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Doubly heavy tetraquarks, qq’ QQ’ , in a nonrelativistic quark model
with a complete set of harmonic oscillator bases
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We improve our previous variational method based nonrelativistic quark model by introducing a
complete set of three-dimensional harmonic oscillator bases as the spatial part of the total wave function.
To assess the validity of our approach, we compare the binding energy thus calculated with the exact
value for the hydrogen model. After fitting to the masses of the ground state hadrons, we apply our new
method to analyzing the doubly heavy tetraquark states gq’ 00’ and compare the results for the binding

energies to results in other works. We also calculate the ground state masses of T',.(uds¢) and T, (udsh)
with (1,S) = (0,1),(0,2). We find that T,,(udbb) and usbb, both with (1,S) = (0, 1), are stable
against the two lowest threshold meson states with binding energies —145 and —42 MeV, respectively.

We further find that T, (udeb) is near the lowest threshold. The spatial sizes for the tetraquarks are

also discussed.

DOI: 10.1103/PhysRevD.103.114009

I. INTRODUCTION

Since the observation of X(3872) [1] and several exotic
hadron candidates that followed, the structure of these
particles and other potential flavor exotic configurations
have become a central theme of study. Theoretical
approaches on these topics range from direct lattice calcu-
lation [2], the sum rule approach [3], effective models, and
constituent quark based models [4]. To better understand the
data and to point to future searches, it becomes necessary to
improve any simpleminded model calculations with full
details.

A quark model based on color and spin interaction was
successful in describing the mass differences between
hadrons within a multiplet [5]. A constituent quark model
with more realistic potential, proposed in Ref. [6] in the
early 1980s, gives a unified description of meson and
baryon spectra. The potential in Ref. [6] was applied to a
detailed investigation of baryon spectra [7], and to various
tetraquark states [8]. Semay and Silvestre-Brac [9] intro-
duced four different types of interquark potentials, which

fsun gsiknoh@yonsei.ac.kr
fdiracdelta@ yonsei.ac.kr
'Lsuhoung@yonsei.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/103(11)/114009(21)

114009-1

improves the simultaneous fits to both the meson and the
baryon spectra.

In addition to building up the realistic potentials, there
have been many works toward improving the accuracy of
the spatial part of the total wave function. Among them, in
Refs. [8,10], the harmonic oscillator bases were applied to
the construction of the spatial part of the wave function
for the baryon structure. In particular, Silvestre-Brac and
Semay [8] discussed the validity of the harmonic oscillator
bases within the light baryons, which are composed only of
u, d, and s quarks. They also extended their work to
tetraquarks in Refs. [8—10]. In Refs. [10,11], the authors
built the spatial function using the hyperspherical coor-
dinates for the tetraquark systems. In Ref. [12], using a
spatial function made up of multiple Gaussians which allow
for internal angular momentum and satisfy the permutation
symmetries restricted by the Pauli principle, Brink and
Stancu studied the properties of T',.. and T, and confirmed
the stability for the latter. Subsequently, Janc and Rosina
[13] performed a similar calculation but with a more
sophisticated basis of multiple Gaussians.

In this work, we introduce a complete set of three-
dimensional harmonic oscillator bases with a rescaling
factor that can be flexibly used for better convergence
relative to the harmonic oscillator bases in Ref. [10], and
apply them to constructing the spatial part of the total wave
function in a nonrelativistic quark model with hyperfine
potential given in Eq. (1). In doing so, our spatial bases
more efficiently describe the ground state wave functions
not only for the meson and baryon structures but also for
the tetraquark structure. Compared to previous works, it
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should be noted that, first, we newly introduce simple
harmonic oscillator bases with variational parameters that
not only form a complete set but also drastically improve
the convergence organized by quanta counting. Throughout
the paper, we further analyze the detailed structure and
contribution from each quanta so as to identify important
configurations that contribute to the stability of the tetra-
quark states: attractions coming from the dipole and
quadrupole moments are found to be important. Second,
we show how the antidiquark structure changes as a
function of the heavy quark that provides a color source
to make the total configuration color singlet: such an
analysis shows to what degree an antidiquark structure
can be treated as an independent configuration. Finally, we
compare our complete model with a simplified quark model
so as to highlight the correction that simple models should
additionally include.

In Sec. II, we introduce the nonrelativistic quark model
and compare the fittings in this work to those in our
previous work [14]. In Sec. III, each part of the total wave
function is introduced, emphasizing the classification of the
harmonic oscillator bases with the notion of quanta of the
harmonic oscillator bases. In Sec. IV, the newly obtained
numerical results are presented and compared to those in
our previous work [14]. Furthermore, we show the relative
distances between the quark pairs together with a pictorial
description of the spatial sizes for the tetraquarks. We also
discuss the tetraquarks in a three-body configuration.
Discussion and a summary are given in Sec. V. In the
appendixes, to assess the validity of our approach, we
compare the result obtained with our method for the
hydrogen model with the exact solution. We also show
the details in constructing the spatial wave function with the
complete set of harmonic oscillator bases for the meson
as well as the baryon structure. As a special case, in
Appendix C, we present the method for constructing the
bases for the proton.

II. FORMALISM

We use a nonrelativistic Hamiltonian for the constituent
quarks, which is the same as in our previous work [14],

2 c )c
P; ’1’1 c cs
H——g m; + ——g——V —|—V , (1
<’ 2m,~> 4 22( ) ()

where m; is the quark mass and A$/2 is the SU(3) color
operator for the ith quark. The internal quark potentials Vicj

and ViCjS are taken to have the same form as in our previous
work [14]:

TABLE 1. The masses of mesons obtained (column 3) with the
fitting parameters set given in Eq. (6). Column 4 shows the
variational parameter a defined in Eq. (A2).

Variational
Experimental ~ Mass parameter

Particle value (MeV) (MeV) (fm™2) Error (%)
D 1864.8 1853.8 a=1.5 0.59
D* 2007.0 2006.2 a=>5."7 0.04
e 2983.6 2986.0 a=252 0.08
J/¥Y 3096.9 31184 a=19.7 0.69
D 1968.3 1963.6 a=12.1 0.24
D; 2112.1 2109.2 a=93 0.14
K 493.68 498.32 a=1.1 0.94
K* 891.66 874.66 a=4.1 1.91

B 5279.3 5301.2 a=13 0.42
B* 5325.2 5360.5 a==6.5 0.66
Ny 9398.0 9327.1 a =100.2 0.75
T 9460.3 9456.6 a=2819 0.04
B, 5366.8 5375.3 a=13.0 0.16
B} 5415.4 5439.3 a=115 0.44
B, 6275.6 6268.4 a=138.7 0.11
B 6361.8 a=32.6

ve—-E 5 p, 2)
Fij o
2.2, o=(rij)?/ (roi)?
V%S: hCK4e G, 0j. (3)
m;m;c (roij)rij
Here

rol]—1/<a+ﬂ +m> )

m;m;
K = K0<1 +]/T’{n> (5)

where r;; = |r; —r;| is the relative distance between the i
and j quarks and o; is the spin operator. The parameters
appearing in Egs. (2)—(5) are determined by fitting them to
the experimental ground state masses of the hadrons listed
in Tables I and II.

The fitting is done mostly within 0.7% error, as can be
seen in Tables I and II. In particular, we focus on trying to
minimize the error on the doubly charmed baryon, E..., on
the baryons A and p, and also on the mesons D, D*, B, B*,
and B, which comprise the lowest thresholds for the doubly
heavy tetraquarks of interest in this work.

In comparison with our previous work [14], where only
hadrons containing at least one ¢ or b were fit, here we fit
all hadrons, including those with only light quarks. The
number of fitting hadrons is increased by almost a factor of
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TABLEIL. Same as Table I but for baryons. In column 4, a; and
a, are the variational parameters. The variational parameter a;
appears in R,, ; (x;) in Eq. (B1) using a similar rescaling as in the
meson structure.

Experimental Mass Variational Error
Particle value (MeV) (MeV) parameters (fm™2) (%)
A 1115.7 1111.7  ay =4.2,a, =35 0.36
A, 2286.5 22694 a;=44,a, =44 0.75
Bee 3621.4 3621.1 a; =113, a, =4.5 0.01
Ay 5619.4 5634.6 a;=45,a,=50 027
PR 2452.9 24385 a;=28,a, =55 059
po 2517.5 25232 a;=25,a, =47 023
z, 5811.3 5841.6 a; =238,a, =58 0.52
xz; 5832.1 5875.1 a; =28, a, =42 0.74
b 1192.6 11924  a; =29, a, =4.6 0.02
x* 1383.7 13958 a; =2.3,a,=32 0.87
=) 1314.9 13271 a; =45, a, =43 093
=* 1531.8 15404 a; =4.1, a, = 2.8 0.56
E, 2467.8 2472.0 a; =49, a, =6.0 0.17
= 2645.9 2649.7 a;=33,a,=6.1 0.15
g, 5787.8 5824.1 a;=5.0,a, =72 0.63
5 5945.5 5989.1 a;=34,a,=7.6 0.73
p 938.27 938.05 a; =29, a, =29 0.02
A 1232 12422 a; =19, a, =19 0.83

2 relative to that in our previous work [14]. The better fit is
a consequence of using the complete set of harmonic
oscillator bases approach. Using the harmonic oscillator
bases, the new fitting parameters are as follows:

k=120.0MeVfm, ay=0.0334066 (MeV~'fm)'/?,

D =917 MeV,
m,=342MeV, m,=642MeV,
m,=1922MeV, m, = 5337 MeV,
a=1.0749 fm~!, £=0.0008014 (MeV fm)~!,

y=0.001380 MeV~!, k,=197.144 MeV. (6)

III. WAVE FUNCTION

Here, we will study the tetraquark states with the total
orbital angular momentum equal to zero in the nonrela-
tivistic quark model. However, it should be noted that the
p-wave or even higher orbital states between the quarks can
play a crucial role in lowering the total hadron energy and
contribute to the total wave function. This can be success-
fully done by introducing the complete set of three-
dimensional harmonic oscillator bases. The total wave
function of the Hamiltonian consists of the spatial, color,
spin, and flavor parts of bases. We adopt the harmonic
oscillator bases as the spatial part of the wave function. The
other parts of the wave function are the same as in Ref. [14].

We will thus discuss the spatial part in detail, while the
other parts will be mentioned briefly.

A. Jacobi coordinates sets

To set up the spatial function, we first set the Jacobi
coordinates, representing the relative positions of all the
quarks in the tetraquark configuration. The Jacobi coor-
dinate sets in each configuration can be written as follows.
(a) Coordinate set 1

X—I(I‘ r,) X—l(l' ry)
1 \/E 1 2)s 2 \/i 3 4)s
1 nmry + mypIry msrI's + myry
x— - NG
A\ myp+my msz + my
(b) Coordinate set 2
= er-m). = s(rr)
Y1 NG 1 3)s Y2 NG 4 —I),
1 mry + myr's msIy —+ myry
Y3 =~ - (8)
M my + my msz + ny
(c) Coordinate set 3
z—l(r ry) z—l(r r3)
1 \/E 1 4)s 2 \/E 2 3)
1 miry + myry msIy + myrs
Z; =— - , 9)
H\ mpt+my msz + my
where
:[m%—i-m% m%—l—mi}l/z
(my +my)*  (m3 + my)?
and
m, = my;
mp = my = m,, my = my = m, for udcc,
mp = my = m,, msy = my =my for udbb,
mp; = my = m,, my = m,, my = my for udch,
mp; = my = m,, msy = my, my = m, for udsc,
mp = my = m,, msy = my, my =my, for udsb,
my; = my, my, = my, my =my =my, for usbb.

For symmetry reasons, we take coordinate set 1 as our
reference and use the transformations between the above
sets of Jacobi coordinates to calculate the relevant matrix
elements involving two quarks.
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TABLE III.  The permutation symmetries of the color, spin, and
flavor parts for the tetraquarks studied in this work. Here, +1(—1)
indicates that it is symmetric (antisymmetric) under the corre-
sponding permutations in the configuration of the Jacobi coor-
dinate set 1. An empty cell indicates that there is no symmetry
constraint under the corresponding permutation. 7' stands for

udQQ'.

CS bases
Permutation  w{  w$ oy oy w8yl
(12) +1 -1 +1 -1 -1 +1
(34) +1 -1 -1 +1 +1 -1

Flavor

Permutation Too Too usbb
(12) -1 -1
(34) +1 +1

B. Color, spin bases, and flavor

The most stable state for the doubly heavy tetraquarks
can be found in the spin 1 channel [14]. The color-spin (CS)
space for the spin 1 tetraquark system is spanned by the six
CS bases due to the fact that the tetraquark configuration in
the total spin 1 state can be described using two color bases
and three spin bases. In the configuration of the Jacobi
coordinate set 1, the six CS bases are as follows [14]:

v = (0192)} ® (3334)8. vs = (01027 ® (2:24)7.
w$® = (9192)$ ® (3334)5, vi® = (01921 ® (@384)5,

Ve = (@)§ ® @a)f. v = (@) ® (@),

(10)

where the superscript indicates the color state and the
subscript indicates the spin state for the subparticle systems
in the tetraquark structure.

For the flavor part, we will consider the isospin 0
for T..(udec), Ty,(udbb), T,,(udch), T,.(udse), and
T, (udsb), and the isospin 1/2 for usbb. The basis of
the Hamiltonian is determined to satisfy the symmetry
constraint due to the Pauli principle and constructed by
combining the CS basis with the spatial part. The permu-
tation symmetries for the CS bases and the flavor part are
summarized in Table III.

C. Harmonic oscillator bases as the spatial function

Generalizing the method used in Appendixes A and B
for the meson and baryon structures, we construct the
complete set of harmonic oscillator bases for the tetra-
quarks. Since there are three internal orbital angular
momenta, [;, [, and I3, there are three ways to combine
them, depending on the order of addition. Choosing to

combine [/; and [, first, the spatial function can be
constructed as follows:

Spatial
W(Xl - X2, X3)[”1,ﬂz~,n3~,11~,12,13]

= Z C(ll,m], lz, mz;Ll’z = 13’ml’2 — _m3)

X C(Ll,Z = l3,m1,2 = —m3, l3,m3;l = O,m = O)
X Rn].ll (x )an.lz (Xz)Rn3,z3 (x3)
x Y;'lll(917¢1)YZ2(927¢2)Y23(937¢3)’ (11)

where the coefficient C(Iy,my, 1, my; L5, my5) is the
Clebsch-Gordan (CG) coefficient for the decomposition
of the subtotal angular state |L;,,m;,) in terms of
|l;,my)|l,,my), and the subtotal angular state of the
subparticle corresponding to the quark pair (1,2) is
restricted to |Ly, = l3,m;, = —m3) to satisfy the total
[ =0 state. R, ;(x;) has the same form as in Eq. (A2),
and Y}"(0;, ¢;) is the spherical harmonic function for the

angular part of the ith Jacobi coordinate x;. For the other
two types of combinations, Eq. (11) is modified by adding
ly, I3 or [, I; first. Here, the variational parameter a;
appears in R, ; (x;) using a similar rescaling as in Eqs. (A1)
and (A2) for the meson structure. Then q; is defined as
the variational parameter corresponding to the ith Jacobi
coordinate X;.

Since there is a large number of harmonic oscillator
bases in the tetraquark system, there has to be a criterion
when adding the harmonic oscillator bases as a spatial
function into the calculations. The magnitude of the
eigenvalues of the Hamiltonian is more strongly affected
by the diagonal elements than the off-diagonal ones.
Specifically, except for the rest masses, the largest part
in the diagonal element is the kinetic energy. In addition,
the nonzero kinetic energy contribution comes mostly from
the diagonal elements. Therefore, in classifying the har-
monic oscillator bases, we define the quanta of the
harmonic oscillator bases using the expectation value of
the kinetic energy of the diagonal component for the
extreme case where all the constituent quark masses are
identical. Although the definition of quanta should be taken
with caution for the doubly heavy tetraquarks where the
mass difference between the heavy quark and the light
quark arises, it can still be used to classify the harmonic
oscillator bases of tetraquarks with reasonable conver-
gence, irrespective of the mass difference between the
quarks. Introducing the center of mass frame, the kinetic
energy denoted by T'. becomes as follows:

4 2 2 2 2 2
To=) b B PP DS
—2m; 2M  2mj 2m; 2m

o (12)
3

where
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2
my =m,, mh = m,, my = Mt por udce,
Tomy,+my
2 __
my =m,, mh = my,, my = ZMulty for udbb,
m, + my,
, , 2m.my,
my =m,, mh = ————,
me. + my,
3m2 +2m. 3m? _
mly = (3me + 2memy + 3my )m, for udeb,
(mc + mb)<2mu + mg + mb)
, , 2mgm,
my =m,, mh = ————,
mg +mc
3m2 +2 4 3m2
mly = (35 + 2mgme + 3me)m, for udsc,
S (mg+me)(2m, +mg +m,)
, , 2mgmy,
my =m,, my = ————,
mg + my
3m2+2 3m? _
mly = (35 + 2mgm, + 3mj)m, for udsb,
(ms + mb)(2mu + nmg + mb)
, 2m,m ,
my = ————, mhy = my,
m,, + my
3m2+2 3m? -
mly = (S + 2myms + 3m5)my B, (13)

(mu + ms)(mu + m + 2mb)

For the extreme case where all the masses of the
constituent quarks are identical (m; = m, = m3 =
my =m), and thus also the variational parameters
(ay = a, = a3 = a), the diagonal component of the kinetic
energy reduces to

h%cta 3 3
(T.)= P {<2n1+11+2>+<2n2+12+2>

3
)

h%cta

9
{2n1+ll+2n2+12+2n3+l3+§]. (14)

Therefore, one notes for this special cases that the kinetic
energy is the same for all possible combinations of the
quantum numbers (1, n,, n3, 1y, by, l3) if the sum (Q =
2ny 4 2ny +2n3 + Iy + I, + I3) is unchanged. One can
now organize the harmonic oscillator bases according to
the quanta Q appearing in Eq. (14). Then, for mesons, each of
the spatial functions is categorized into a different quanta. For

the tetraquarks, the spatial functions included in our calcu-
Spatial

lations are classified as follows. In terms of Wty myis 1y dy 1)

without specifying the arguments (x;, X, X3),
a. First quanta (Q = 0)

Spatial
[0,0,0.0,0,0]°
b. Second quanta (Q = 2)
Spatial Spatial Spatial
¥11,0.0.0.0.0° ¥10.1.0.00.0° ¥[0.0.1.0.0.0]°
Spatial Spatial Spatial

¥10,0.0.1.1.0]> ¥10,0.0.1,0.1> ¥10,0.0.0,1.1]"

c. Third quanta (Q = 4)

Spatial Spatial Spatial
¥12,0.0.000)° ¥10.2.000.0]° ¥[0.02000]
Spatial Spatial Spatial
[100.1.1.0> ¥[0.1,0.1.1.0° ¥[0.0.1.1.1.0)
Spatial Spatial Spatial
¥11,0.0.1.0.1]° ¥10.1.0,1.0.1]7 ¥10.0.1.1.0.1]7
Spatial Spatial Spatial
¥11,000.1.1)° ¥10.1.00.1.1)° ¥[0.0.1.0.1.1]°
Spatial Spatial Spatial
Y10,0.0.2.2.0° ¥0.0.0.2.02° ¥0.0.0.022)
Spatial Spatial Spatial
Y10,0.0.1.1.2]> ¥10,0.0.1.2.17° ¥10,0.02.1.1]7
Spatial Spatial Spatial
Y11.1,0.0.00 ¥[1.0.1.00.0 ¥[0.1.1.00.0]°
d. Fourth quanta (Q = 6)
Spatial Spatial Spatial

¥13.0,0.0.0.0° ¥70.3.0.0.0.0]° ¥70.0,3.0.0.0]?

Spatial

Spatial

Spatial

¥12,00.1.1.0° ¥70.2.0.1.1.0° ¥]0.02.1.1.0°

Spatial

Spatial

Spatial

Y12.00.1.0.1 ¥[0.2,0.1.01] ¥10.0.2.1.0.1]

Spatial Spatial Spatial
¥12.000.1.1° 0,200,117 ¥10,0.2.0.1.1]7
Spatial Spatial Spatial
Yi0.1.1.00 Yiro01.1.1.0° Yo.11.1.1.0
Spatial Spatial Spatial
[1.1.0.1.0.1> ¥[1.0.1.1.0.1)> Y]0.1.1.1.0.1]°
Spatial Spatial Spatial
Y1001 ¥Y11,00,0.1.1° ¥0.1.1.0.1.1)
Spatial Spatial Spatial
Y11,00220° ¥00.1.0220° ¥[0.0.1.220)°
Spatial Spatial Spatial
Y11.00.202)° ¥10.1.02.0.2° ¥10.0.1.2.0.2)
Spatial Spatial Spatial
Y11,0.0022° ¥70.1.002.2° ¥10.0.1.02.2)
Spatial Spatial Spatial
¥10,00.3.3.0° ¥10.0.0.3.0.3]> ¥10.0.0,0.3.3)
Spatial Spatial Spatial
Y11.0.0.1.1.2° Y]0.1.0,1.1.2)> ¥10.0.1.1.1.2)
Spatial Spatial Spatial
Yi1.001.21 Yio.1.0121 ¥00.0.1.1.2.1]
Spatial Spatial Spatial
V00211 ¥Y0.1.02.1.1° ¥0.0.1.2.1.1°
Spatial Spatial
V1120000 ¥[2.1.0000)
Spatial Spatial
Y11.02.000 Y[2.0.1.000)
Spatial Spatial
¥10.1.2.0.00)° ¥1[0.2.1.0,0.0]°
Spatial
Y11.1.1,00.0]°

e. Fifth quanta (Q = 8)

Spatial

Spatial

Spatial

Y14.00.0,00 ¥[0.4,0.0.0.0)> ¥10.0.4.0.0.0]>

Spatial

Spatial

Spatial

¥1300.1.1.0° ¥0.3.0.1.1.0° ¥0.03.1.1.0

Spatial

Spatial

Spatial

¥1300.1.010 ¥Y03.01.01° Y0.03.1.01)

Spatial

Spatial Spatial
¥13,000.1.1° ¥703.00.1.1° ¥10,0.3.0.1.1]7
Spatial Spatial
Yi2.0.1.1.0° Y12,101.1.0
Spatial Spatial
V11021100 Y2.01.1.1.07
Spatial Spatial
V1012110 ¥[0.2.1.1.1.0
Spatial Spatial
V0120101 Y2.10101)
Spatial Spatial
Y1.02.1.01)° ¥Y12,0.1.1.0.1]
Spatial Spatial
V0012101 Yo2.1.101)
Spatial Spatial
V20011 Y12,1.00.1.1]
Spatial Spatial
V02011 YRo1.011)
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TABLE IV. The permutation symmetry properties of the spatial functions and the corresponding CS bases for each tetraquark
configuration. In the table, (12) and (34) indicate the permutations. 7y stands for udQQ'. Here, +1(—1) indicates that the spatial
function is symmetric (antisymmetric) under the corresponding permutations. An empty cell implies that there is no symmetry constraint

under the corresponding permutation.

Too Toy usbb
Type (12) (34) CS bases (12) (34) CS bases (12) (34) CS bases
Iy =1, =o0dd, I; = even -1 -1 y/fs, y/gs -1 y/zcs, y/fs, y/gs -1 V/?S, y/ES, y/SCS
[, = I3 = odd, I, = even -1 +1 WSS -1 WSS, wis, yls +1 WSS, w§S, wes
I, =13 =o0dd, [, =even +1 -1 WICS +1 yjlcs, 1//3CS, y/gs -1 y/lcs, y/ffs, y/SCS
Iy =1l =I5 =even S S 8 /A wis ws wes AR 2 S Al 2
W[S()Plafzi“oll 1P %ngli%ll " have observed the convergence behavior of the ground state
Spatial | Spatial Spatial mass and have included the harmonic oscillator bases up to
Vit Yo Yo the fifth quanta in the calculations.
‘//[Szég,g.azl,z,o]’ ‘//[gol,];f(;,azl.z,o}’ [Sol,)g,tzl.azl’z_o], On the other hand, in order to satisfy the Pauli principle,
Spatial Spatial Spatial it is necessary to consider the permutation symmetries of
w?;i.gf[,()l]’ ll/g)[i,;)jﬁ[,O,Z]’ W[sol;(z)z‘fif[o’z]’ the spatial functions as well as the other parts of the wave
¥12,0.0022° 020022 ¥0.02.02.2)° function. In the Jacobi coordinate set 1 of our reference, it is
wﬁl’fg“; 200 W[Sll’gfli‘gz o U,ﬁi’ga"“; 200 obvious that the T, configuration has symmetries under
Spatial | Spatial Spatial | the permutations (12) and (34). Ty has symmetry under
W[b}l;zgflﬂ'z]’ W.[sl,}%tlif[o‘z], Esl,;?jtlifio’z]’ the permutation (12), while usbb has symmetry under the
Yi1.1.00220 V101022 Y)0.1.1.022) permutation (34), as summarized in Table IIIl. The sym-
W[Slpgg‘;g o W[SOP%‘;% o [SOngli“%g o metry property of the spatial functions can be summarized
Spatial Spatial Spatial for each tetraquark configuration in Table IV. Note that
¥11,0.03.03) ¥10.1.03.03)° ¥10.0.1.3.0.3) there is an antisymmetric part in some of the spatial bases
y/[slpg g‘g% 3 yfﬁ)p ! 3%13 3 fop gtfaol3 3 due to the symmetry property of the harmonic oscillator
Spatial Spatial Spatial bases seen in Table IV. Thus, contrary to our previous work
W[SZ'O’Q'I’I’Z]’ [0.20.1,1,2]> ¥[0,0.2,1,1,2] [14], where only the fully symmetric spatial basis
patial Spatial Spatial .
V001210 Yp201210 Y002.121) ‘/’i)p(t)lg(z)lo o) Was used in the calculations, all the CS bases
Spatial Spatial Spatial 0 DS & .
Vo021 V0020211 ¥Y00.022.1.1) are used in this work.
Spatial Spatial Spatial
Vinrori2e Yiori2e Yori2e
W Vo 2 Wi IV. NUMERICAL ANALYSIS
z//fl” f.i)l,azl.u]’ y/ﬁ” g'l’“zl L y/i)”’ o “211 1 We use the total wave function discussed in the previous
Spatial Spatial Spatial section and perform a variational method to determine the
W[ég[;i,g;g)l,o,o] ’W[ng,‘f,‘?j‘o]’ [0.2:2,00.0° ground state masses for the tetraquarks. The results are
¥11.3.0.00.0° ¥[3.1.000.0] shown in Table V. Here, the binding energy By is obtained
U,ﬁl’g’;‘go o0 %Pg’f%’ 00 by using the fitting masses of mesons in column 3 of Table I
Spatial Spatial as the threshold to assess the stability of the tetraquarks
W[OJQ-O,O,OJ’ W[0»3-1;0-0s0]’ _ within our model. We found that udbb and usbb are stable
Spatial Spatial Spatial . .
V01120000 Y1.2.1.0000 Y[2.1,1.000]" against the lowest strong decay threshold. In particular, one

As can be seen in the above classification, we have
considered bases with internal angular momenta up to the
[; = 3 states because the contribution from the higher angular
momentum basis is not significant. There are other types of

harmonic oscillator bases constituting the complete set, such
Spatial
[0,0,0,1,1,1]°

element of the Hamiltonian between these types of bases
and the other bases presented above. Thus, they do not
contribute to the ground state masses of the tetraquarks. We

as y However, there is no transitional matrix

can see that the effect from the harmonic oscillator bases
appears to lower the binding energies. As a result,
T.,(udehb) is found to be below the lowest threshold.
One of the major contributions to this is coming from the
excited orbital states.

In this section, we first discuss a similar tendency of the
ground state wave functions between the tetraquark and the
meson structures. Then we discuss the effects of the excited
orbital states. Also, we investigate the relative positions of
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TABLE V. The masses and binding energies By of the tetraquark states obtained with the fitting parameters in Eq. (6). The binding
energy By is defined by the difference between the tetraquark mass and the sum of the masses of the lowest threshold mesons,
Br = Mreiraquark = Mmesont — M pesonz- The lowest threshold mesons are presented in column 3 without specifying the antiparticle
symbols. The values in parentheses are the results from our previous work [14].

Type 1(J7) Lowest thresholds Mass (MeV) Variational parameters (fm~2) By (MeV)
udb b 0(1%) BB* 10517 (10518) a; =3.9(2.8),a, =25.0(20.9), a; = 3.8(2.8) —145 (-121)
ude & 0(1+) DD* 3873 (3965) a; = 2.6(2.8),a, = 4.6(7.6). a; = 4.6(2.7) +13(499)
ude b 0(1%) DB* 7212 (7262) a; = 3.1(3.1),a, = 8.0(10.3), a3 = 5.0(2.7) —3(+49)
usb b 1/2(17) B,B* 10694 (10684) a; =4.0(3.5),a, = 21.4(20.6), a3 = 6.0(3.5) =42 (=7)
uds ¢ 0(171) KD* 2596 ay=24,a,=39,a3;=53 +91

uds ¢ 0(2%) K*D* 2938 a; =16, a,=2.1,a3 =4.0 +57
uds b 0(17%) KB 5949 a; =26,a, =51, a; =63 +90
uds b 0(2%) K*B* 6298 ap=18,a,=26,a; =49 +63

the quarks and the sizes for the tetraquarks. Finally, we
compare our model to other works.

A. Ground state of tetraquarks

We first analyze the ground state of the tetraquarks by
expanding the wave function in terms of the complete set of
harmonic oscillator bases. Using the variational method, we
find that the expansion coefficients of the bases rapidly
converge to zero.

As discussed in Sec. IIIC, each of the harmonic
oscillator bases for mesons is classified using different
quanta. Then, as can be seen in Fig. 1 for the D meson, the
expansion coefficient monotonically decreases as desired
when the quanta of the bases increases. This tendency can
also be seen for the tetraquark states in Figs. 2-5,
respectively. In addition to the convergence of the expan-
sion coefficients, one can observe the convergence of the
ground state masses as the number of the harmonic
oscillator bases and their quanta increase, as seen in
Fig. 10 for the D meson. We then determine the ground
state masses for the mesons, baryons, and tetraquarks when
the convergent values change by just a few MeV for the
entire bases contained in the last quanta, which turns out to
be the fifth quanta. On the other hand, the convergence
behavior of the expansion coefficients for the tetraquarks is
not monotonic. This is so because, while the nonzero
orbital bases are ordered later, their contributions to the
tetraquark configurations are important due to the attraction
coming from the dipole and quadrupole moments. Still the
average value of the coefficients in each quanta monoton-
ically decreases.

Discussing the tetraquark state in more detail, one finds
that, from the second quanta on, many of the largest
coefficients correspond to the harmonic oscillator bases
with [; = [, # 0, which implies that the contributions from
these bases are important for obtaining the exact ground
state masses for the tetraquarks. This can be quantitatively
seen by the mass changes when these bases are additively

included in the calculations. For simplicity, considering

only the dominant CS bases, we first evaluate the mass with
Spatial
0,0,0,0,0,0]°
mass obtained by adding the contribution from the basis
Spatial
¥10,0,0.1.1.0
the tetraquarks are summarized in Table VI. The contri-

bution from the basis W[S()’fg’()i’llllo] appears to lower the

tetraquark masses by 11 MeV in T}, and 34 MeV in T,
respectively. The effect is larger in T.. because the
magnitudes of the corresponding expansion coefficients
in T,. are obviously larger than the others in the second
quanta, while this is not so in T},.

Also, considering only the dominant CS bases, the
coefficient in the first quanta corresponding to the spatial
basis v/f&’&iﬁfﬁo,q is larger in T, than that in T... The first
coefficient in 7', is 0.94, which implies that there are less
contributions from the other bases in the tetraquarks of
heavier antiquarks than in the tetraquarks of lighter

only the spatial basis y then compare this with the

- The results for such a calculation for some of

08 1
06 i
04r — 1
0.2+ - 4
___I—_‘_

ool bbbl T .

0 5 10 15 20 25 30

Bases number

FIG. 1. The expansion coefficients of the ground state wave

function for D meson. The total number of the Hamiltonian bases
(the total wave functions) is 31, each of which is categorized
according to a given quanta in the meson structure.
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FIG. 2. Same as Fig. 1 but for T,... The figure is separated into
three parts to clearly see the coefficients with appropriate scales.
The dashed lines separate the coefficients into each quanta of the
bases. The total number of Hamiltonian bases for T.. is 266,
which is composed of the five quanta of harmonic oscillator bases
listed in Sec. III C.

antiquarks. However, comparing the total changes in mass
from the value only with the first basis in Table VI to the
exact ground state masses in Table V, the contribution from

the basis y/ﬁ)pggalll o is still important in 7, as well.

1.0p— m
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osl || ; s ]
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061 | b
I 1 1 I
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L= —h=b=l3=0 1 |
L h , ]
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0.04 i i Rest types i b
:_ 1 [
[ 1 |
003 ! - T 1B
Eo - L
0.02 Ti_ [ - -
-t - i
k | = - 1
0.01 r : - - T 1] T : 1
il = - - - 1 -
0.00" T :_ TT e, e [T iy | -\-_L—--f
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0.0311 1
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aTL - -
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A= T e T T e e Tt e e Tty e T e,

0.00 :
120 140 160 180 200 220 240 260
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FIG. 3. Same as Fig. 2 but for 7. The Hamiltonian bases for
T,, are the same as those for T...

Let us now discuss the coefficients corresponding to the
remaining types of excited orbital bases. For T, in Fig. 2
and T, in Fig. 4, the coefficients in T, are not as small as
those in T... Obviously, in the second quanta, the coef-
ficients of the remaining types of excited orbital bases are
comparable to the other coefficients in 7,, while they are
not comparable to the other coefficients in 7'.... As a result,
as can be seen in Table VI, the mass is lowered by 1 MeV in
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FIG. 4. Same as Fig. 2 but for T';,. The number of Hamiltonian
bases for T, is 501, but the spatial bases are the same as those
for T..

Spatial
0.0.0.1,0.1]
and 1//?0”7 ({;,t(;.‘z)l,l.l] to the calculations. This is due to the

T,.butitis 4 MeV in T ., when adding the bases y

symmetry breaking in the flavor part of the antiquarks
relative to the T, structure. Similar behavior also appears
in the comparison between T, and usbb depicted in
Figs. 3 and 5. In this case, the flavor symmetry is broken
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FIG. 5. Same as Fig. 2 but for wusbb. The number of
Hamiltonian bases for usb b is 501, but the spatial bases are
the same as those for 7.

in the quark part. Comparing the changes in mass in 7',
Spatial
[0,0,0,1,0,1]

jarea little larger in usbb. Therefore, all types of

and usbb, the contributions from the bases y and

Spatial
¥10,0.0.0,1.1

excited orbital states are necessary for obtaining the exact
ground state masses for the tetraquark states.
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TABLE VI. The changes in mass of the tetraquarks when the
indicated spatial bases are included in the calculations with the
corresponding dominant CS bases.

MTbh M Tee M Tep M5

Spatial bases MeV) (MeV) (MeV) (MeV)

Vit 0000 10578 4002 7316 10764
y/ﬁ,’fgfo"f;{m, W[S(fg’(;'f‘{,l.o] 10567 3968 7294 10748
l//Spatial l//Spatiul

0,0,0,0,0,0]° 0,0,0,1,1,0]°

OO P00 10566 3967 7290 10746
¥10,0.0.1.0.1)> ¥[0,0,0.0,1.1]

Total change -12 =35 =26 —18
in mass

B. Spatial size of tetraquarks

It is also useful to investigate the spatial size of the
tetraquarks and the relative positions of the constituent
quarks in the tetraquark structure. The relative distances
between the quarks are listed in Table VII. The relative
distance between the heavier quarks is, in general, shorter
than that of the lighter quarks [14]. This tendency is
maintained in each tetraquark state, as seen in Table VII.
Looking into the relative distances, we find that the relative
distances except for the (1,2) and (3,4) pairs are all the same
in the T ¢ structure. For the Ty structure, the relative
distances for the pairs (1,3) and (2,3) are the same, and also
for the pairs (1,4) and (2,4). Likewise, the relative distances
for the pairs (1,3) and (1,4) are the same as are those for the
pairs (2,3) and (2,4) in usbb. This is due to the flavor
symmetry in each tetraquark structure and can be simply
evaluated through the permutation symmetry for the ground
state wave function in each tetraquark state. Since the total
wave function satisfies the Pauli principle in each tetra-
quark, if we denote the ground state wave function by
(prerraauarty = |y Spatialy s |y, CS) | the permutation sym-
metries for each ground state are as follows:

TABLE VII. Relative distances between the quarks in the
tetraquarks (in fm). The distances are obtained using the ground
state of the tetraquarks. In the table, (i, j) denotes the distance
between the i and j quarks, and (1,2)—(3,4) denotes that between
the centers of mass of the pairs (1,2) and (3,4).

Quark pair m T.. T., usbb
(1,2) 0.676 0.830 0.753 0.644
(1,3) 0.592 0.672 0.631 0.584
(1,4) 0.592 0.672 0.612 0.584
(2,3) 0.592 0.672 0.631 0.490
2,4) 0.592 0.672 0.612 0.490
(3.4) 0.268 0.610 0.464 0.287
(1,2)-(3,4) 0.463 0.433 0.441 0.397

T T T,

(12)[¥%?) = (34)|¥5*) = —[¥)  for Tpg.
T o T,

(12)[¥5%) = —|¥5*) for Tyg,

(34) |WistPy = —|@usbhy  for usbb.

Then the relative distances in each tetraquark structure can
be obtained as follows. For Ty,

(W6 |(12)7 (12) [y — 1] (12)71(12)|P)
= (W[, — 13| [¥%).
(W2 |(34)7! (34)|r; — 15| (34)7' (34) W)
= (W2 [ry — 1yl ¥2),
(W62 (12)7 (12)[r, — 1] (12)71(12)|¥522)
= (W Iy — 1y |P50). (15)

For TQQ/’

(W2 |(12)71 (12) [y — r3](12)71(12)| 27 )
= (P Iy — 15[,
(I |(12)7 (12, = 1) (12)7 (12) 22
— (IO iy — W), (16)

For uSi)B,

(PLPP|(34)71(34) 1) — 13](34) 7 (34)|PLPP)
= (WLPP|[r) — 1y ||P?P),
(PLPP|(34)71(34) [ry — 13 (34) 7 (34) [ PLPP)
= (WP |les — 1y [WE7P). (17)

Therefore, the relative distances reflect the symmetry
property.

On the other hand, without loss of generality, one can
place one of the quarks at the origin of the Cartesian

TABLE VIII. The spatial sizes of the lowest decay threshold
mesons for each tetraquark state (in fm). In the last column of
each section, “Total” indicates the sum of the sizes of the two
threshold mesons.

Tetraquarks Ty T..
Lowest threshold B B* Total D D*  Total
Size 0.525 0.551 1.076 0.519 0.586 1.105
Tetraquarks T., usbb
Lowest threshold D B* Total B B*  Total
Size 0.519 0.551 1.070 0.397 0.551 0.948
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system, and also the second quark can be located on one of
the axes. Then the degrees of freedom for the tetraquark
system are, in general, 7. By the symmetry property, the
degrees of freedom reduce to 3 for 7y, or 4 for Ty and
usbb. Now we can prove for the Ty structure that the
three independent vectors, R, = (r; —ry), Ry =
(ry—ry), and R'=1(r; +r, —r;—ry), which corre-
spond to the Jacobi coordinates x;, X,, and X3, are
orthogonal to each other:

T T
(W |(R(12) - Ri3.4))[¥5*%)
T _ _ T
= (Y5°1(12)71(12)(R12) - R34 (12)71(12) | *)
To Ty
—(Y6”[(R(1) - Rz g)[¥s™) =0, (18)

(W2 (Ry1 ) - RY)Wi22)
T, _ — Too
= (¥e2](12)71(12)(R ) - R)(12)71(12)[¥%)
T, T,
= —(Wi2|(R(0 - R) W) =0, (19)

(WL| (R34 - R))|W(22)
= (¥(2|(34)7" (34) (R s.) - R') (34) 7 (34) | W(22)
= —(¥2|(R34) - R)WE2) = 0. (20)

These relations show that we can describe the positions of
the four quarks in 7. or T}, with the three independent
vectors as shown in Figs. 6 and 7.

For T4, R(12) and R3 4) can be taken as two orthogonal
vectors, but for the third vector (‘P(T;” (R34 R) |‘P(T;”> #0,
although <‘P(T;b|(R(1,2) . R’)|‘P(T;“”> =0. However, R' =
(ry +1,)/2 = (m3r3 + myry)/(ms + my) and is linearly
independent from R34 and thus spans the linearly inde-
pendent third direction as shown in Fig. 8. One can also show
that the nonvanishing component along the R 3 4) direction

for T., and the R, direction for usbb in the wave
functions are described through the excited orbital states
that produce the asymmetry in the configuration of the Jacobi
coordinate set 1, as can be seen in Figs. 8 and 9, respectively.
Specifically, since the spatial bases with (I,1,13) =
(0,0,0) are of even power with respect to the Jacobi
coordinates X, X,, and X3, one can find that the spatial part

integration of (¥§"| (R34) - R) W) becomes zero if one
considers only the spatial bases with (,,,13) = (0,0,0).

This implies that only the calculations with the spatial basis
Spatial
[0.0.0.0.0.0]

and usbb, which is far away from the real structures in nature.

In addition, using the relations of the relative distances in
Table VII, it is possible to specify the spatial positions of
the quarks in the tetraquark structure as the points on the
surface of a sphere. The results are depicted in Figs. 6-9,
with the center specified as R in the same scales. The sizes

lead to the T'yp-like structure even for both 7',

T

AP
LR
A A ‘A:?,/

AN

)

Z axis 0.0

0.0
X axis

-0.5

FIG. 6. The relative positions of the quarks in 7, (in fm),
which can be specified by the relative distances defined in
Egs. (15)—(20) with numbers given in Table VII. R, is the
geometric center of the four quarks (the center of the sphere). The
quark positions are the same in both panels. In the bottom panel,
the diameter of the sphere is 0.725 fm.

of threshold mesons for the tetraquarks are given in
Table VIIIL.

C. Tetraquarks in a three-body configuration

The structure (QQgq) is expected to be similar to that of
an antibaryon Q,3g, with the heavy antiquark Q, replaced
by the diquark (QQ) [10]. However, in the ggQ), structure,
Q; is in fact composed of two heavy antiquarks so that it
can be of either color [3] or color [6]. For an antiquark pair
of color [6], it cannot be regarded as a point particle,
because, at short distance, the Coulomb potential gives
strong repulsion due to the fact that the color matrix
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X axis

-0.5

FIG.7. Same as Fig. 6 but for T'.... The diameter of the sphere is
0.866 fm.

element (A{AS) is 4/3 for color [6], while it is —8/3 for
color [3]. Thus, in terms of color structure, this means that
the (¢1¢2)® ® (§3g4)® channel, which is the only color

configuration in ggQ,, dominates the (¢,¢,)® ® (§334)®
channel in the T tetraquark structure. This assumption
can be tested by computing the antidiquark (QQ’) mass in
the color [3] state, then putting it into the evaluation of the
mass in a three-body configuration (¢ — ¢’ — Q;), where
Q replaces the antidiquark (QQ'). An isolated diquark is
in principle an ill-defined concept as its nonzero color
makes it a gauge dependent quantity, so one can add any
other gauge dependent gluon field configuration to change
its mass. What that means is that inside a tetraquark or
baryon we are free to include any fractional amount of the
interaction between the diquark and other color source to
define the diquark mass. For example, the division of the

0.0
X axis ~05
FIG. 8. Same as Fig. 6 but for T'.,. The diameter of the sphere is
0.789 fm.

interaction terms between light quark and heavy quark pairs
in a tetraquark given in Table XII is in principle arbitrary.
Furthermore, the differing spin structure between a heavy
quark and a diquark, which can be of either spin 1 or spin 0,
could induce a differing spin interaction for the two
different configurations, depending on the quantum num-
bers. Thus, we define the antidiquark mass in a non-
relativistic quark model to be the sum of the masses, the
interactions between the two antiquarks, and their relative
kinetic term all in an isolated color [3] and a spin O or spin 1
configuration. We can then calculate the hypothetical mass
assuming a (g — ¢’ — Q) structure and will call it the
tetraquark in a three-body configuration, where the sub-
script 1 denotes the spin of the antidiquark. As shown in
Table IX, the tetraquark mass is almost reproduced in the
case of T,, and the difference becomes larger in the
other tetraquark states. The difference is related to how
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0.0
X axis

-0.5

FIG.9. Same as Fig. 6 but for usb b. The diameter of the sphere
is 0.677 fm.

much the color (qlqz)3 ® (§344)* channel dominates over

the (¢1¢,)® ® (g334)® channel. As shown in Figs. 25, the
contribution of the dominant CS basis in the first quanta is
much larger than the others in each tetraquark state, a
tendency which is more apparent in 7, than in the other
tetraquarks. Moreover, looking at the sizes of the anti-
diquarks in Table X, the corresponding relative distances in
the tetraquark structure in Table VII are larger. However, it
becomes larger only by 0.006 fm in 7', while it is 0.149 fm
in T... This implies that treating an antiquark pair such as
(bb) in T, as an isolated diquark seems to result in a better
approximation when the mass becomes heavier.

Now we look at the size of the (ud) pair in various
configurations in Table XI. The size of the (ud) pair in the
diquark configuration becomes smaller in the baryons A,
and A, due to the interaction with the heavy quark.
Comparing the sizes of the (ud) pair in A, and A., one

TABLE IX. Masses of tetraquarks (gq'QQ’) calculated in a
three-body (¢ — ¢’ — Q,) structure, where the isolated antidi-
quark (QQ’ ) mass is used for the Q; mass. For comparison, the
values in Table V are presented in column 3. Masses are in MeV.

Configuration (g — ¢’ — Q) structure Tetraquark structure

T.. 3920 3873
T 7238 7212
usbb 10702 10694
Ty 10517 10517

finds that the size of the (ud) pair becomes smaller when
the heavy quark is closer to the (ud) pair. This tendency can
be seen also in the three-body (¢ — ¢’ — Q) structure.
However, in the tetraquark configuration, as can be seen in
Table VII, the size of the (ud) pair becomes smaller in T,
than that in 7. even though the relative distance (1,2)—
(3,4) is smaller in T, which shows the opposite tendency
of that in the baryon structure.

Considering the tetraquarks 7',.. and T, as a three-body
(g — g — 0y) structure, the size of the (ud) pair in the
hypothetical three-body T'.. (T};) is close to that in the
baryon A. (A,). However, as can be seen in Table VII,
the size of the (ud) pair in T, is in fact 0.830 fm, which is
not close to that in the hypothetical three-body 7. and is
even larger than the size of the (ud) pair in the diquark
configuration, while the size of the (ud) pair in T, is close
to that in the hypothetical three-body T';,;,. The analysis thus
far points out that 7, indeed has a similar structure as a
baryon, while T,.. does not. This may imply that the
tetraquark structure reduces to the baryon structure in
the heavy quark limit where the heavy quark mass becomes
arbitrarily large.

As discussed in Ref. [14], the total mass obtained with
the Hamiltonian in Eq. (1) can be divided into “light quark,”
“heavy quark,” and “CS” parts, as given in Table XII. The
constant —D term in the Hamiltonian is divided into each
quark by multiplying it by a factor of 1/2. The relative
kinetic energy involving ps, which corresponds to the
relative coordinate x; connecting the quark and the
antiquark pairs, can be divided according to the relative

TABLE X. The masses and sizes of isolated antidiquarks in
color [3] and the spin 1 state. Comparing the sizes to those in
Table VII, the effect of surrounding charge becomes smaller for
heavier quarks.

Variational
Antidiquark  Mass (MeV) parameter (fm~2)  Size (fm)
cc 3609 a=295 0.461
bb 10234 a =305 0.262
ch 6947 a=144 0.378
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TABLE XI. The relative distances between the quarks in
various configuration. The size of an isolated ud diquark in
the color [3] and spin O state is given in column 2. The distances
in a three-body (¢ — ¢’ — Q) structure are given in columns 3-5.
The distances in the baryons A, and A, are given in columns 6

and 7.

(¢ — q' — Q) structure Baryon
Quark pair Diquark T, T.p Ty A, Ay
(1,2) 0.780 0.664 0.661 0.660 0.668 0.662
(1,3) 0.590 0.578 0574 0.611 0.582
(2,3) 0.590 0.578 0.574 0.611 0.582

contributions depending on the mass of either the quark
pair or the antiquark pair. '

Considering only the spatial basis l//[S(f gf(;,‘z)l.o,o]’ the relative
distance between the light quarks in T .. is the same as that
in Ty, [14]. Comparing the results of the full calculation
and the simplified calculation denoted by “1 basis” in

TABLE XII

Table XII, the hyperfine interaction Y V(i j) in T,
becomes much stronger than that in 77,. This can be
understood from the change in V5(1,2), which implies
that the attraction coming from V¢5(1,2) partially spreads
into the attraction coming from Y VC5(i, j) in T¢.. As a
result, for T;;, as shown in Table XII, the attraction from
the hyperfine part between the b and u (or d) quarks is only
—5.7 MeV, while that in 7. is —69.4 MeV. This is one of
the major reasons that the distance between the light
quark pair and the heavy antiquark pair is closer in T,
than that in 7', as seen in Table VII. This closer distance in
T.. causes the slightly larger size of the (ud) pair in T,
than in Tpy.

D. Comparisons to other models

We now compare our results to those in Refs. [15,8]. In a
simplified constituent quark model [15], the masses for T,
and T, are given as

Contributions to the T, (udbb) and T..(udec) masses from this work. (i, j) denotes the i and j

quarks, where i, j = 1, 2 label the light quarks, and 3, 4 are for the heavy antiquarks in each configuration.
S VE(i, j) and 3" VES(i, j) cover pairs (i, j), except for the (1,2) and (3,4) pairs. D is separately added and not
included in V€ (i, j). mg is the heavy quark mass, and m/ is defined in Eq. (13) for each configuration. p; is the
relative momentum corresponding to the ith Jacobi coordinate x;. “1 basis” is the result with only one spatial basis

[Solf(()l.toi.‘z)l,o.o] and the corresponding dominant CS basis.
Tbb ch
Overall Contribution Full calculation 1 basis Full calculation 1 basis
Heavy quark 2mg 10674.0 10674.0 3844.0 3844.0
P; 206.8 220.0 142.5 221.8
2m
my__ B3 16.4 153 53.8 38.0
mo-+my 2m',
VE(3,4) —188.8 —190.8 19.3 4.2
IS VE(L)) 115.8 137.6 159.1 168.5
-D -917.0 -917.0 -917.0 -917.0
Subtotal 9907.2 9939.1 3301.8 3359.5
Light quark 2m, 684.0 684.0 684.0 684.0
P 494.1 495.3 424.1 478.2
2m|
mg _ P3 255.8 239.1 302.2 213.5
mo-+my 2m',
VE(1,2) 171.3 181.6 91.3 188.8
%E VE(i, j) 115.8 137.6 159.1 168.5
-D -917.0 -917.0 -917.0 -917.0
Subtotal 804.0 820.6 743.7 816.0
CS interaction VES(3,4) 7.0 6.8 5.3 9.3
VES(1,2) —-195.3 —188.1 —-108.6 —182.6
STVES(, j) -5.7 0.0 —-69.4 0.0
Subtotal —194.0 —181.3 —172.7 —173.3
Total 10517.2 10578.4 3872.8 4002.2
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Qe 3a

(mb)? (m})?
=3421.0-129.0+726.0 + 14.2 — 150.0 = 3882.2,
Ay, 34

(mh)? (mh)?

=10087.0 —281.4 +726.0+ 7.8 —150.0 = 10389.4,
(21)

My =2ml+ B(cc)+2mbh +

My, =2m} + B(bb) +2m) +

where m?, , are the constituent quark masses of ¢, b, and

the light quark ¢ inside a baryon and B(cc) [B(bb)] is the
binding between the charm (bottom) quarks, which can be
understood as coming from the extra attraction between
two c¢(b) quarks due to the shorter interquark distance
relative to two light quarks: this attraction can be estimated
by studying the quark attractions inside A, and E.. [14]. @’s
are multiplicative constants for the CS interaction. Here,
agg/(mfy)* is the CS interaction between the two heavy
quarks Q corresponding to V5(3,4) in our model, while
—3a/(m%)? is that between the light quarks ¢ denoted by
VE5(1,2) in our model. Then, treating B(cc) [B(bb)] as
part of the two charm (bottom) quark system, the energy in
the simplified model in Eq. (21) can be divided into the
charm (bottom) quark, light quark, and CS interaction
parts. The subtotal values in Table XII can be regarded as
the constituent quark masses in the simplified quark model
in Eq. (21). The additional attraction for the heavy quark
pairs with respect to the light quark pair in the simple model
[15] can be seen from V¢ (3,4) being much more attractive
than VC(1,2). While the importance of the large additional
attraction for heavier quarks denoted by B(QQ) remains a
valid point, detailed mass and size differences change other
parameters, such as the effective quark masses in Eq. (21),
so that the simple parametrization formula given in Eq. (21)
for the tetraquark masses might become problematic.
Furthermore, while Eq. (21) does not allow for the
color-spin interaction between light and heavy quarks,
our full calculations show the presence of terms such as
those given in Table XII, which become —5.7 and
-69.4 MeV for T,, and T,.. respectively. Also, the
discrepancy becomes larger for 7, suggesting that non-
linear quark mass dependence also becomes important.
Therefore, care should be taken when simple parametriza-
tions that work for normal hadrons are generalized to more
complicated configurations.

There is another work [8] using the complete set of
harmonic oscillator bases, which is similar to ours but
different in part, as we introduced the rescaled form of the
harmonic oscillator bases. The Hamiltonian in their model
is as follows:

H:Z<m,-+

LD DI

! i<j

with
3 K Fj h*c?k e~"il"o
Volr)=——dd |-~ 410 _p ¢ s
ii(7i7) 1677 rij+a(2) +m,-mjc4 rorij Ci0;
(23)

where the hyperfine interaction is of exp[—r;;], instead of
the exp[—rlgj] in our model. Also, they fixed the parameters
« and (ry);; by fitting them to the experimental values,
while the hyperfine part in our model has additional mass
dependence appearing as in Eqs. (4) and (5). The fitting
parameters in their model are as follows:

k =102.67 MeVfm,  ay = 0.0326 (MeV~! fm)!/2,

D =9135MeV,  ry= 04545 fm,
m, =337 MeV,  m, =600 MeV,
m, = 1870 MeV,  mj,, = 5259 MeV. (24)

The spatial functions used in Ref. [8] have only one free
parameter b commonly applied to all the relative coordi-
nates. On the other hand, as can be seen in Eq. (11), our
spatial functions have three variational parameters in
R, ; (x;), which are more flexible for the convergence,
as the three free parameters, one for each relative coor-
dinate, can be varied independently. Furthermore, fixing the
variational parameters requires repeated diagonalization of
the Hamiltonian matrix, whose dimension is determined by
the number of quanta included. Thus, the procedure is time
consuming and complicated if full quanta of bases is used.
Silvestre-Brac and Semay [8] adopted only the first few
quanta of bases to avoid this complexity even when only
one free parameter b had to be determined. However, we
were able to determine three free parameters {a;, a,, as}
with full quanta of bases, which led to an improved
convergence in the quanta expansion. In fact, Silvestre-
Brac and Semay [8] stated that their results for the ground
state masses are exact within a range of 20-30 MeV, while
we confirmed that ours converge to the exact value with less
than a few MeV uncertainty despite using the same number
of quanta.

Comparing the results in Table XIII, we find that the
two independent models give almost the same binding

TABLE XIII. The masses and the binding energies By of the
tetraquark states obtained in this work and in Ref. [8]. The masses
and By are in MeV.

This work Reference [8]
Type (1, S) Mass Br Mass Br
udbb (0,1 10517 —145 10525 —-131
udcc (0,1) 3873 +13 3931 +19
udch 0,1) 7212 -3 7244 +1
usbb (1/2,1) 10694 —42 10680 —40
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energies for each tetraquark state. However, there is a
large difference in the mass of T.., which is due to the
larger obtained masses for the D and D* mesons in their
model, which were found to be 1891 and 2021 MeV,
respectively. Compared to the total mass of the D and D*
mesons in our model, the difference is 52 MeV, which
approximately accounts for the difference in the mass of
T.. between the two models. Also, in their model, the
lowest threshold for usbb is B B, while it is B* B, in our
model, as in the experiment. In the experiment, the total
mass of the B and B} mesons is slightly larger than that of
the B* and B, mesons by approximately 2.7 MeV, while
the corresponding difference in our model calculation
is 4.7 MeV.

V. SUMMARY AND DISCUSSION

We have improved our nonrelativistic quark model by
introducing the complete set of three-dimensional har-
monic oscillator bases. We have also assessed the validity
by comparing the ground state wave function for the meson
structure to the exact solution of the hydrogen model. The
effect turns out to lower the binding energies for the
tetraquark systems. In particular, the harmonic oscillator
bases for the excited orbital states play a crucial role in
obtaining the exact ground state for the tetraquark systems.
We have also successfully fitted the parameters in the
Hamiltonian in Eq. (1) to most of the observed mesons and
baryons allowed in our model. The results are summarized
in Table V. Also, from the relative distances between the
quarks given in Table VII, we have described the relative
positions of the quarks in the tetraquark structure in
Figs. 6-9. By making a comparison between our earlier
work shown in Table V and the discussions in Secs. IV B
and IV C, we have found that a simple Gaussian spatial
function fails to provide precise information on the stability
and the structure of the tetraquarks, so the detailed treat-
ment presented in this work should be performed. Also,
by making a comparison with another work, the fitting
procedure is important for evaluating the exact values of the
masses. One can conclude that, while a simplified con-
stituent quark model based on universal constants that does
not depend on a specific configuration and/or simple
models based on universal diquarks being intuitively
important for identifying possible attractive configurations,
a detailed full model calculation is needed to assess the
stability and existence of a compact exotic multiquark
configuration.
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APPENDIX A: HARMONIC OSCILLATOR BASES
IN MESONS

To construct the spatial function for the meson structure,
we solve the Schrodinger equation for the three-
dimensional symmetric harmonic oscillator. In the spheri-
cal coordinate system, the wave function can be separated
into the radial part and the angular part such as
w(r.0,¢) =R(r)Y7"(0,¢). The solution of the angular
part is known as the spherical harmonics. For the radial
part of the equation, the solution is obtained in terms of the
associated Laguerre polynomial. The orthonormalized
radial part wave function is known as follows:

— 20(n+1) i r? I+, 5
R, ,(r) = \/m” exp[ 5 L, >(r?),

1
where L£l+2(r2) is the associated Laguerre polynomial. For
the purpose of introducing the harmonic oscillator bases to
our model, we have modifed Eq. (Al) by rescaling the

(A1)

radial distance r to v/2ax, where x is the magnitude of the
Jacobi coordinate x, connecting the quark and the antiquark
in the meson structure, and «a is the variational parameter
corresponding to the coordinate x. Then the spatial part of
the total wave function is constructed by combining the
spherical harmonics as follows:

WP (%) = y(x,0,)57 = R, (x)Y](0.4).  (A2)

where R, ;(x) is the rescaled radial part wave function.
Here, the quantum numbers n, [ indicate the principal
quantum number and the orbital angular momentum,
respectively. For mesons in the [ = 0 state, each of the
harmonic oscillator bases should be of / =0, and they
compose the spatial part of the wave function in the meson
structure.

On the other hand, the permutation symmetry of the
spatial bases depends on the power of the Jacobi coordinate
|x|, which is contained only in the radial part of the spatial
function. From Eq. (Al), it is recognized that the permu-
tation symmetry is determined by the angular momentum
quantum number /. In our case, for all the bases in the
calculations, the angular momentum is / = 0. Therefore,
for the mesons in the ground state, all the spatial bases are
symmetric under permutation (12).

To assess the validity of the harmonic oscillator basis
approach, we compared the meson structure to the hydro-
gen atom in the hadron picture. To do this, we considered
only the kinetic energy and the Coulomb potential in the
Hamiltonian of Eq. (1). Then the Hamiltonian reduces to
the following form with the kinetic energy in the center of
mass frame:
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300 T . :

—— Hydrogen —— 9 bases
2'5; — 1 basis — 15 bases
2.0; — 3 bases —— 21 bases |

5 bases

31 bases

15F
1.0F
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0.0F
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Distance (fm)

— Hydrogen

— Increasing harmonic bases

Binding energy (MeV)
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FIG. 10. Comparisons between the exact solution and the
Gaussian basis for the D meson with a Coulomb potential. In
both panels, “Hydrogen” indicates the exact solutions. Top panel:
radial parts of the ground state wave functions as the number of
the harmonic oscillator bases increases. Bottom panel: conver-
gence behavior of the binding energy as the number of bases
increases. The binding energy in the hydrogen model is
—53.69 MeV, and the binding energy with the 31 harmonic
oscillator bases is —53.64 MeV, which is very close to the value
in the hydrogen model.

_px 3k x
C2m 422\ rp)’

where m’ = (2mym,)/(m; + m,) and p, is the relative
momentum between the quark and the antiquark. We take
my = m,, my =m,, and the values in Eq. (6) for the
parameters m,, m,, and k. For the sake of comparison to
our model, we also modify the exact solution of the
hydrogen atom to that of the relative coordinate x.
Then, in the hadron picture, the radial part of the ground

state wave function for the hydrogen, Rgfé)‘]l’”ge”( ),

(A3)

becomes as follows:

rogen \/EK 3/2

where u is the reduced mass of the system in MeV. When
comparing, we choose the D meson as a target, and the
reduced mass y in Eq. (A4) then becomes n:':‘T”:nc The
results are shown in Fig. 10. It is obvious from Fig. 10 that
the more that harmonic oscillator bases are included, the
more precisely it describes the actual ground state of the
meson structure. We have included the harmonic oscillator
bases up to n = 4, which is enough to obtain the convergent
values for the ground state masses of the tetraquarks of
interest in this work.

APPENDIX B: HARMONIC OSCILLATOR
BASES IN BARYONS

In baryons, additional degrees of freedom arise due to the
second Jacobi coordinate x,. Furthermore, there are con-
tributions from combinations of nonzero internal relative
orbital angular momenta, satisfying zero total orbital
angular momentum of the ground state baryon structure.
Using a method similar to that in the meson structure, we
construct the complete set of orthonormalized harmonic
oscillator bases:

Spatial
W(Xl ’ XZ)[”|J12~[|JZ]

=Y C(h.my. Lymy; 1 =0.m = 0)

nmy,my

X Ry, 1, (xl)Rn2,12(x2)Y7,11 (01, ¢1)Y7:2(927 #,), (Bl)
where R, ; (x;) has the same form as in Eq. (A2) and
Y Z’f (6;, ¢;) is the spherical harmonic function for the angular
part of the ith Jacobi coordinate x;. C(I,,m;,l,,my;1 =0,
m = 0) is the CG coefficient for the decomposition of |/, m)
in terms of |1}, m,)|l,, m,), but the total angular momentum
1s fixed at [ = 0, and thus m = 0.

The following are the Jacobi coordinates for the baryon
structure: we choose coordinate set 1 as our reference.

(i) Coordinate set 1:

mry +mpr;
7_1‘3 ,
ml + m2

1 (r,—1y) 1(
X =—= - s Xy =—
1 \/j 1 2 2 P

(ii)) Coordinate set 2:

1 1
Y1 :\/_E(rl -r3), Y2:/; I

mry +myr;
nm;y + my

(iii)) Coordinate set 3:

1 (myry + myrs
ZIZ Zz:— 4—['1 ,

1
—(r,—13),
\/i( 2=13) H\ mp+m
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where

2(m} + m3 + mym,)| 1/

(my +my)?

M:

As in the mesons, the permutation symmetry of the spatial
bases is determined by the angular momentum quantum
numbers /; and /,. As can be seen in coordinate set 1, X, is
antisymmetric under permutation (12), while x, is sym-
metric. Therefore, the bases with an even number of /; is
symmetric, while the bases with an odd number of [; is
antisymmetric under permutation (12).

In the case of the proton where all the constituent quarks
are identical, the total wave function should be fully
antisymmetric. Thus, we need to specify the symmetries
for permutations (13) and (23) as well. However, it is not
clear in coordinate set 1. Therefore, it is instructive to
investigate the method of constructing the spatial bases for
the proton.

APPENDIX C: HARMONIC OSCILLATOR
BASES IN PROTON

The proton is composed of three light quarks, so the
symmetry property for the proton becomes complicated
relative to other types of baryons. To satisfy the symmetry
constraints on the proton structure, we can construct the
spatial bases by using linear combinations of the harmonic
oscillator bases. First, for the permutation group S;, there
are four possible Young tableaux, as follows:

e P R

There are correspondence relations between the Young
tableaux and the harmonic oscillator bases such that, as the
simplest examples,

[1[2]3]= viaie0 (xix2), (€2)
T wSpatml( C3
9 0.0,1,1] (X1, X2) - (C3)

Using the following relation, we also obtain the basis
1]2]
R

corresponding to the Young tableau

iT2)_ 2 [ 5 1[I
3] vsTTl] 2[2]
2a [ 1 5 5
= % —Yi1-Y2 — §X1 * X2 | €Xp [— a1ry — alxg]
20 [ V3 2 4 V3 o 2 2
= ﬁ —Tzl 4 xQ exp [— ay1ry — ale]
\f gt e ) St o ).
(C4)
5
where a = — 13—6(%)%4121 is the normalization factor and

the two variational parameters are taken to be the
same (a; = a,), which is due to the symmetry in the

proton. For the Young tableau | 2 |, using the form of

wSpatial
(1,1,1,1]

2/- of wii o x)
3

Spatial Spatial
T 1p1t1 1](y1,y2) + w[lpl 1,1 (thz)} )

where a is the normalization constant and is manifestly
antisymmetric under each of the permutations (12), (13),
and (23), as desired. After performing the transformations
into the reference coordinate set {x, X, } and doing some
rearranging, it becomes

f

S l \/_ S 1
w[2p(()ltlml (Xl’ X2) ¢[Op2at1wl (Xh XZ)

Spatml Spm‘ml
\/ ¢[1111 X1,X2) V1 1/’0033] (x1,%2) .

(C5)

In such a way above, it is possible to relate the harmonic
oscillator bases to each of the Young tableaux for the
permutation group Ss.

To fully construct the total wave function of the proton, it
is necessary to construct the remaining parts of the wave
function. For the color basis, it is always fully antisym-
metric for the baryons. Thus, we focus on the spin and
isospin parts, and the ySParial x ydsospin sy Spin part
should be fully symmetric. Since both the spin and isospin
bases are constructed by SU(2), we obtain the isospin-spin
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basis from the inner product of the flavor SU(2) and the
spin SU(2). For the proton,

| L
L] J1/2 L] s1/2

LI s + + ,

L r1/291/2

(Co)

71/281/2

where the subscript 1'/% (§'/?) indicates the Young diagram
corresponding to the isospin (spin) 1/2 state, and the
Young diagrams on the right-hand side in Eq. (C6) stand
for SU(4), which correspond to the irreducible representa-
tions of the isospin-spin space for the proton. The irre-
ducible representations on the right-hand side in Eq. (C6)
are spanned by the corresponding isospin-spin bases as
follows. In terms of Young tableaux,

o
11/251/2

° D]j /28172
(IS}

_ (2] fuf2) fafs] [1]3]
IRZA\EI R EI 2 '

(C8)

J1/281/2

1

2:L<12\ 1[3] [1]3] 12\>.
\/5111 lSQ l[z iSl
4

(C9)

113 . . .
and 5 are the isospin (spin) bases
i Il(Sl) —J I2(S2)

where

| for the
L 11/2(51/2)
proton. On the other hand, in constructing the SU(4)

spanning the irreducible representation

irreducible representation of the type | there are two

more different methods of performing the inner product
between any two of the spatial, isospin, and spin bases.
However, these three methods of construction are
equivalent.

We are now ready to construct the total wave function for
the proton. Before proceeding, to avoid confusion, it is
convenient to label the spatial bases as in the isospin and
spin bases as follows:

2 113

R L= R
1 2 3R4

(C10)

|CO>—~

There are three types of constructing the fully symmetric
l//Spatial X 1/11“'”“'”"" X l//Spin.

__(12| 2], (]3] ><13|>,
2 i (IS)1 i Ry 2 (IS)2 l R

L 2
- (13)3 x Rs’

=
2]
w
=
~
2
|

(C11)

APPENDIX D: COLOR AND SPIN BASES OF
TETRAQUARKS IN A THREE-BODY
CONFIGURATION

As discussed in Sec. [V C, we regard the antidiquark as a
point particle Q; which replaces (QQ’). Labeling the
quarks in the order of ¢(1) — ¢'(2) — Q,(3) for the total
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S =1 system, the spin bases can be constructed with the
explicit spin numbers written in subscripts as follows:

1Dy = 1[q(1)q'(2)];1@1(3)]0)
2)1 = la(1)q'(2)],[21(3)]1),
3)1 = la(D)g'(2)]o[C:1(3)]1)-

Then the spin matrices with this basis set are obtained as
follows:

(D1)

1 0 0
efl.gfl =10 1 0 [,
0 0 -3
0 0 0
ofl.gfl=10 -2 -2v2],
0 -2v2 0
0 0 0
ofl.gfl=10 -2 2v2|, (D2)
0 2v2 0

where the superscript BL indicates that they are the matrices
in the three-body configuration. On the other hand, the spin
matrices in the tetraquark structure are as follows:

1 0 O
ci-oo=|0 1 0 |,
0 0 -3
0 V2 1
6-65=|v2 -1 =2/,
I -2 0
0 —-v2 -1
6 -o,=|-=vV2 -1 =2/,
-1 =2 0
0 V2 -1
6, 03 = \/i -1 \/§ 5
-1 V2 0
0 —-v2 1
6, 6,=| -2 -1 V2],
1 V2 0
-3 0 0
63-6,=| 0 1 0], (D3)
0 0 1

with the spin bases

(D4)

Comparing the spin matrices in Egs. (D2) and (D3), one can
find the following relations:

BL . ~BL _
6" -63° =06 063+ 06| 0y,
¥t .68 =06, 65+ 0,0, (D5)

The color bases in this three-body configuration can be
constructed with the explicit color states as follows:

i =la(1)q'(2)]°10:(3)),
v =[q(1)q' ()P[0 (3)P.

Then the color matrices with this basis set are obtained as

follows:
)\’i'BL)\éBL — <A31 0 )
0 -
_% 0
)\’TBL)%’BL — < E >’

0
¢BLAy ¢BL -3 0
o (30
3

The color matrices in the tetraquark structure are as follows:

4
XCKC _ <3

(Do)

(D7)

_2\/_
ws- (5 ),
TO 23
(%)
I -4
LN
(1)
2E -4
2N < -3 _2ﬂ>
4 2\/5 _% ’
$ 0
ASAG = D8
i=(p Zo) (D3)
with the color bases
i =[q(1)q'(2)1°[0(3)0'(4))%,
wh = [qg(1)q' (2)P[0(3)0'4)P. (D9)
Likewise, in the spin matrices, comparing Egs. (D7)
and (D8), one can find similar relations as follows:
APBEASBL = ASAS 4 ASAS,
ASBEASBL = ASAS 4 ASAS. (D10)
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