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1 Introduction and main results

Effective Field Theories (EFT) conveniently describe gapless systems that are weakly cou-
pled at low energy. An EFT is characterized by its particle content and a (graded infinite)
set of Wilson coeflicients controlling the interactions of these particles. The Wilson coef-
ficients depend on the specific microscopic realization of the system and, generically, are
very difficult to compute ab initio. For this reason, it is desirable to find universal bounds
on these coefficients using only general principles like unitarity and causality [1-14].

In this article, we apply the numerical S-matrix bootstrap approach to estimate uni-
versal bounds on the two leading Wilson coefficients of the EFT describing massless pions,
i.e. the chiral lagrangian [15, 16]

L= %fﬁ tr (9,U10"U ) + 01 [tr (G#UT(?“U)FJFEQ tr (9,U10,0) tr (00Ut U ) +... (1.1)

where the SU(2) matrix valued field U(z) = exp[4- 3 _ o%r%(x)] encodes the pion fields
and fr is the pion decay constant.! The Wilson coefficients ¢; and /3 control the two
independent four derivative terms in the effective lagrangian and the dots in (1.1) denote
terms with more than four derivatives. Using this effective lagrangian, one can compute

the low energy behaviour of the four pion scattering amplitude,

T = A(s|t, u)0,0% + A(t]s, u)d558 + A(uls, t)8955 , (1.2)

"We are careless about the distinction between bare and renormalized couplings because we define all
parameters from the physical S-matrix (1.3).
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Figure 1. Allowed region in the {«, 8} space for different values of Ny.x ranging from 12 to 23.
For each Nya.x we bound all the partial waves up to spin L., = 90 such that the spin cutoff
dependence is negligible. In the inset it is shown a zoom out of the {«, 8} space. The green region
is allowed. The dashed lines denote the naive bounds (1.4) obtained from dispersion relations
and unitarity, neglecting the effect of logarithmic branch cuts in the scattering amplitude. Our
numerical bound has a non-trivial shape in the natural range o« ~ 3 ~ ﬁ expected from naive
dimensional analysis. The three rectangles correspond to the phenomenological estimates of the
QCD values for a and 3: brown, purple and black rectangles are taken respectively from [19, 20],
and [21]. All estimates lie inside, but close to the boundary of the allowed region.

where s,t,u = —s — t are the usual Mandelstam invariants. A 1-loop computation gives
the amplitude up to four powers of momenta [15, 16],

s 1 9 9 9 s -5 t—-u -t —u

A(slt,u) +...

(1.3)
The dimensionless parameters o and g can be related to the Wilson coefficients ¢; and

f5. However, this involves a choice of renormalization scheme and for this reason from
now on we will always refer to the parameters a and 8 which are defined by the equation
above in terms of the physical scattering amplitude. In appendix A.1, we derive (1.3) as the
unitarity completion of the tree-level term A(s|t,u) = fi% +.... This makes transparent the
fact that the coefficients of the logs in (1.3) are fixed in terms of f; and the polynomial part
involves free parameters. We also do this exercise to next order in appendix A.2. This gives
the explicit form of the pion scattering amplitude up to six powers of momenta, in perfect
agreement with the chiral limit of the 2-loop computation in [17, 18], see appendix B.



In section 2, we explain how the numerical S-matrix bootstrap can be used to derive
universal bounds on the coefficients « and 5. Our method relies only on the principles of
Lorentz invariance, crossing symmetry and unitarity and the assumption of Mandelstam
analyticity of the scattering amplitude. The allowed region in the {a, 8} plane is depicted
in figure 1.2 As explained in detail in section 2, our method involves a parameter Nyax
that controls the freedom of our ansatz for the amplitude. In figure 1, one can see that the
allowed region is mostly stable when we increase Nyax = 18 except in a small region close to
the origin where convergence is slower. Remarkably, the empirical values of o and § in real
QCD are not too far from the boundary of the allowed region (see appendix B for details).

The inset of figure 1 suggests that the allowed region asymptotes to

8>0 A a+28>0, (1.4)

for large values of a. In fact, these naive bounds follow from the dispersive arguments
of [1, 22] applied to forward scattering amplitudes if we neglect the fact that the logarithmic
branch cuts extend to s = 0. We review this argument in appendix C and upgrade it to take
into account the full non-perturbative analytic structure of the amplitude. In figure 2, we
make a more careful comparison between our numerical results and the naive formula (1.4).
dBmin
do

Firstly, we observe that the derivative of the numerical bound asymptotes to 0 for

o — 400 and to —3 for & — —o0, in agreement with (1.4). Secondly, in the inset of

1 . . dfBmi . . . .
figure 2, we observe non-zero - corrections in “Z2 at large ||, which imply logarithmic

corrections to the naive bounds (1.4). The dispersive analysis in appendix C suggests the
following asymptotic behavior of the allowed region

1
B8 > T log|a| + O(aY), a — +00, (1.5)
1
a4+ 28> ———logla| + O(a), a— —00.
1672

This prediction is shown in red dashed lines in the inset of figure 2. It works rather well
for positive a and not so well for negative a. It is unclear if this is simply due to numerical
uncertainties or if the scenario proposed in appendix C is not realized for large negative a.

This short article provides a proof of concept that the numerical S-matrix bootstrap
can be used to derive universal bounds on EFTs in more than two spacetime dimensions. A
previous example in two dimensions is the flux tube S-matrix bootstrap [23]. In principle,
the same methods can be applied to other EFTs describing other massless particles like
photons or gravitons.? In particular, one can derive bounds to the leading higher curvature
corrections to supergravity in 10 and 11 dimensions and compare them to the predictions
of string theory [24].

*Note that our results apply more broadly and describe any O(3) symmetric theories with soft low energy
behaviour in the 2 — 2 amplitude. To distinguish between such generic theories and those arising from a par-
ticular symmetry breaking setup — such as chiral symmetry breaking leading to the chiral Lagrangian — we
would need to consider higher point amplitudes or analyze the leading inelasticity of the 2 — 2 process which
only kicks in at very high loop order, at order s*. It would be interesting to develop our analysis further to see
how special are chiral symmetry breaking theories in the landscape of theories with a good soft behaviour.

3For gravitons, one needs to consider spacetime dimension > 5 to have well defined scattering amplitudes
(without IR divergences).
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Figure 2. Discrete derivative of Spin(c) with respect to a for different values of Npax (same
colour coding as in figure 1). We see that for large negative (positive) a we approach the expected
—1/2 (0) slope from the naive bounds (1.4). This leading linear behavior is already seen clearly in
figure 1. Interestingly, there are important logarithmic corrections to this as illustrated in the inset.
There, we plotted the combination a(dfBmin/da + 1/26(—«)), involving the Heaviside 6-function.
This combination kills the leading linear asymptotics and extracts the coefficient of any log at large
|a|. Of course, numerical errors are magnified when we multiply by « which is why we get the
numerical oscillations in the inset. Nevertheless, we see reasonable agreement with the analytic
prediction (1.5) shown as red dashed horizontal lines.

2 Numerics and some beautiful phase shifts

A big part of the setup, amplitude ansatz and numerics for massless pions follows almost
verbatin the massive pion amplitude case studied in [25] which in turn was strongly based on
the general p series parametrization of higher dimensional scattering amplitudes proposed
in [26]. We assume familiarity with those ideas and will now highlight what is special to
the case at hand.

Following [26] we will think of the amplitude A(s|t,u) as if it were a function of three
independent variables s,¢ and u. This is of course not true since s +t +u = 4m2 = 0
so we are extending the two dimensional physical space manifold into an off-shell three
dimensional bigger manifold. Nice mathematical properties of the larger manifold and of
the sub-manifold guarantee that this analytic extension exists without the need to introduce
any further singularities in the bigger space [26].



Then, we will map the full complex plane for each of these three variables — minus
their two particle cuts at the positive real axis RT — to a unit disk. In the massive pion
case we centered the disk at s, =t = uy, = 4m$r /3 which was a particularly nice point as it
obeys the physical constraint s+t-+u = 4m2. This is not longer a good expansion point now
as it would collide with the two particle cut in the massless case. So instead we will map an
arbitrary negative s* point to the centre of the unit disk. We picked s, = t, = uy, = —16 fﬁ
and fixed units such that f; = i.‘l Then, one can write the analytic map as follows

1— V=5
T+v/—s

Note that s, + tx + us # 0 and therefore we are really now doing something conceptually

pls) = (2.1)

different to the massive case: we are expanding around an off-shell point in the larger three
dimensional s,t,u enlarged space! The mathematical theorems quoted in [26] (about the
vanishing of higher cohomologies of coherent analytic sheaves) are thus more important
than ever here.

The p variables map the low energy expansion point s = 0 to p = 1 and the high energy
point s = 0o to p = —1. This means it is particularly trivial to “unitarize” expressions by
promoting them to rho variables. For example, (p(s)—1)? will behave as s at small energies
and will approach a constant at large s. Of course, we can build polynomials in p which
will approach any desired low energy behaviour without exploding at s — oo since this
high energy point simply corresponds to replacing p — —1 in these polynomials.> Along
these lines, we define

s og f? og f2
low energy = —X}%) + J};rl (a -3+ 145:;> x(s)* + <5 + 1457{2”> (x(t)? + x(u)?)
~3x(s)*log x(s) + (x(t) = x(u)) (x(t) log x(t) — x(u) log x(u))
962 . (2.2)
with . )
X(s) = 7 (p(s) — 1)% + 1 (P(s) = 1)? = —s = 35° + O(s”), (2.3)

which matches precisely (1.3) at small s, ¢, u but which is finite at high energy.
Then our ansatz is simply

/ /
A(slt,u) = Low energy + Y capp(s)*(p(t)" + p(w)’) + Y dap(p(t)p(w)” + p(t)°p(u)?)
(2.4)
where the low energy behavior is automatically input. To precise that, and clarify a few
other important points, we should explain what the primes in these sums stand for.

4The numerics converged better for this choice than for the choice s. = t. = u« = —f2. One possible
explanation is that the mass of the p-resonance M, ~ 8fx is a better estimate than fr for the characteristic
energy scale in pion scattering amplitudes.

5We can even build decaying expressions easily if needed by multiplying these polynomials by appropriate
powers of p + 1.
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s $3/2 2 5/2

Niax | s S S
10 89 | 88 | 8 | 8 | 79 | T4
12 125 | 124 | 121 | 118 | 115 | 110
14 167 | 166 | 163 | 160 | 157 | 152
16 215 | 214 | 211 | 208 | 205 | 200
18 269 | 268 | 265 | 262 | 259 | 254
20 329 | 328 | 325 | 322 | 319 | 314
22 395 | 394 | 391 | 388 | 385 | 380

24 | 467 | 466 | 463 | 460 | 457 | 452

S

Table 1. Number of parameters in our ansatz as we fix the proper low energy behavior to higher
and higher orders in small s. The column s* corresponds to setting to zero all terms in (2.4) that
greater or equal than s® in the small s expansion. The plots in this paper are obtained for the next
to the last column, in blue.

We have (for s — 07 say),
p(s) =1 —2v—542(—s) — 2(—s)*? +2(=s)2 + . .. (2.5)

which approaches 1 as explained above. Note however that in the expansion around 1 there
are annoying half integer powers. This is of course unavoidable as we are mapping the cut
plane to the unit disk and we are thus opening up a square root cut. However, massless
pion amplitudes do not have such square roots in their low energy expansion, see e.g. (1.3)
or the two loop counterpart in appendix A.2. Instead, we have logs as explicitly added by
hand in (2.2). So how to get rid of these square roots? Well, at low energy this is easy: we
write t = (1+x)s/2, u = (1 —x)s/2 and expand the sums in (2.4) at small s. Then we fix
appropriate linear combinations of ¢, and dg, in (2.4) such that all powers of s in these
sums (integers or half integers) cancel up to order s2. This eliminates many constants but
still leaves a huge amount of free parameters, see table 1. Since we killed all these terms in
the low energy expansion we not only got rid of these annoying square roots but we also
guaranteed that the full ansatz (2.4) perfectly captures the low energy behavior in (1.3).
The primes in (2.4) thus stand simply for the sums truncated up to some large cutoff so
that a + b < Npax and with the constants ¢y, and dg, simplified according to all the linear
constraints generated up to O(s?).%

This basically concludes the highlights particular to our massless particles setup. The
next steps can be taken from the massive analysis [26] and [25] by setting m = 0 there.
For example, formula (2) in [25] for the pion amplitude decomposition into partial waves

50f course, we could go on and kill all s°/2 half integer powers and even s7/? and so on. This might not

be optimal. After all, we expect more logs showing up at larger powers of s and those are not built in the
ansatz either. An ansatz with more free parameters can better mimic log behaviors at higher powers of s.

5/2 terms in the

This seems to be indeed what we observe numerically. Once we impose the absence of s
ansatz, the numerics seem to converge to the very same bounds as the ones described in the main text but

convergence is slower.
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Figure 3. (a) Example of a phase shift §) = Re(s; log S(()O)) at a given point at the boundary
(corresponding to o = 0.062, spin £ = 0 and isospin I = 0) as a function of § = s/f2 as we increase
Nmax- The phase shift seems to have converged to a nice resonance like shape. (b) The absolute
value |S(()O)| approaches 1 more and more as we increase Npax. It clearly seems as if unitarity
wants to be saturated in the infinite IV limit. We also observe that this unitarity saturation is
often achieved at the price of some more erratic behaviour at high energy which we do not control
well. Given the interesting interplay between unitarity and the Aks theorem [27, 28] as recently
emphasized in [29], it would be very interesting to study this unitarity (non)-saturation in much
more detail. (c) To reach the optimal infinite N bound we can try to fit our optimal target (in this
case we are minimizing  at fixed «) as we increase Ny, and try to extrapolate.

simply becomes (note that 4 = 4m?2 there)

3A(s|t,u) + A(t|s,u) + A(uls, t) t 1— SI(O)(S)
A(t|s, u) — A(uls, t) — 167 Y (2l + 1) P (Z:t) 1-5Ys) | (26)
A(tls, u) + Aluls, 1) : 1 - 5P(s)
and unitarity is simply
sP1<1, s>o. (2.7)

So at this point the rules of the game are pretty much as in [26] and [25]: we pick
the ansatz (2.4) with a cut-off Nyay in the sums, construct the partial amplitudes S
through (2.6) from spin 0 up to some large spin Liyax and pick an s grid with Mgyiq points
where to impose (2.7) for each spin [ and isospin I. Then, with these many parameters and
constraints we explore the allowed («, 3) space as introduced in (1.3). (For example, we
can pick some « and minimize J as illustrated for o ~ 0.06 in figure 3). If the parameters
Nmax, Lmax and Mgyiq are large enough things should converge.
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Figure 4. Real part of the phase shifts 551) = % log Sl(l) (solid lines; left y-axis) and absolute
values of the corresponding amplitudes |Sé1)(§)| (dashed lines; right y-axis) for the lowest spins
and isospins along the boundary as function of § = s/f2 (x-axis), with Nyax = 23. The gray dots
and error bars are experimental phase shifts for real world massive pions [30-36].” The comparison
is done by plotting the experimental data also as a function of the square of the center of mass
momentum in units of fr, i.e. (s —4m2)/f2. Here we use m, ~ 140Mev and f, ~ 93MeV.

"We thank José Ramén Peldez for sharing with us the set of available experimental data on = — 7
scattering.



In this problem we also found very important to impose the large spin constraints ob-
tained by estimating analytically the large spin partial waves following [26]. In the previous
massive explorations this large spin analytic constraints would be irrelevant in practice as
we would reach the asymptotic large spin regime well before the cut-off L,,x. This is ex-
pected; massive particles mediate short range interactions so large spin, corresponding to
large impact parameter, quickly becomes exponentially subleading. This is not so for mass-
less particles where this suppression becomes power like. So here the large spin constraints
are crucial to ensure proper convergence. (For more details see appendix D.4 of [26]).

Even with those large spin conditions and even for quite large Npax, these numerics are
very hard and things converge well but not splendidly as illustrated in the introduction, see
figure 1. (For the highest Ny = 23 we have used, there are 420 free parameters, 18 x 103
quadratic unitarity constraints, 200 linear higher spin constraints.® We have used SDPB
Elemental [37] on 40 cores and it took 6h 40m per optimization problem, that is per point
at the boundary of figure 1.)

It would be extremely useful to find a dual formulation of the S-matrix optimization
problem considered here. This would be specially important in the slow convergence region
of figure 1 because it would give rigorous bounds even with finite truncations, i.e. it would
approach the bounds from the opposite side. We are optimistic that such methods will
be soon available building upon the recent developments in the dual S-matrix bootstrap
program [38-41].

In the meantime we can take advantage of a major positive point of the original or
primal formulation: we are explicitly constructing S-matrices compatible with unitarity and
crossing symmetry so we can literally look at the optimal phase shifts as we move along
the boundary of the allowed parameter space! This is a particularly exciting exercise in the
case of pions where we have real world experimental data for their phase shifts [30-36].°
The outcome of this exploration is depicted in figure 4 where we highlight two interesting
regions along the boundary where the numerics do resemble nicely experimental data. On
the right region, in blue, we see that the even spins/isospins actually seem to be quite
similar to the experimental ones while spin 1 partial wave is unfortunately quite off. In
particular, the experimental data have a clear resonance around s = 30 corresponding to
the p particle which is clearly missing in the blue amplitudes. On the left orange region
it seems to be the opposite: we seem to have nice structure in the odd spin phase shifts
which do resemble closely the experimental phase shifts but the even spin phase shifts are
now quite off. Figure 5 contains a graphical summary. In sum, without imposing further
constraints, the real world does not seem to be close to the boundary. Of course, it did not
need to be. It would be interesting to add further constraints to our numerics — fixing

8For the grid we use a Chebyschev grid in p (unit disc boundary) with 200 points for spins from £ = 0
to £ = 49 and 50 points for spins above ¢ = 50. There are also the 200 higher spin constraints. This leads
to the number of quadratic unitarity constraints quoted in the text.

90f course, the attentive reader might point out that such comparison with the real world would perhaps
make even more sense in the massive setup explored in [25, 42]. That is true. It would be interesting to
better explore the massless limit interpolation starting from a massive setup. In particular, starting with
masses could be helpful in controlling the issue of log versus square root singularities discussed above.
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Figure 5. There is a rich pattern of resonances in the optimal S-matrices as we move along the
allowed S-matrix space. On the left, we have odd spin resonances turned on and no even spin
resonances. On the right we have the opposite. The real world has both types of resonances so
should somehow not be at the boundary. Would be very interesting to force the presence of the p
resonance as in [25] and repeat this analysis as done in that paper for massive pions.

the position of the p particle for example — and redoing all the bounds. Perhaps with this
extra physical constraint the S-matrices at the boundary might approach those observed
in experiment? Will they have rich even spin structures arising? We leave those numerical
explorations to the future.

~10 -
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A Perturbative unitarity

The scattering of Goldstone particles is free of IR divergences. The corresponding ampli-
tudes have a good soft behavior and vanish as the momenta are sent to zero.

For a single goldstone particle, for example we would write a fully crossing symmetric
amplitude low energy expansion A(s,t,u) ~ A(s+t+u)+B(s>+t2+u?)+C(s+t+u)>+...
but the A and C terms would drop due to s+t + u = 0 and the first leading interaction
starts at quadratic order and is governed by B.

In our case we have an O(N) scattering amplitude in (1.2) parametrized in terms of
a single scalar function A(s|t,u) symmetric in ¢,u only. The simplest and most general
tree-level on-shell interaction can now start already at linear order as

AT (5]t u) = (A1)

S
A2’
where A = f; in the case of massless pions.

In what follows we will solve this simple exercise: starting from the seed in eq. (A.1),
we will make use of crossing and analyticity to write an ansatz for the imaginary part of
the O(s?) or 1-Loop amplitude, and then impose elastic unitarity saturation to fix the coef-
ficients of the ansatz. We will be able to find the parametrization shown in eq. (1.3) and re-
peating the exercise at the next order we will also determine the most general parametriza-
tion for the O(s®) or 2-Loops amplitude up to a few “theory dependent” coefficients. '’

At O(s*) particle production kicks in: the 2 — 4 process contributes to the imaginary
parts of 3-Loops diagrams that would appear at this order.

10The leading logarithms can be extracted at any loop order using the non-linear recursion relations
in [43].

- 11 -



A.1 O(N) scalar particles at 1-loop

In this section we will prove eq. (1.3). In the massless case all the normal thresholds start
at s =t = u = 0, and we assume there are no other singularities in the complex plane of
the Mandelstam variables. The minimal ansatz for the 1-Loop amplitude must contain at
least polynomials and logarithms at the order O(s?).

Using crossing symmetry and setting A = 1, we can write the expansion

A(slt,u) = s+ as® + B(t2 + u?) + (a15® + az(t* + u?)) log (—s) +
t
+(b18% + ba(t* + u?)) log tu + by (t* — u?) log — + O(s?). (A.2)
U
To impose unitarity we must project the ansatz (A.2) into irreps of the global symmetry

group and partial waves. Let’s define the s-channel projections over the irreps of O(N),
respectively the singlet, antisymmetric and symmetric traceless reps

TO (s, t,u) = NA(s|t,u) + A(t]s, u) + A(uls, t) (A.3)

TW (s, t,u) = A(t]s,u) — A(uls, t) (A.4)

T3 (s,t,u) = A(t]s,u) + A(uls, t), (A.5)
and the projections in partial waves

tél)(s) = ﬁ /11 dz Py(z) T (s, t(s, ), u(s, ), (A.6)

where t = —s/2(1 — z) and u = —s/2(1 + z).
Elastic unitarity of the S-matrix translates into |S§I)(s)|2 = 1 or using Sy(s) = 1+ity(s)
we obtain a condition in terms of the partial amplitudes

2tm i) = |1{D2 (A7)

At leading order in the momentum expansion the equation above relates the imaginary
part of the one loop terms to the square of the tree-level amplitude:

2lm tlfLoop — |tTree Level‘2 ’ (AS)

for each spin and isospin.
At the leading order
TO(s,t,u) = (N = 1)s + O(s?)
TO (s, t,u) =t —u+ O(s?)
T(2) (87 t, u) = —s+ 0(52)7 (Ag)
where we explicitly show their tree-level expressions. Only the terms of order O(s?) of (A.2)
contribute to the imaginary part of the amplitude. Using the replacement rule log(—s) =
log(s) —im we get
Im 7O (s, t,u) = —7(N(s%ay + (24u?)a) + (>+u?)(by + by — b3) + 25%(by+b3))
Im 7W (s, ¢,u) = ms(t —u)(by — by + b3)
Im 7@ (s,t,u) = —7w((t® + u?)(by + ba — bg) + 25%(ba + b3))). (A.10)
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Since the imaginary part is just a polynomial in the Mandelstam’s of degree 2 we will only
have non vanishing partial amplitudes up to spin 2.
Finally, we have a set of 5 equations

t=0,I1=0 == —i;(i’)Nal+2Na2+2b1+8b2+4bg)—;((ngﬂl)sf
t=2,1=0 = —;;(Nag—i—bl—l—bg—bg):O
(=1,1=1 — i(bl—b2+b3):;(4§ﬂ)2
(=0,I=2 = i(b1+b2b3):;(1gﬂ>2
(=21=2 = —;;)(bl—l-bg—bg):(), (A.11)
whose solution yields
a; = —%, as =0, b =—bsg= ﬁ, 9 = —ﬁ, (A.12)
and
A(s|t,u) = s+ as® + B(t* + u?) (A.13)
—]§2;2232 log (—s) — Wlﬂ(t — u)(tlog (—t) — ulog (—u)) + O(s?).

For N = 3 we recover eq. (1.3). As a check, in appendix B we recover directly eq. (1.3)
taking the massless limit of the one-loop 77 scattering computation in [17, 18].

A.2 O(N) scalar particles at 2-loops

Perturbative unitarity at the next to leading order
Im ¢*10%P = Re ¢ 17109 5 ¢Tree, (A.14)

suggest that we have to include into the ansatz functions whose imaginary part is a loga-
rithm.
We write the most generic crossing symmetric ansatz at O(s?) include log? as
A(S|t, u)2—loops _
=83 +0(t3 +ud) +log (—s) (c158° +ca(t? +u?)) +log(tu) (c38® 4 ca (3 +u?))
t
+log E(C5S2(t —u) +ce(t3 —ud)) +log? (—s)(dy5° 4+ da (2 4+ uP))
+(log? (—t) +log? (—u))(dss® + da (2 +u>)) +log (—t) log (—u)(ds s> +ds (£ + 1))
(102 () — log? (—u))(drs2(t — ) + ds(t — u*)) + log (—s) log tu(dys® +duo (¢ + 1))
t
+log (—s)log —(d115%(t —u) + d1o(t® — u?)). (A.15)
U
Following the 1-Loop analysis, we project eq. (A.15) onto irreps of O(N) and partial
waves and solve the unitarity equation (A.14) in each channel. Since the imaginary part
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now contains logarithms, the spin projections do not truncate and in principle we have
an infinite system of linear equations. However, the right-hand side of eq. (A.14) do
truncate. Therefore, at higher spin we only get homogeneous equations which turn out to
be proportional to each other, hence, we can solve for the coefficients ¢; and d;.

To compute the projections we need to evaluate integrals of the form

/11 dz 2% log® (;(1 — m)) log® (;(1 + :c)) (A.16)

They can be analytically evaluated performing the simple change of variables x — 2z — 1
and using the identity

1 m n
/ dz z%log™ xlog" (1 —z) = a—a—Beta(a +u+1lv+1)
0

= S o (A.17)

pn=v=0

The final answer for the 2-Loops amplitude is then completely fixed by elastic unitarity

saturation
N(9N —20) + 19
2-loops __ 3 3 3 3 9
A(s|t,u)7oP% = vs° + 6(t° + u’) + 9916 74 s°log® (—s) (A.18)
_m((3N+11)(t3 log? (—t)+u’ log?(—u)) — 6(N—3)tu(tlog? (—t)+ulog? (—u)))
- B 11N — 10\ 4
- ((3N Ve W50 T Seasm ) s log (=)

+9(??(t2(t_2“) log (—t) + u*(u—2t) log (—u))

+9£Tg (£2(2u+9¢) log (—t) + u2(2t+9u) log (—u))
+W1927T4((21N_17)(t3 log (—t) + u”log (—u)) — 2(3N—5)tu(tlog (—t) + ulog (—u))).

At this order there are 2 new “theory dependent” coefficients {7, d} parametrizing the on-
shell polynomial deformations of order O(s®). We could also explore their allowed space
but the numerics would be quite harder.

B Chiral limit of the massive result

The one-loop analysis of the chiral perturbation theory has been carried out in all details
long ago [44]. In the modern literature the low energy constants are still defined in the
same way as done in that pioneering work. To help the phenomenology-oriented reader we
write explicitly the match between our convention and the usual one.

We take the expression for the one-loop amplitude in the massive case from [17, 18],
where the expansion has been worked out up to two-loops:
1

—(b1m4 + meZ + b352 + b4(t — u)2)

i S(FO()+ G0 (s,0)+ GO (s, ),

A(8|t, u)l—loop — + F
" (B.1)
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where
FO(5) = %(32 — )T (s) (B.2)
GW(s,t) = %(2# + st — 10tm? — 4sm? + 14m*).J (1), (B.3)

and

Vz(s) — s — 4m?
J(s) = b <1 + %\/z(s) log J%—Fi) , z(s) = Tél (B.4)

The first term in (B.1) is just polynomial in the Mandelstam variables and it contains the
running couplings of the counterterms for the one-loop divergences. The second term con-
tains the universal functions fixed by unitarity with the 2-particles normal branch points.
We now take the chiral limit of the two terms separately. When we take m — 0 only the b3
and by constants survive. Their relations to the chiral Lagrangian couplings are given by

1 1 m? 1 7 m?
by = 20 —05(p) — ——=log — — — 4+ 0| — B.
3 l(:u’> + 2 2(“) 327_[_2 og ,U/Q 1671'2 12 + <f72|-> ) ( 5)
1 1 m? 1 5 m?
by = =05(p) — —=log — — —— — — . B.
T BT E (ﬁ%) (B.6)
Collecting all the terms we obtain
1 s 1 2 4+ u? 5
— (b3s® + by (t — 2:(2@’“ — > (z’" >
Fr (058 + 04l —)%) = T (26000 — g ) + - (B0 - 55500
$2 4 2 4 2 m2
————log —-. .

The massless limit of the unitarity logarithms is easily done noticing that

—s m?
J(s) = 8771r2 (1 — %log mQ) +0 (s) . (B.8)

Replacing the leading behavior of J(s) in the second term of (B.1) yields

1 1 s? —5

1o (1) () _ 242 2 5 g T8

f#( (s)+ G (s, t) + G\ (s,u)) 247r2f#(s +t* + u”) Sonfd g
t—u —t —u

The two terms are both logarithmically infrared divergent in the chiral limit. However,
if we rescale the unitarity logarithms by log(—z/m?) — log(—z/u?) + log(u?/m?) and we
sum the two terms, then the final result is finite in the chiral limit and coincides with
eq. (1.3) if we fix the scale at p = fr. (Similarly, the chiral limit of the two loop result
in [17, 18] precisely matches with (A.18)) The relation between our parametrization and
the coefficients in the chiral Lagrangian is given by

7

— o (f. .
o =26(fx)+ 28872

B=10(fx)+ (B.10)

7272’

~15 —



The numerical values for the ¢] quoted in [17, 18] are
0(M,) = =540 x 1072, £5(M,) = 5.67 x 1073, (B.11)

We can obtain their values at yu = f; using the RG equations

ey 1 daes 2
16mp—=t = -2, 167 p—= = -3 B.12
getting
T (s f7T —4 —4
G(fx) = (M) = 5753108 M ~9.4 %10 —  a=-47x10"* (B.13)
1 i - -
O(fr) = 05(M,) log Ir 4 46 % 102 —  B=170x10"2 (B.14)

31672 ﬁp
where we have used fr = 93MeV and M, = 770 MeV. In figure 1 we compare the results
in (B.13), and (B.14) with the allowed region in the {«, 5} space.

C Asymptotic bounds from dispersion relations

In this appendix, we derive a dispersive representation of the parameters o and § involving
the imaginary part of two independent forward scattering amplitudes, which we define in
section C.1. The main argument, presented in C.2, leads to a prediction for the asymptotic
behavior of the lower bound on S for large values of |«|. Throughout this appendix, we set
units fr = 1.

C.1 Crossing symmetric forward scattering amplitudes

There are two crossing symmetric forward scattering amplitudes that we can define in
pion physics. Firstly, we can consider neutral pion scattering 7° + 70 — 70 + 70, This is
described by the amplitude

A(s|t,u) + A(t|s,u) + A(uls, t), (C.1)

which becomes
Mroro(s) = A(s|0,—s) + A(0]s, —s) + A(—s]s,0), (C.2)

in the forward limit. Secondly, we can consider the transmission amplitude for the process
7% + 7% = 7% 4+ 7° with a # b. The corresponding amplitude is

A(t|s,u), (C.3)
which in the forward limit reduces to
M,(s) = A(0|s, —s) . (C4)

Clearly, both forward amplitudes My, (s) and M;(s) are invariant under the crossing
symmetry transformation s — v = —s. This relates the values of the amplitude above and
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below the cut along the real axis in the s-complex plane. However, when combined with
real analyticity M (s*) = [M(s)]", it leads to the following relation valid in the upper half

plane!!

M(—s*)=[M(s)]" . (C.5)

In addition, unitarity implies positivity of the imaginary part of both forward scattering
amplitudes. More explicitly, we can set ¢ = 0 in equation (2.6) to find

1
10 Mgy (5) = o (20 +1) Re [3 - 5%(s) - 25(2(s)] = 0 (C.6)
l
Im My(s) = 87 > (20 + 1) Re [2 = /(s) = 5 (s)] > 0 (C.7)
1
Finally, using the results of appendix A with N = 3, we can write the low energy
expansions
1
Mymo(5) = 2(a + 28)s% — Wsj [log(s) +log(—s)] + ... (C.8)
M;(s) = 2Bs* — 5% [log(s) + log(—s)] + ... (C.9)

4872
Here we use the standard convention of placing the cut of the logarithm along the negative
real axis of its argument. Evaluating these expressions at s + ie for positive real s, we find

s 1 5
Im My, =— 4+ — 2 26) —1)s> — 31 1
m Moo (5) 6x T 135003 (6767 (3ac+258) — 1)s 1503 ° og(s) + (C.10)
2 4 2
Im M,(s) = s° 34 br (3a+75)33 + s3logs + ... (C.11)

487 614473 230473
where we included also the 2-loop contributions to the imaginary part.

C.2 Dispersive argument

The argument that follows applies to both forward amplitudes My, (s) and M;(s). To
avoid cluttering, we will denote the forward amplitude simply by M(s). We shall use the
properties of crossing symmetry (C.5), positivity of the imaginary part Im M (s) > 0 for
s > 0 and the low energy expansions

M (s) = cgs® — c15% [log(s) + log(—s)] + ... (C.12)

with the constants ¢y and ¢; given explicitly in (C.8) and (C.9).
Integrating M (s)/s3 over the closed contour shown in figure 6, we obtain the following
relation

Lo, 2 i > ds
8(2)/0 dfe 29M(806 9) :/S 8—32ImM(s). (C.13)

0
We have made the usual assumption that lim o S%ImM (s) = 0.2 Replacing the low
energy expansion (C.12), we find!?
© ds ImM
co = 2¢; lim [/ ds TmM(s) + log so} . (C.14)
S

s0—0 [Jgg 8 me1s?

"This is identical to the case of massless branon scattering on the QCD flux tube discussed in [23].
12For massive theories this follows from the Froissart bound [45, 46].
3Notice that we should replace log(s) = log(soe®) and log(—s) = log(spe’®~™).
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[

. 4
—So 0 So

Figure 6. Closed integration contour in the s-complex plane used to derive (C.13). We assume the
integrand decays sufficiently fast at large |s| so that we can drop the arc at infinity. The forward
amplitudes are analytic in the upper half plane and satisfy the crossing property (C.5). There are
branch cuts along the real axis emanating from the branch point s = 0.

075
05
025!
T 2 3 45 S R T S— i (4
I,(s) Ii(s)
1 1
075 Y@ 075
05 05
025} 025!
C e 7 s

Figure 7. Imaginary parts of the two crossing symmetric forward amplitudes M,o,0(s) and M (s).
More precisely, on the left plots, we show the ratio I(s) defined in (C.15) for the numerical amplitude
along the boundary of the allowed region shown in the inset of figure 1 (for Nyax = 23). On the
right, we test the scaling scenario (C.16) by plotting the same data (with the same colour coding)
as a function of |a|s. The curves collapse reasonably well, specially in the bottom plot. The black
dashed lines are the analytic prediction from (C.10) and (C.11). Notice that this result follows
from the 2-loop unitarity computation of appendix A.2. It is not surprising that our numerics
approximately match this prediction because unitarity is rather well saturated at low energies.
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Notice that if we neglect the last logarithm, then one would immediately conclude that
cp > 0, which leads to the naive bounds (1.4). This is essentially the argument of [1, 22].
However, the last logarithm is crucial to obtain a finite limit when sq — 0.'4

It is convenient to define

ImM (s)
I(s)=——==1+0(s). C.15
()= "0 1 00s) (©15)
in order to study the asymptotic behavior of (C.14) for large |«|. The perturbative expan-

sions (C.10) and (C.11) suggest the following scaling at large |«/,
1(s) = Ip(|a|s) + slog(s) 1 (|ar|s) + - .. (C.16)

where the functions [y and I are generic, except that Ip(0) = 1. In figure 7, we plot I(s)
for both forward amplitudes obtained from the numerical minimization of 3 for large values
of |a|. This supports the scaling scenario (C.16). This scenario predicts

% d
co = 2¢; lim [/ e [Io(|x|s) + slog(s)I1(|a|s) + ...] + log 30} (C.17)
so—0 S0 S
_ ® dz log ||
= 2¢; lim / —Ip(z) +logso| + O | ——— (C.18)
so—0 lafsg 2 0%
)  dz log ||
= —2c; log |a| + 2¢1 lim / —Io(z) +loge| + O (C.19)
e—0 | Je z o

Applying this result to M., (s) for negative a and to M,(s) for positive «, we obtain (1.5).
In the inset of figure 2, we see that this prediction works very well for large positive o but
not so well for large negative o. This is probably related to the fact that the curves did not
perfectly collapse in the top right plot of figure 7. It is unclear if this would improve for
larger values of |a| and with better numerical data, or if the scenario (C.16) is incorrect.

D Phenomenological bounds from dispersion relations

Dispersion relations encode in a compact way crossing and analyticity properties of scat-
tering amplitudes. They have been used since ancient times to determine the real part
of the scattering amplitude given the experimentally accessible absorptive parts. One effi-
cient way to make use of dispersion relations has been introduced by Roy in the context of
7 — 7 scattering [47]. Let’s briefly review how that works in the simple case of the crossing
symmetric mg — mp scattering channel with mass m.

Starting from the usual double subtracted fixed-t dispersion relation (with |t| < 4m?)!?

T(s,t) =aog+ 1= dz (Im T'(z,t)K1(z,s,t) + Im T(z,0)Ka(z,t)), (D.1)

T J4m?

10Of course the authors of [1] were aware of the log branch cut in the forward amplitude. In fact,
they describe its effect as logarithmic running of the couplings. Notice that we defined a and 8 from the
amplitude (1.3), where we fixed the scale of the logarithms to fr. The article [22] did not have to face this
issue because it dealt with massive pions.

15Froissart bound fixes the number of subtractions that allow for the most generic polynomial growth of
the amplitude [45, 46].
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where
1 1 1 1

Ki(z,5,1) = S D.2

1(z,5,1) z2—8 z—u 2z z4+t—4m?’ (D-2)
1 1 1 1

Ko(z,t) = S D.3

2(2:1) z—t+z—4—|—t 2z z—4m?’ (D-3)

and ag = T(4m?,0). Projecting this equation onto partial waves and using crossing to
restrict the integration domain, from the Lh.s. one gets

% /0 APy T (s, 2) = to(s), (D.A)

and from the 1.h.s.0
1 1
167/0 dzPy()T (s, x) = W o0+ = Z/ kej(s,2)Im t(2)dz. (D.5)
Taking the principal value of the known kernels k¢;(s, z) the equations can be written as
Reto(s) = — go—i- va / koj(s, z)Im t;(2)dz. (D.6)

This equation can be used to reconstruct the real part of the amplitude once the experi-
mental values of the Im ¢;(z) are known. The precise estimates reported in [21] for the low
energy constant in 77 scattering have been obtained through this analysis — see the black
rectangle in figure 8.

A different approach useful to derive generic bounds is to use the dispersion relation
in eq. (D.1) without projecting onto partial waves. Following [12], let’s now reintroduce
the O(NN) symmetric notation and write a dispersion relation for the second derivative of
the amplitude

a? 2 [ s cir I
—T t d L ImT t). D.
ds? (s:8) = Amz ¥ ((z —s)3 + (z —u)? m T (z1) (D7)

The explicit kernel in this equation and the Im T (s,t) are both positive in the region
s < 4m? and u < 4m? for fixed 0 < t < 4m?. In fact

oo
Im T (2,t) = ;)(% + DIm tf(2) P, (1 + Z_QimQ) : (D.8)
and noticing Py(z) > 0 for x > 1, it follows that Im T(z,¢) > 0. The only signs that
would spoil positivity come from the C.! " isospin crossing matrix. However, one might ask
wether it is possible to construct positive linear combinations of amplitudes such that for
some vectors B! the inequality p/CL! "> 0 holds.

A simple inspection yields the vectors {0,0, 52}, {200, 51,0} and {0, f1, B2}, which
correspond respectively to the T(Q)(s,t) symmetric traceless component, the mymy com-
ponent My ~.(s,t) = A(s|t,u) + A(t|s,u) + A(u|s,t) and the transmission component

5Tt can be shown this equation is valid only for —4m? < s < 60m? [47].
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M, (s,t) = A(t|s,u) already studied in appendix C — see egs. (C.1) and (C.4). To sum-
marise, we have three inequalities
2 d2 d2
2
@T( )(S,t) 2 O, @MWOWO (S,t) Z 0, @

valid for any s,t in the Mandelstam triangle.

My (s,t) >0 (D.9)

If we plug in (D.9) the explicit expression for the one-loop amplitudes computed in
chiral perturbation theory — see eq. (B.1) — we obtain inequality constraints for the low
energy constants of the form

2
Yoaiily > fi(s,t), i=1,2,3 (D.10)
j=1

where the coefficients «;; are known and the functions f;(s,t) are known combinations of
the one-loop chiral amplitudes. The low energy constants 1 o introduced in (D.10) are
defined by

1 —~ m2 - 1 —~ m2
O (p) = 6.2 <€1 + log M2> o la(p) = 1372 (fz + log #2> (D.11)

and can be related to our definition of the Wilson coefficients using (B.10) to get

2 2

- 2 - 7
(1 = 487 — 3 log Uy = 48725 — 6 log m (D.12)

_T
fz

The best bound for 57172 is attained maximizing the three functions f;(s,t) inside the

mﬂ'
I
K

Mandelstam triangle. The result obtained in [12] using this procedure is shown in figure 8
with a red strip. The strip gives an estimate of the systematic error to take into account
by neglecting the higher loop terms in the chiral expansion.

The same bound has been recently improved in [13] by adding additional positivity
constraints — see the grey band in figure 8. Further improvements can be made assuming
the validity of perturbation theory also in the physical region z > 4m? up to some scale [14].

In figure 8 we compare in green the allowed region obtained using the primal numerics:
the red solid line denotes the boundary of the allowed region for Nyax = 24. To numerically
convert the Wilson coefficients defined in this paper to the more standard Zl,g we used
fr = 93MeV and m, = 137MeV (the average between the mass of the charged and neutral
pion). It is nice to see how the bound obtained by our numerical approach is compatible
with the region allowed by the phenomenological bounds, and it contains the estimates
computed using the experimental data and the Roy equations.

Let us emphasise that in our approach there is no UV cutoff or physical approximation
beyond the unavoidable errors of the numerical procedure. More precisely, the validity of
the EFT approximation for our ansatz is set dynamically by the appearance of physical
resonances in the amplitude. It is amusing how the extremal amplitudes in the region of
the boundary close to the QCD area have resonances whose masses are order one numbers
in units of the EFT scale. A phenomenologist could use all the armament of the EFT tech-
nology to study the physics of those amplitudes. Moving to large values of ¢; the dynamical
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Figure 8. In green the allowed region for the low energy constants 5_172 as determined only by
crossing, analyticity and unitarity equipped by pion soft theorem. The red solid line is the boundary
of the allowed region for Nya.x = 24. The red strip represent the result obtained in [12] using
positivity properties and in gray we show the improved positivity bounds found in [13]. The colored
rectangles correspond respectively to the phenomenological estimates given in [19] (brown), [20]
(purple), and [21] (black).

nonperturbative scale becomes smaller in units of the EFT scale and in that case the “new
physics” shows up before as resonances become lighter and the EFT approximation breaks
down at the scale of the new physics.
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any medium, provided the original author(s) and source are credited.
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