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Abstract: Upon embedding the axion-inflation in the minimal left-right symmetric gauge
extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new
particle physics model for inflation. In this work, we present a more detailed analysis. As a
compelling consequence, this setup provides a new mechanism for simultaneous baryogen-
esis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The
lightest right-handed neutrino is the dark matter candidate. This setup has two un-
known fundamental scales, i.e., the scale of inflation and left-right symmetry breaking
SU(2)R × U(1)B−L → U(1)Y . Sufficient matter creation demands the left-right symmetry
breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right
symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-
supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry
scale. Although WR gauge field generates equal amounts of right-handed baryons and lep-
tons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM 6= 0. A key
aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial
B−LSM is conserved by the Standard Model interactions. This setup yields a deep connec-
tion between CP violation in physics of inflation and matter creation (visible and dark);
hence it can naturally explain the observed coincidences among cosmological parameters,
i.e., ηB ' 0.3Pζ and ΩDM ' 5ΩB. The new mechanism does not rely on the largeness of
the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the
heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological
smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which
can be probed by future CMB missions and laser interferometer detectors.
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1 Introduction

Modern cosmology has been remarkably successful in describing the Universe from a second
after the Big Bang until today. However, its physics before that time is still much less
certain. It profoundly involves particle theory beyond the Standard Model (BSM) to
explain long-standing puzzles: I) the origin of the observed matter asymmetry, II) neutrino
mass, III) nature of dark matter, and IV) cosmic inflation. Apart from the above problems,
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the standard model of particle physics (SM) faces some conceptual issues: i) ad hoc parity
violation, ii) accidental B − L global symmetry, iii) vacuum instability, and iv) strong
CP problem.

Recently, [1] proposed a new setup for physics of inflation by embedding axion inflation
in SU(2)R gauge extensions of the SM. For concreteness, as the most minimal realization
of this idea,1 the axion inflaton is coupled to SU(2)R gauge field in the minimal left-right
symmetric model (LRSM) [2–5]. This new particle physics model for inflation gives rise
to a new mechanism for simultaneous baryogenesis and Right-Handed Neutrino (RHN)
creation through the chiral anomaly of SU(2)R, which provides the source of CP violation
in inflation. This new mechanism does not rely on the largeness of the unconstrained
CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-
handed neutrinos. On the other hand, it makes a deep connection between inflation,
baryon asymmetry, and DM relic density. Therefore, it can naturally explain the observed
coincidences among cosmological parameters, i.e., ηB ' 0.3Pζ and ΩDM ' 5ΩB. If the
primordial relic density of the lightest RHN makes all the DM today, ΩDM specifies its mass
as 1.7 GeV. Therefor its radiative decay may produce active neutrinos and gamma-rays
with energy Eγ = mN1/2 in the highly-dense DM regions. As a compelling consequence,
this setup can simultaneously provide plausible explanations for the phenomena (I-IV)
named earlier. In this work, we present a more detailed analytical and numerical analysis.

Originally proposed to explain P violation in low energy processes [2], LRSM predicted
massive neutrinos years before experiment. Among its additional compelling consequences
are: natural B− L symmetry [6], natural entailed seesaw mechanisms [7], solution to vac-
uum stability problem [8], and strong CP problem without an axion. The LRSM can solve
the conceptual issues (i-iv) named earlier. In the minimal LRSM, the Electro-Weak (EW)
gauge symmetry is extended to SU(2)L × SU(2)R × U(1)B−L [2–5]. As a result, it intro-
duces a new fundamental scale, ΛF , during which the extended gauge symmetry is broken
as SU(2)R×U(1)B−L → U(1)Y . Upon embedding axion-inflation in LRSM, we have two un-
known energy scales, the scale of inflation and ΛF . Based on that we can classify the setup
into two types; type-I with

√
HMPl > ΛF and type-II with

√
HMPl < ΛF . (See figure 1.)

Axion fields are abundant in string theory, and therefore very well-motivated candi-
dates for the inflaton field [9–11]. Thanks to their natural shift symmetry, their effective
potential is protected from dangerous quantum corrections, which guarantees the flatness
of the potential. Besides their appealing theoretical stability, models of axion inflation
are attractive phenomenologically and are naturally coupled to gauge fields. Non-Abelian
gauge fields may contribute to the physics of inflation while respecting the cosmological
symmetries [12, 13]. The first inflationary model based on non-Abelian gauge fields has
been introduced as Gauge-flation [12], which is an EFT of a larger model, i.e., Chromo-
natural [14], after integrating out the axion [15].2 Inspired by the original models, several

1This is the minimal realization that can produce a non-zero B−L in the SM sector, i.e. BSM−LSM 6= 0.
2In Chromo-natural, the form of the axion potential is assumed to be cosine, which requires a large

value of λ to support slow-roll inflation [14]. However, the large coupling is hard to achieve in a controlled
string compactification [16]. Therefore, we are interested in flat axion potentials and small values of λ, e.g.
f . 0.01 and λ . 0.1 [17].
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Figure 1. The SU(2)R-axion inflation throughout cosmic history. This setup has two new funda-
mental scales, scale of inflation Λinf =

√
HMPl, and scale of first SSB, ΛF . Scenarios with Λinf > ΛF

(Λinf < ΛF ) are called type-I (type-II).

more inflationary models with the SU(2) fields have been proposed and studied, which
share the same key features. In this work, we consider the minimal realization of SU(2)-
axion inflation introduced and studied in [17]. For review see [18], section 2 of [19] and
references therein. Including SU(2) gauge fields in physics of inflation give rise to a rich
phenomenology which we summarize in the following. The SU(2)-axion inflation [17] is a
natural setting for warm inflation [20–22]. The Chern-Simons interaction drains kinetic
energy from the axion and injects it into the radiation. This gauge field produces parti-
cles in inflation; charged Higgs via the Schwinger effect [23] and charged fermions by both
Schwinger effect and chiral anomaly [1, 24, 25]. Another consequence of this Schwinger
effect is sourced primordial gravitational waves [19]. All the Sakharov conditions [26] are
satisfied in inflation [27, 28], hence it provides a natural setting to explain the matter
asymmetry (see section 3.3).3 As a cosmological smoking gun, it predicts chiral [18, 31, 32]
and non-Gaussian [33] Gravitational Wave Background (GWB) which leads to parity odd
CMB cross-spectra (see [34] and section 6) [35].

The new setup proposed in [1] extended the field content of the minimal LRSM with
an axion field which drives the cosmic inflation. It is assumed that the axion and SU(2)R
gauge field are coupled by a Chern-Simons interaction, i.e., SU(2)R-axion inflation.4 Here
both Parity and CP are spontaneously violated by the axion and its interaction with WR

in the physics of inflation. Within this setup, SU(2)R gauge field is generated in inflation
3Within the SM and through (global) gravitational anomaly, this setting naturally accompanies an

inflationary leptogenesis [28–30].
4In principle we can couple the axion to both SU(2)R and SU(2)L gauge fields. However, any primordial

left-handed baryons and leptons produced by SU(2)L (i.e. BSM = LSM) will be completely washed out by
the SU(2)L sphaleon effects which are in thermal equilibrium between Treh and mWL . Therefore in the
minimal realization of this idea we neglect this interaction.
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Figure 2. Summary of the mechanism: illustration shows the evolution of baryons B (yellow
box), SM leptons LSM (pink box) and RHNs LN =

∑3
i=1 LNi (gray box) during cosmic evolution.

Here B ≡ BSM and L ≡ LSM + LN. The CP violation by the chiral anomaly of WR in inflation
simultaneously produces baryons, SM leptons, and RHNs in inflation. The lightest RHN (our
DM candidate N1) freezes out at T = TWR

. Between reheating and electoweak scale, the spectator
effects reshuffle the primordial densities while N2,3 decay at T = mN2,3 . The net baryon density and
dark matter today are the remnant of that quantum effect in inflation. Notice that Treh < mWR

condition is essential to keep WR sphalerons out of equilibrium (see appendix D.1). The WL

sphalerons, however, contribute to the spectator effects and washout B+LSM but conserve B−LSM.

and creates right-handed chiral fermions coupled to it, i.e., SM baryons B, SM leptons LSM,
and three Right-Handed Neutrinos (RHN) LN. In type-I scenario in which the first SSB
happens after inflation, equal baryon and lepton numbers are created in inflation, i.e. B = L
where L ≡ LSM + LN, yet B − LSM 6= 0. Shortly after inflation, the first SSB happens at
ΛF , and eventually, the SU(2)R interactions freeze out at temperature TWR

. The lightest
of RHNs with feeble Yukawa couplings (our DM candidate) is decoupled at this point,
while N2,3 decay at T = mN2,3 . Between reheating and EW scale, the spectator effects
reshuffle the primordial densities. The summary of this new mechanism for simultaneous
baryogenesis and RHN production is presented in figure 2. Ref. [1] was the first step to
further, more involved analysis on the rich and multifaceted phenomenology of the gauge
extensions of the SM in inflation physics. In the current work, we present a more detailed
analytical and numerical analysis of the setup.

The paper is structured as follows. In section 2 we review the setup of SU(2)R-axion
inflation embedded in LRSM. In section 3, we work out the inflationary particle production.
In section 4, we study the post reheating evolution of the system. Next in section 5, we
work out the final baryon asymmetry and dark matter in the modern era. Section 6
presents a quick discussion on the setup’s observational constraints and signatures. We
finally conclude in section 7. Technical details of the computations and the underlying
mathematical tools are provided in appendices A–D.
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Notations and conventions. In this work, we deal with 4 and 2-component spinors,
which are acted upon by 4 × 4 and 2 × 2 matrices, respectively. The 4-spinors and 4 × 4
matrices are remained unchanged, while the 2-spinors and 2 × 2 matrices are written in
boldface. The 2 × 2 identity matrix is represented as I2. L and R subscripts denote the
left- and right-handed fermions. The lepton and baryon numbers are presented by L and
B. The Hubble parameter in inflation is denoted by H and MPl = (8πG)−1 is set to one,
unless otherwise specified. We use the Einstein summation notation, i.e., repeated indices
(one upper and one lower) are summed. The beginning of the Latin alphabets, i.e. a, b, c
denote the SU(2) group indices. Greek letters starting from the middle of the alphabet,
i.e., µ, ν, . . . are used for the space-time indices, whereas the starting ones, i.e., α, β, . . . ,
present the indices of the tangent space (non-coordinate) bases.

2 Framework

The aim of this work is to embed the axion inflation in the gauge extensions of the SM when
the inflaton is directly coupled to the BSM fields. Here we consider the model proposed
in [1], i.e. SU(2)R-axion inflation, in which the axion-inflation is embedded in the minimal
Left-Right Symmetric Model (LRSM). The minimal gauge group that implements the
hypothesis of left-right symmetry is [2–5]

G ≡ SU(2)L × SU(2)R ×U(1)B−L, (2.1)

where the color (SU(3) group) is suppressed. The subscripts L and R denotes left- and
right-handed fields, while B and L represent baryon and lepton numbers respectively. The
LRSM includes three gauge fields; WL,R are associated with SU(2)L,R and Bµ corresponds
to U(1)B−L. The fermionic content is consists of the SM quarks and leptons extended by
three RHNs as

qiL,R =
(
ui
di

)
L,R

and liL,R =
(
νi
li

)
L,R

, (2.2)

where νiR are three RHNs. The right-handed fermions interact withWR gauge field which
is SU(2)R-valued, and is given as

WR = W a
RTa and [Ta,Tb] = iεabcTc. (2.3)

The extended Higgs sector of the model consists of a Higgs bi-doublet Φ, and SU(2)L,R
triplets ∆L,R. The Spontaneous Symmetry Breaking (SSB) structure is

SU(2)L × SU(2)R ×U(1)B−L
T<ΛF−−−−−→
1st SSB

SU(2)L ×U(1)Y
T<ΛW−−−−−→
2nd SSS

U(1)em.

The first SSB occurs at T = ΛF which breaks the left-right symmetry and gives a VEV
to the SU(2)R triplet, i.e. 〈∆R〉 6= 0. That gives mass to W±R , ZR, and provides Majorana
masses for Ni ≡ νi + νci . Next, when the temperature gets below EW scale, T < ΛW ,
the second SSB happens, and the Higgs bi-doublet acquires a VEV, i.e., 〈Φ〉 6= 0. It gives
Dirac masses to the SM particles, active neutrinos included. In the minimal LRSM, the
origin of the mass for the SM neutrino is a hybrid (I+II) seesaw mechanism [7]. For an
overview on LRSM, see appendix A and the references therein.
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Λinf > ΛF Λinf < ΛF
〈WR〉 = 0 I II

〈WR〉 6= 0 Iv IIv

Table 1. Different scenarios of SU(2)R-axion inflation. Based on the scale of inflation Λinf =√
MPlH, scale of left-right symmetry breaking ΛF , and the (possible) SU(2)R field’s VEV in infla-

tion, one can separate four different types of scenarios.

2.1 SU(2)R-axion inflation

Cosmic inflation is given by Friedmann-Lemaitre-Robertson-Walker (FRLW) metric

ds2 = −dt2 + a2(t)δijdxidxj , (2.4)

in which the Hubble parameter is almost constant H(t) ' H, and the scale factor is
a(t) ' eHt. As for the inflaton field we consider an axion field ϕ which is coupled to the
WR gauge field in the LRSM as [1]

LInf = −1
2∂µϕ

2 − V (ϕ)− 1
2Tr[WRµνW

µν
R ]− λϕ

f
Tr[WRµνW̃

µν
R ], (2.5)

where λ . 1 is a dimensionless parameter, f . 10−1MPl is the axion decay constant, W µν
R

is the strength tensor of W µ
R as

WRµν ≡ ∂µWRν − ∂νWRµ − igR[WRµ,WRν ], (2.6)

and W̃ µν
R ≡ 1

2
εµνλσ√
−gWRλσ. For the sake of generality, we assume V (ϕ) is an arbitrary axion

potential, flat enough to support the slow-roll inflation. This SU(2)-axion inflation model
and its cosmic perturbations, for a generic dark SU(2) field, has been introduced and stud-
ied in [17] (see also [28, 29]). One of the most popular and well-motivated axion models of
inflation to provide the flat potential is the axion monodromy. While the underlying peri-
odicity of the theory continues to protect the inflaton potential from corrections, here the
periodic field space of the axion is effectively unfolded due to the monodromy [11, 36, 37].

In this setup, we have two unknown high energy scales, i.e., the scale of inflation
Λinf =

√
MPlH, and LR symmetry breaking scale ΛF . Besides, the SU(2)R may or may

not acquire a VEV. Therefore, we can distinguish four different types of scenarios, which
are classified in table 1. Scenario I and Iv describe the case Λinf > ΛF , while II and IIv
otherwise, i.e. Λinf < ΛF . Moreover, the v subscript denotes systems in which the SU(2)R
acquires a VEV in inflation. In scenarios II and IIv, the WR is massive in inflation.5 In
this work we solely focus on types I and II and leave Iv and IIv for future work.

Right-handed fermions in SU(2)R-axion inflation. The U(1)B−L and SU(2)L gauge
fields and left-handed fermions in inflation have conformal symmetry, hence are negligible
in physics of inflation. The WR gauge field, however, is coupled to the axion which breaks

5For different but related models based on massive SU(2) fields coupled to an SU(2)-doublet see [38, 39].
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its conformal symmetry and sources it in inflation. The right-handed fermions are coupled
to WR as (see eq. (A.14))6

L ⊃
∑
i

q̄iR
(
iσµDµ − igRσ

µWRµ

)
qiR + l̄iR

(
iσµDµ − igRσ

µWRµ

)
liR, (2.7)

whereDµ is the spinor covariant derivative. The generatedWR gauge field, hence, produces
right-handed quarks and leptons in inflation. Finally, the right-handed fermions can have
an effective interaction with the axions as

L5 = λ̃ϕ

f
∇µJµR, (2.8)

where λ̃ is a constant of the order of λ, and the right-handed current is

JµR =
∑
i

q̄iRσ
µqiR + l̄iRσ

µliR. (2.9)

There are two source terms for the fermions, i.e. the SU(2)R gauge field and its axion.
However, the axion cannot generate Weyl fermions. The reason is that a Peccei-Quinn
type UPQ(1) rotation of fermions as [40]

ΨR → e
− iλ̃
f
ϕΨR, (2.10)

removes the axion interaction and transforms the fermion mass matrix as [41]

M→ e
2iλ̃
f
ϕM. (2.11)

Therefore, the axion only contributes to the generation of massive fermions in inflation.

3 Inflationary particle production

In this inflation model, WR gauge field is generated by the axion. The field equation of
WRµ in the massless case (type-I scenarios) is

(∇µ − igRWRµ)
[
W µν

R + λϕ

f
W̃ µν

R

]
= 0, (3.1)

and in the massive case (type-I scenarios) W±R and Z0
R acquire mWR

and mZR respectively.
Moreover, apart from the exponential expansion of the Universe, both axion andWR gauge
field are active in inflation and produce right-handed quarks and leptons. The P and C are
maximally broken by the chiral nature of the SU(2)R interaction, and CP is violated by
the Chern-Simons interaction. Both right-handed baryon and lepton numbers are violated
by the non-perturbative effects of the WR, i.e. chiral (Adler-Bell-Jackiw) anomaly [42, 43].

6Notice that U(1)B−L is decaying and unimportant in inflation, and it is neglected here.
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The sterile neutrinos are massless (massive with mass mNi) in scenario type-I (type-II).
That gives the right-handed baryons and leptons the following anomalies

∇µJµRB = −
g2
R
NR

16π2 Tr[W µν
R W̃Rµν ], (3.2)

∇µJµRL = −
g2
R
NR

16π2 Tr[W µν
R W̃Rµν ] + 2imNi ν̄iRνiR, (3.3)

where JµRB,L is the baryon and lepton number densities, and NR is the number of right-
handed fermion generations. Note that the B and L violating interactions of the left-handed
fermions remains negligible in inflation. The Chern-Simons term can be written as a total
derivative √

−gTr[W µν
R W̃Rµν ] = 2∂µ

(√
−gKµ), (3.4)

where Kµ is the Chern-Simons current, i.e.

Kµ = εµνλσTr
[
WRν∂λWRσ −

2igR
3 WRνWRλWRσ

]
. (3.5)

In our setup NL = NR = 3, hence we neglect the effect of global gravitational anomaly.7
The total baryon and lepton numbers are related to their corresponding quantities in SM as

nB = nBSM and nL = nLSM +
∑
i

nNi , (3.6)

in which nLSM and nNi are the contributions of the SM leptons and the ith RHN in the
total lepton number respectively. In this section, gL,R are the gauge couplings at the scale
of inflation which are computed in appendix A. For a high scale inflation, e.g. around
H ∼ 1014 GeV, we have

gL(H) ' 0.56 and 0.3 ≤ gL(H) ≤ 0.56. (3.7)

The details of the discussion depend on whether the first SSB happens before or after
inflation. Therefore, these two cases will be treated separately. Before going any further,
let us fix the notations that will be used in this section. For later convenience, we define H as

H ≡ aH, (3.8)

which in terms of conformal time, i.e. dt = adτ , and during slow-roll is H ' − 1
τ . The

rescaled physical momentum is defined as

τ̃ ≡ k

aH
' −kτ. (3.9)

Finally, we define dimensionless parameters ξ and ξ̃ as

ξ ≡ λϕ̇

2fH and ξ̃ ≡ λ̃

λ
ξ. (3.10)

7In the context of Einstein gravity and with SM fermions, i.e. NL − NR = 3, the effect of global
gravitational leptogenesis in the minimal SU(2)-axion model [17] is studied in [28, 29].
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During slow-roll ξ has slow-roll dynamics, and is related to the slow-roll parameter ε ≡ − Ḣ
H2

as
ξ(t) ∼ 1√

2
λMPl

fH

√
ε(t). (3.11)

As a result, ξ gradually increases with time.

3.1 Scenario type-I

In scenario type-I, the WR and right-handed fermions are all massless in inflation. Here
we first study the gauge field production by the axion. Next, we turn to the fermion
production by the gauge field.

Massless SU(2)R gauge bosons. The linearized field equation of SU(2)R is

∂2
τWRi − ∂2

jWRi + a2∂i(∇µW µ
R) + 2aH∂iWR0 −

λϕ̇

fH
εijkH∂jWRk ' 0, (3.12)

and a constraint equation ∇µW µ
R = 0. The (charged) gauge field has two degrees of

freedoms and can be decomposed in terms of its two transverse modes as

WRi(τ,x) =
∑
σ=±1

∫
d3k

(
ak,σfσ(τ,k)eσi(k)eik.x + b†k,σf

∗
σ(τ,k)e∗σi(k)e−ik.x

)
, (3.13)

where ak,σ (bk,σ) is the annihilation operator of the particle (anti-particle), and e±(k) are
±1 helicity polarization vectors, defined as

e±(k) ≡ 1√
2

(θ̂ ∓ iφ̂), (3.14)

where r̂ = −k̂, θ̂ and φ̂ are the local orthogonal unit vectors in the directions of increasing
r, θ, and φ. The polarization vectors satisfy in the following equations

k.e±(k) = 0 and k× e±(k) = ∓ik e±(k). (3.15)

The function fσ(k) can be expanded in terms of the mode functions as

fσ(τ,k) = faσ(τ,k)Ta, (3.16)

which are governed by the field equations below

∂2
τf

a
± + (k2 ∓ 2kHξ)fa± ' 0. (3.17)

The field equation can be written as a Whittaker equation with parameters

κ± = ∓iξ and µ2 = 1
4 . (3.18)

Imposing the Bunch-Davies vacuum condition in the asymptotic past, we have the mode
functions as [17]

fa±(τ,k) = eiκ±π/2

(2π) 3
2
√

2k
Wκ±,µ(2ikτ). (3.19)

Therefore one helicity state of the gauge field (plus/minus for positive/negative ξ) has a
short period of tachyonic growth (see the left panel of figure 3).8

8It leads to particle production and backreaction to the background [19].
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Figure 3. The SU(2)R gauge boson and right-handed fermion production in type-I scenarios. Left
panel: the polarization states of the SU(2)R field vs k

aH for different values of ξ. The plus and
minus helecity states are presented with solid and dashed lines respectively. Right panel: the K(ξ)
parameter which quantify the value of fermion production in inflation.

Massless right-handed fermions. In scenario type-I, all the fermions are massless in
inflation. Therefore, the right-handed fermions are generated by the SU(2)R gauge field as

∇µJµRB,L = −
g2
R
NR

16π2 Tr[W µν
R W̃Rµν ], (3.20)

which implies that the produced right-handed fermions are given by the Chern-Simons
current (3.5). After linearization, the Chern-Simons charge is given as

nCS ≡
∫
d3kK0 ' 1

a3

∫
d3k εijk 〈Tr

[
Wi∂jWk

]
R
〉. (3.21)

For later convenience, we define K(ξ) as

K(ξ) ≡ 9
4(2π)4

∑
σ=±

σ eiκσπ
∫
τ̃3d ln τ̃W ∗κσ ,µ(−2iτ̃)Wκσ ,µ(−2iτ̃), (3.22)

with κ± = ∓iξ and µ = 1
2 . Using solution (3.19), we can write nCS as

nCS '
8π2

3 H3K(ξ). (3.23)

That gives the lepton and baryon number densities as

nB = nL ' −g2
R
H3K(ξ). (3.24)

The number density of Ni is
nNi = −1

6g
2
R
H3K(ξ). (3.25)

The right panel of figure 3 shows K(ξ) vs ξ. It increases exponentially with the increase of
ξ as

K(ξ) ∝ 1
(2π)4 e

2ξπ. (3.26)
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3.2 Scenario type-II

In scenario type-II, the gauge symmetry SU(2)R × U(1)B−L breaks to U(1)Y . It gives
masses to the gauge boson, charged and neutral, i.e.

W±R = 1√
2

(W 1
R ∓ iW 2

R) and Z0
R = (gRW 3

R − gBLB)/
√
g2
R

+ g2
BL , (3.27)

as well as at least two of the right-handed fermions. Here we first study the gauge field
production by the axion. Next, we turn to the fermion production by the gauge field and
the axion.

Massive SU(2)R gauge bosons. The linearized field equation of W±R is

∂2
τW

±
Ri − ∂

2
jW

±
Ri + a2∂i(∇µW±µR ) + 2aH∂iW±R0 −

λϕ̇

fH
εijkH∂jW±Rk +

m2
WR

H2 H
2W±Ri ' 0,

(3.28)

with a constraint equation
∇µW±µR = 0. (3.29)

The neutral component Z0
R, satisfies the same equations with mWR

replaced by mZR
. Since

the gauge field is massive, in addition to the two transverse modes with polarization vectors
e±(k), there is another dynamical degree of freedom associated with kiW

i
R(k). For ease

of notation, we define
Wα
R ≡ (W+

R ,W
−
R , Z

0
R). (3.30)

The gauge field in the massive case is given as

Wα
Ri(τ,x) =

3∑
σ=1

∫
d3k

(
ak,σf

α
σ (τ,k)eσi(k)eik.x + b†k,σf

∗α
σ (τ,k)e∗σi(k)e−ik.x

)
, (3.31)

where the polarization states are defined as

e1,2(k) ≡ e±(k) and e3(k) ≡ k̂. (3.32)

Note that superscript ± denotes the charged of the field and subscript ± represents its
helicity state. In addition to these dynamical fields, massive gauge field has Wα

R0 which is
non-dynamical, specified by the constraint eq. (3.29)

∂τW
α
R0 + 3HWα

R0 −
1
a
∂iW

α
Ri = 0. (3.33)

Since it is only coupled to the longitudinal mode, it can be expanded as

Wα
R0(τ,x) = 1

a

∫
d3k

(
ak,3f

α
0 (τ,k)eik.x + b†k,3f

∗α
0 (τ,k)e−ik.x

)
. (3.34)

The field equation of the transverse modes with σ = 1, 2 (plus and minus helicity states)
are given as

∂2
τf

α
± +

(
k2 ∓ 2kHξ +

m2
WR

H2 H
2
)
fα± ' 0. (3.35)

– 11 –
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Figure 4. The polarization states of massive gauge field vs k
aH for ξ = 2. Left panel shows the

four components of the massive field ( f+
a , f−

a , f3
a ,

f0
a ) with m = H. The dotted lines shows the

corresponding modes in the massless case. Right panel shows the enhanced mode f+ vs k
a for

different values of mass.

The field equation of the longitudinal mode with σ = 3 is given as

∂2
τf

α
3 +

(
k2 +

m2
WR

H2 H
2
)
fα3 + 2ikHfα0 ' 0, (3.36)

which is coupled to the Wα
R0 is given by the constraint eq. (3.33) as

∂τf
α
0 + 2Hfα0 − ikfα3 = 0. (3.37)

Like the massless case, the field equation of the transverse modes can be written as a
Whitaker equation with parameters

κ± = ∓iξ and µ2
α = 1

4 −
m2
α

H2 . (3.38)

Imposing the Bunch-Davies vacuum condition in the asymptotic past, we have

fα±(k, τ) = eiκ±π/2

(2π) 3
2
√

2k
Wκ±,µα(2ikτ). (3.39)

Since the longitudinal mode fα3 and hence fα0 are not coupled to the axion, they are strictly
decaying and unimportant in inflation (see left panel of figure 4). Therefore, similar to the
type-I case, the cosmological relevant modes in type-II scenarios are the transverse modes
as well. Again f+ polarization mode is generated by the axion which is shown in the right
panel of figure 4.

Massive right-handed neutrinos. In scenario type-II, the SM fermions are massless
in inflation while at least two of the sterile neutrinos are massive. Therefore, we have

∇µJµB = −
3g2

R

16π2 Tr
[
W µνW̃µν

]
R
, (3.40)

∇µJµL = 2imNi ν̄iRνiR −
3g2

R

16π2 Tr
[
W µνW̃µν

]
R
. (3.41)

– 12 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
3

mWR
=0

mWR
=H

mWR
=5H

0 1 2 3 4 5
10-13

10-8

0.001

100.000

107

ξ


(ξ
,m

W
R
)

ξ=0.1

ξ=1

ξ=3

0 1 2 3 4 5

10-5

0.001

0.100

10

mWR


(ξ
,m

W
R
)

Figure 5. The factor K(ξ,m
WR

) vs ξ (left panel) and vs m
WR

(right panel).

The Chern-Simons charge given in eq. (3.21) can be written as

nCS '
8π2

9 H3
[
2K(ξ,mWR

) +K(ξ,mZR
)
]
, (3.42)

where K(ξ,mα) is

K(ξ,mα) ≡ 9
4(2π)4

∑
σ=±

σeiκσπ
∫
τ̃3d ln τ̃W ∗κσ ,µα(−2iτ̃)Wκσ ,µα(−2iτ̃), (3.43)

with κ± = ∓iξ and µ2
α = 1

4 −
m2
α

H2 . Therefore the baryon number density is given as

nB ' −
1
3g

2
R
H3

[
2K(ξ,mWR

) +K(ξ,mZR
)
]
. (3.44)

The prefactor K(ξ,mα) with respect to ξ and mWR
is shown in the left and right panels of

figure 5. It increases (decreases) with the increase of ξ (mα) and for ξ > mα is

K(ξ,mα) ∝ 1
(2π)4 e2ξπ. (3.45)

Due to the mass of the sterile neutrinos, the calculation of the lepton number is more
involved and requires the mode functions. The leptonic field equations are(

iσµ∂µ + 3i
2 H + gRσ

µWRµ −
λ̃ϕ̇

f

)
liR −mNi ν

c
iR = 0, (3.46)

n̄Ni ≡
∫
d3k〈ν†iRνiR〉 = −H3∑

i

ξ̃

π

(
mNi

H

)2
D(ξ̃,mNi), (3.47)

where the bar emphasises that, unlike chiral anomaly, it is a classical effect. Using the
point-splitting regularization, we computed νi,R and D(ξ̃,mNi) analytically in appendix B.
The exact form of D(ξ̃,mNi) is presented in eq. (B.12) and we show it in figure 6. Here we
discuss its qualitative behavior which in the large and small mass limits is

D(ξ̃,mNi) '


2
π

[
ln
(mNi
H

)
− ψ(0)(1) + 1

2

]
for mNi

H � 1,

−4
3 |ξ̃| for mNi

H � 1.
(3.48)
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Figure 6. The prefactor D(ξ̃,mNi) vs ξ (left panel) and vs mNi (right panel).

The n̄Ni is directly proportional to (and an odd function of) ξ̃ which is the (classical)
source of particle production. Moreover, it increases with the mass of the sterile neutrinos,
mNi , which is the cause of their chiral symmetry breaking in inflation. Therefore, the total
number density of RHNs are given as

nNi = n̄Ni −
1
6 H3g2

R

[2
3K(ξ,mWR

) + 1
3K(ξ,mZR

)
]
. (3.49)

The final total lepton number is

nL ' −
[
g2
R

3
[
2K(ξ,mWR

) +K(ξ,mZR
)
]

+
∑
i

ξ̃

π

(
mNi

H

)2
D(ξ̃,mNi)

]
H3. (3.50)

3.3 Baryon and lepton numbers

Here we summarize the main features of inflationary baryon and lepton generation.

• The transverse modes of WR are generated by the axion that subsequently sources
right-handed baryons and leptons.

• All the Sakharov conditions required for BAU are satisfied in inflation: i) Out of ther-
mal equilibrium condition holds during inflation, ii) C is violated by the chiral nature
of the SU(2)R interaction, iii) B, L, and CP are violated by the non-perturbative ef-
fects of WR.

• nB and nL are the total baryon and lepton number densities respectively. nB and
nLSM are the contributions of the SM fermions. The RHNs number density is nN =
nL − nLSM .

• The B−L is conserved (violated) in scenario type-I (type-II). However, B−LSM = LN
is violated in both scenarios.

• In scenario type-I, the baryon and lepton numbers are both generated by the chiral
anomaly ofWR in inflation, i.e. nB = nL ' −

3g2
R

8π2 nCS (eq. (3.24)). It can be written as

nB = αinf(ξ)H3, (3.51)
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Figure 7. The αinf(ξ) vs ξ in eq. (3.52).

where αinf(ξ) is given as (see figure 7)

αinf(ξ) ' −g2
R
K(ξ). (3.52)

• In scenario type-II, the baryon number is specified entirely by the chiral anomaly
of WR, i.e. nB ' −

3g2
R

8π2 nCS (eq. (3.44)). In the leptonic sector, however, the mas-
sive RHNs are also generated by the axion. Therefore, the total lepton number is
nL ' nB + n̄N where n̄N is the RHNs produced by the axion (eq. (3.47)).

• The number density of the RHNs generated in inflation is

nNi = 1
3 α̃inf(ξ,mNi)H3, (3.53)

where αinf for scenarios type-I (eq. (3.25)) and II (eq. (3.49)) are given as

α̃inf(ξ,mNi)'


−1

2g
2
R
K(ξ) Type-I,

−
(

1
2g

2
R

[2
3K(ξ,mWR

)+ 1
3K(ξ,mWZ

)
]
+ 3ξ̃

π

(mNi
H

)2D(ξ̃,mNi)
)

Type-II.

(3.54)

Before going to the post inflationary evolution, let us quickly discuss the backreaction
effects of the produced gauge fields on background and cosmic perturbations in inflation.
For the SU(2) gauge field with a non-zero VEV, the cosmic perturbations are studied in [17]
and backreaction effects are worked out in [19]. As for the current work, however, we are
interested in the case with zero gauge field VEV which lead to different and higher order
backreation effects. However, the backreation of the gauge field on the axion can still be
found from the analytical results of [19] by setting ξA ≡ g〈W a

i δ
i
a〉/H = 0 which we present

here. The field equation of the axion inflaton is

ϕ̈+ 3Hϕ̇+ Vϕ = 〈Pϕ〉, (3.55)

where is
〈Pϕ〉 = − λ

2a3f

∑
σ=±1

σ
d

dt

[ ∫
kdk3|fσ(t,k)|2

]
. (3.56)
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Solving the above integral, we find

〈Pϕ〉=
15λH4

4(2π)2f
e2(ξ− 1

2 )π
((

ξ2− 1
3

)
−ξ
(
ξ2+ 1

5

)
Re
[
ψ(0)

(1
2 +iξ− i2

)
−ψ(0)

(1
2 +iξ+ i

2

)])
,

which can be approximated as

〈Pϕ〉
3Hϕ̇ ≈

5
2(2π)2ε

(
H

MPl

)2
ξ3 e2(ξ− 1

2 )π. (3.57)

Moreover, at second order, the generated gauge field sources the gravitational waves and
scalar perturbations. The contribution of the gauge field to the total energy density can
be approximated as

〈δρ
WR
〉

ρ̄
∼ 1

(2π)2

(
H

MPl

)2
e2(ξ− 1

2 )π, (3.58)

which is a good estimate of its contribution to the scalar perturbations. The gauge field
also sources gravitational waves as

hs+ + hs−
hvac

+ + hvac
−

∣∣
k=aH ∼

1
2(2π)2

(
H

MPl

)2
e2(ξ− 1

2 )π, (3.59)

in which hs±(τ,k) and hvac
± (τ,k) are the sourced and vacuum parts of the primordial grav-

itational waves respectively.
At CMB scale we have Pζ(k)|

k=aH= 1
2(2π)2ε

(
H
MPl

)2 ' 2× 10−9, which gives

〈Pϕ〉
Hϕ̇

∣∣∣∣
CMB

≈ 10−8 ξ3
CMB e2(ξCMB−

1
2 )π. (3.60)

Subleading backreation demands that ξCMB < 3. Assuming negligible backreation and
H < 10−6MPl, eqs. (3.58) and (3.59) imply that the gauge fields have subleading contribu-
tions to CMB scale cosmic perturbations at the level of the power spectrum. The parameter
ξ, then, gradually increases with time during inflation which increases the contribution of
the gauge field to backreation and cosmic perturbations. Demanding that the gauge field
backreation is subleading close to the end of slow-roll, e.g. when ε < 1/2, put an upper
bound on the value of ξ as

ξ ≈ 1
2 + 1

π
ln
(

2π MPl

H

)
. (3.61)

Note that the above upper bound on ξ is not necessary for the validity of inflation, but
only marks the validity of the perturbative calculations. Once ξ exceeds the above value,
a non-perturbative numerical analysis is required to fully study the system. We leave this
interesting but highly involved calculation for future work.

4 Post reheating evolution

To study the post-inflationary evolution, we need to specify our parameter space. For the
sake of concreteness, we restrict the current analysis by assuming the following conditions
considered by the author in [1]:
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Figure 8. For concreteness we assume this hierarchical mass spectrum for right-handed neutrinos.
The mass of N1 is specified by the relic density of DM in section 5.2.

• Condition C1. A hierarchical mass spectrum for the RH neutrinos (as implied by
the neutrino oscillations) as

mN3 & 1012 GeV� mN2 & 109 GeV� mN1 , (4.1)

where N1 is much lighter than the EW scale with feeble Yukawa interactions and
hence a DM candidate. (See figure 8.)

• Condition C2. TheWR field is never in thermal equilibrium with the thermal bath,
i.e. TWR

> Treh.

• Condition C3. The CP-violating phases in the neutrino sector, unconstrained by
the current data, are not large enough to create the observed BAU. Reference [1]
introduces a stronger version of the above conditions by imposing a more restrictive
version of C2.

• Restricted condition C2. The post-inflationary generation of RHNs via WR in-
teractions is negligible compared to their pre-existing relics. We discuss and quantify
conditions C2 & restricted C2 in section 4.1 and condition C3 in section 4.2.

4.1 Thermal evolution

Reheating starts at some point after the end of inflation and ends at the formation of a
dominant thermal bath with temperature Treh. Here, we consider the phenomenological
reheating model below

ρreh = δreh

(
ainf
areh

)4
ρinf , (4.2)

in which ρinf and ρreh are the energy density at the end of inflation and reheating respec-
tively. Moreover, δreh is the efficiency of the reheating process given as (see appendix C.1)

δreh ≈ exp[−(3wX − 1)∆N ], ∆N ≡ ln
(
areh
ainf

)
, (4.3)

where wX is the effective equation of state in the intermediate period between the end of
inflation and the formation of the thermal bath. The radiation energy density is given by

ρrad(T ) = π2

30geffT
4 , (4.4)
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where geff is the effective number of relativistic degrees of freedom. For SM particles at
the time of reheating we have geff = 427/4. The reheating temperature is

Treh
MPl

≈
( 90
geff

) 1
4
( 1
π

H

MPl

) 1
2

exp
[
−3(wX + 1)

4 ∆N
]
. (4.5)

The photon number density at the time of reheating is

nγ,reh = 2ζ(3)
π2 T 3

reh, (4.6)

where ζ(x) is the Riemann zeta function and ζ(3) ' 1.2. The photon number density today
is related to nγ,reh as

nγ,0 = S nγ,reh

(
areh
a0

)3
(4.7)

where S is the entropy injection factor. It captures the increase of entropy by the out of
thermal equilibrium decay of heavy RHNs, and is worked out in appendix C.1. We found
that the entropy injection is negligible in our setup, i.e.9

S ' 1. (4.8)

B Condition C2. TheWR gauge interaction has essential effects on thermal properties
of our setup. After the 1st SSB, they keep sterile neutrinos in thermal equilibrium by
scattering with the SM fermions. The temperature of the freeze-out of WR gauge field can
be estimated as

TWR ∼ g
1
6∗

( mWR

1014GeV

) 4
3
× 1013 GeV, (4.9)

where g∗ is the number of relativistic degrees of freedom at TWR and mWR
is the mass of

W±R . The particles which are only coupled through the WR interactions with the thermal
bath, e.g. N1, gets decoupled at this point. The thermal evolution after inflation depends
on whether sterile neutrinos are in thermal equilibrium initially or not. If in thermal
equilibrium, WR interactions generate thermal abundances of RHNs, i.e., freeze-out pro-
duction. The focus of this work, however, is the region in the parameter space in whichWR

interactions are never in thermal equilibrium, i.e. Treh < TWR
which demands (see figure 9)

H

MPl
.

3
2 × 10−9 exp

[3(wX + 1)
2 ∆N

] (
geff
102

) 1
2
(
g∗
102

) 1
3
( mWR

1014GeV

) 8
3
. (4.10)

The above condition guarantees that Ni does not have thermal abundances by freeze-
out mechanism.10 However, as we will see shortly, WR scatterings may still create a post
inflationary abundance of RHNs via freeze-in mechanism. Figure 9 presents TWR

vs mWR

9Contrary to our setup, the late decay of long-lived N2,3 (with lifetime up to a second) which are
produced via freeze-out mechanism can generate a sizable amount of entropy in the LRSM [44]. That
requires a reheat temperature as low as a few MeV and N2,3 masses in the 100 MeV range.

10In case that TWR < Treh, Fermi-type theory of WR field keeps sterile neutrinos in thermal equilibrium
even at temperatures lower than mWR

. The freeze-out relic abundance of Ni is
nNi
s

= 135ζ(3)
4π4

1
g∗(T

WR
) .
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𝑇reh < 𝑇𝑊𝑅

𝑇reh > 𝑚𝑊𝑅

Figure 9. The freeze-out temperature of WR interactions in terms of mWR
. The (pink) shaded

area shows regions with Treh < TWR
(condition C2) and below the solid line, the secondary (post-

inflationary) abundance of RHNs are not generated by freeze-out but instead by the freeze-in
mechanism. In the (blue) shaded region we have Treh > mWR

, so WR sphalerons are never in
thermal equilibrium below the dashed line.

and the (pink) shaded area shows the region with Treh < TWR which is the focus of the
current work. The (blue) shaded region marks where Treh > mWR

. Therefore, in the region
of our interest the SU(2)R sphalerons are never in thermal equilibrium to cause any B + L
violating interaction (see eq. (D.5)). That is in contrast to the SU(2)L sphalerons which are
in thermal equilibrium in the wide temperature interval of mWL

< T < 1012 GeV. Another
constraint on Hubble parameter in inflation comes from the current upper bound on the
tensor to scalar ratio, r0.05 < 0.07 at 95% confidence [45], which implies H . 10−5 MPl.

B Restricted condition C2. At reheating, the pre-existing RHNs, generated in infla-
tion, is eq. (3.54)

np
Ni
≈ 1

3αinf(ξ) exp[−3∆N ] H3. (4.11)

One of the consequences of condition C2 is that the RHN does not have a thermal abun-
dance, i.e. no freeze-out production. However, post-inflationary WR scatterings produce
RHNs via freeze-in as [46]

nsNi ≈ 1013 ×
(
geff
102

)(
Treh
MPl

)6( 1014 GeV
mWR

)4
M3

Pl . (4.12)

The superscripts p in eq. (4.11) and s in eq. (4.12) denote contributions of pre-existing (in-
flationary) and secondary (freeze-in) production respectively. One can restricted condition
C2 such that this secondary RHN production is subleading comparing to the pre-existing
one. Using eq. (4.5), we can quantify restricted condition C2 as

nsNi

np
Ni

≈ 8× 1011

αinf(ξ)
exp

[
−3

2(1 + 3wX)∆N
](102

geff

) 1
2
( 1014 GeV

mWR

)4
< 1, (4.13)

once inequality in eq. (4.10) holds.
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Figure 10. Condition restricted C2 in type-I scenarios. The shaded area above each line corre-
sponds to the accessible parameter space for a given mWR

that satisfies eq. (4.13). The left and
right panels show wX = 1 and wX = 0 respectively. The Max of m

WR
is set to be 10−2 GUT scale.

Type-I scenarios. In this case, the WR gauge fields and Nis are massless in inflation.
On the other hand, condition C2 demands mWR

& Treh which implies the first SSB must
happen shortly after the end of inflation.

The shaded areas in figure 10 show the parameter space in which restricted C2 is
satisfied for a given mWR

. As we see, most of the parameter space is accessible in case
of wX = 1 while the case with wX = 0 requires larger values of mWR

and ∆N and/or ξ.
Note that the parameter ξ is not a constant but a function of time which increases like√
ε during inflation. Demanding that the backreaction of the gauge field is negligible at

CMB scales, requires that ξCMB < 3 (see section 3.3). Therefore, most of the fermions are
generated after the CMB scale. The ratio of the pre-existing N1 to its freeze-in production
in type-I can be analytically approximated as

nsNi

np
Ni

∼ 1011 exp
[
−3

2(1 + 3wX)∆N − 2πξ
](1014 GeV

mWR

)4
. (4.14)

Type-II scenarios. In this case the SU(2)R gauge fields and Nis are massive in inflation.
However, N1 which is the dark matter candidate is very light compared to H. Therefore,
the pre-existing N1 in eq. (4.13) is produced by the chiral anomaly in inflation. The mass of
the WR can be roughly estimated as mWR

∼
√

H
MPl

MPl. For mWR
= 102H, figure 11 shows

the parameter space corresponding to each ξ in which restricted C2 is satisfied. Comparing
with the type-I scenario, the C2 is satisfied in a smaller part of the parameter space and
only for wX = 1 case.

To summarize, condition restricted C2 prefers type-I scenarios and wX = 1. In par-
ticular, it holds in a wide part of the parameter space when ΛF . Λinf , i.e., the first SSB
coincides with the end of inflation. Interestingly, it relates left-right gauge symmetry break-
ing to a geometrical phase transition in cosmology, i.e., the end of exponential expansion
of the Universe. Moreover, as figures 10–11 show, it demands mWR

> 1010 GeV which is
the scale suggested by the non-supersymmetric SO(10) GUT model with an intermediate
left-right symmetry scale [47–49].
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Figure 11. The parameter space (∆N,m
WR

) for different values of ξ that satisfies condition
restricted C2 in type-II scenarios with wX = 1. The accessible region for wX = 0 case is in the
region with ∆N > 8 and it is not shown here.

4.2 Spectator effects, RHN decay, and matter asymmetry

Throughout the Early Universe, particles experience a whole cascade of interactions that
eventually equilibrate in the Early Universe. Many of them can potentially redistribute the
initial asymmetries to the spectator degrees of freedom. These processes do not participate
directly in the generation or washout of the asymmetries (hence the name spectator). Still,
they have important effects in finial B and L by imposing certain relations between different
species. In addition to the spectator effects, the CP asymmetric decay of N2,3 produces
SM leptons and simultaneously partially washes out the pre-existing lepton asymmetries.
In this section, we consider washout effects, lepton flavor effects, and sphaleron processes.
For the ease of notation, we denote the SM leptons as L, i.e.

L ≡ LSM. (4.15)

Spectator effects. The SU(2)L sphalerons (SU(2)R sphalerons) transmit the asymme-
try from left-handed (right-handed) leptons to left-handed (right-handed) quarks and vice
versa. The WL gauge field is inactive and unimportant in inflation. Later on, however,
they attain a thermal equilibrium, and together withWR, they can have significant impacts
on the final B and L asymmetries. The B + L violating processes due to WL,R sphalerons
shuffle the initial baryons and leptons coupled to them. In appendix D.1 we showed that
WR sphalerons are never in thermal equilibrium in our setup (see also figure 9). Hence
they can not give rise to B + L violating processes. After the WR and sterile neutrinos’
freezeout, the SM particles remain in thermal equilibrium up to the electroweak scale.
Quarks, SM leptons, and Higgs bosons interact via gauge and Yukawa interactions as well
as non-perturbative sphaleron processes. All the SM gauge interactions and WL sphaleron
processes are in equilibrium in the temperature range of 100 GeV . T . 1012 GeV. The
thermal equilibrium of Yukawa interactions is flavor-dependent. Nevertheless, all of them
are in equilibrium at T < 85 TeV [50]. Using the sphaleron effects and hypercharge con-
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straint, we find that B, L, and B− L are related as

nB = csph nB−L, (4.16)
nL = (csph − 1) nB−L, (4.17)

where csph = 28
79 is the sphaleron conversion factor.

Lepton flavor effects. One potentially very significant aspect of (post inflationary)
leptogenesis is the flavor effect. The flavor-dependent washout and L violating interactions
can significantly change the value, and even sign of the final baryon asymmetry [51–53].
By the end of inflation, and due to our flavor blind CP violating source, we have a lepton
quantum state |linf〉 as

|linf〉 ≡
∑

α=e,µ,τ
C inf
α |α〉 where C inf

α = 〈α|linf〉. (4.18)

The decays of the heavy sterile neutrinos modify these initial states. More precisely, the
CP asymmetric decay of Ni produces leptons as11

|li〉 ≡
∑

α=e,µ,τ
Ciα |α〉 where Ciα = 〈α|li〉 , (4.19)

and simultaneously washes out the pre-existing (inflationary) leptons in this direction, i.e.

|linf〉i ≡ 〈li|linf〉 |li〉 . (4.20)

However, the pre-existing leptons normal to |li〉 direction, i.e.

|linf〉⊥
i
≡ |linf〉 − |linf〉i , (4.21)

elude the washout. As discussed earlier, we assume that N1 has feeble Yukawa interactions
with the SM and hence a DM candidate (condition C1). Therefore, only N2 and N3
contribute to the seesaw mechanism as well as decays and washouts. As a result, the
component |linf〉3⊥2⊥ which is normal to both |l3〉 and |l2〉 remains as the remnant of
the initial asymmetry. For the mass spectrum in eq. (4.1), the corresponding Boltzmann
equations and details are presented in appendix D.2 and here we report the final results.
The geometry of this process in the SM flavor basis is schematically shown in figure 12.

B Condition C3. The SM lepton asymmetry after decay of N2 at T = M2 & 109 GeV is

nB−L = np,fB−L + nN
B−L, (4.22)

where np,fB−L is the remnant of the primordial asymmetry np,iB−L, and nN
B−L is the lepton

number produced by the CP asymmetric decay of N2 as

nN
B−L ≈ ε2κ2, (4.23)

11The Ciα coefficients are given by the Yukawa matrix. In terms of the active neutrino mass matrix we
have Ciα = mαiν√

(m†νmν)αα
. Unlike |α〉s, |li〉 does not form an orthonormal bases, i.e. in general 〈li|lj 6=i〉 6= 0.
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Figure 12. The geometrical illustration of washout processes induced by the decay of N3 and N2.
The left panel shows the SM leptonic states at the end of inflation |linf〉 in black and |l3,2〉 in blue
and red, respectively. The middle panel shows the SM lepton states at T = mN3 and the right
panel presents the system at T = mN2 . The black arrows in each panel show the pre-existing SM
lepton asymmetry, which remains untouched by the washout effects. (Figure adopted from ref. [1].)

where ε2 is the CP asymmetry and κ2 is the associated efficiency factor. Interestingly,
when flavour effects are considered, it is very difficult for the pre-existing asymmetry to
be washed out by the RH neutrinos [54, 55]. The value of nN

B−L depends on the leptonic
Yukawa matrix and the unconstrained CP violating phases in the neutrino sector. In this
work, we assume that the amount of this asymmetry is not sufficient to account for the
observed matter asymmetry, i.e. condition C3:

nN
B−L

np,fB−L
� 1. (4.24)

Condition C3 is the opposite limit of what is assumed in leptogenesis scenarios [56].
Finally the remnant of the primordial asymmetry is given as below in terms of the

initial B− L
nB−L ' np,fB−L = C np,iB−L, (4.25)

where C is a parameter less than one (see eq. (D.35) and figure 15). For most of the
parameter space we have

C & 1
3 . (4.26)

Eliminating the effect of this pre-existing asymmetry is very hard and requires tightly fine-
tuned relations between leptonic Yukawa couplings and the physics of inflation which is
discussed in appendix D.2.

5 Modern era baryon asymmetry and dark matter

In this section we work out the baryon to photon ratio and dark matter density today.
Here we only consider type-I scenarios in which the 1st SSB happens after inflation. The
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remnants of the inflationary baryon and SM lepton asymmetries after the decay of the
heavy RHNs and the getting redistributed by the spectator effects are respectively as

nB(a) ' 0.12 αinf(ξ)H3 exp[−3∆N ]
(
areh
a

)3
, (5.1)

nLSM(a) ' −0.18 nB(a). (5.2)

The final N1 number density is

nN1(a) ' 2.8 nB(a) + nsN1(a), (5.3)

where nsN1
is the secondary (freeze-in) production of N1 given in eq. (4.12). As is assumed

in [1], if the restricted version of condition C2 in eq. (4.13) holds, we have

nN1(a) ' 2.8 nB(a). (5.4)

The particle production mechanism throughout cosmic evolution is then summarized in
figure 2.

5.1 Baryon to photon ratio

To the best of our knowledge, the cosmos is highly matter-dominated. The baryon-
antibaryon asymmetry can be quantified by the baryon to photon ratio at the present
time as [57]

η0
B = n0

B
n0
γ

' 6× 10−10, (5.5)

in which a 0 superscript denotes the present time value. Our setup predicts the baryon to
photon ratio as

η0
B ≈ 3

(
geff
100

) 3
4 αinf(ξ)(
δreh

) 3
4

(
H

MPl

) 3
2
, (5.6)

where geff = 427/4. One can write η0
B in terms of the curvature power spectrum as

η0
B ≈ 0.3 β Pζ , (5.7)

where Pζ(k0) = 1
2(2π)2ε

(
H
MPl

)2 in which ε is the slow-roll parameter, and β is

β = 5 (4π)2 ε αinf(ξ)(
δreh

) 3
4

(
MPl

H

) 1
2
. (5.8)

To agree with the date, β should be one and we have
H

MPl
≈ 10−6 α

− 2
3

inf (ξ) δ
1
2
reh. (5.9)

By this point, we have three constraints on H, i.e. eq. (4.10) imposed by C2, eq. (5.9)
to explain the observed ηB, and the upper bound enforced by CMB data. Combining
eqs. (4.10) and (5.9) gives

α
2
3
inf(ξ) δ

( 1/3+wX
1/3−wX

)
reh

(
mWR

1014 GeV

) 8
3
& 103, (5.10)
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Figure 13. The accessible parameter space in terms of ξ, ∆N , and mWR
for wX = 1 (Left Panel)

and wX = 0 (Right Panel). The color shaded areas (with solid line boundaries) present regions that
eq. (5.10) is satisfied while the gray shaded region shows areas associated with

√
HMPl < 1015 GeV.

The dashed lines present the boundaries corresponding to the same colors but with restricted C2
condition.

which together with
√
HMPl < 1015 GeV specifies the accessible region of the parameter

space. The color shaded areas (with solid line boundaries) in figure 13 show allowed parts
of the parameter space for different values of mWR

while the gray shaded area shows the
region with

√
HMPl < 1015 GeV. The boundaries of accessible parameters in the more re-

strictive case with condition restricted C2 in eq. (4.13) are shown with same color (dashed
lines) in figure 13. Note that the parameter ξ is not a constant but a function of time
which increases like

√
ε during inflation. Demanding that the backreaction of the gauge

field is negligible at CMB scales, requires that ξCMB < 3 (see section 3.3). Hence most
of the fermions are produced after CMB scale. This setup can explain the observed ηB
for typical values of the parameters and in a wide range of the parameter space. Interest-
ingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range
suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate
left-right symmetry scale.

5.2 Right-handed neutrino as cold dark matter

As discussed in section 4, we assume that the lightest RHN, N1, has feeble Yukawa cou-
plings, hence decouples after freezeout of WR interactions at TWR with a relic density
given as

ΩN1 ≈ 2.8 mN1

mp
ΩB

(
1 +

nsN1

npN1

)
, (5.11)

where ΩB is the baryon density parameter, mp is the proton mass. If N1 makes all of the
DM that we observer today, i.e. ΩN1 ' 5ΩB, it specifies the mass of N1 in terms of the
proton mass as

mN1 ≈
1.8 mp(
1 +

nsN1
npN1

) . (5.12)
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Condition C2 implies that 0 ≤
nsN1
npN1

< 106 which specifies the mass of N1 in the wide range
of a few keV to a few GeV. That mass range is associated to different DM spectra from
warm DM to cold DM. On the other hand if following [1] we consider restricted condition
C2 which grantees that the N1 relic density is primordial, we have

ΩN1 ≈ 2.8 mN1

mp
ΩB, (5.13)

which makes a specific prediction for the mass of N1 as

mN1 ' 1.8 mp = 1.7 GeV. (5.14)

That leads to a cold DM spectrum that is consistent with structure formation. Next, we
study the stability of N1 as a DM particle.

Decay of N1. Given that WR is very heavy and freezes out early (see section 4.1), the
dominant decay channel of N1 is N1 → 3ν with the total decay width [58, 59]

ΓN1→3ν =
G2
FM

5
N1

96 (2π)3

∑
α

sin2(2θα,1), (5.15)

where GF is the Fermi constant, α = e, ν, τ and θα,1 are the mixing angles of left-handed
neutrinos with N1. Demanding that the lifetime of this process, tN1 , is larger than the age
of the Universe, i.e. tU ≈ 4.4× 1017 s, we arrive at

tN1

tU
≈
(0.56 GeV

MN1

)5(10−26

θ2
1

)
, (5.16)

where θ2
1 ≡

∑
α θ

2
α,1. Demanding that N1 is stable over the lifetime of the universe gives

θ1 < 10−13. (5.17)

In this framework, the generation mechanism of N1 is independent of its Yukawa mixing
with active neutrinos, and θ1 can be any number that satisfies the above upper bound. The
next leading decay channel is the loop-mediated radiative decay of N1 to active neutrinos
and a gamma-ray photon with energy Eγ ≈MN1/2 as [58]

ΓN1→γν =
9αemG2

FM
5
N1

64 (2π)4

∑
α

sin2(2θα,1) ∼ 10−2ΓN1→3ν . (5.18)

Although the radiative decay has a branching ratio of order 2%, it can provide upper
bounds from not observing gamma-ray photons with energy Eγ . The current strongest
gamma-ray bounds in the GeV scale are on mass range 10–100GeV [60] which is much
heavier than our DM.
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6 Quick on observational constraints and signatures

In this section, we briefly discuss the cosmological, astrophysical, and collider constraints
and signatures of our setup. The current work is based on embedding the minimal SU(2)-
axion inflation model [17] in minimal LRSM [2–4]. The cosmic perturbations of the min-
imal SU(2)-axion inflation in the presence of the gauge field VEV has been studied and
compared with Planck data in [17]. In the current work, however, we sorely focus on
scenarios with vanishing VEV. Hence it enjoys a wider accessible parameter space. As a
cosmological smoking gun, all SU(2)-axion inflation models predict chiral [18, 31, 32] and
non-Gaussian [33] gravitational wave background which leads to parity odd CMB cross-
spectra [35]. This chiral GW Background (GWB) is blue tilted and can also be detected
by future laser interferometer detectors. The parity odd features can be used as an ob-
servational marker to distinguish it from the standard GWB produced by the vacuum
fluctuations [61–63]. This signal has been extensively studied in the literature. For an
exhaustive discussion on the measurement of this effect, see [34].

Direct production or virtual contributions at astrophysical and collider processes put
several constraints on the charged and neutral SU(2)R gauge boson mass and mixing pa-
rameters. The KL−KS kaon mass difference measurement [64] places a lower bound on the
mass of WR as mWR

> 1.6 TeV and the mixing angle between ZR and ZL is constrained to
be less than 10−4. The possible low-energy WR has been the target of several LHC collab-
orations which puts the current bound as mWR

> 3 TeV [65]. For an exhaustive discussion
of the phenomenological implications and constraints of LRSM, see [66]. Our current setup
with high scale SU(2)R SSB, i.e., mWR

> 1010 GeV, satisfies the above lower bounds. The
most distinctive astrophysical signal of our DM candidate with GeV mass is the gamma-ray
line at E = mN1/2 produced in the one-loop decay N1 → γν. Gamma-ray lines have been
probed by the Fermi-LAT [60], H.E.S.S. [67], and MAGIC telescopes [68]. However, the
strongest current bounds are on DM masses above 10GeV [60] which is heavier than our
DM. We leave the further study of the observable signatures of this setup for future work.

7 Conclusions

Recently [1] proposed a new particle physics model for inflation, based on embedding axion-
inflation in gauge extensions of the SM. To unify cosmic inflation and BSM, it utilized the
minimal Left-Right Symmetric Model (LRSM) [2–4] with gauge group SU(2)L×SU(2)R×
U(1)B−L. As the name implies, the model includes WR gauge bosons and three right-
handed neutrinos (RHN). As the inflaton field, an axion is added to the field content of
LRSM, which is directly coupled to the SU(2)R gauge field. In this work, we presented the
analytical and numerical details of this setup.

LRSM in cosmology introduces a new fundamental cosmic scale, i.e., feeble scale ΛF ,
where the extended gauge symmetry breaks down to the SM one, i.e., SU(2)R×U(1)B−L →
U(1)Y . At feeble scale, the W±R and Z0

R become massive, and the RHNs acquire Majorana
masses [7]. Later, at the electroweak scale, the second spontaneous symmetry breaking
happens, which gives mass to the SM particles. At this point, the left-handed neutrinos
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acquire mass by seesaw mechanism [7] (for cosmic evolution see figure 1). Based on the
scale of inflation Λinf =

√
HMPl, feeble scale ΛF , and the (possible) SU(2)R field’s VEV in

inflation, one can separate four different types of scenarios (see table 1). Following [1], we
solely focused on scenarios with vanishing SU(2)R VEV, i.e. type-I (Λinf > ΛF ) & type-II
(Λinf < ΛF ) scenarios.

The SU(2)R gauge field is produced by inflaton while other gauge fields, i.e., SU(3),
SU(2)L and U(1)B−L, are diluted by the exponential expansion. The chiral anomaly ofWR

breaks CP in physics of inflation and gives rise to simultaneous baryogenesis, leptogenesis,
and RHN creation in inflation (see eqs. (3.24) & (3.25) for type-I and eqs. (3.44) & (3.50)
for type-II scenarios). Even in type-I scenarios in which B − L is a gauge symmetry in
inflation, we have B − LSM 6= 0. For cosmic evolution after inflation, we future specified
our parameters and imposed the three conditions which are used in [1]. Condition C1
considered a hierarchical mass spectrum for RHNs with feeble Yukawa interactions for
N1 such that it is a DM candidate (eq. (4.1)). Condition C2 demands that WR is never
in thermal equilibrium with the thermal bath. Consequently, it implies; 1) the SU(2)R
sphalerons were never in equilibrium as well (eq. (4.10) and figure 9), and 2) there is no
secondary freeze-out production of RHNs. However, the post-inflationary scatterings of
WR can generate RHNs via freeze-in mechanism (eq. (4.12)). Following [1], one can also
consider a restricted version of condition C2 which demands that this secondary RHN
production is subleading comparing to the pre-existing one (eq. (4.13)). Finally, condition
C3 assumed that the unconstrained CP-violating phases in the neutrino sector are not
strong enough to make a sizable contribution to the matter asymmetry (eq. (4.24)). C3 is
the opposite limit of what is assumed in leptogenesis scenarios.

The lightest RHN gets decoupled after the freeze-out of WR field at TWR
(eq. (4.9)).

The heavier RHNs decay after temperature gets below their masses, and the spectator ef-
fects reshuffle the primordial baryon and SM lepton numbers. The final baryon to photon
ratio and DM relic density are presented in eqs. (5.6) and (5.11) respectively. This setup
can explain ηB and ΩDM in a wide range of its parameter space (see figure 13). If N1
makes all the DM relic density, then its mass is in the range of keV − GeV. In case that
restricted C2 condition holds, the mass is predicted to be mN1 ≈ 1.7 GeV, i.e. a cold DM
spectra consistent with structure formation (eq. (5.14)). In that case, baryogenesis and
DM today are the remnants of a pure quantum effect (chiral anomaly of WR) in inflation.
Consequently, it can naturally explain the observed coincidences among cosmological pa-
rameters, i.e., ηB = 0.3Pζ and ΩDM = 5ΩB. Besides, this model is a complete setup that
can simultaneously provide plausible explanations for the phenomena (I-IV) named in the
introduction. The summary of this new mechanism is illustrated in figure 2.

It is noteworthy to mention that we can couple the axion to both SU(2)R and SU(2)L
gauge fields. However, the inflationary production of left-handed baryons and leptons by
SU(2)L (i.e. BSM = LSM) will be completely washed out by the SU(2)L sphaleon effects
which are in thermal equilibrium between Treh and mWL

. Since SU(2)L-axion interaction
leaves no fermionic remnants today, it is neglected in the minimal realization of this idea
proposed in [1].
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In this setup, P and CP are broken by the VEV of the axion and its interaction with
the gauge field. It provides a deep connection between inflation, matter asymmetry, and
DM relic density. This alternative mechanism, therefore, does not rely on the largeness of
the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the
heaviest right-handed neutrinos. Interestingly, sufficient matter creation relates the feeble
scale to a geometrical phase transition in cosmology, i.e., the end of exponential expansion
of the Universe. Moreover, it demands mWR

> 1010 GeV (see figures 10–11) which is the
scale suggested by the non-supersymmetric SO(10) GUT model with an intermediate left-
right symmetry scale [47–49]. The above relations between the energy scales may be hints of
a fundamental connection that we leave for future work. As yet another added benefit, this
setup comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravi-
tational wave background, which can be probed by future CMB missions and laser interfer-
ometer detectors. For an exhaustive discussion on the measurement of this effect, see [34].
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A Overview of minimal left-right symmetric theories

Here we review the aspects of minimal left-right symmetric models (LRSM) [2–5] that we
need in this paper.

Field and matter content. The model’s field content is presented in table 2, and in the
following, we explain the gauge field, extended Higgs, and fermionic sectors, respectively.
The baryon and lepton numbers are denoted by B and L, respectively. Moreover, L and R
subscribes represent left- and right-handed fields.

N Gauge group of the minimal left right symmetric interaction (suppressing color) is

G = SU(2)R × SU(2)L ×U(1)B−L, (A.1)

where (WR, gR) and (WL, gL) are the SU(2)R and SU(2)L gauge fields respectively

WR = W a
R TaR and WL = W a

L TaL, (A.2)

and (Bµ, gBL) is the U(1)B−L gauge field which naturally identifies with the B − L gen-
erator. Here Ta

L,R are the generators of the SU(2)L,R

Ta
L,R = τa

2 , (A.3)

where τa denotes the Pauli matrices which acts on the SU(2)-color indices. TheWL,R act
on left- and right-handed fields respectively. The strength tensor of WL,R are given as

Wµν = ∂µWν − ∂νWµ − ig[Wµ,Wν ]. (A.4)
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LRSM Sector Left-handed Right-handed
G
au

ge
Fi
el
ds SU(2)R × SU(2)L WL WR

U(1)B−L Bµ

Fe
rm

io
ns quarks qiL =

uiL
diL

 : (1,2, 1
3) qiR =

uiR
diR

 : (2,1, 1
3)

leptons liL =

νiL
liL

 : (1,2,−1) liR =

νiR
liR

 : (2,1,−1)

Sc
al
ar
s

Higgs SU(2)
bi-doublet

Φ =

Φ0
1 Φ+

2

Φ−1 Φ0
2

 : (2,2, 0)

Higgs SU(2)
triplets

∆L =

δ+ δ++

δ0 − δ+


L

: (1,3, 2) ∆R =

δ+ δ++

δ0 − δ+


R

: (3,1, 2)

Table 2. The field content of the minimal Left-Right Symmetric Model (LRSM) extension of
the SM.

The electric charge Q is defined as

Q = T3
L + T3

R + B− L
2 = T3

R + Y, (A.5)

where Y is the hypercharge.

N Scalar sector involves three Higgs fields, i.e. a Higgs bi-doublet to produce the Dirac
masses, and two triplet Higgs to create Majorana masses for the neutrinos. The SU(2)L×
SU(2)R bi-double with B− L = 0 is

Φ =
(

Φ0
1 Φ+

2
Φ−1 Φ0

2

)
, (A.6)

and the SU(2)R,L triplets with B− L = 2 are given as

∆R,L =
(
δ+ δ++

δ0 −δ+

)
R,L

. (A.7)

The gauge-covariant derivatives of Φ and ∆L,R are given as

DµΦ = ∂µΦ− igLWµLΦ + igRΦWµR, (A.8)
Dµ∆L,R = ∂µ∆L,R − igL,R [Wµ,∆]L,R − igBLBµ∆L,R. (A.9)
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The theory of the Higgs sector is given as

LHiggs = −Tr
[
(Dµ∆R)†Dµ∆R

]
− Tr

[
(Dµ∆L)†Dµ∆L

]
− Tr

[
(DµΦ)†DµΦ

]
− VHiggs(Φ,∆L,∆R), (A.10)

where the Higgs potential VHiggs(Φ,∆R,∆L) is the most general renormalizable, gauge
and parity invariant potential for Φ and ∆L,R [7, 69]. The Higgs mass spectrum and
the scale of each spontaneous symmetry breaking are given by minimizing the Higgs
potential. Here we are interested in the cosmological consequences of such potential.
For an exhaustive discussion we refer the interested reader to [8, 70, 71].

N Fermionic sector consists of three generations of quarks and leptons as

qiL,R =
(
ui
di

)
L,R

and liL,R =
(
νi
li

)
L,R

, (A.11)

where νiR are three RHNs interacting via the SU(2)R and U(1)B−L. Given that we
assume neutrinos are Majorana, and define two Majorana fields associated to the left-
and right-handed neutrinos as

νi ≡ νiL + νciL and Ni ≡ νiR + νciR, (A.12)

where the c superscript denotes the charge conjugated field. For simplicity, we present
the left- and right-handed fermions collectively as

ΨJL,R = (q1, q2, q3, l1, l2, l3)L,R, (A.13)

which are specified by the Lagrangian

LΨ = i
6∑

J=1
Ψ̄JRσ

µDµΨJR + iΨ̄JLσ̄
µDµΨJL, (A.14)

where the spinor gauge-covariant derivatives are

DµΨL,R = (Dµ − igL,RWµL,R −
igBL(B− L)

2 Bµ)ΨL,R, (A.15)

Dµ ≡ ∂µ + ωµ, (A.16)

where ωµ is the spin connection.12 For the cosmological background, we have σµωµ =
3
2HI2 and

σµ =
(

I2,
1
a
σi

)
and σ̄µ =

(
I2,−

1
a
σi

)
, (A.17)

where σi are the Pauli matrices which carries spatial index.13 The fermions pick up
their mass by the Yukawa interactions

LY = −q̄iL
(
yqijΦ + ỹqijΦ̃

)
qjR − l̄iL

(
ylijΦ + ỹlijΦ̃

)
ljR −

1
2Y

R
ij l̄

c
iR∆̃R ljR −

1
2Y

L
ij l̄

c
iL∆̃L ljL

+ h.c., (A.18)
12The spin connection is defined as ωµ ≡ i

2ω
αβ
µΣαβ where Σαβ = i

4 [γα, γβ ] and ωαβµ ≡ eαν∇µeβν .
13Note that σµ is the curved space form of the flat space σα = (I2,σi) as σµ = eαµσα where eαµ are the

tetrads.
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where lcRi = C l∗Ri is the charged conjugated lRi, and

Φ̃ ≡ τ2Φ∗τ2 and ∆̃ ≡ iτ2∆. (A.19)

Symmetry breaking structure, new fundamental scale, and mass. Once the neu-
tral component of ∆R acquires a VEV as

〈∆R〉 =
(

0 0
κR 0

)
, (A.20)

both of the B−L and left-right symmetries are spontaneously broken. That introduces a new
fundamental scale, i.e. ΛF = κR, which is much higher than the EW scale, ΛW ' 246 GeV.
The 1st SSB breaks the gauge symmetry down to the SM electroweak symmetry as

SU(2)L × SU(2)R ×U(1)B−L
1st SSB−−−−−→

ΛF
SU(2)L ×U(1)Y . (A.21)

All non-Standard Model heavy particle masses are related to the VEV of ∆R. The charged
and neutral SU(2)R gauge bosons pick up the following masses

mWR
= gRκR and mZR

= gBL

gY
mWR

, (A.22)

where gY is given as
gY = gBLgR√

g2
BL + g2

R

. (A.23)

The right-handed neutrinos get Majorana mass terms as

LSSB1
Y = κR

2 Y R
ij ν

T
jRCνiR + h.c., (A.24)

which leads to the Majorana mass matrix MRij = κR Y R
ij . Finally, when the temperature

drops below the EW phase transition, i.e. T = ΛW , the 2nd SSB happens and the neutral
components of the bi-doublet receive its VEVs as

〈Φ〉 = 1√
2

(
κ1 0
0 κ2

)
. (A.25)

That breaks the gauge symmetry to U(1)em, i.e.

SU(2)L ×U(1)Y 2nd SSB−−−−−→
ΛW

U(1)em, (A.26)

which provides Dirac masses for the SM particles, SM neutrinos included. After 2nd SSB,
therefore, all the SM massive particles pick a Dirac mass similar to SM. The interaction
between ∆R and Φ with ∆L in Higgs potential imposes a VEV for the latter once the
former fields acquired their VEVs. The VEV of ∆L is of the order of O( 〈Φ〉

2

κR
) � 〈Φ〉 [7].

The value of the κ1,2 is related to the EW scale κ as

κ2
1 + κ2

2 = κ2 = (246 GeV)2. (A.27)
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Symmetry Group After 1st SSB After 2nd SSB
SU(2)R × SU(2)L ×U(1)B−L SU(2)L ×U(1)Y U(1)em

Higgs VEV 〈∆R〉 =

0 0
κR 0

 〈Φ〉 = 1√
2

κ1 0
0 κ2

 & 〈∆L〉 =

0 0
κL 0


Massive Particles W±R , ZR and Ni SM and νi (Seesaw type-I & II)

Table 3. The spontaneous symmetry breaking structure of the minimal LRSM.

In the limit of our interest, κR � κ1, κ2, κL in which the left and right charged and neutral
gauge bosons are decoupled. Thus, we can considerW±L,R and ZL,R as physical states. Here
for simplicity we also assume

κ1 � κ2 and κ2 ' κ.

We summarize the symmetry-breaking structure of the setup in table 3. Below we will
discuss its consequences on active neutrinos.

Neutrino masses; natural seesaw mechanism. The first SSB provides Majorana
masses for the RHNs and the second SSB gives Dirac masses to neutrinos as well as an
induced Majorana mass to left-handed neutrinos. The neutrino mass matrix as

Mν =
(
ML mD

mT
D MR

)
, (A.28)

where the Majorana mass matrices MR,L are

MRij = κR Y R
ij and MLij = κL Y

L
ij ∼ O

(
κ2

κR

)
, (A.29)

and the Dirac mass matrix is
mDij = κ

2 ỹ
l
ij . (A.30)

Given the fact that mD � MR, we can diagonalize the mass matrix and find the masses
of the active neutrinos as

mν ≈ −mT
DM

−1
R mD +ML = 1

4
(κ∗ỹl)2

κR Y R
+ κL Y

L. (A.31)

Note that κL is a (small) induced VEV and the contribution of both the first term (seesaw
type-I) and the second term (seesaw type-II) are of the same order. Thus, in minimal
LRSM, the neutrino mass is a hybrid seesaw type-I, and II [7].

Experimental constraints on parameters. Various Experimental limits can be placed
on the mass scales and mixing parameters of the LRSM. First, considering the charged
lepton Yukawa couplings as a guide to the neutrino ones suggests 10−10 . y2

Y . 1 which
implies a successful seesaw requires

10 TeV . κR . 1015 GeV. (A.32)
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Next, regardless of the details of the SSB, there is a theoretical lower bound on the ratio
of gR to gL [70]

gR
gL
≥ tan θw ' 0.55. (A.33)

That gives mZR
≈ 1.7mWR

. Finally, there are several constraints for the right-handed
charged and neutral gauge boson mass and mixing parameters. These arise due to their
direct production or virtual contributions at colliders or astrophysical processes. The
KL − KS kaon mass difference measurement [64] places a lower bound on the mass of
WR as mWR

> 1.6 TeV and the mixing angle between ZR and ZL is constrained to be less
than 10−4. The possible low-energy WR has been the target of several LHC collaborations
which puts the current bound as mWR

> 3 TeV [65]. For an exhaustive discussion of the
phenomenological implications and constraints of LRSM, see [66].

Gauge coupling evolution. There is a significant difference between a high scale in-
flation and electroweak scale. Thus the running of the gauge couplings might be sizable.
In the one-loop approximation, the RGE for the SU(Nc) gauge coupling with Nf Weyl
or Majorana fermions in the fundamental representation and Ns Higgs fields in the Rs
representation is given as

dgi

d ln
(
k
µ

) = bi
g3
i

(4π)2 , (A.34)

where k is the momentum, µ is a given scale associated with our renormalization and bi is

bi = −
[11

3 Nc −
1
3Nf −

1
3NsT (Rs)

]
. (A.35)

Here T (R) is the index of the irreducible representation T (R)δab ≡ Tr(TaTb), where for
fields in the fundamental representation of SU(Nc) it is T (Rfund) = 1

2 and for the adjoint
representation T (Radj) = Nc. The SU(2)L and SU(2)R gauge fields with the Higgs bi-
doublet and triplet have bR,L = −7

3 . Given gL(mZL
) ' 0.65, the RGE determines the L

gauge coupling at the GUT scale (assuming inflation happens around GUT, i.e. k = H '
1013 GeV) as

gL(H) ' 0.56. (A.36)
The gauge coupling of SU(2)R at the scale of inflation is

gR(H) ' 0.56
gR(mZL

)
gL(mZL

) . (A.37)

Using the theoretical lower bound on gR in eq. (A.33), we arrive at

0.3 ≤ gR(H) ≤ 0.56. (A.38)

B Massive sterile neutrino production in inflation

This appendix presents the analytical calculations of massive RHN production by the
axion in inflation. In this work, we restrict ourselves to the cases with 〈WR〉 = 0.14 From

14The fermion production by the Schwinger effect with 〈WR〉 6= 0 in SU(2)-axion inflation is studied
in [24].
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eq. (3.46), we find the linearized field equation of νjR as(
iσµ∂µ + 3i

2 H − 2ξ̃H
)
νjR −mNjν

c
jR ' 0. (B.1)

As a Majorana fermion, Nj ≡ νjR + νcjR can be decomposed as

Nj =
∑
s=±

1
a

3
2

∫
d3k

[
Xs
jk(τ)csjkeik.x + Y s

jk(τ)cs†jke
−ik.x

]
Es

k , (B.2)

where csjk and cs†jk are the annihilation and creation operators of the RHNs as

{csik, c
s′†
jk′} = δss

′
δijδ

(3)(k− k′), (B.3)

and E±k are the ±1
2 helicity polarization states

E+
k = kασ

α√
2k(k + k3)

(
1
0

)
and E−k = kασ̄

α√
2k(k + k3)

(
0
1

)
. (B.4)

These helicity 2-spinors are the eigenstates of the helicity operator and satisfy E−sk =
−isσ2Es∗

k . The Majorana condition then requires

Y s
jk = sX−s∗jk . (B.5)

The pair of coupled first order differential equations for νiR and νciR coming from eq. (B.1)
can be decoupled into two second order differential equations for the mode functions X±jk(τ).
Upon field redefinition

X̃s
jk ≡

√
2τ̃Xs

jk, (B.6)

we have
∂2
τ̃ X̃

s
jk +

[
1− 2iκs

τ̃
+

1
4 − µ

2
j

τ̃2

]
X̃s
jk = 0, (B.7)

where κs and µj are

κs = s

(1
2 + 2iξ̃

)
and µ2

j = −
(
mNj

H

)2
− (2ξ̃)2. (B.8)

Setting the initial conditions with Bunch-Davies vacuum, the solutions are

X̃+
jk = 1

(2π) 3
2
e−ξπWκ+,µj (−2iτ̃), (B.9)

X̃−jk = − i

(2π) 3
2

(
mNj

H

)
eξπWκ−,µj (−2iτ̃). (B.10)

Notice that the −1
2 helicity mode of the right-handed neutrinos is proportional to their

mass. Thus, as we expected, the massless νjR has only the +1
2 helicity state.

Working out the mode functions of the massive sterile neutrinos, we are ready to
compute its contribution to the lepton number in eq. (3.47) as

n̄Nj ≡
∫
d3k〈ν†jRνjR〉 = − ξ̃

π

(
mNi

H

)2
H3D(ξ̃,mNj). (B.11)
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Using point splitting regularization, we analytically calculated the above momentum inte-
gral in [24].15 We here use the final result which is(
mNi

H

)2
D(ξ̃,mNj) =

1
2π

{2
3(1−2κ2

I)
(

1− |µj |
κI

sinh(2κIπ)
sinh(2|µj |π)

)
+
m2

Nj

H2

(
2−4ψ(0)(1)− 8|µj |

3κI
sinh(2κIπ)
sinh(2|µj |π)

)

+
m2

Nj

H2

∑
s=±

Re
[
e2|µj |π−e−2sκIπ

sinh(2|µj |π) ψ(0)(−isκI−i|µj |)−
e−2|µj |π−e−2sκIπ

sinh(2|µj |π) ψ(0)(−isκI+i|µj |)
]}
,

(B.12)

in which κI ≡ 2ξ̃ and ψ(0)(z) ≡ dΓ(z)
z is the digamma function.

C Phenomenological model of reheating

Reheating starts at some point after the end of inflation and ends at areh with the formation
of a dominant thermal bath with temperature Treh. Yet, the precise physics of reheating is
not well understood. Depends on the details of the post-inflation physics, there may be an
intermediate phaseX with the average equation of state wX , which connects inflation to the
final thermal bath (see figure 14). To quantify our analysis and capture these ambiguities,
in this appendix, we introduce a phenomenological model for reheating. Next, we compute
the entropy injection by the decay of RHNs in our setup.

In that case, the energy density at the end of reheating is related to ρinf as

ρreh = δreh ρinf

(
ainf
areh

)4
. (C.1)

The parameter δreh is the efficiency of the reheating process

δreh ≈ exp
(
− (3wX − 1)∆N

)
, (C.2)

which models our ignorance about physics of reheating in terms of two parameters; wX
and ∆N given as

∆N = ln
(
areh
ainf

)
, (C.3)

which is the number of e-folds between end of inflation until the formation of the thermal
bath. The ratio nsN

npN
in eq. (4.13) is related to ∆N as

nsN
npN
∝ e−

3
2 (1+3wX)∆N . (C.4)

15The details of the calculation and point splitting regularization that is used in computing the inte-
gral (B.11) can be found in appendix D of [24]. Notice that κ+ and κ− parameters in the current work are
denoted as κ+ and κ̃− in [24]. The dimensionless parameter ξA in the latter is associated with the VEV of
the SU(2) gauge field, which is set to zero in the current work.
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wX=0

wX=1

0 2 4 6 8
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ΔN

e
-
3 2
(1
+
3
w
x
)
Δ
N

Figure 14. Left Panel: the energy density of Universe vs scale factor. The dashed (pink)
line which connects inflation to radiation era is a possible unknown intermediate phase with an
average equation of state w = wX . Right Panel: the prefactor e− 3

2 (3wX+1)∆N in eq. (4.13) vs
∆N = ln

(
areh
ainf

)
. (Figure adopted from ref. [1].)

Two possible scenarios for the intermediate phase, i.e. X-era in figure 14, are: 1)
inflation ends in a short period of matter domination with wX = 0 with reheating efficiency
parameter as

δreh '
(
areh
ainf

)
= e∆N > 1, (C.5)

which gives
nsN
npN
∝ e−

3
2 ∆N , (C.6)

or 2) inflation ends with domination of the kinetic term such that wX = 1 and δreh is

δreh '
(
ainf
areh

)2
= e−2∆N < 1, (C.7)

which gives
nsN
npN
∝ e−6∆N . (C.8)

The factor e− 3
2 (3wX+1)∆N for these two preheating scenarios are presented in the right panel

of figure 14.

C.1 Entropy injection

The out of thermal equilibrium decay of heavy RHNs, i.e. N2,3, at T = mN2,3 injects
entropy to the hot plasma and increase the energy of radiation as

ρrad(aNi
) = S

4
3

(
areh
aNi

)4
ρreh, (C.9)

where S is the entropy injection factor given as

S = 1 + 1
3

(
mNi

MPl

)(
H

MPl

)( aNi

areh

)(
nNi(areh)
δrehH3

)
, (C.10)
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where nNi(areh) is the total number density of Ni, i.e.

nNi ≡ n
p
Ni

+ nsNi . (C.11)

From eq. (4.12), the freeze-in part of the density is

nsNi
(areh)

δrehH3 ≈ 3× 1011 exp
{[
−(13− 3wX)

4 ∆N
]}
, (C.12)

while the contribution of the primordial density in eq. (4.11) gives

npNi
(areh)

δrehH3 ≈ αinf(ξ)
3 exp{[−(4− 3wX)∆N ]}. (C.13)

Given that H
MPl

< 10−5 GeV and the mass of the heaviest RHN is around 1012 GeV,
eqs. (C.12) implies that contribution of nsNi

(freeze-in mechanism) to the entropy injec-
tion is negligible in our setup. Therefore, we have

S ≈ 1 + 10−7 αinf(ξ) exp{[−(4− 3wX)∆N ]}
(
H

MPl

)
. (C.14)

In case that the entropy injection is sizable in our setup, the baryon to photon ratio is

η0
B ≈ 3

(
geff
100

) 3
4 αinf(ξ)(
δreh

) 3
4 S

(
H

MPl

) 3
2
. (C.15)

To agree with the date, we need

H

MPl
≈ 10−6 α

− 2
3

inf (ξ) δ
1
2
rehS

2
3 . (C.16)

Combining (C.14) and (C.16), we find a cubic algebraic equation for S 1
2 , i.e.

S −A(ξ,∆N) S
2
3 − 1 = 0, (C.17)

where A(ξ,∆N) is

A(ξ,∆N) = 10−13α
1
3
inf(ξ) exp

[
−(7− 3wX)

2 ∆N
]
. (C.18)

The quantity A(ξ,∆N) is negligible in the region of our interest (see figure 7). Therefore,
our setup has negligible entropy injection

S ' 1. (C.19)

D Spectator effects

This appendix is devoted to the spectator effects on matter asymmetry. First, we work out
the temperature windows in which each of the WL,R sphalerons are in thermal equilibrium
and hence can violate the left-/right-handed B + L. Next, we discuss the lepton flavor
effects in our setup.

– 38 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
3

D.1 WL,R sphalerons

The SU(2)L,R sphaleron transitions start getting in thermal equilibrium once

ΓL,Rsph
T 3 & H(T ), (D.1)

where ΓL,Rsph is the transition rate per unit time per unit volume so dimensional estimate

gives ΓL,Rsph ∼ (αL,RT )4 where αL,R =
g2
L,R

4π . Using lattice simulations the transition rate for
the SU(2)L weak sphalerons has been found in [72] as

ΓLsph = χ′α5
L
T 4, (D.2)

where χ′ ≈ 18 and the extra αL factor is due to specific plasma effects [73]. The WR,L

switch off after their corresponding scale of SSB. Therefore, the SU(2)L weak lepton and
baryon violating processes are in thermal equilibrium in the wide temperature interval

100 GeV < TLsph < 1012 GeV. (D.3)

As a rough estimate, we assume that the same relation holds for the SU(2)R sphalerons, i.e.

ΓRsph ∼
(
αR
αL

)5
ΓLsph. (D.4)

Thus, WR sphalerons are in thermal equilibrium in the following interval

mWR
≤ TRsph ≤

(
gR
gL

)10
× 1012 GeV. (D.5)

Given that in our setup Treh < TWR
< mWR

, the WR sphalerons are never in equilibrium
to cause any B + L violating interaction.

D.2 Lepton flavor effects

One potentially very significant aspect of leptogenesis is the flavor effects. The flavor-
dependent washout and L violating interactions can significantly change the value, and
even sign of the final baryon asymmetry [51–53]. By the end of inflation, we have a lepton
(anti-lepton) quantum state |linf〉 (|l̄inf〉) as

|linf〉 ≡
∑

α=e,µ,τ
C inf
α |α〉 and |l̄inf〉 ≡

∑
α=e,µ,τ

C̄ inf
α |α〉, (D.6)

where C inf
α and C̄ inf

α are specified by the physics of inflation as

C inf
α = 〈α|linf〉 and C̄ inf

α = 〈ᾱ|l̄inf〉. (D.7)

The composition of this primordial initial leptons and their CP conjugated anit-leptons are
different. The CP violating decays of the heavy sterile neutrinos can modify these initial

– 39 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
3

states. At very high temperatures T � 1012 GeV, however, the interactions are still flavor
blind and we can describe leptons as a coherent superposition of charged leptons as

|li〉 ≡
∑

α=e,µ,τ
Ciα|α〉 with Ciα = 〈α|li〉, (D.8)

where Ciα are coefficients given by the Yukawa matrix which in terms of the active neutrino
mass matrix we have Ciα = mαiν√

(m†νmν)αα
. The flavored decay parameters of Ni to lα are

defined as

Kiα ≡
Γ(Ni → Φ†lα) + Γ̄(Ni → Φ†lα)

H(T = Mi)
where Γ(Ni → Φ†lα) = Mi Y

†
iαYαi

8π , (D.9)

and Ki = ∑
αKiα. The Yukawa couplings of neutrinos contain several CP-violating phases

which remain unconstrained by the current data. Therefore, the decay of sterile neutrinos
can be a CP asymmetric process quantified as

εiα ≡
Γ(Ni → Φ†lα)− Γ̄(Ni → Φ†lα)
Γ(Ni → Φ†lα) + Γ̄(Ni → Φ†lα)

, (D.10)

where εi = ∑
α εiα is the CP-asymmetry.

In the light of the current neutrino oscillations data, the RH neutrino mass spectrum
turns out to be typically highly hierarchical. For the sake of concreteness, in this work, we
consider

mN3 & 1012 GeV� mN2 & 109 GeV� mN1 , (D.11)

where mN1 is assumed to be lower than the EW scale. Furthermore, we assume that
the lightest sterile neutrino has feeble Yukawa interactions with the SM and hence a DM
candidate, i.e.

K1α � 1. (D.12)

Therefore, only the two heavy sterile neutrinos, N2 and N3 contribute to the seesaw mech-
anism as well as decays and washouts. Moreover, due to the hierarchical neutrino mass
spectrum, the decays and washout of N2 and N3 occur in separate stages with no overlaps.
As a result, the decay processes can be studied by the following semi-classical Boltzmann
equations for ηX ≡ nX

nγ
(ηeq
X = neq

X
nγ

)

dηNi
dzi

= −Di (ηNi − η
eq
Ni), (D.13)

dη
δi

dzi
= εi Di (ηNi − n

eq
Ni)−Wi ηδi , (D.14)

dη
δ
i⊥

dzi
= 0, (D.15)

where i = 2, 3, zi = mNi
T , and Di,Wi are the decay, and washout terms, and δ is

δ ≡ B− L. (D.16)
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The decay terms and the related washout terms are given as

Di(zi) ≡
Γi(zi)
Hzi

and Wi(zi) ≡
1
2Di(zi)

neq
Ni(zi)
neq

L
. (D.17)

At very high temperatures T � 1012 GeV, the interactions are flavor blind and we can de-
scribe leptons as a coherent superposition of charged leptons. At temperatures 109 GeV <

T < 1012 GeV, τ lepton-Higgs interactions are fast and destroy the coherence of the lep-
ton states produced by Ni decay. Therefore the Boltzmann eqs. (D.14) and (D.15) are
effectively described by two incoherent SM flavors, i.e., τ and τ⊥ = e+ µ. The SM lepton
asymmetry after decay of N2 at T = M2 & 109 GeV is

nδ(z2) = np,fδ (z2) + nN
δ (z2), (D.18)

where np,fδ (z2) is the contribution of the primordial asymmetry np,iδ , as

np,fδ (z2) = C np,iδ + e−
∫ z2

1
dWi(z

′)
dz′ dz′np,iδ3⊥

, (D.19)

and nN
δ (z2) is the lepton number produced by the CP asymmetric decay of N2, i.e.

nN
δ (z2) ≈ ε2κ2(z2), (D.20)

in which κ2(z2) is the efficiency factor of the CP asymmetric decay. In this work we are
interested in the limit

nN
δ (z2)
np,fδ

� 1 (condition C3). (D.21)

As a result, the SM lepton asymmetry after the washout effects is

np,fδ = C np,iδ . (D.22)

For our Ni mass spectrum given in eq. (D.11), the decay process consists of two separate
stages, which we will study in the following to find the desired C.

First Stage — decay of N3 (mN3 & 1012 GeV). The decay of N3 washes out the
pre-existing asymmetry in the direction of heavy neutrino lepton flavor |l3〉 while leaves the
component normal to it unchanged. The pre-existing asymmetry can be decomposed as

npδ = npδ3
+ npδ3⊥

, (D.23)

where npδ3
(npδ3⊥

) is the asymmetry parallel (perpendicular) to |l3〉. The above superposi-
tion sum is due to the linearity of the Boltzmann equations. The residual values of the
primordial asymmetries are

npδ3
= A0

3e
− 3π

8 K3 np,iδ and npδ3⊥
= (1−A0

3) np,iδ , (D.24)

where A0
3 is the tree-level probability of the primordial asymmetry to be in the direction

of |l3〉.
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Second Stage — decay of N2 (1012 GeV � mN2 & 109 GeV). This stage of our
post inflationary evolution can be effectively described by two SM flavors, i.e., (τ, τ⊥ =
e+µ) and two relevant flavors of the sterile neutrinos (N2,N3). At temperatures 109 GeV <

T < 1012 GeV, τ lepton-Higgs interactions are fast and destroy the coherence of the lepton
states produced by Ni decay. Thus we need to consider separate Boltzmann equations for
the components parallel and orthogonal to τ , i.e.

npδ3
= npδ3τ

+ npδ3τ⊥
, (D.25)

in which
npδ3τ

= A0
3τn

p
δ3

and npδ3τ⊥
= (1−A0

3τ )npδ3
, (D.26)

where the probabilities A0
iτ (i = 1, 2, 3) are given in terms of the flavored decay parameters

as
A0
iτ = Kiτ∑

αKiα
. (D.27)

From that we can define

npδτ ≡ n
p
δ3τ

+ npδ3⊥τ
and npδ

τ⊥
≡ npδ3τ⊥

+ npδ3⊥τ⊥
. (D.28)

Using eq. (D.24), we find the explicit form of npδτ and np
δ⊥τ

as

npδτ =
[
A0

3τA
0
3e
− 3π

8 K3 + (1−A0
3τ )(1−A0

3)
]
np,iδ , (D.29)

np
δ⊥τ

=
[
(1−A0

3τ )A0
3e
− 3π

8 K3 +A0
3τ (1−A0

3)
]
np,iδ . (D.30)

At temperatures T ∼ mN2 , the N2 wash-out processes act on the flavored asymmetries.
The final residual asymmetries in the end of its decay process is

np,fδτ2
= A0

2τe
− 3π

8 K2npδτ and np,fδ
τ2⊥

= (1−A0
2τ )npδτ . (D.31)

Similar relations hold for τ⊥ = e + µ. Figure 12 shows the geometrical structure of the
flavor effects in the flavor space.

The final residual asymmetry in the SM lepton frame is

np,fδτ
= A0

2τe
− 3π

8 K2npδτ + (1−A0
2τ )npδτ , (D.32)

np,fδ
τ⊥

= (1−A0
2τ )e−

3π
8 K2np

δ⊥τ
+A0

2τn
p
δ⊥τ
. (D.33)

Considering the most conservative assumption that the decaying terms experience strong
washout effects and are negligible, the final remnant of the primordial (inflationary) asym-
metry is

np,fδ = np,fδτ
+ np,fδ

τ⊥
= C np,iδ , (D.34)

where C is
C ' (1−A0

3)
(
1−A0

2τ −A0
3τ + 2A0

2τA
0
3τ
)
. (D.35)

Figure 15 presents
Af ≡

(
1−A0

2τ −A0
3τ + 2A0

2τA
0
3τ
)
, (D.36)
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Figure 15. The flavor parameter Af in terms of A0
2τ and A0

3τ . The dark shaded area shows regions
with Af < 0.1.

vs A0
2τ and A0

3τ where the dark shaded area denotes regions with Af < 0.1. As we see, in
most of its parameter space, Af is close to one with an average value as

Āf = 1
2 . (D.37)

Given that our inflationary primordial asymmetry is flavor blind, it is a plausible assump-
tion to consider A0

3 = 1
3 . For typical values of flavored decay rates, the remnant of the

primordial asymmetry is significant which is related to the inflationary asymmetry as

1
3 . C = np,fδ

np,iδ

< 1. (D.38)

Interestingly, eliminating the effect of this pre-existing asymmetry requires tightly fine-
tuned relations between the flavored decay rates, hence on leptonic Yukawa couplings, and
the flavor-space direction of the inflationary asymmetry. More precisely, one needs either
i) |linf〉 coincides with one of |l2〉 and |l3〉, or ii) |l2〉 and |l3〉 are perpendicular to each other
which |linf〉 is in the plane of |l2〉 − |l3〉. As a result, the relation presented in eq. (D.38) is
a good estimate for most of the possible flavor parameter space.
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