluid islands due to the Jeans instability. It is demonstrated 
that the extremely light values for the mass are required to give a 
kpc-size coherence length.

One of the theoretically simplest interacting dark matter mod-
els can be introduced as a massive scalar field, with quartic self-
interaction and minimally coupled to gravity, with the following 
action

S =
∫

d4x
√−g

(
1

16πG
R − |∂�|2 −m2|�|2 − λ

2
|�|4

)
. (1)

Here, we have chosen to work with a complex (U (1)-invariant) 
field, due to manifest particle number conservation. We could have 
begun with a real scalar, but considering that we are interested in 
a non-relativistic substance, the net result would have been identi-
cal; in this limit, both theories flow to the nonlinear Schrödinger’s 
action.

Before diving into the description of the superfluid scenario, let 
us begin by recapping the Bullet Cluster constraint [40] for such a 
theory. It is usually invoked as the following bound on the scatter-
ing cross section for dark matter particles

σ

m
� 1 cm2/g . (2)

Strictly speaking, the bound obtained by [40] is for the scattering 
rate, which for the non-degenerate phase-space translates into (2). 
Although the latter has been widely applied to various dark mat-
ter models, including the sub-eV mass-range, we will argue that it 
may not be necessarily legitimate. Having said this, let us put this 
caveat aside for a moment by focussing on m � eV and translate 
(2) into a bound on the coupling constant

λ�
( m

10 MeV

)3/2
. (3)

In other words, for dark matter heavier than few MeV, the theory 
has to be strongly coupled in order to violate the Bullet Cluster 
bound.

For the superfluid scenario one is mostly interested in sub-eV 
particles. As it is well known, such a candidate must be a non-
thermal relict and should be produced via the axion-like vacuum 
misalignment mechanism. Consequently, it is expected to be in 
the form of the condensate on cosmological scales. Requiring the 
equation of state due to interaction-pressure to be the one for a 
non-relativistic fluid, one arrives at the following bound for the 
scattering cross section

P

ρ

∣∣∣
equality

= λρ|equality
8m4

� 1 ,

⇒ σ

m
�

(
m

2× 10−5 eV

)5 cm2

g
. (4)

We have used ρ|equality � 0.4 eV4 as a dark matter density at 
matter-radiation equality. Notice that if a fraction of dark matter 
is produced by a mechanism other than the vacuum misalign-
ment, an additional statistical contribution to the pressure would 
be generated that could tighten the bound (4). Interestingly, for 
light-enough particles (4) seems to compete with the merger con-
straint. However, the real Bullet Cluster bound turns out to be even 
more restrictive than the naively obtained inequality (2). Due to 
phase-space degeneracy for sub-eV particles, the interaction rate is 
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boosted by the bosonic enhancement factor. In particular, denot-
ing the average degeneracy factor by N , the improved version of 
(2) takes the following form for sub-eV dark matter particles of 
interest

σ

m
N � 1 cm2/g , ⇒ σ

m
� 10−2

( m

eV

)4 cm2

g
. (5)

Moreover, this improved bound results in the exclusion of a sig-
nificant part of the parameter space, as we are about to show.

The paper is organized as follows. In section 2, we overview 
some of the key properties of the condensate of interacting par-
ticles governed by (1). In section 3, we study the conditions that 
lead to a superfluid phase transition in galaxies and clusters. We 
show that, in order to have kpc-size superfluid cores, we have to 
consider a scenario with highly degenerate phase-space, implying 
an ultra-light mass range for dark matter particles. In section 4, 
we revise the well known bound on dark matter self-interaction 
cross section inferred from merging clusters accordingly. Section 5
is devoted to the detailed analysis of the full parameter space for 
a Milky Way-like halo. We summarize the results in section 6.

2. Superfluid properties

In a theory of self-interacting bosons, superfluidity may be 
achieved through Bose-Einstein condensation. Within the theory 
given by (1), the condensate of � particles can be well described 
by a homogeneous classical field configuration with finite num-
ber density, which spontaneously breaks the U(1) global symmetry 
of the Lagrangian. As it is well known, any homogeneous fluid 
is susceptible to the gravitational Jeans instability above a cer-
tain length-scale. For the theory at hand, the low-energy spectrum 
of excitations around the homogeneous condensate (phonon spec-
trum) is given by

ω2
k = −4πGρ + c2s k

2 + k4

4m2
, c2s ≡ λρ

4m4
, (6)

with G standing for the gravitational constant and ρ denoting the 
superfluid density.4 The first term in (6) is a tachyonic contribution 
responsible for the Jeans instability, the second term describes the 
energy cost for exciting the sound waves and the last one is the ki-
netic energy of a massive constituent; in other words, the last term 
indicates that in order to create an excitation, we need to make a 
massive constituent of the superfluid mobile along the way. It is 
straightforward to see that, in order to have stable sound waves, 
λ needs to be positive which corresponds to the case of repulsive 
bosons,5 which is essential for superfluidity and will be assumed 
throughout this work.

As one can easily deduce from (6), for the homogeneous con-
densate, the modes softer than the critical momentum-scale k∗ are 
unstable; with

k2∗ ≡ 2m2c2s

(
−1+

√
1+ 4πGρ

m2c4s

)
. (7)

The existence of this Jeans scale implies that due to gravity there 
is an upper bound on the coherence length for the homogeneous 
superfluid configuration, which is the result of the equilibrium 
between the gravitational attraction and either the repulsive self-
interaction (giving rise to the sound-speed) or the quantum pres-
sure (à la Fuzzy Dark Matter scenario).

4 See, e.g., [41] for the derivation.
5 In the opposite case (λ ≤ 0), the only stabilizing contribution to (6) would have 

been the last term.
3

It is easy to see that, depending on the value of cs , which in 
turn is determined by the self-interaction strength λ (or equiva-
lently by the scattering cross section σ ), the Jeans momentum has 
two interesting limits depending on the magnitude of the dimen-
sionless quantity

ξ ≡ m2c4s
4πGρ

. (8)

In particular, in the non-interacting limit ξ � 1 we get

lim
ξ�1

k2∗ =
√
16πGρm2 , (9)

which is the Jeans scale stabilized by the quantum pressure. It 
corresponds to the Fuzzy Dark Matter scenario [29,30] and we re-
fer to it as the degeneracy pressure case. For completeness, let us 
stress that in this limit one cannot talk about sound waves any-
more, since the dispersion relation of phonons with wavelength 
well within the homogeneity domain are highly dominated by the 
last term of (6). Although subdominant, the presence of the sound-
term can still give rise to superfluidity by providing an additional 
energy cost for excitations.

For the opposite case, with ξ � 1, we get

lim
ξ�1

k2∗ = 4πGρ

c2s
, (10)

which is the standard result for the Jeans scale for the superfluid. 
In this case, the gravitational instability is counteracted and bal-
anced by the repulsive interactions (regular positive pressure). This 
is the case we are interested in, and we refer to it as the interaction 
pressure case.

Since the magnitude of the parameter ξ defines the nature of 
the pressure that sustains the condensate, let us evaluate it at typ-
ical galactic densities,

ξ = 4πM2
plρσ

m4
� 1027

(
σ/m

cm2/g

)( m

eV

)−3
, (11)

where we estimated ρ � 10−25g/cm3, which is the average dark 
matter density of inner regions of the Milky Way. This is justified 
as we are after the scenario in which the dark matter density pro-
file is altered significantly only at short scales. In deriving (11), we 
have used the relation between the sound speed and the scattering 
cross section

c2s = ρ

m4

√
2πm2σ . (12)

As it can be seen from (11), keeping in mind that we do not wish 
m to be significantly heavier than eV, the only way one could end 
up with ξ � 1 would be to take an extremely small scattering 
cross section (per mass) σ/m.

For ξ � 1, it is straightforward to derive the self-sustained 
spherical density profile of a zero-temperature superfluid soliton 
by solving the equation for the hydrostatic equilibrium and Pois-
son’s equation. For the quartic interaction at hand, the superfluid 
equation of state is P = λρ2/8m4, which leads to the following an-
alytic expression for the self-sustained density profile [42]

ρ(r) = ρ0
sin (2πr/
)

2πr/

, (13)

where 
 ≡ 2π/k∗ =
√

πλ

4Gm4 is the Jeans length in the ξ � 1 limit 
and ρ0 is the central density of the soliton. Equation (13) shows 
the equivalence between the Jeans length 
 and the size of the 
soliton diameter. It must be noted that the density-independence 
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of 
 is tightly connected with the type of self-interaction present 
for the dark matter field; it would not have been the case for any 
other form of the potential. It has proven to be convenient to ex-
press the size of the soliton in terms of the cross section [23]


 = 2π

(
8πM4

pl

m5

σ

m

)1/4

� 2 kpc

(
σ/m

cm2/g

)1/4 ( m

meV

)−5/4
. (14)

This way, one can get an idea of what it takes to have a macro-
scopic core.

Therefore, if we take a nearly-zero-temperature homogeneous 
superfluid of �s (that would have been stable in the absence of 
gravity), it will break into superfluid islands of size 
 and the den-
sity profile given by (13), similar to the formation of the cluster of 
stars from a baryonic cloud.

We would like to finish this section by pointing out that the 
above discussion applies to a zero-temperature superfluid. In the 
dark matter context, the initial thermalized region has a finite tem-
perature [23,35]. Therefore, each superfluid soliton will be dressed 
in an envelope of normal dark matter particles. The transition 
area is expected to be located where the density drops below 
the critical one; i.e. the density for which the de Broglie wave-
length becomes shorter than the inter-particle separation. Within 
the superfluid soliton the densities will be of order of the galac-
tic values (maybe somewhat larger, as they would be the result of 
a collapse), while the transition density can be roughly estimated 
as ρc ∼ m4v3; with v denoting the characteristic galactic veloc-
ity determining the temperature. Assuming v ∼ 10−3, one gets 
ρc ∼ 10−28g/cm3(m/eV)4. In other words, if the dark matter mass 
is significantly sub-eV (which will be the range of our interest, as 
we will show), then the envelope begins at the distance from the 
centre of the soliton where the densities have dropped by more 
than few orders of magnitude compared to the core. Taking this 
into account, it is safe to assume that the significant fraction of 
the dark matter within the thermalized region will be in the form 
of the superfluid islands. The rest of the matter will be split be-
tween the envelopes (gravitationally bound to solitons) and the 
inter-soliton gas.

3. Thermalization and superfluid formation

Let us investigate what are the conditions that lead to the for-
mation of a superfluid in the galactic medium. We would like to 
begin by mentioning that it is possible to have an effective conden-
sate without a local thermal equilibrium, as long as the number of 
particles within the de Broglie volume is large. In other words, the 
high degeneracy enables us to describe the quantum state by a 
homogeneous field configuration, the perturbations around which 
obey (6). Therefore, the coherence length can be estimated as [28]


 � min (2π/k∗, λdB) , (15)

with λdB denoting the de Broglie wavelength. If equilibrium is 
not reached, then λdB is determined by characteristic dark mat-
ter velocities obtained from N-body simulations. Using the value 
of the virial velocity for a typical galactic halo, it is straightforward 
to verify that (15) will always reduce to λdB, unless one consid-
ers particle masses even lighter than the one for the Fuzzy Dark 
Matter scenario. Therefore, in practice, one needs to invoke ther-
malization in order to even hope to get a macroscopic (kpc-size) 
core for moderately sub-eV particles.

Following what we said, the Bose-Einstein condensation for 
weakly interacting bosons sets in if two conditions are satisfied:

• First, the system must reach the equilibrium. This is achieved 
after particles had sufficient time to interact and reach the 
4

(nearly) maximum entropy state, since otherwise the appli-
cability of the Bose-Einstein statistics would be questionable. 
The time it takes to reach the equilibrium can be estimated 
as teq > t1, with t1 denoting the time it takes each particle to 
scatter at least once. The longer one waits, compared to t1, the 
more certain one can be for being close to equilibrium. A more 
precise statement is beyond the scope of this paper.

• Second, the de Broglie wavelengths of particles must overlap. 
This corresponds to the system being colder than the critical 
temperature Tc ∼ n2/3/m; with n denoting the particle num-
ber density. Physically, what happens is that at high temper-
atures, for which the de Broglie wavelength is shorter than 
the inter-particle separation, the gas of weekly interacting 
particles behaves as a classical system and the Bose-Einstein 
distribution is well-approximated by the Boltzmann distribu-
tion. Below the critical temperature, on the other hand, the 
latter fails to adequately describe the system, because indis-
tinguishable particles with overlapping wave-packets start to 
populate the zero momentum state (in compliance with the 
Bose-Einstein statistics). In fact, for T � Tc almost all particles 
of the gas are in the ground state.

Therefore, we expect the dark matter halo to possess few rele-
vant length scales which are not in a one-to-one correspondence: 
the first one, the thermal radius RT , identifies the region where 
interactions are efficient enough to allow thermal equilibrium. 
The second one is the degeneracy radius Rdeg within which the 
de Broglie wavelength exceeds the inter-particle separation. The 
shortest of these identifies the region where the phase transition 
is expected to take place. The last, but not the least, is 
 connected 
to the scale below which the condensate is stable. Understanding 
the hierarchy between these scales is vital in order to understand 
whether the fragmentation takes place or not, namely if galaxies 
present a single superfluid core or a collection of superfluid sub-
structures.

The formation of a dark matter halo is a non-linear process 
and as such it is challenging (if not impossible) to establish a 
precise density profile analytically. For purely gravitationally inter-
acting (standard) dark matter models, N-body simulations reveal 
the more or less universal density distribution, known as the NFW 
profile

ρ(r) = ρ0

r
rs

(
1+ r

rs

)2
. (16)

The characteristic density ρ0 and the scale radius rs vary from 
halo to halo. However, according to simulations, there exists a 
tight relation between these two parameters, known as the mass-
concentration relation [43]. The size of the halo itself is conven-
tionally defined by the virial radius RV , which represents the ra-
dius within which the average density of the halo (denoted as 
ρ200) is about 200 times the critical density. For our qualitative 
analysis we begin with the NFW profile and examine under what 
conditions a significant modification of the profile, followed by 
a superfluid formation, takes place. As we have already pointed 
out, one should expect the aforementioned thermalization and de-
generacy requirements to be more easily satisfied in central (high 
density) regions.

Depending on the parameters of the model m and λ, dark mat-
ter particles could become degenerate at densities lower than the 
ones at which the equilibrium can be reached. In that case, the in-
teraction rate, responsible for thermalization, will be assisted by 
the degeneracy factor that roughly counts the number of particles 
in the de Broglie volume. In general, the relaxation rate for highly 
degenerate particles can be estimated as [44,45]
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� = σ

m
ρvN , N = max

{
1,

ρ

m

(
2π

mv

)3
}

, (17)

where v(r) =
√

GM(r)
r stands for the orbital velocity of dark matter 

particles and the velocity dispersion has been assumed to be of 
order v , while M(r) is the mass of the halo enclosed in an orbit of 
radius r.

Following our earlier discussion, we estimate the thermal radius 
RT as the one within which the particles had a chance to scatter at 
least once throughout the lifetime of the galaxy; i.e. RT is a radius 
within which we have �tg > 1, with tg ≈ 13 Gyrs being the age of 
the galaxy.

For completeness, let us note that using tg as the time-scale for 
thermalization implies the assumption that it is possible to ignore 
the phase-space reshuffling of � due to dynamical effects within 
the galaxy. If this is not justified, the dynamical time tdyn = r/v is 
more appropriate to determine the thermal radius. We will demon-
strate in the appendix that the utilization of tdyn results in a re-
duction of the thermalization radius RT by a factor of few.

Depending on whether the equilibrium is reached while N � 1
or not, there could be two qualitatively distinct cases to consider:

(i) If thermalization is reached at radius RT while N � 1, then we 
would have a non-degenerate classical gas of weakly interact-
ing particles at distances r > RT from the centre of the halo. 
In other words, for r > RT > Rdeg particles are not aware of 
interactions, for RT > r > Rdeg particles had the chance to ex-
perience interactions and as such the distribution will be more 
fuzzed out compared to the non-interacting case. Since the 
particles are non-degenerate in this region, the profile would 
resemble the profile one obtains in self-interacting dark matter 
models. At r < Rdeg < RT , on the other hand, the Bose-Einstein 
condensation would take place and we would expect to see 
the presence of superfluid islands of size 
.

(ii) An alternative scenario would be that the high degeneracy is 
reached at distances larger than the thermal radius (Rdeg >

RT ). In this case, the halo would have a simpler structure. 
In particular, at r > RT the density profile would be similar 
to the one for the non-self-interacting dark matter, i.e. like 
NFW, with the possibility of a BEC-like sub-structure at scales 
shorter than the de Broglie wavelength. Then we would expect 
the superfluid phase transition directly at r < RT , populating 
the corresponding volume with the aforementioned superfluid 
islands of size 
.

Now, we are going to study those two scenarios separately. For 
definiteness, the numerical estimates will be performed for a Milky 
Way-like galaxy with the total mass MDM = 1012M
 and the con-
centration parameter c = RV/rs = 6.

Case (i): non-degenerate thermalization
Let us focus on the case where the thermalization of �s hap-

pens in a non-degenerate setting. The thermal radius RT can be 
estimated as

�tg = σ

m
ρ(RT )v(RT )tg = 1 . (18)

For a given density profile, this equality gives RT as a function 
of σ/m. Concerning the scaling of (18) with the parameters of the 
NFW profile, this is a cumbersome function of RT , ρ0 and rs . How-
ever, the behaviour is simple in limiting cases

RT � rs
(
ρ0rs

√
2πGρ0

σ

m
tg

)γ
, with γ =

{
2, for RT � rs
2/7, for RT � rs

(19)
5

Not surprisingly, the overall result for RT is a monotonically in-
creasing function of the cross section. In other words, for larger 
σ/m the dark matter particles manage to reach equilibrium at 
larger radii (i.e. lower densities). It is easy to find that for the 
Milky Way-like halo at hand, using ρ � 10−25g/cm3, one can con-
veniently express the thermalization radius as:

RMW
T � rs

(
σ/m

cm2/g

)γ

(20)

Let us stress that the case RT � rs is sensitive to the spe-
cific values of rs and ρ0 and could have strongly been affected 
by different fits. Moreover, we may see how the strength of the 
self-interactions affects more mildly RT in outer regions of the 
halo: since the density scales as r−3, stronger self-interactions are 
needed to overcome the density drop.

So far, we have not said anything about the mass of the dark 
matter particle. The equality (18) will successfully provide us with 
the estimate for RT , as long as the degeneracy factor is small. Ex-
amining the expression for this factor (see (17)) it is easy to see 
that to have N < 1 at the distance RT � rs from the centre,

m� 20 eV ·
(

σ/m

cm2/g

)−5/4

, (21)

implying masses significantly greater than eV. One gets a similar 
constraint for RT � rs , albeit with a different power law. The im-
portant message is that this scenario requires masses above eV, if 
the interaction strength satisfies the Bullet cluster constraint. This 
observation together with (14), and using σ/m � cm2/g, gives us 
an absolute upper bound on the size of the superfluid soliton


� 5 · 10−2 pc . (22)

Interestingly enough, the size of the superfluid patches would be 
an order of magnitude or so larger than the solar system scale 
if one were to saturate this, taking the density of the order of 
the NFW density at our location. However, the density could be 
somewhat larger as these solitons result from a fragmentation of a 
locally thermalized dark matter distribution.

Case (ii): degenerate thermalization
It seems that, as long as thermalization happens in a non-

degenerate setting, particles cannot rely on superfluidity to gen-
erate kpc-size solitons. This indicates that we have to explore the 
possibility of Rdeg > RT , thus violating (21). In this case we have 
to replace (18) with its degenerate counterpart

�tg = σ

m
ρ(RT )v(RT )N tg = 1 , with N = ρ

m

(
2π

mv

)3

� 1 .

(23)

Here too, the exact expression for RT is cumbersome. However, 
similar to the previous case, it can be nicely presented in limiting 
cases

RT � rs

(
4π2ρ0

Gm4r2s

σ

m
tg

)δ

, with δ =
{
1/3, for RT � rs
1/5, for RT � rs

(24)

For a Milky Way-like halo, the expression reduces to

RMW
T �

⎧⎪⎨
⎪⎩
60 · rs

[
σ/m
cm2/g

( m
eV

)−4
]1/3

, for RT � rs

10 · rs
[

σ/m
cm2/g

( m
eV

)−4
]1/5

, for RT � rs
(25)
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Unlike the non-degenerate case, here the size of the thermal-
ized region is determined by (σ /m)m−4, as it was previously 
demonstrated in [39]. For instance, as one can see from (25), for 
the galactic halo in question

RT ≷ rs , ⇔ σ/m

cm2/g

( m

eV

)−4
≷ 10−5 . (26)

Moreover, since (24) depends only mildly on rs and ρ0, this result 
is not very sensitive to a fine tuning of the NFW-parameters.

Therefore, it seems there exists a wide range of parameters, for 
which a significant fraction of the halo has had enough time to 
have reached equilibrium; the parameter space here is even larger 
than in case (i), since a specific value of the thermal radius is now 
generated by different combinations of m and σ/m due to the in-
troduction of N .

4. Bullet cluster constraint

In this section, we would like to revisit the Bullet Cluster con-
straint [40] for the ultra-light bosonic dark matter candidate. The 
system in question is a merger of two clusters, in which the dark 
matter component is offset with respect to the gas component. As 
it is well known, the comparison of the observed mass distribution 
with the simulated one does not seem to indicate the presence of 
any other dark matter interaction besides the gravitational one. In 
other words, the average number of scatterings experienced by a 
given dark matter particle from the bullet cluster, while crossing 
the target cluster, seems to be less than one

〈nsc〉 < 1. (27)

The value 〈nsc〉 is averaged over all the bullet cluster particles and 
could be estimated as the product of the interaction rate � and the 
crossing time

〈nsc〉 = �
2RV

v in-fall
, (28)

where v in-fall � 10−2 is the in-fall velocity and RV is the virial ra-
dius of the target cluster. Clearly, the bound on the scattering cross 
section that can be extracted from (27) and (28) depends on the 
nature of dark matter.

For example, assuming non-degenerate dark matter that inter-
acts through 2-body interactions

〈nsc〉 = 2
σ

m
RV ρ. (29)

Using ρ � 10−25 g/cm3 as an average dark matter density and 
RV � 2 Mpc, one obtains
σ

m
� 1 cm2/g. (30)

The value of the density that we have chosen represents the aver-
age density of the Target Cluster within 500 kpc, obtained fitting 
the matter distribution using an NFW profile [46].6

As we have already discussed from the point of view of dark 
matter thermalization in galaxies, if particles have a degenerate 
phase-space, then the interaction rate is enhanced by N (17). The 
same goes for mergers, if colliding halos are significantly degen-
erate, then (30) needs to be reconsidered. It is straightforward 
to see that for the NFW profile of a cluster (with RV � 2 Mpc, 

6 At this distance, the density profile changes from 1/r3 to 1/r: therefore, we are 
averaging over the region where the mass scales as r2 but not in the part where 
the mass scales logarithmically with r.
6

RV /rs � 4 and ρ0 � 10−25 g/cm3) the degeneracy factor exceeds 
unity everywhere inside the virial radius if m � eV. Notice that 
Ncluster � 10−3Ngalaxy, since the velocities are an order of mag-
nitude or so higher in clusters. Therefore, if galaxies are strongly 
degenerate, which is the case for the parameters of interest, then 
the scattering rates in clusters are expected to be enhanced as 
well.

We can estimate the improved Bullet Cluster bound on the 
self-interaction cross section by boosting the interaction rate by 
a typical (average) value of the degeneracy factor for a cluster, re-
sulting in

σ

m
� 10−2

( m

eV

)4 cm2

g
. (31)

We would like to stress that this relation applies if the halos 
are in the form of a gaseous medium of particles with m � eV and 
the significant velocity dispersion. If the entire halo of the clus-
ter were to thermalize and undergo fragmentation into superfluid 
solitons, without significant leftover in the form of a dispersed gas, 
then (31) would need to be ameliorated: in this case, almost all 
particles would lie in the ground state and transitions to excited 
states would not be enhanced by degeneracy. However, it seems 
unlikely not to end up with a significant fraction of particles to 
remain un-condensed in the process of thermalization and frag-
mentation. Here, we take this qualitative statement for granted and 
leave more detailed analysis to future work.

The revised Bullet Cluster constraint (31) leads to the following 
upper bound on the thermal radius of the Milky Way

(RT )Milky Way � 125 kpc (32)

Moreover, it is straightforward to see that the thermal radii of the 
target and bullet clusters cannot exceed ≈ 0.5 Mpc.

Therefore, even if the estimated inequality (31) is saturated, 
only inner regions of the dark matter halo are capable of reaching 
equilibrium; with the outskirts being unaffected by the presence 
of self-interactions.

5. Relative size of thermalized region and coherence length

In this section, we focus on a relation between the Jeans scale 

 and the thermal radius RT . Since we are interested in the su-
perfluid regime of the theory, let us begin by pointing out that 
for interaction-pressure dominance (large ξ ) RT and 
 (given by 
(14)) are controlled by different combinations of m and σ . There-
fore, it may seem possible to pick the parameter values in such 
a way as to have kpc-size superfluid islands while RT could vary 
from values lower than 
 up to RV . We will demonstrate that the 
dark matter masses required for 
 ≥ RT are so low that one en-
ters the Fuzzy Dark Matter parameter space. This is equivalent to 
a transition from a superfluid whose degrees of freedom are col-
lective modes (phonons with a linear dispersion relation) to a con-
densate whose dynamics is described by almost-free constituents 
(quadratic dispersion relation).

It is straightforward to see that 
, given by (14), can be ex-
pressed in terms of RT using (23) as(




2 kpc

)
�

[
F (RT /kpc) ·

( m

meV

)−1
]1/4

, (33)

where F is determined by the density profile of a halo. The ex-
plicit form of F may be easily deduced from (23). This equation 
shows that for a given RT the Jeans scale depends only mildly on 
the mass of the dark matter particle. Because of this, boosting 
 to 
sufficiently large values may require lowering m so much that we 
may end up leaving the interaction-pressure domination regime 
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Fig. 1. Black lines show the slices of the [m, σm ]-parameter space that generate a Jeans scale of 0.1 kpc/2 kpc/6 kpc in degenerate regions of the Milky Way dark matter halo, 
assuming a particle species governed by the Lagrangian (1). They are obtained evaluating (7) numerically. The sloped part of the curve represents the superfluid regime of 
the theory (ξ � 1) while the flat part (ξ � 1) represents the region where particles self-interact so little as to be considered a non-interacting species. To evaluate 
 we 
assumed ρ � 10−25 g/cm−3, which is the expected average density of the thermal core before fragmentation. This value influences only the ξ ≤ 1 part of the Jeans scale, 
which is favoured by small RT . Blue/Orange/Red dashed curves correspond to the parameter space that generates a thermal radius of 0.1 kpc/2 kpc/6 kpc, estimating RT as 
the radius within which the particles had the chance to scatter at least once throughout the lifetime of the halo. On the right of the gray line, the Milky Way dark matter 
halo is in global thermal equilibrium. In order to stress that we do not really know what is the sufficient number of scattering events for reaching equilibrium, coloured 
regions show how RT changes varying the sufficient mean number of scattering events in the interval 1-10. We see that it is impossible to have an interaction pressure 
dominated core with 
 � RT .
and enter the quantum pressure dominance. In other words, 
, ξ
and RT depend on three different combinations of m and σ/m. 
At the same time, the superfluidity requires ξ � 1, which is not 
satisfied by a generic choice of 
 and RT , due to the mild mass-
dependence of (33).

Having made those observations, let us focus on narrowing 
down the parameter space for which we can get the macroscopic 
superfluid patches within the thermalization radius. For this we 
use the expression for the Jeans scale (7) that covers both the 
superfluid and Fuzzy Dark Matter regimes. The result is given by 
Fig. 1 for a Milky Way-like halo, where different values of the Jeans 
scale and the thermal radius are shown. Let us stress that, even if 

 is density independent in the interaction pressure case (in case 
of the λ�4-potential), this is not true for ξ � 1. Thus, while the 
sloped part of solid curves is the same in every astrophysical struc-
ture, this is not true for the turning point and the flat part.

Now, Fig. 1 highlights the impossibility of 
 � RT for halos sus-
tained by the interaction pressure: lines corresponding to a given 

 do not intersect lines describing thermal radii with a smaller rel-
ative magnitude in the interaction pressure limit. Therefore, if the 
dark matter is a scalar particle with a λ�4-potential which forms 
an interaction-pressure-supported superfluid core, we have


 < RT . (34)

To show that (34) is not an artefact of our specific definition of 
the thermal radius, coloured regions represent the parameter space 
that generates specific values of the thermal radius when changing 
7

the sufficient number of scattering events to equilibrate the dark 
matter halo in the interval 1-10.

6. Summary

Let us conclude by reiterating the qualitative tale of dark matter 
superfluidity discussed in this work. As dark matter particles be-
gin to clump to form a halo, they start similarly to CDM. Up until 
the point when particles begin to scatter from each other, they are 
striving towards an NFW density profile. In regions where densities 
increase sufficiently for particles to start experiencing collisions, 
the evolution of the density profile starts to depart from its col-
lisionless counterpart. In fact, the regions within which each dark 
matter particle has had a chance to scatter few times should be 
close to equilibrium. Although efficient interactions tend to ho-
mogenize the density profile, the phase transition and the forma-
tion of superfluid droplets may take place if the de Broglie wave-
lengths begin to overlap inside thermalized regions. Both equilibra-
tion and the overlapping wave-functions favour high densities and 
are hence easier to achieve within central regions. Denoting the 
radii of the corresponding boundaries as RT and Rdeg respectively, 
we have demonstrated that a presence of ∼kpc-size superfluid 
patches enforces the parameter space for which Rdeg > RT . Within 
RT the core breaks into superfluid islands of size 
 (determined 
by the parameters of the model) due to the gravitational Jeans 
instability. The dynamics of the droplets plays an important role 
to shape the density distribution of the thermal core. As we have 
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Fig. 2. Parameter space for �. We focussed on the superfluid regime and we excluded halos sustained by the quantum pressure (green region). The pink region is excluded 
by the bullet cluster constraint while the purple one represents condensates which were relativistic at matter-radiation equality. The striped region highlights the parameter 
space where both the bullet and target cluster are in global thermal equilibrium. In the left panel, Black solid lines identify the parameter space that generates a Jeans scale 
of 0.5 kpc/2 kpc/6 kpc. In the right panel, we plotted the whole parameter space, highlighting 
 = 10−3 pc/1 pc/6 kpc for reference.
shown in the first section, each island is a superfluid soliton (non-
topological) with a practically homogeneous core.7 For 
 � RT , the 
course-grained (over scales larger than 
) density profile should 
resemble the one in CDM as superfluid solitons are expected to 
behave as weakly interacting effective particles.

In Fig. 2 we combine the limits discussed in this work to un-
derstand what is the parameter space of a dark matter candidate 
governed by the Lagrangian (1) that could generate kpc-size soli-
tons in partially thermalized clusters. The pink region is excluded 
by the analysis of the collision of degenerate clusters (leading to 
an upper limit of the self-interaction strength). For completeness, 
let us stress that the results of our qualitative analysis are sensitive 
to the pre-thermalization shape of the density profile and in par-
ticular to the values for the parameters of the NFW distribution. 
Also, the value we used to estimate the mean density of the ther-
mal core would drop by one order of magnitude if thermalization 
is strong enough to affect outer regions of the galactic halo. How-
ever, this would neither change the behaviour of the theory in the 
interaction pressure regime, which is density independent, nor the 
conclusion on the fragmentation of the halo. In fact, the transition 
point between degeneracy and interaction pressure highlighted by 
Fig. 1 would move to the right, since stronger self-interactions are 
necessary to compensate the smaller mean density of the thermal 
core.

Moreover, as we pointed out in Section 4, the bound (31) ap-
plies only if a significant fraction of the bullet cluster halos is in 
the gaseous form. This constraint would have been downgraded to 
(30) if both the bullet and the target clusters were to thermalize 
completely and undergo the fragmentation into superfluid solitons, 
without a significant leftover in the dispersed phase. On the off 
chance that this could happen, we have highlighted the region of 
the parameter space in Fig. 2 where both the target and bullet 
cluster are expected to have thermalized in their entirety. In this 
case the density profile of clusters would deviate from the usual 
NFW profile, and the analysis of the profile and the substructure 

7 This is similar to the Bose-Einstein condensation of bosonic cold-atoms with 
attractive contact interactions. As a result, the homogeneous condensate is unstable 
and fragments into solitons.
8

of clusters could lead to constraints on this scenario. The detailed 
analysis of this scenario being beyond the scope of this work, we 
have assumed such a fragmentation to result in a significant por-
tion of the cluster mass to have remained in the form of a gaseous 
medium.

Finally, let us comment on the magnitude of the coupling con-
stant λ. Fig. 2 illustrates that the generation of solitons with a 
diameter 
 � 0.5 kpc is compatible with the revised bullet clus-
ter bound only for cross sections σ/m � 10−63 cm2/g and masses 
m � 10−15 eV. It is straightforward to verify that this means con-
sidering λ � 10−65: the smallness of the coupling constant in-
volved is a consequence of the extreme enhancement of the inter-
action rate by the sub-eV mass of �, both through N and through 
the mass dependence of σ/m.
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Appendix A. Dynamical time as the time-scale for thermalization

Let us show the differences emerging by using dynamical time 
tdyn to describe the time-scale in which dark matter thermalizes. 
Indeed, if galactic dynamical effects are efficient enough to reshuf-
fle the phase-space of � significantly, the correct time-scale in-
volved would be tdyn = r/v . Therefore, focussing on the degenerate 
case, particles had the time to interact only if

�tdyn = N
σ

m
ρ(RT )RT = 1 . (35)

In this case, ρ0, RT and rs enter in equation (35) through the com-
bination ρ2RT /v3. Again, we may extract the following limits:
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RT � rs

⎛
⎝

√
8π3ρ0

G3

σ/m

m4r2s

⎞
⎠

δ

, with δ =
{
2/5, for RT � rs
2/7, for RT � rs

(36)

For a Milky Way-like halo, the expression reduces to

RMW
T,dyn �

⎧⎪⎨
⎪⎩
30 · rs

[
σ/m
cm2/g

( m
eV

)−4
]2/5

, for RT � rs

10 · rs
[

σ/m
cm2/g

( m
eV

)−4
]2/7

, for RT � rs
(37)

We may now compare (25) and (37):

RMW
T,dyn

RMW
T,g

�

⎧⎪⎨
⎪⎩
1/2

[
σ/m
cm2/g

( m
eV

)−4
]1/15

, for RT � rs[
σ/m
cm2/g

( m
eV

)−4
]3/35

, for RT � rs
(38)

One can see that RT gets reduced by a factor 2 at most (the σ
and m dependence is too mild to affect the ratio by an order one 
contribution). In this case, the analogue of Fig. 2 would reveal a 
similar picture of what we obtained using tg.

Finally, we report the upper bound from the bullet cluster on 
the thermal radius of the Milky Way using tdyn:

(Rdyn
T )Milky Way � 60 kpc. (39)

As expected, the bound on the thermal radius is tighter than (32)
when we use tdyn as the time scale for thermalization.
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