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1 Introduction

Exact solutions of string theory and supergravity provide indispensable insights into dy-
namics of strongly coupled systems. Once the relevant gravitational backgrounds are found,
one extract their physical properties by studying excitations of various fields of these ge-
ometries. Unfortunately this problem, which often involves study of partial differential
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equations (PDEs), is very difficult unless the geometry has a high degree of symmetry. In
such cases one can solve dynamical equations for various fields using separation of vari-
ables, and applications of this technique range from simple geometries, such as flat space
and spheres, to spacetimes with relatively few isometries, such as rotating black holes in
various dimensions. In this article we study separation of variables in the (gauged) Wess-
Zumino-Witten (WZW) models [1], the spaces that have either very few isometries or none
at all, and show that in certain cases the variables in the scalar and vector equations can
be separated. This success is the consequence of the algebraic symmetries of the WZW
models, which are guaranteed by the CFT construction, but which are not obvious from
the target space perspective.

The dynamics of a scalar field has been studied in the WZW models and their gauged
version, and the full spectrum of eigenvalues is known [2, 3].1 The construction of the
relevant wavefunctions is a more complicated problem, and it has been solved only on a
case-by-case basis [2, 3, 5]. The techniques used in [2, 3] and [5] were purely algebraic,
and they did not rely on separation of variables, which is not expected to happen for
most (gauged) WZW backgrounds. Unfortunately there are no known procedures for
extending these algebraic techniques to vector and tensor fields, especially for finding the
eigenfunctions.2 On the other hand, experience with other backgrounds, such as black hole
geometries, shows that separation of variables for a scalar field [7–28] is often accompanied
by separation in the vector and tensor equations [29–36]. Inspired by this success, we focus
on the gWZW models which admit separation of variables in the Helmholtz equation for a
scalar and demonstrate that separability of the vector equation in all such cases. We also
analyze an example of the WZW model that admits separation of variables only in some
subsectors, and we find the explicit expressions for the resulting solutions.

Wess-Zumino-Witten models are exactly solvable conformal field theories [1], and their
numerous applications range from black holes [4, 37] to the quantum Hall effect [38]. In the
last few years these models have been used to construct families of integrable string theories
describing deformations of the systems appearing in the AdS/CFT correspondence [39–54],
and in this context the deformations of the SO(n) and SO(n)/SO(n − 1) WZW models
are particularly important. Given this interest, we will focus on studying such models
with n = 3, 4, 5. The eigenvalues and eigenvectors of the scalar field on such background
are known through the algebraic constructions [2, 3, 5],3 but it is not clear whether these
algebraic methods can be extended to the vector field. By performing an additional analysis
of the solutions discussed in [5], we demonstrate an existence of a coordinate system where
scalar equations fully separate for the (gauged) WZW models on SO(4) and its cosets, and
we identify the Killing-Yano tensors [55–57] associated with this separation. We then study
the vector equations on such backgrounds and find the unique way to separate them. Note
that separability of vector equations is more subtle than in the scalar case since knowing
the correct coordinate system is not sufficient. One has to identify the correct modes of the

1Similar ideas were also explored earlier in [4].
2Application of algebraic techniques for computing vector eigenvalues will be discussed in [6].
3Article [5] also solved the scalar equation on the λ-deformed backgrounds [39–42], but we will not

discuss such deformations in this paper.
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vector field as well. In the Myers-Perry geometry of rotating black holes [58] this problem
was solved in [31], where it was shown that the separable components of the gauge field
are obtained by taking projections to the frames associated with the Killing-Yano tensor.
In this article we prove that the same statement holds for the SO(4)/H WZW models as
well, and separation of variables in these cases is very similar to the one found in [31].

Unfortunately the full separation of variable does not seem to persist for the SO(n)
WZW model with n > 4. Nevertheless in the SO(5) several 4-parametric families of separa-
ble solutions which have nontrivial dependences on all 10 coordinates. These wavefunctions
are found by combining algebraic techniques with analysis of PDEs.

This paper has the following organization. In section 2 we consider the WZW model
for the SO(4) group and demonstrate full separability of dynamical equations for a scalar
and a vector. While these results are expected, at least for the scalar, since SO(4) =
SU(2)× SU(2), and a metric on each SU(2) has only one non-cyclic direction, the detailed
analysis of separability for the vector field reveals interesting structures which can be
extended to the situations where separation of variables is less obvious. We do this in
sections 2.3, 2.4, and 2.5, which focus on the gauged WZW models for various cosets of
SO(4). In section 2.6 we show how separable structures on such spaces are mapped into
each other under T duality.

Section 3 is dedicated to the study of a scalar field on the SO(5) group manifold. While
the equations are not fully separable, we identify several important sectors that admit
partial separation. Interestingly, all these situations lead to infinite families of solutions
which depend on four free parameters. At least one of these families has a simple extension
to all SO(N) groups, which is discussed in section 3.6. The results presented in section 3
are obtained by combining the analysis of the differential equation for the scalar field
(sections 3.2, 3.4, 3.3, 3.6) and a pure algebraic construction of the eigenfunctions developed
in sections 3.1 and 3.5. Some technical details are presented in the appendices.

2 Full separation in SO(4) and its cosets

The goal of this article is to explore separation of variables for various excitations of the
WZW models. In this section we begin with the SO(4) case, where such separation is
obvious in the equation for the scalar field. Then we analyze the equations for the vector
field and identify the components that separate as well. In sections 2.3–2.5 we demonstrate
that equations for the scalar and vector fields remain separable even after some subgroups
of SO(4) are gauged. We show that all these situations follow the pattern discovered in the
case of higher dimensional rotating black holes: the separable components of the vector
field are constructed by taking projections to the frames associated with the Killing-Yano
tensors [31]. Our analysis serves as a derivation of the separable ansatz for SO(4) and its
cosets since we prove that no other components of the vector fields are separable and that
the correct number of polarizations is recovered. In this section we focus only on cosets
taken with respect to abelian subgroups, but full separation in the non-abelian cases, such
as SO(4)/SU(2) and SU(2)k1×SU(2)k2/SU(2)k1+k2 , is unlikely. Scalar excitations on these
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spaces were studied in [2, 3] using algebraic techniques, and it would be interesting to
extend this analysis to vector fields.

2.1 Wzw model for SO(4)

We begin with studying excitations of the SO(4) group manifold. The action of the WZW
model is given by [1]

S = − k

2π

∫
d2σηαβtr(g−1∂αgg

−1∂βg) + ik

6π

∫
tr(g−1dg ∧ g−1dg ∧ g−1dg) , (2.1)

where g is an element of SO(4). Since the WZW background is conformal, the dilaton is
trivial.4 We consider various excitations of the background (2.1), such as scalar and vector
fields propagating on the geometry with a metric

ds2 = − k

2π tr(g
−1dgg−1dg). (2.2)

Bearing in mind extensions to larger groups discussed in the next section, we parameterize
an element of SO(4) as5

g =
[
q2(αL) 0

0 q2(βL)

]I − 2
1+XXTXX

T 2
1+XXTX

−XT 2
1+XXT I − 2

1+XTX
XTX

[q2(αR) 0
0 q2(βR)

]
. (2.3)

Here X = diag(X1, X2) is a diagonal 2× 2 matrix, and q2(γ) are elements of SO(2):

q2(γ) =
[

cos γ sin γ
− sin γ cos γ

]
. (2.4)

To justify the parameterization (2.3), we observe that the action (2.1) is invariant un-
der F = SO(4) × SO(4) transformations, g → hLghR. To separate variables in various
dynamical equations, it is convenient to maximize the number of cyclic directions in the
metric (2.2). Such cyclic directions correspond to commuting U(1) subgroups of F , and
there are at most four of them since F has rank four. Therefore, it is convenient to
choose a parameterization where the [U(1)]4 Cartan subgroup of F is realized by simple
shifts of coordinates (αL, βL, αR, βR), and this is accomplished by the introduction of the
left and the right matrices in (2.3). In sections 2.3 and 2.5 some elements of the Car-
tan group [U(1)]4 will be gauged by setting some of the four angular coordinates to zero.
The matrix in the middle of (2.3) contains the remaining two out of six parameters of
SO(4). Although one can start with an arbitrary 2× 2 matrix X there, the transformation
X → q2(γL)gq2(γR) can be used to diagonalize that matrix, and parameters (γL, γR) can
be removed by shifting the Cartan coordinates. This leads to the parameterization (2.3)
which ensures that the metric (2.2) has four cyclic directions corresponding to the Cartan
subgroup of SO(4)×SO(4), and this is the maximal number of the cyclic directions for the
SO(4) WZW model.

4Gauging of some symmetries leads to a non-trivial dilaton [59]. We will discuss this in more detail
below.

5Similar parameterization for other groups and cosets was introduced in [60].
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Substituting the parameterization (2.3) into (2.2), we arrive at the metric

ds2 = 4k
π

[
dX2

1
(X2

1 + 1)2 + dX2
2

(X2
2 + 1)2

]
+ k

π

[
dα2

L + dβ2
L + dα2

R + dβ2
R

]
(2.5)

+k

π

[
8X1X2(dαLdβR + dαRdβL)

(1 +X2
1 )(1 +X2

2 ) + 2(1−X2
1 )(1−X2

2 )
(1 +X2

1 )(1 +X2
2 ) (dαLdαR + dβLdβR)

]
.

The Kalb-Ramond field is given by

B = k

π

(X1 −X2)2

(X2
1 + 1)(X2

2 + 1)(dαL + dβL) ∧ (dαR + dβR)

k

π

(X1 +X2)2

(X2
1 + 1)(X2

2 + 1)(dαL − dβL) ∧ (dαR − dβR). (2.6)

As expected, this geometry has four cyclic coordinates (αL, βL, αR, βR), so solutions of the
Helmholtz equation

∇2Φ = −ΛΦ (2.7)
can be written in the form

Φ = ein1αL+in2βL+in3αR+in4βR Φ̃(X1, X2). (2.8)

A direct inspection of the metric (2.5) and its inverse shows that variables (X1, X2) do
not separate in the equation (2.7). On the other hand, since SO(4) = SU(2)1 × SU(2)2,
there is an alternative parameterization of the group element where the full separation is
guaranteed. Specifically, writing an element of SU(2)1 as

g1 =
[
eiγ1 0
0 e−iγ1

] [
cosµ1 sinµ1
− sinµ1 cosµ1

] [
eiτ1 0
0 e−iτ1

]
(2.9)

and using a similar expression for g2, we find

ds2 = k

π

2∑
j=1

[
dµ2

j + (dγj + dτj)2 − 4 sin2 µjdγjdτj
]

(2.10)

B = k

π

2∑
j=1

cos(2µj)dγj ∧ dτj .

Comparison of the B-field with (2.6) suggests the system of separable coordinates:

y1 = 1− 2(X1 +X2)2

(X2
1 + 1)(X2

2 + 1) , y2 = 1− 2(X1 −X2)2

(X2
1 + 1)(X2

2 + 1) . (2.11)

In the coordinates (2.11) the geometry (2.5)–(2.6) becomes

ds2 = k

2π

[
dy2

1
1− y2

1
+ (dαL − dβL)2 + (dαR − dβR)2 + 2y1(dαL − dβL)(dαR − dβR)

]

+ k

2π

[
dy2

2
1− y2

2
+ (dαL + dβL)2 + (dαR + dβR)2 + 2y2(dαL + dβL)(dαR + dβR)

]
(2.12)

B = k

2π [(1− y1)(dαL − dβL) ∧ (dαR − dβR) + (1− y2)(dαL + dβL) ∧ (dαR + dβR)] .
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Imposing a separable ansatz for the scalar field,

Φ = ein1(αL−βL)+in2(αR−βR)+iñ1(αL+βL)+iñ2(αR+βR)B1(y1)B2(y2), (2.13)

we arrive at the system of ODEs governing functions (B1, B2):

d

dy1

[
(y2

1 − 1)B′1
]

+
[
−ν1 + (n1 + n2)2

2(1 + y1) + (n1 − n2)2

2(1− y1)

]
B1 = 0

d

dy2

[
(y2

2 − 1)B′2
]

+
[
−ν2 + (ñ1 + ñ2)2

2(1 + y2) + (ñ1 − ñ2)2

2(1− y2)

]
B2 = 0.

(2.14)

The eigenvalue of the Helmholtz equation (2.7) is given by

Λ = 2π
k

[ν1 + ν2] . (2.15)

The normalizable solution of the first equation in (2.14) is

B1(y1) = (1 + y1)
n+

2 (1− y1)
n−

2 F

[
−p, 1 + p+ n+ + n−; 1 + n−; 1− y1

2

]
, (2.16)

where p is a non-negative integer and

n± = |n1 ± n2|, ν1 = 1
4(2p+ 1 + n+ + n−)2 − 1

4 . (2.17)

Rewriting the last relation in a suggestive form

ν1 = j1(j1 + 1), j1 = p+ n+ + n−
2 , (2.18)

we conclude that the eigenvalue ν1 is equal to the Casimir parameter for a representation
of SU(2) described by a Young tableau with 2j boxes. There is a similar expression for ν2,

ν2 = j2(j2 + 1), j2 = p̃+ ñ+ + ñ−
2 , (2.19)

and single-valuedness of (2.13) as a function of (αL, βL, αR, βR) implies that (j1, j2) must be
either integers or half-integers. The equation (2.15) gives the expression for the eigenvalue
Λ in terms of the Casimir of SO(4)

Λ = 2π
k
C2(R). (2.20)

This agrees with the general expression for the eigenvalues of scalars on the WZW back-
grounds [2, 3]. In the next subsection will extend these results to the vector field, and
sections 2.3, 2.5 will focus on extensions of (2.13) and (2.20) to various cosets.
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2.2 Vector fields on the SO(4) wZW model

We have demonstrated separation of variables in the Helmholtz equation, and the next
three subsections we will show that such separation persists for the analogous equation for
the vector field:6

e2σφ∇µ
[
e−2σφFµν

]
+ ΛAν = 0. (2.21)

Here following [25–27], we introduced a modified field strength in the presence of torsion:

Fµν = ∂µAν − ∂νAµ + ζHµνσA
σ = Fµν + ζHµνσA

σ . (2.22)

Let us consider equations (2.21)–(2.22) on SO(4) and its cosets.

2.2.1 Vector fields on product spaces

Since SO(4) = SU(2) × SU(2) and SO(4)/[SO(2) × SO(2)] = [SU(2)/U(1)]2 correspond
to product spaces, we begin with a general discussion on vector fields on such manifolds.
Specifically, we consider a geometry that has the form

ds2 = gijdx
idxj + habdy

adyb, e−2φ = f(x)f̃(y), (2.23)

H = 1
6Hijkdx

i ∧ dxj ∧ dxk + 1
6Habcdy

a ∧ dyb ∧ dyc .

Equations (2.21)–(2.22) on such a space become

1
fσ
√
g
∂i
[
fσ
√
gF ij

]
+ 1
f̃σ
√
h
∂a
[
f̃σ
√
hF aj

]
+ ΛAj = 0

1
fσ
√
g
∂i
[
fσ
√
gF ib

]
+ 1
f̃σ
√
h
∂a
[
f̃σ
√
hFab

]
+ ΛAb = 0 . (2.24)

To separate variables between x– and y-spaces, we impose the ansatz

A = B̃(y)Ci(x)dxi +B(x)Ca(y)dya . (2.25)

There are three types of separable solutions (2.25):

(a) Vector fields on the x-space:

A = B̃(y)Ci(x)dxi . (2.26)

Substitution into the system (2.24) gives

1
fσ
√
g
∂i
[
fσ
√
gF ij

]
+
[

1
f̃σ
√
h
∂a
[
f̃σ
√
hhab∂bB̃

]
+ ΛB̃

]
Cj = 0

1
fσ
√
g
∂i
[
fσ
√
ggijCj

]
= 0 .

6Note that since we are dealing with a massive vector field A, equations (2.21) and (2.22) are not
invariant under the A→ A+ df transformation.
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This leads to a system of two eigenvalue problems for decoupled ODEs:

1
f̃σ
√
h
∂a
[
f̃σ
√
hhab∂bB̃

]
+ λ̃scalarB̃ = 0, 1

fσ
√
g
∂i
[
fσ
√
gCij

]
+λvectorC

j = 0, (2.27)

where Cij ≡ 1
B̃
Fij is the modified field strength corresponding to the potential Ci:

Cij = ∂iCj − ∂jCi + ζHijkC
k . (2.28)

The system (2.27) leads to the eigenvalue

Λ = λ̃scalar + λvector . (2.29)

The vector field Ci satisfies a constraint

1
fσ
√
g
∂i
[
fσ
√
ggijCj

]
= 0, (2.30)

which ensures that the number of degrees of freedom covered by the ansatz (2.26) is
(dimx − 1).

(b) Vector fields on the y-space:

A = B(x)C̃a(y)dya . (2.31)

As before, substitution into the system (2.24) leads to a two eigenvalue problems for
decoupled ODEs,7

1
fσ
√
g
∂i
[
fσ
√
ggij∂jB

]
+λscalarB = 0, 1

fσ
√
g
∂a
[
fσ
√
h C̃ab

]
+λvectorC̃

b = 0, (2.32)

and the eigenvalue Λ is given by

Λ = λscalar + λ̃vector . (2.33)

The vector field C̃a satisfies a constraint

1
f̃σ
√
h
∂a
[
f̃σ
√
hhabC̃b

]
= 0, (2.34)

so the ansatz (2.26) describes (dimy − 1) degrees of freedom.

(c) The scalar mode:
A = B̃(y)dC(x) +B(x)dC̃(y). (2.35)

Substitution to the system (2.24) leads to the consistency conditions8

C(x) = B(x), C̃(y) = µB̃(y) (2.36)
7The field strength Cab is defined by the counterpart of (2.28), C̃ab = ∂aC̃b − ∂bC̃a + ζHabcC̃

c, and it is
related to the relevant components of (2.22) by C̃ab = 1

B
Fab.

8We used the equations of motion for the three-form Hµνλ.
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with some constant µ and to system of ODEs:
1

fσ
√
g
∂i
[
fσ
√
ggij∂jB

]
+ λscalarB = 0,

1
f̃σ
√
h
∂a
[
f̃σ
√
hhab∂bB̃

]
+ λ̃scalarB̃ = 0. (2.37)

The eigenvalue Λ and the parameter µ are given by

Λ = λscalar + λ̃scalar µ = −λscalar

λ̃scalar
. (2.38)

If µ = 1, then the ansatz (2.35) describes a pure gauge: it gives Λ = 0, but functions
(B, B̃) remain arbitrary, and they are not constrained by the system (2.37).

To summarize, the separable ansatz (2.25) describes

dimx + dimy − 1 (2.39)

modes with non-zero values of Λ, and the eigenvalues are given by

Λ =
{
λ̃scalar + λvector, λscalar + λ̃scalar, λscalar + λ̃vector

}
. (2.40)

Therefore, to find the complete spectrum of the equation (2.21) on the product space (2.23),
it is sufficient to determine the scalar and vector eigenvalues (λscalar, λ̃scalar, λvector, λ̃vector)
on the individual blocks. We will now solve this problem for SO(4) = SU(2)× SU(2), and
we will analyze SO(4)/[SO(2)× SO(2)] = [SU(2)/U(1)]2 in section 2.5.

2.2.2 Vector modes on SU(2)

To evaluate (λscalar, λ̃scalar, λvector, λ̃vector) and the corresponding eigenfunctions for SO(4),
we recall the geometry (2.12) in the (y1, y2) coordinates. Comparing it to the general
product space (2.23), we conclude the f = f̃ = 1, and that the scalar equations (2.37)
reduce to (2.14) with identification

B = ein1(αL−βL)+in2(αR−βR)B1(y1), B̃ = eiñ1(αL−βL)+iñ2(αR−βR)B2(y2),

λscalar = 2π
k
ν1, λ̃scalar = 2π

k
ν2 . (2.41)

Next we consider the vector equation from the system (2.27),9

1
√
g
∂i
[√
gF ij

]
+ 2π

k
λCj = 0, Fij = ∂iCj − ∂jCi + ζHijkC

k , (2.42)

on the relevant part of the geometry (2.12)

ds2 = k

2π

[
dy2

1
1− y2

1
+ (dγL)2 + (dγR)2 + 2y1dγLdγR

]
,

B = k

2π (1− y1)dγL ∧ dγR, γL = αL − βL, γR = αR − βR . (2.43)

9To simplify the subsequent formulas, we rescaled the eigenvalue in (2.27) as λvector = 2π
k
λ. Then λ is

analogous to (ν1, ν2), and it will be equal to a product of integers or half-integers.
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The full analysis of the equation (2.42) is presented in the appendix A, and here we just
outline the logic and write the final result.

(i) The most general separable solution for a vector field in the geometry (2.43) is
given by

Cidxi = ein1γL+in2γR [Vydy1 + V1dγL + V2dγR] , (2.44)

where (Vy, V1, V2) are functions of y1, which are mixed in equations (2.42). We are
looking for combinations of these components that satisfy decoupled equations, and
to get insights into the structure of such combinations, we begin with studying the
ζ = 0 case.

As demonstrated in the appendix A, the most general separable solutions of
equations (2.42) with ζ = 0 are given by

Cidxi = ein1γL+in2γR
[
Vydy1 + q+(V̂+ + V̂−)dγL + q−(V̂+ − V̂−)dγR

]
, (2.45)

where

q± = 1± n2
1 − n2

2[√
λ− n2

1 +
√
λ− n2

2

]2 ,
q−
q+

=
[
λ− n2

2
λ− n2

1

]1/2

. (2.46)

Equations for the functions (V̂+, V̂−) decouple, and they are formulated as a system
of eigenvalue problems

d

dy1

[
(1− y2

1)V̂ ′+
λy1 − n1n2 + µ

]
+ λy1 − n1n2 − µ

λ(y2
1 − 1) V̂+ = 0

d

dy1

[
(1− y2

1)V̂ ′−
λy1 − n1n2 − µ

]
+ λy1 − n1n2 + µ

λ(y2
1 − 1) V̂− = 0 .

(2.47)

Here we defined µ as a convenient combination of constants (λ, n1, n2):

µ =
√

(λ− n2
1)(λ− n2

2) . (2.48)

Note that, even though the modes V̂+ and V̂− decouple, the function

W+ = (1− y2
1)V̂ ′+

λy1 − n1n2 + µ
(2.49)

satisfies the same differential equation as V̂−. Similarly, a function W− constructed
from a derivative of V̂− satisfies the same equation as V̂+.

(ii) Interestingly, functions (V̂+, V̂−) can be expressed in terms of the solutions of the
scalar equation (2.14). As demonstrated in the appendix A, any solution of equa-
tions (2.47) can be written as

V̂±(y1) = C±

[
(1− y2

1)B′1 + 1
M

[λy1 − n1n2 ± µ]B1

]
, (2.50)

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
4

where function B1 satisfies the differential equation (2.14), and parameters (λ, ν1,M)
are related by

λ = M2, ν1 = M(M + 1) , M ≥ 0. (2.51)

In particular, this implies that the eigenvalues of the problem (A.12) are given by
λ = M2 with an integer M which is subject to the constraint

M ≥ |n1 + n2|+ |n1 − n2| . (2.52)

The last remaining component of the vector field, Vy is given by

Vy = iC+
n1q− + n2q+

M

[
B′1 −

n1n2 −M2y1 + µ

M(1− y2
1) B1

]

+iC−
n2q+ − n1q−

M

[
B′1 −

n1n2 −M2y1 − µ
M(1− y2

1) B1

]
. (2.53)

(iii) To extend the solution (2.45), (2.50), (2.51), (2.53) to arbitrary values of ζ, we observe
that two linear combinations of (2.50) are especially simple: the ones with

C− = C+ and C− = −C+ . (2.54)

Let us begin with analyzing the first combination by setting C− = C+ = 1
2 :

V̂+ − V̂− = µ

M
B1, V̂+ + V̂− =

[
(1− y2

1)B′1 + 1
M

[λy1 − n1n2]B1

]
,

Vy = in2q+
M

[
B′1 + λy1 − n1n2

M(1− y2
1) B1

]
− in1q−

M2
µ

(1− y2
1)B1 . (2.55)

Comparing with (2.45), we observe the CγR component is given by the scalar wave-
function B1. This suggests that it might be useful to write the vector field Ci in
terms of the frames10

eµ3∂µ = ∂γR , eµ±∂µ = − e∓iγR

2
√

1− y2
1

[
(1− y2

1)∂y1 ± i(y1∂γR − ∂γL)
]
. (2.56)

Evaluating various projections of the field (2.55), we find remarkably simple relations:

eµ3Cµ = a3e
µ
3∂µZ, eµ+Cµ = a+e

µ
+∂µZ, eµ−Cµ = a−e

µ
−∂µZ (2.57)

where11

Z = B1e
in1γL+in2γR , a3 = q+(λ− n2

2)
in2M

, a± = i(n2 ∓M)q+
M

. (2.58)

Note that the expressions (2.57) are reminiscent of the ansatz for solving the Maxwell’s
equations in the Myers-Perry geometry [31].

10Once eµ3 is fixed by the observation above, the components of eµ± are uniquely determined up to the
overall factors.

11Recall that q−µ = (λ− n2
2)q+.
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(iv) The analysis of the second polarization, C+ = −C− = 1
2 , can be performed in a

similar fashion. In this case the convenient frames are

ẽµ3∂µ = ∂γL , ẽµ±∂µ = − e±iγL

2
√

1− y2
1

[
(1− y2

1)∂y1 ∓ i(y1∂γL − ∂γR)
]
, (2.59)

and the counterpart of the ansatz (2.57) with (ẽµ3, ẽ
µ
+, ẽ

µ
−, ã3, ã+, ã−) gives

ã3 = q−(λ− n2
1)

in1M
, ã± = i(n1 ∓M)q−

M
, λ = M2. (2.60)

It turns out that to extend the results to non-zero values of ζ, it is convenient to choose
a different route. Writing the counterpart of the first line in (2.55) for C+ = −C− = 1

2 ,

V̂+ − V̂− =
[
(1− y2

1)B′1 + 1
M

[λy1 − n1n2]B1

]
, V̂+ + V̂− = µ

M
B1 . (2.61)

we observe that the function

B̃1 ≡ −
M

µ

[
(1− y2

1)B′1 + 1
M

[λy1 − n1n2]B1

]
(2.62)

satisfies the scalar equation (2.14) with ν̃1 = M(M − 1). Furthermore, in terms of
B̃1, relations (2.61) become

V̂+ − V̂− = − µ

M
B̃1, V̂+ + V̂− =

[
(1− y2

1)B̃′1 −
1
M

[λy1 − n1n2] B̃1

]
. (2.63)

These expressions can be obtained from (2.61) by a formal replacement

B1 → B̃1, M → −M, ν1 → ν̃1 . (2.64)

and the same replacement works for Vy as well. Therefore, the C− = −C+ polar-
ization can still be described by the ansatz (2.57), but relations (2.58) should be
replaced by

Z = B̃1e
in1γL+in2γR , a3 = q+(λ− n2

2)
in2M

, a± = i(n2 ±M)q+
M

, M ≥ 0 . (2.65)

Alternatively, we can keep only expressions (2.57)–(2.58), but allow parameter M to
take both positive and negative values.12

(v) In the case of general ζ, we impose the ansatz (2.57) with

Z = B1e
in1γL+in2γR , ν1 = M(M + 1), (2.66)

and undetermined constants (a3, a+, a−). In accordance with the discussion from
item (iv), parameter M can take positive and negative values, so to recover both

12Recall that M was defined in (2.51) as a square root of λ.
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polarizations, every scalar mode is used twice. As demonstrated in the appendix A,
the constants (a3, a+, a−) obey the same relations (2.58),

a± = n2
n2 ±M

a3 , (2.67)

even for a non-vanishing ζ, but the expression for the eigenvalue λ in terms of the
parameter M is modified as

λ = M(M − ζ) . (2.68)

In particular, for ζ = ±1 the sets of scalar and vector eigenvalues are identical.
(vi) Finally, there are solutions with λvector = 0, which correspond to a pure gauge:

Cidx
i = df. (2.69)

For ζ = 0, equations (2.42) are trivially satisfied since Fij = 0. In the case of a
nonzero ζ, the modified field strength does not vanish, but since Hijk is proportional
to the volume form, the field Fij is divergence-free:

Fij = ζHijkC
k ⇒ 1

√
g
∂i
[√
gF ij

]
= ζ
√
g
∂i
[√
gH ijkCk

]
= ζH ijk∂iCk = 0.

(2.70)
Therefore, equations (2.42) with λ = 0 are satisfied by the vector field (2.69) with
an arbitrary f . The ansatz (2.57) with a3 = a+ = a− and an arbitrary function Z

covers all such solutions.

The construction described here gives the most general separable solution of equations (2.42),
and a priori it is not obvious that the Lorentz constraint (2.26) would be satisfied. Remark-
ably, this constraint follows from the ansatz (2.57) and equations (2.42), without additional
assumptions. This implies that the solution (2.66), (2.67), (2.68) can be used to build the
vector modes on the product space SO(4) = SU(2) × SU(2) using the procedure described
in section 2.2.1.

2.2.3 Summary of the vector fields on SO(4)

Let us now combine the discussion from sections 2.2.1 and 2.2.2 to describe separation
of variables for vector fields on SO(4). We are looking for solutions of the eigenvalue
problem (2.21) with F given by (2.22) on the geometry (2.12). In this case the x and y

coordinates defined in (2.23) are given by

x = {y1, αL − βL, αR − βR}, y = {y2, αL + βL, αR + βR} . (2.71)

According to the general discussion from subsection 2.2.1, there are three types of separable
vector modes:

(a) Vector fields on the x-space:
The ansatz for the vector field has the form

A = B̃(y)Ci(x)dxi, (2.72)
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Then the eigenvalue problem (2.21) ensures that the functions (B̃, Ci) satisfy the
system of differential equations (2.27) with the constraint (2.30).

In the case of SO(4) = SU(2)× SU(2), the scalar function has the form

B̃(y) = eiñ1(αL+βL)+iñ2(αR+βR)B2(y2), (2.73)

and B2(y2) satisfies the second equation in (2.14). The components of the vector field
Ci have the form (2.57),

eµ3Cµ = a3e
µ
3∂µZ, eµ+Cµ = a+e

µ
+∂µZ, eµ−Cµ = a−e

µ
−∂µZ, (2.74)

with frames (2.56). Function Z given by (2.66),13

Z = B1(y1)ein1γL+in2γR , (2.75)

where B1 is a solution of the first equation in (2.14) with ν1 = j1(j1 + 1). The
eigenvalues of the vector equation (2.21) have the form (2.29),

Λ = λ̃scalar + λvector , (2.76)

with
λ̃scalar = 2π

k
ν2 = 2π

k
j2(j2 + 1), λvector = 2π

k
j1(j1 − ζ). (2.77)

Note that for ζ = ±1 the scalar and vector spectra, (2.15) and (2.76), are identical.
The ansatz (2.72) describes two physical degrees of freedom.

(b) Vector fields on the y-space:
This situation is analogous to the case (a) with a replacement

x→ y, λ̃scalar → λscalar, λvector → λ̃vector . (2.78)

For example, the ansatz for the vector field is

A = B(x)C̃a(y)dya . (2.79)

and functions (B, C̃a) satisfy the system of differential equations (2.32) with the
constraint (2.34). The vector C̃a and the scalar B(x) are given by

ẽa3C̃a = a3e
a
3∂aZ̃, ẽa+Ca = a+ẽ

a
+∂aZ̃, ẽa−Ca = a−ẽ

a
−∂aZ̃, (2.80)

B(x) = ein1(αL−βL)+in2(αR−βR)B1(y1), Z̃(y) = eiñ1(αL+βL)+iñ2(αR+βR)B2(y2),

and (B1(y1), B2(y2)) satisfy equations (2.14). The eigenvalues of the equation (2.21) are

Λ = λscalar + λ̃vector . (2.81)

with
λscalar = 2π

k
j1(j1 + 1), λ̃vector = 2π

k
j2(j2 − ζ). (2.82)

The ansatz (2.79) describes two physical degrees of freedom.
13Recall that γL = αL − βL, γR = αR − βR.
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(c) The scalar mode:
The ansatz for the gauge field is given by (2.35)–(2.36):

A = B̃(y)dB(x) + µB(x)dB̃(y), (2.83)

and in the SO(4) case,

B = ein1(αL−βL)+in2(αR−βR)B1(y1), B̃ = eiñ1(αL+βL)+iñ2(αR+βR)B2(y2) . (2.84)

Functions B1 and B2 satisfy equations (2.14), the eigenvalue Λ and parameter µ are
given by (2.38)

Λ = λscalar + λ̃scalar , µ = −λscalar

λ̃scalar
. (2.85)

As in the general case discussed in section 2.2.1, µ = 1 corresponds to a pure gauge,
which gives Λ = 0 and arbitrary functions (B, B̃) (the equations (2.14) are not
required).

To summarize, application of the separable ansatz (2.25) to SO(4) describes five physical
degrees of freedom, and the set of eigenvalues is given by

Λ =
{
λ̃scalar + λvector, λscalar + λ̃scalar, λscalar + λ̃vector

}
. (2.86)

The individual ingredients are specified by two numbers (j1, j2), which can be either both
integers or both half-integers:

λscalar = 2π
k
j1(j1 + 1), λ̃scalar = 2π

k
j2(j2 + 1)

λvector = 2π
k
j1(j1 − ζ), λ̃vector = 2π

k
j2(j2 − ζ). (2.87)

The eigenvalues (2.86) have the standard degeneracy associated with [U(1)]4 quantum num-
bers (n1, n2, ñ1, ñ2), but this degeneracy is enhances if ζ = ±1 when all three ingredients
of (2.85) have the same (j1, j2) dependence.

2.3 Gauged WZW model for the SO(4)/SO(2) coset

Let us now gauge some of the symmetries of SO(4) and study various fields on the resulting
backgrounds. In this subsection we go back to the group element (2.3) and gauge the SO(2)
symmetry that acts as

g → hgh−1, where h =
[
q(µ) 0

0 I2×2

]
. (2.88)

Here µ is the gauge parameter. We choose a convenient gauge by setting

X = q2(γ)diag(X1, X2), αR = 0, βR = 0. (2.89)
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in the product (2.3). Then the metric, the dilaton, and the Kalb-Ramond field of the
gauged WZW (gWZW) model become14

ds2 = k

π

[
4dX2

1
(1 +X2

1 )2 + 4dX2
2

(1 +X2
2 )2 + dα2 + 4X1X2dαdβ

X2
1 +X2

2
+ (1 +X2

1X
2
2 )dβ2

(X2
1 +X2

2 )

]

+k

π

[
4(X2

1 −X2
2 )2dαdγ

(1 +X2
1 )(1 +X2

2 )(X2
1 +X2

2 ) + 4(X2
1 −X2

2 )2dγ2

(1 +X2
1 )(1 +X2

2 )(X2
1 +X2

2 )

]
,

e−2φ = 2(X2
1 +X2

2 )
(1 +X2

1 )(1 +X2
2 ) , α = αL, β = βL . (2.90)

The geometry also contains a Kalb-Ramond B field, but the expression for it in the (X1, X2)
coordinates is not very illuminating. In terms of coordinates (y1, y2) introduced in (2.11),
the geometry (2.90) becomes

ds2 = k

π

[
dα2 + 2(y1 − y2)

y1 + y2 − 2dαdβ −
4(y1 − 1)(y2 − 1)
y1 + y2 − 2 dαdγ − 4(y1 − 1)(y2 − 1)

y1 + y2 − 2 dγ2
]

+k

π

[
−y1 + y2 + 2
y1 + y2 − 2dβ

2 + dy2
1

2− 2y2
1

+ dy2
2

2− 2y2
2

]
,

H = k

π

{
(dα+ 2dγ) ∧ dβ ∧ d

[
y2 − y1

y2 + y1 − 2

]
+ dα ∧ dγ ∧ d

[2(y1y2 − 1)
y2 + y1 − 2

]}
,

e−2φ = 2− y1 − y2. (2.91)

To demonstrate separation of variables, we observe that the frames in the (α, β, γ) subspace
can be chosen to be

eµ1∂µ = 1
2

√
2− 2y1
1 + y1

[
∂α − ∂β + y1

1− y1
∂γ

]
,

eµ2∂µ = 1
2

√
2− 2y2
1 + y2

[
∂α + ∂β + y2

1− y2
∂γ

]
, (2.92)

eµ3∂µ = 2
2(∂α − ∂γ).

This implies that the inverse metric can be written as
π

k
gµν∂µ∂ν =

[
2(1− y2

1)∂2
y1 + eµ1e

ν
1∂µ∂ν

]
+
[
2(1− y2

2)∂2
y2 + eµ2e

ν
2∂µ∂ν

]
+ eµ3e

ν
3∂µ∂ν . (2.93)

The first block depend only on y1, the second block depends only on y2, while the third
block contains only constant coefficients. Such structure of frames, has also been encoun-
tered in Myers-Perry-AdS black holes in odd dimensions, where it guaranteed separation of
the Helmholtz and Hamilton-Jacobi equations [10–24], as well as equations for the vector
field [31] and higher forms [36]. In the present case, the structure (2.93) guarantees the full
separation of variables in the Hamilton-Jacobi equation

gµν
∂S

∂xµ
∂S

∂xν
= λ, (2.94)

14The general procedure for constructing the gWZW geometries and its application to the specific
case (2.89) are discussed in the appendix B.
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but not in the Helmholtz equation (2.96). The obstacle comes from a non-separable deter-
minant of the metric:

√
g =

(
k

π

) 5
2 1

2− y1 − y2
. (2.95)

It turns out that a modified Helmholtz equation

e2σφ∇2(e−2σφΦ) = −ΛΦ (2.96)

is still separable if and only if σ = 1. This special value of σ has been already encountered
in [2, 3], where the general formula for scalar eigenvalues Λ on all G/H gauged WZW
models was derived using algebraic methods, which were applicable only to σ = 1.

Substituting a separable ansatz for the scalar field,

Φ = exp[in1α+ in2β + in3(α+ 2γ)]g1(y1)g2(y2), (2.97)

into the Helmholtz equation (2.96) in the geometry (2.90), and setting σ = 1, we arrive at
a system of ODEs:

d

dy1

[
(y2

1 − 1)dg1
dy1

]
+ 1

2

[
n2

3
1− y1

+ (n1 − n2)2

y1 + 1

]
g1 + 1− λ2

1
4 g1 = 0,

d

dy2

[
(y2

2 − 1)dg2
dy2

]
+ 1

2

[
n2

3
1− y2

+ (n1 + n2)2

y2 + 1

]
g2 + 1− λ2

2
4 g2 = 0. (2.98)

The eigenvalue Λ is given by

Λ = 2π
k

(
λ2

1
4 + λ2

2
4 −

1
2 −

n2
2

2

)
. (2.99)

Equations (2.98) can be solved in terms of the hypergeometric function, and the result
reads

g1 = (1− y1)
n3
2 (1 + y1)

n−
2 F

[
−k1, 1 + n3 + n− + k1; 1 + n3; 1− y1

2

]
,

g2 = (1− y2)
n3
2 (1 + y2)

n+
2 F

[
−k2, 1 + n3 + n+ + k2; 1 + n3; 1− y2

2

]
,

Λ = 2π
k

[
(2k1 + n3 + n− + 1)2

4 + (2k2 + n3 + n+ + 1)2

4 − 1 + n2
2

2

]
. (2.100)

Here we assumed that n3 ≥ 0 and introduced two more non-negative parameters:

n+ = |n1 + n2|, n− = |n1 − n2|.

It is instructive to compare the expression for the eigenvalue from (2.100) with the general
formula for the gauged WZW models on the G/H cosets [2, 3]. As demonstrated in [2, 3],
the eigenfunctions of the scalar field (2.96) on such cosets are specified by a representations
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of the group G and the subgroup H, and the eigenvalues are expressed in terms of the
quadratic Casimirs of such representations:15

Λ = 2π
k
C2(RG)− 2π

k
C2(RH). (2.101)

To recover this formula, we rewrite the expression for Λ from (2.100) in a suggestive form:

Λ = 2π
k

[j1(j1 + 1) + j2(j2 + 1)]− 2π
k

n2
2

2 , (2.102)

j1 = k1 + n3 + n−
2 , j2 = k2 + n3 + n+

2 .

Note that in (2.18) and (2.19) we have already encountered the counterparts of the param-
eters (j1, j2) in the SO(4) case. As expected the general formula (2.101) is reproduced.

2.4 Vector fields on the SO(4)/SO(2) gauged WZW model

To separate variables in the vector equation (2.21)

e2φ∇µ
[
e−2φFµν

]
+ 4ΛAν = 0, Fµν = ∂µAν − ∂νAµ + ζHµνσA

σ , (2.103)

we implement the idea that has been used to solve Maxwell’s equations in the Myers-Perry
geometry [31]. We begin with introducing complex combinations of frames (2.92) that
depend only on y1 or y2, as well as the constant frame e0:

e1± = e1 ± iẽ1, e2± = e2 ± iẽ2, e0, ẽ1,2 =
√

2(1− y2
1,2)∂y1,2 . (2.104)

Then we impose an ansatz inspired by our discussion in section 2.2 and by separation of
vector equations in background of the Myers-Perry black holes [31]

eµ1±Aµ = b1±(y1)eµ1±∂µZ̃, eµ2±Aµ = b2±(y2)eµ2±∂µZ̃, eµ0Aµ = b0e
µ
0∂µZ̃,

Z̃ = ein1α+in2β+in3γZ(y1, y2). (2.105)

Direct substitution into (2.103) shows that the vector equations become separable only for
ζ = 1, and the results are:

1. Coefficients b1± and b2± must be constant. This is consistent with constant eigenval-
ues of the modified Killing-Yano tensor corresponding to the metric (2.92),

Y = (e2 ∧ ẽ2 − e1 ∧ ẽ1) ∧ e0 , (2.106)

which satisfies equations with twisted connections [25–28]:

∇+
n Ympq +∇+

mYnpq = 0, Γd+
np = Γdnp + 1

2H
d
np, (2.107)

∇+
n Ympq = ∂nYmpq − Γd+

nmYdpq − Γd+
np Ymdq − Γd+

nq Ympd.

15The expression in [2, 3] is slightly more general, but it reduces to (2.101) in the geometric limit which
we are discussing here. Also, the algebraic construction of [2, 3] applies only to the equation (2.96) with
σ = 1, and it is remarkable that this equation separates and results in (2.100) precisely for this value of σ.
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Recall that in the case of the Myers-Perry geometry the metric and the Killing-
Yano tensors had the form

ds2 =
[
−l+µ l−ν +

∑
i

m(i)+
µ m(i)−

ν + nµnν

]
dxµdxν

Y (2n−k) = ?[∧hk], h = rl+ ∧ l− +
∑
i

xim
(i)
+ ∧m

(i)
−

and the counterpart of the ansatz (2.105) was16

lµ±Aµ = ± 1
r ± iµ

l̂±Ψ, [m(j)
± ]µAµ = ∓ i

xj ± µ
m̂

(j)
± Ψ nµAµ = λΨ.

In particular, the prefactors in the last equation involved some combinations of the
eigenvalues of h, and since the eigenvalues of (2.106) do not depend on (y1, y2), the
constant values of the coefficients b1± and b2± in (2.105) are not surprising.

2. Separable function Z obeys a system of ODEs

1
1− y2

1

∂

∂y1

[
(1− y2

1) ∂Z
∂y1

]
+ λ1Z

1− y2
1
− n2

3Z

4(1− y2
1)2 −

(n1 − n2)(n1 − n2 − n3)Z
2(1− y1)(1− y2

1)2 = 0

1
1− y2

2

∂

∂y2

[
(1− y2

2) ∂Z
∂y2

]
+ λ2Z

1− y2
2
− n2

3Z

4(1− y2
2)2 −

(n1 + n2)(n1 + n2 − n3)Z
2(1− y2)(1− y2

2)2 = 0 .

(2.108)
3. The eigenvalues Λ of (2.103) are given by

Λ = 2π
k

(
λ1 + λ2 −

n2
2

2

)
. (2.109)

4. Five coefficients (b1±, b2±, b0) obey one constraint:

(b1+ + b1−)[4λ1 + 1] + (b2+ + b2−)[4λ2 + 1] + 4b0(n1 − n3)2−
−
∑
±
b1±(n2 + n3 − n1 ± 1)2 −

∑
±
b2±(n3 − n1 − n2 ± 1)2 = 0 . (2.110)

This constraint follows from the equations (2.103), and it also ensures the Lorenz
condition

∇µ[e−2φAµ] = 0. (2.111)

The metric (2.92) also admits another modified Killing-Yano tensor:

Ŷ = (ê2 ∧ ẽ2 − ê1 ∧ ẽ1) ∧ ê0 , (2.112)

where new frames ê2, ê0 and ê1 are

ê1 =

√
2− 2y2

1

2− y1 − y2
(dβ + (1− y2)dγ), ê2 = −

√
2− 2y2

2

2− y1 − y2
(dβ + (1− y1)dγ),

ê0 = dα− y1 − y2
2− y1 − y2

dβ + 2(1− y1)(1− y2)
2− y1 − y2

dγ . (2.113)

16See [31] for details and derivation.
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In contrast to (2.106) this modified Killing-Yano tensor satisfies equations with different
twisted connections:

∇−n Ŷmpq +∇−mŶnpq = 0, Γd−np = Γdnp −
1
2H

d
np, (2.114)

∇−n Ŷmpq = ∂nŶmpq − Γd−nmŶdpq − Γd−np Ŷmdq − Γd−nq Ŷmpd.

Therefore another separable ansatz of the vector field equation is possible by replacing e1,
e2 and e0 in (2.105) by ê1, ê2 and ê0, respectively. A direct substitution of this alternative
ansatz into (2.103) shows the vector equation becomes separable when ζ = −1. In the
appendix B we will show these two possible separable ansatz are related to the left and
right frames of the gWZW model.

To summarize, in this subsection we have demonstrated separability of the twisted
vector equation (2.103) for two values of the twisting parameter: ζ = ±1. In both cases the
components of the vector field are given by (2.105), but the frames used in these relations
are different: ζ = 1 corresponds to the left-invariant forms, and ζ = −1 corresponds to the
right-invariant ones. The separation of the vector equation is not possible for any other
values of ζ, in particular, the standard equation corresponding to ζ = 0 does not separate.
In the cases when separation is possible, the eigenvalues (2.109) are equal to their scalar
counterparts (2.100), so the group theoretic formula (2.101) which has been derived for the
scalar spectrum, seems to be applicable to vectors with ζ = ±1 as well. We have already
encountered this phenomenon in section 2.2.2, where the scalar and vector spectra (2.87)
agreed precisely for ζ = ±1.

2.5 Scalars and vectors on the SO(4)
SO(2)×SO(2) gauged WZW model

Let us now gauge one more U(1) isometry and study various fields on the resulting
SO(4)/[SO(2)× SO(2)] coset. To do so, we go back to the group element (2.3) and gauge
the SO(2)× SO(2) subgroup that acts as

g → hgh−1, where h =
[
q2(µ) 0

0 q2(ν)

]
. (2.115)

This leads to the shifts

αL,R → αL,R ± µ, βL,R → βL,R ± ν (2.116)

in the parameters of (2.3), and the gauge can be fixed by setting αR = βR = 0. The
resulting coset element has the form

g =
[
q2(α) 0

0 q2(β)

]I − 2
1+XXTXX

T 2
1+XXTX

−XT 2
1+XXT I − 2

1+XTX
XTX

 , X = diag(X1, X2). (2.117)

– 20 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
4

Using the general procedure for constructing the metric of the gauged WZW model,17 we
arrive at the geometry

ds2 = k

π

[
4dX2

1
(1 +X2

1 )2 + 4dX2
2

(1 +X2)2 + 4X1X2(1 +X2
1 )(1 +X2

2 )
(X2

1 −X2
2 )2 dαdβ

]

+k

π

[
X2

2 +X2
1 (1 + 4X2

2 +X2
1X

2
2 +X4

2 )
(X2

1 −X2
2 )2

(
dα2 + dβ2

)]
,

e−2φ = 4(X2
1 −X2

2 )2

(1 +X2
1 )2(1 +X2

2 )2 . (2.118)

In contrast to the SO(4)/SO(2) coset, the geometry (2.118) does not contain a B field. A
sequence of invertible maps,

Xi = i(1− wi)
1 + wi

, w1 = √x1x2, w2 =
√
x2
x1
, yi = 1 + x2

i

2xi
(2.119)

leads to a separable form of the metric:

ds2 = k

2π

(
1 + y1
1− y1

[dα− dβ]2 + 1 + y2
1− y2

[dα+ dβ]2 + dy2
1

1− y2
1

+ dy2
2

1− y2
2

)
.

e−2φ = (1− y1)(1− y2), √
g =

(
k

2π

)2 1
(1− y1)(1− y2) . (2.120)

In contrast to the situations discussed in section 2.3, the scalar equation (2.96) separates
for all values of σ. This is not surprising since the geometry (2.120) describes two copies
of SU(2)/U(1):

SO(4)
SO(2)× SO(2) = SU(2)L × SU(2)R

U(1)L ×U(1)R
= SU(2)L

U(1)L
× SU(2)R

U(1)R
. (2.121)

Imposing a separable ansatz

Φ = ein1(α−β)+in2(α+β)Y1(y1)Y2(y2), (2.122)

and substituting the result into (2.96), we arrive at a system of two ODEs:

1
(1− y1)σ

d

dy1

[
(1− y1)σ(1 + y1)dY1

dy1

]
− n2

1
1 + y1

Y1 + λ1
1− y1

Y1 = 0

1
(1− y2)σ

d

dy2

[
(1− y2)σ(1 + y2)dY2

dy2

]
− n2

2
1 + y2

Y2 + λ2
1− y2

Y2 = 0 .
(2.123)

The eigenvalues of the full problem (2.96) are Λ = 2π
k (λ1 + λ2).

Equations (2.123) can be solved in terms of the hypergeometric functions:

Y1 = (1 + y1)−n1F

[
−k1, k1 − 2n1 + σ;σ; 1− y1

2

]
,

Y2 = (1 + y2)−n2F

[
−k2, k2 − 2n2 + σ;σ; 1− y2

2

]
. (2.124)

17See appendix B for the details.
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The eigenvalues Λ in equation (2.96) are given by

Λ = 2π
k

(λ1 + λ2), λ1,2 =
(
k1,2 − n1,2 + σ

2

)2
− n2

1,2 −
σ2

4 . (2.125)

Regularity requires k1 and k2 to be non-negative integers. Setting σ = 1 and introducing
j1,2 = k1,2 − n1,2 the eigenvalues can be written as

λ1,2 = j1,2(j1,2 + 1)− n2
1,2. (2.126)

This leads to the expressions for Λ± which are consistent with an application of the general
formula (2.101) for a coset [2, 3] to the SU(2)/U(1) case. Equation (2.125) also hints at a
potential generalization of the formula (2.101) to arbitrary values of σ. Such generalization
indeed exists for all groups and cosets, and it will be discussed elsewhere [6].

The eigenfunctions of the vector field (2.21), (2.22) follow the pattern outlined in
section 2.2.1. In the present case there is no H-field, so one does not have to consider
ζ-modified vector equations, and the analysis becomes simpler than the one presented in
sections 2.2.2, 2.2.3.

Division of space (2.120) into two blocks,

x = {y1, α− β}, y = {y2, α+ β} . (2.127)

and application of the general pattern presented in section 2.2.1 leads to three types of
vector modes:

(a) Vector fields on the x-space:
The ansatz for the vector field has the form

A = B̃(y)Ci(x)dxi, (2.128)

and the eigenvalue problem (2.21) leads to the (2.27) for the functions (B̃, Ci). Field
Ci must satisfy the constraint (2.30) as well, but as we will see, in the SO(4)

SO(2)×SO(2)
case this does not lead to additional restrictions.

In the present case, the scalar function has the form

B̃(y) = ein2(α+β)Y2(y2), (2.129)

and Y2(y2) satisfies the second equation (2.123):

1
(1− y2)σ

d

dy2

[
(1− y2)σ(1 + y2)dY2

dy2

]
− n2

2
1 + y2

Y2 + λ̃scalar
1− y2

Y2 = 0.

The vector field Ci has the form

Cidx
i = ein1(α−β) [V1dy1 + V−(dα− dβ)] . (2.130)

where V1 and V− are functions of y1. Substitution into the second equation in (2.27)
gives and expression for V1,

V1 = in1(1− y1)V ′−
λvector(1 + y1)− n2

1(1− y1) , (2.131)
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as well as a differential equation for V−:

1 + y1
(1− y1)σ

d

dy1

[
(1− y1)σ+1(1 + y1)V ′−

λvector(1 + y1)− n2
1(1− y1)

]
+ V− = 0 . (2.132)

The Lorenz condition (2.30),

∂i
[
e−2σφ√ggijCj

]
= 0,

is automatically satisfied, and the eigenvalues of the problem (2.21) are given by

Λ = λ̃scalar + λvector . (2.133)

Interestingly, (2.132) and the first equation in (2.123) have the same set of eigenvalues,
and solutions V− can be written in terms of eigenfunctions Y1 by

V− = (1 + y1)dY1
dy1
− (n1)2σ

λ
Y1, λvector = λscalar . (2.134)

(b) Vector fields on the y-space:
This situation is analogous to the case (a) with a replacement

x→ y, λ̃scalar → λscalar, λvector → λ̃vector . (2.135)

The ansatz for the vector field is

A = B(x)C̃a(y)dya . (2.136)

with

B(x) = ein1(α−β)Y1(y1), C̃adx
a = ein2(α+β) [V2dy2 + V+(dα+ dβ)] . (2.137)

Function Y1(y1) satisfies the first ODE from (2.123),

1
(1− y1)σ

d

dy1

[
(1− y1)σ(1 + y1)dY1

dy1

]
− n2

1
1 + y1

Y1 + λscalar
1− y1

Y1 = 0 , (2.138)

and V+ satisfies a counterpart of (2.132)

1 + y2
(1− y2)σ

d

dy2

[
(1− y2)σ+1(1 + y2)V ′+

λ̃vector(1 + y2)− n2
2(1− y2)

]
+ V+ = 0 . (2.139)

As in the case (a), the sets of scalar and vector eigenvalues, {λ̃scalar} and {λ̃vector},
are the same, and the eigenfunctions of (2.139) and (2.123) are related by

V+ = (1 + y2)dY2
dy2
− (n2)2σ

λ̃vector
Y2, λvector = λscalar . (2.140)

Function V2 is given by

V2 = in2(1− y2)V ′+
λ̃vector(1 + y2)− n2

2(1− y2)
, (2.141)

and the eigenvalues of the problem (2.21) are

Λ = 2π
k

(λscalar + λ̃scalar) . (2.142)
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(c) The scalar mode:
The ansatz for the gauge field is given by (2.35)–(2.36):

A = B̃(y)dB(x) + µB(x)dB̃(y), (2.143)

and in the present case,

B(x) = ein1(α−β)Y1(y1), B̃(y) = ein2(α+β)Y2(y2). (2.144)

Functions Y1 and Y2 satisfy equations (2.123), and the eigenvalue Λ and parameter
µ are given by (2.38)

Λ = 2π
k

(λ1 + λ2) , µ = −λ1
λ2
. (2.145)

To summarize, application of the separable ansatz (2.25) to SO(4)
SO(2)×SO(2) describes three

physical degrees of freedom per each pair of eigenvalues (λ1, λ2) of the system (2.123). The
full spectrum describes three copies of (2.125) corresponding to cases (a), (b) and (c).

Our analysis was based on the product structure of the space (2.121), but it is also
instructive to compare with the ansatz (2.105) inspired by Maxwell’s equation on black
hole geometries. To do so, we write the metric (2.120) in terms of frames:

ds2 = k

2π (e1+
µ e1−

ν dxµdxν + e2+
µ e2−

ν dxµdxν),

e1±
µ dxµ =

√
1

1− y2
1

[dy1 ± i(1 + y1)(dα+ dβ)] ,

e2±
µ dxµ =

√
1

1− y2
2

[dy2 ± i(1 + y2)(dα− dβ)] , (2.146)

eµ1±∂µ =
√

1− y2
1

[
∂y1 ∓

i

(1 + y1)∂α+β

]
, eµ2±∂µ =

√
1− y2

2

[
∂y2 ∓

i

(1 + y2)∂α−β
]
.

Then equations (2.128), (2.130), (2.131), (2.134), lead to simple expressions for the projec-
tions:

(a) : eµ1+Aµ = − i(λ1 − n1σ)
λ1

eµ1+∂µZ, eµ1−Aµ = i(λ1 + n1σ)
λ1

eµ1−∂µZ,

eµ2±Aµ = 0, Z = ein1(α−β)+in2(α+β)Y1(y1)Y2(y2). (2.147)

Here we used the first equation form (2.123) to eliminate higher derivatives of Y1(y1).
Similarly, for the other branches we find:

(b) : eµ2+Aµ = − i(λ2 − n2σ)
λ2

eµ2+∂µZ, eµ2−Aµ = i(λ2 + n2σ)
λ2

eµ2−∂µZ,

eµ1±Aµ = 0, Z = ein1(α−β)+in2(α+β)Y1(y1)Y2(y2); (2.148)

(c) : eµ1±Aµ = eµ1±∂µZ, eµ2±Aµ = −λ1
λ2
eµ2±∂µZ, Z = ein1(α−β)+in2(α+β)Y1(y1)Y2(y2).
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All three cases, as well as their arbitrary linear combinations, match the structure (2.105)

eµ1±Aµ = b1±e
µ
1±∂µZ̃, eµ2±Aµ = b2±e

µ
2±∂µZ̃ (2.149)

with constant coefficients (b1±, b2±).
To summarize, in this subsection we demonstrated a full separation of variables in the

scalar and vector equations on the background of the WZW model for the SO(4)/[SO(2)×
SO(2)] coset. We found that, up to an extra degeneracy in the vector sector, the scalar
and vector spectra are identical and the eigenvalues are given by

Λ = 2π
k

(λ1 + λ2), λ1,2 = j1,2(j1,2 + 1)− n2
1,2. (2.150)

The components of the vector field are expressed in terms of the scalar by one of the
options (2.147)–(2.148), and various ingredients of the scalar eigenfunction (2.122) satisfy
ordinary differential equations (2.123).

2.6 Gauging and T-duality

In this section we have analyzed the eigenvalues problems for scalar and vector fields on
the backgrounds of the (gauged) WZW models corresponding to SO(4) and its cosets,
SO(4)/H. Although the differential equations describing the dynamical excitations varied
with the subgroup H, there were some similarities between them, and in this subsection
we will address the origin of these similarities. Specifically, we will demonstrate that the
target spaces of various SO(4)/H are related to each other by T duality, and that equations
for excitations transform under such dualities in a simple way.

We begin with the SO(4) WZW model that produces the geometry (2.12). Defining
new coordinates (α±, β±) by

α± = (αL − βL)± (αR − βR)
2 , β± = (α+ + βL)± (αL − βL)

2 , (2.151)

we can write the B field and the angular parts of the metric as

ds2 = (1 + y1)dα2
+ + (1− y1)dα2

− + (1 + y2)dβ2
+ + (1− y2)dβ2

−,

B = (1− y2)dβ+ ∧ dβ− + (1− y1)dα+ ∧ dα−. (2.152)

To simplify the discussion, we rescaled the metric and the B-field by the factor k
2π . Per-

forming T-dualities the α− and β− directions, one finds a new background with the metric

ds2 = 1 + y1
2(1− y1)dα

2
− + 1

2(dα− − 2dα+)2 + 1 + y2
2(1− y2)dβ

2
− + 1

2(dβ− − 2dβ+)2, (2.153)

but without the B field. Comparison with (2.120) shows that the dual geometry is
[SO(4)/[SO(2) × SO(2)]] × U(1)2. This agrees with a general statement that gauging of
any SO(2) symmetry is equivalent to a T duality [61]. By performing only one T-duality
in (2.152), one would find [SO(4)/SO(2)]×U(1).

The map between SO(4)/SO(2) and SO(4)/[SO(2) × SO(2)] cosets is slightly more
interesting. The T-duality corresponding to this map is performed along some combination
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of angles appearing in (2.91). Specifically, introducing a new coordinate τ = 2γ + α, we
can rewrite the SO(4)/SO(2) metric (2.91) as:18

ds2 = (y1y2 − 1)
y1 + y2 − 2dα

2 + 2(y1 − y2)
y1 + y2 − 2dαdβ −

(y1 − 1)(y2 − 1)
y1 + y2 − 2 dτ2

−y1 + y2 + 2
y1 + y2 − 2dβ

2 + dy2
1

2− 2y2
1

+ dy2
2

2− 2y2
2

B = dτ ∧
[
dβ

y2 − y1
y2 + y1 − 2 − dα

(y1y2 − 1)
y2 + y1 − 2

]
, e−2Φ = 2− y1 − y2 . (2.154)

T duality along τ direction removes the B-field and makes the dilaton separable:

ds2 = 1− y1y2
(y1 − 1)(y2 − 1) [dα2 + dβ2]− 2(y1 − y2)dαdβ

(y1 − 1)(y2 − 1) −
y1 + y2 − 2

(y1 − 1)(y2 − 1)dτ
2

2dτ (y1 − y2)dβ − (1− y1y2)dα
(y1 − 1)(y2 − 1) + dy2

1
2− 2y2

1
+ dy2

2
2− 2y2

2

e−2Φ = (y1 − 1)(y2 − 1) . (2.155)

An additional shift, α → α + τ leads to a simpler metric (2.120) with an additional flat
direction τ :

ds2 = 1− y1y2
(y1 − 1)(y2 − 1) [dα2 + dβ2]− 2(y1 − y2)dαdβ

(y1 − 1)(y2 − 1) + dτ2 + dy2
1

2− 2y2
1

+ dy2
2

2− 2y2
2

= 1 + y2
2(1− y2) [dα+ dβ]2 + 1 + y1

2(1− y1) [dα− dβ]2 + dτ2 + dy2
1

2− 2y2
1

+ dy2
2

2− 2y2
2

e−2Φ = (y1 − 1)(y2 − 1) . (2.156)

As expected, this is the [SU(2)/U(1)]× [SU(2)/U(1)]×U(1) geometry.
Once various SO(4)/H backgrounds are shown to be related by T-dualities, separation

of variables on one of them guarantees separation on another provided that dynamical
equations remain invariant. In particular, the scalar equation (2.96) is invariant under a
T-duality if and only if σ = 1, so separability of the Helmholtz equation on SO(4), where
the dilaton is trivial, would imply separability on SO(4)/H only for σ = 1. We saw this
explicitly for the SO(4)/SO(2) coset in section 2.3. Interestingly, the scalar equation on
the SO(4)/[SO(2) × SO(2)] geometry separates for an arbitrary σ (see (2.123)), but such
“bonus separation” is not a consequence of T-duality.

To separate the vector equation (2.103), one needs to build special frames associated
with the Killing-Yano tensors (see, for example, (2.106)). The behavior of the Killing-
Yano tensors (KYT) under T-duality was studied in [28], where it was shown that while
the ordinary KYTs may disappear, the modified KYTs are preserved. Interestingly, it is
precisely such modified Killing-Yano tensors, (2.107) and (2.114), that are responsible for
separation of the vector equations after T-duality. Therefore, we have demonstrated that
separations of the scalar and vector equations on the SO(4)/H cosets are not accidental,
but rather they are guaranteed by the relation between gauging and T-duality [61] and by
the transformation of dynamical equations and Killing-Yano tensors under the duality [28].

18In the subsection we have dropped the factor k/π.
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3 The SO(5) sigma model

In this section we will look at separation of variables in the SO(5) sigma model. Unfor-
tunately the full separation of variables encountered in previous section for SO(4) and it
cosets does not persist for SO(5), but we find several interesting sectors which admit a
partial separation. We begin with reviewing parameterization of SO(5) and an algebraic
construction of the scalar eigenfunctions developed in [5]. In section 3.1 we also present
some simple examples of wavefunctions which inspire the analysis in the rest of the dis-
cussion of the SO(5) group. In sections 3.3 and 3.4 we construct two infinite classes of
separable eigenfunctions by solving the Helmholtz equation. Each family is parameterized
by four discrete quantum numbers. In section 3.5 we use an algebraic procedure to con-
struct additional infinite families of separable solutions which depend on four parameters
as well. Finally, in section 3.6 we discuss partial separation for a different parameterization
of SO(5) as well as its extensions to larger groups.

The action of the SO(5) WZW model,

S = − k

2π

∫
d2σηαβtr(g−1∂αgg

−1∂βg) + ik

6π

∫
tr(g−1dg ∧ g−1dg ∧ g−1dg) (3.1)

is invariant under the SO(5)L × SO(5)R global symmetry. Since SO(5) has rank two, the
sigma model (3.1) has 2 + 2 = 4 commuting Killing vectors. It is useful to realize these
U(1) symmetries by simple translations, and this can be accomplished by the following
parameterization of the group element g:

g = h[αL, βL]
[
I −BXXTX −BXXT

BXX I −BXXXT

] I −BY Y Y
T BY Y 0

−Y TBY I − Y TBY Y 0
0 0 1

h[αR, βR] .

(3.2)

Here vector X, scalar BX , and matrices (Y,BY ), are defined by

X = (X1, X2, X3, X4), BX = 2
1 +XXT

Y = diag(Y1, Y2), BY = 2
1 + Y Y T

. (3.3)

We also defined h[α, β] as a matrix function of two angles:

h[α, β] =


cα sα 0 0 0
−sα cα 0 0 0

0 0 cβ sβ 0
0 0 −sβ cβ 0
0 0 0 0 1

 . (3.4)

Note that matrix hL = h[αL, βL] appears in the action (3.1) only in the combination
h−1
L dhL, so coordinates (αL, βL) are cyclic. Similarly, matrix hR = h[αR, βR] appears

only in the combination dhRh
−1
R , so coordinates (αR, βR) are cyclic as well. The full

metric corresponding to (3.1) is rather complicated, and here we just stress one important
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property, which is easy to verify. If we write Xi = Rµi, where three variables µi are subject
to constraint ∑µ2

1 = 1, then

ds2 = k

2π

[
8dR2

(1 +R2)2 + (terms without dR)
]
. (3.5)

In other words, the cross terms between dXi and remaining coordinates can be written in
terms of dµi.

In this section we will study the scalar equation

∇2Φ = −π
k

ΛΦ (3.6)

in the geometry (3.1)–(3.2). As demonstrated in [2, 3], the eigenvalues of this equation can
be expressed in terms of the quadratic Casimir of the gauge group, and the SO(5) case,
the result is

Λ = l1(l1 + 3) + l2(l2 + 1), l1 ≥ l2, (3.7)

where (l1, l2) are either both integers or both half-integers. Our goal is to construct the
corresponding eigenfunctions. In contrast to the situation described in the previous section,
equation (3.6) is not fully separable for the SO(5) WZW model, but there are several
separable families and they will be described in separate subsections. The simplest family
follows from the observation (3.5): if we assume that Φ is a function of R only, then the
equation (3.6) becomes19

(1 +R2)4

4R3
d

dR

[
R3

(1 +R2)2
dΦ
dR

]
+ ΛΦ = 0 . (3.8)

The normalizable solutions are

Φ = F

[
−k, 3 + k; 2; 1

1 +R2

]
, Λ = (3 + 2k)2 − 9

4 , (3.9)

where k is a non-negative integer, so we recover (3.7) with (l1, l2) = (k, 0). In the remaining
part of this section we will extend the explicit solution (3.9) to more general families.

3.1 Eigenfunctions from group theory

Before analyzing differential equations, it is useful to recall the algebraic construction for
the eigenfunctions of the Helmholtz equation (3.6). As demonstrated in [2, 3], all such
eigenfunctions can be constructed as polynomials in the matrix elements of g. Specifically,
each eigenvalue (3.7) corresponds to an irreducible representation of SO(5). Such repre-
sentations are characterized by Young tableaux, which in turn specify representations of
the permutation group S5. Then the wavefunction Φ is written as the sum over relevant
permutations P [5]

Φ =
∑
P

(−1)σ(P )gi1jP [1] . . . giLjP [L] − (traces) . (3.10)

19We used the expression for the determinant of the metric.
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The wavefunction is fully specified by the set of 2L indices (i1, . . . , iL, j1, . . . jL) and the
signatures σ(P ) associated with the Young tableau. In this subsection we will present
several examples of eigenfunctions (3.10) for representation of SO(5) with small L, and
in the subsequent subsections the patterns observed in these examples will be used to
construct infinite separable families.

The first set of states corresponds to the Young tableau with one box. The eigenvalue is

Λ = 4, (3.11)

and the eigenfunctions are arbitrary linear combinations of the matrix elements gij . To
make the [U(1)]4 symmetries explicit, we focus on the combinations which have specific
charges under these transformations. There are 25 states in total. One of them is neutral,
and it corresponds to (3.9) with k = 1:

1−R2

1 +R2 . (3.12)

This is the only state in the k = 1 representation that does not have angular or Xa

dependence.
To write the remaining states in the k = 1 representation, it is convenient to introduce

three combinations of the coordinates (R, Y1, Y2),

D = (1 + Y 2
1 )(1 + Y 2

2 )(1 +R2)
1− Y 2

1 Y
2

2
, y+ = Y1 + Y2

1− Y1Y2
, y− = Y1 − Y2

1 + Y1Y2
, (3.13)

as well as six complex combinations of Xa,

z1 = X1 + iX2, z2 = X3 + iX4, (3.14)
Z1+ = z1 − Y+z2, Z2+ = z2 + y+z1, Z1− = z1 − y−z̄2, Z2− = z2 + y−z̄1 .

Then we find that the 25 states in the k = 1 representation can be divided in four groups:

1. One state (3.12) without angular or Xa dependence.

2. Eight states are linear in Xa. They are given by

e−2iαLz1
1 +R2 ,

e−2iβLz2
1 +R2 ,

e2iαR(Z1+ − Y−Z̄2+)
D

,
e2iβR(Z2+ + Y−Z̄1+)

D
, (3.15)

and their complex conjugates.

3. Eight states charged under U(1)αL symmetry are given by

e−2i(αL+αR) (1 + Z2+Z̄2−)
D

, e−2i(αL+βR) (Z1+Z̄2− − Y+)
D

,

e2i(αR−αL) (Y+Y− + Z1+Z1−)
D

, e−2i(αL−βR) (Z1−Z2+ − Y−)
D

, (3.16)

and their complex conjugates.
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4. Eight states charged under U(1)βL symmetry can be obtained from (3.16) and their
complex conjugates by the replacements

αL → βL, αR → βR, Z1± → Z2±, Z2± → −Z1±. (3.17)

The extensions of these groups to general families will be discussed in section 3.4. We
conclude this subsection by listing some solutions corresponding to antisymmetric repre-
sentation characterized by a Young tableau with two boxes. The eigenvalue Λ = 4 has
degeneracy 100, and the wavefunctions are specified by two antisymmetric pairs of indices,
(i, j) and (k, l).20 Up to a normalization factor, the wavefunctions are given by

Φij;kl = gikgjl − gilgjk . (3.18)

As we saw already in the case of the fundamental representation, it is convenient to in-
troduce complex coordinates (3.14), so we will use the values (z1, z̄1, z2, z̄2, 5) for indices
(i, j, k, l) as well. For example,

Φz1j;kl = Φ1j;kl + iΦ2j;kl, Φz2j;kl = Φ1j;kl − iΦ2j;kl . (3.19)

Substituting the explicit expressions for the matrix elements of g, we observe that the
following combinations, as well as their complex conjugates, depend on (z1, z̄1, z2, z̄2) only
through R2:

Φz1z2;z1z2 = 4E1,1,1,1(1 + Y1Y2)
D(1− Y1Y2) , Φz1z2;z̄1z̄2 = 4E1,1,−1,−1(Y1 − Y2)2

D[1− (Y1Y2)2]

Φz1z̄2;z1z̄2 = 4E1,−1,1,−1(1− Y1Y2)
D(1 + Y1Y2) , Φz1z̄2;z̄1z2 = 4E1,−1,−1,1(Y1 + Y2)2

D[1− (Y1Y2)2] . (3.20)

Here we introduced a convenient shorthand notation

Ea,b,c,d = e−2i(aαL+bβL+cαR+dβR) . (3.21)

Note that wavefunctions (3.20) have a separable structure

Φ = e−2i(aαL+bβL+cαR+dβR)f(R)g(Y1, Y2) . (3.22)

In the next two subsections we will construct the most general function of the form (3.22)
that solves the scalar equation (3.6). In sections 3.4 and 3.5 extensions to several classes
of z-dependent solutions will be discussed as well, and they will contain the states (3.15)
and (3.16) as special cases.

20Recall that g is a 5× 5 matrix, so the indices (i, j, k, l) range from one to five. Then the antisymmetric
combinations, (i, j) and (k, l), can take 10 possible values each. This explains the 100-fold degeneracy of
the eigenvalue Λ = 6.
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3.2 Factorization of the R dependence

Before finding the most general solutions of the form (3.22), it is instructive to start with
a specific solution, such as one of the functions listed in (3.20), and explore the possibility
of changing function f(R) while keeping g(Y1, Y2) and constants (a, b, c, d) fixed. This
subsection is dedicated to the discussion of such “R-dressing”, and our starting point will
be slightly more general than (3.22).

Let us assume that the Helmholtz equation (3.6) has a solution of the form

ΦΛ0 = Rp

(1 +R2)q Φ̃
(
γi, Ya,

Xj

R

)
, γi = {αL, βL, αR, βR} . (3.23)

In particular, wavefunctions (3.22) and (3.15) fit this pattern. We will now demonstrate
that equation (3.6) admits a family of normalizable solutions which are obtained by “dress-
ing” solutions (3.23) by some specific function of the radial coordinate:

Φ(k)
Λk = Rp

(1 +R2)q fk,p,q(R)Φ̃
(
γi, Ya,

Xj

R

)
, Λk = Λ0 + (2k+ 2q+ 3)2 − (2q+ 3)2 . (3.24)

The “dressed” solution depends on an integer parameter k. To prove (3.24), we recall that
the metric has the form (3.5), where “terms without dR” contain (dγi, dYa, dµj), where µj
are three angles from a constrained set of four parameters:

Xj = Rµj ,
∑

µ2
j = 1. (3.25)

The differential equation (3.6) has the form

(1 +R2)4

4R3
∂

∂R

[
R3

(1 +R2)2
∂Φ
∂R

]
+ ∇̃2Φ + ΛΦ = 0, (3.26)

where ∇̃2 has a complicated R-dependence, but no R-derivatives. Writing equation (3.26)
for two wavefunctions, (3.24) and (3.23), and combining the results to eliminate the terms
with ∇̃2, we find

(1 +R2)4

4R3
∂

∂R

 R3

(1 +R2)2
∂Φ(k)

Λk
∂R

+ (Λk − Λ0)Φ(k)
Λk (3.27)

= (1 +R2)4+q

4R3+p
∂

∂R

[
R3

(1 +R2)2
d

dR

Rp

(1 +R2)q

]
Φ(k)

Λk .

To simplify this equation, we define a new function h by

h

[
R2

1 +R2

]
≡ fk,p,q(R). (3.28)

Then equation (3.27) becomes

x(1− x)h′′ + [2 + p− 2(2 + q)x]h′ + (Λk − Λ0)h = 0, (3.29)
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and the solution regular at R = 0 can be expressed in terms of the hypergeometric function:

fk,p,q(R) = F

[
−k, 3 + k + 2q; 2 + p; R2

1 +R2

]
, (3.30)

where Λk = Λ0 + (2k + 2q + 3)2 − (2q + 3)2

4 .

Normalizability at large values of R requires k to be a non-negative integer.
To summarize, we have demonstrated that every wavefunction of the form (3.23) gives

rise to a one-parametric family of normalizable solutions of the Helmholtz equation (3.6).
The wavefunctions are

Φ(k)
Λk = Rp

(1 +R2)q F
[
−k, 3 + k + 2q; 2 + p; R2

1 +R2

]
Φ̃
(
γi, Ya,

Xj

R

)
, (3.31)

and the eigenvalues are

Λk = Λ0 + (2k + 2q + 3)2 − (2q + 3)2

4 . (3.32)

Normalizabilty requires k to be a non-negative integer. An alternative form of (3.31),21

Φ(k)
Λk = Rp

(1 +R2)q F
[
−k, 3 + k + 2q; 2 + 2q − p; 1

1 +R2

]
Φ̃
(
γi, Ya,

Xj

R

)
, (3.33)

may be useful as well. In particular, the solution (3.9) is recovered by choosing the trivial
function Φ̃ and p = q = 0.

We conclude this subsection with presenting an example of the dressing (3.31). Observ-
ing that the wavefunctions (3.20) have (p, q) = (0, 1), we can dress the first wavefunction as

Φ(k)
z1z2;z1z2 = 4E1,1,1,1(1 + Y1Y2)

D(1− Y1Y2) F

[
−k, 5 + k; 2; R2

1 +R2

]
, Λk = Λ0 + (2k + 5)2 − 25

4 .

(3.34)

The remaining wavefunction from (3.20), as well as examples from (3.15) can be dressed
in the same way.

3.3 Separable X-independent solutions

In this subsection we will generalize the solutions (3.20) to wavefunctions which have the
form (3.22). For fixed function g and parameters (a, b, c, d), solution (3.22) covers a one-
parameter family of “dressed” wavefunctions analyzed in the previous subsection. To avoid
unnecessary complications associated with f(R), here we will focus on the “seed solu-
tions” (3.23):

Φ = e2i[n1αL+n2βL+n3αR+n4βR] g[Y1, Y2]
(1 +R2)q , (3.35)

21We dropped a constant multiplicative factor.
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and the “dressing” will be added in the end. In contrast to (3.23), equation (3.35) lists
the [U(1)]4 charges explicitly. Also, since we are looking for solutions independent of
µj = Xj/R, the parameter p in the seed solution (3.23) vanishes. Substitution of the
ansatz (3.35) into the Helmholtz equation (3.6) leads to a complicated overdetermined
system of equations for the function g[Y1, Y2].22 The explicit form of these equations is not
very illuminating, so we will present only the logic for solving them.

(i) Once the ansatz (3.35) is substituted into the equation (3.6), one finds an equation
that contains various functions of (X1, X2, X3, X4) and R. Expressing X1 in terms
of the remaining variables, one finds a system with independent (R,X2, X3, X4). In
particular, the coefficient in front of the product (X2X4) contains a polynomial in
(Y1, Y2) which must vanish. This happens if and only if

n4 = n2n3
n1

and n2 = ±n1 . (3.36)

This leads to two branches for the solution (3.35).

(ii) Focusing on the n1 = n2 branch, and requiring the coefficient of (3.6) in front of X2
to vanish, we find a first order equation for the function g:

(1 + Y 2
2 )∂Y2g + (1 + Y 2

1 )∂Y1g = 0. (3.37)

This reduces g[Y1, Y2] to a function of one variable:

n2 = n1 ⇒ g = f

[
Y1 − Y2
1 + Y1Y2

]
. (3.38)

Similarly, the n2 = −n1 branch gives

n2 = −n1 ⇒ (1 + Y 2
1 )∂Y1g − (1 + Y 2

2 )∂Y2g = 0 ⇒ g = f

[
Y1 + Y2
1− Y1Y2

]
. (3.39)

(iii) Substitution of (3.38) or (3.39) into (3.6) reduces the Helmholtz equation to a single
ODE for the unknown function f , and the resulting normalizable wavefunctions Φ
are given by (3.40).

After this summary of the derivation we present the final result. The two branches of the
solution (3.35) can be written as

Φ = e2i[n1(αL+βL)+n3(αR+βR)]

(1 +R2)q
(1 + y2

−)q+1

yn1−n3
−

F
[
q + 1− n1, q + 1 + n3; 1− n1 + n3;−y2

−

]

Φ = e2i[n1(αL−βL)+n3(αR−βR)]

(1 +R2)q
(1 + y2

+)q+1

yn1−n3
+

F
[
q + 1− n1, q + 1 + n3; 1− n1 + n3;−y2

+

]
,

(3.40)
22Specifically, variables (X1, X2, X3, X4) appear in the equation (3.6) in various combinations, not only

as R2. This leads to a system of PDEs for one function g[Y1, Y2].
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and complex conjugates of these expressions. Here we used the convenient variables y±
defined in (3.13):

y± = Y1 ± Y2
1∓ Y1Y2

. (3.41)

Interestingly, the eigenvalues corresponding to functions (3.40) depends only on q:

Λ = 2q(2 + q), (3.42)

and parameters (n1, n3) enter only through the constraints

max(n1, n3) ≤ q, integer (n1, n2, q). (3.43)

Solutions (3.40) can be dressed with functions of R according to (3.31)–(3.32):

1
(1 +R2)q →

1
(1 +R2)qF

[
−k, k + 2q + 3; 2 + 2q; 1

1 +R2

]
,

Λ = 2q(2 + q) + (2k + 2q + 3)2 − (2q + 3)2. (3.44)

In two special cases, n1 = n3 = q and n1 = −n3 = −q, the y-dependent parts of (3.40)
simplify to For n1 = n3 = ν, the z-dependent parts simplify to

1
(1 + y2

±)q =
[

(1± Y1Y2)2

(1 + Y 2
1 )(1 + Y 2

2 )

]q
and

[
y2
±

1 + y2
±

]q
=
[

(Y1 ± Y2)2

(1 + Y 2
1 )(1 + Y 2

2 )

]q
,

leading to pure powers of the expressions (3.20).
To summarize, we have demonstrated that the X-independent ansatz (3.35) introduces

constraints (3.36) on the [U(1)]4 charges and reduces g[Y1, Y2] to a function of one variable.
This implies, that the solution (3.35) depends on three parameters: two combinations of
(n1, n2, n3, n4) which are not eliminated by the constraint (3.36), and an additional integer
coming from the solutions of the ODE for the function g. Dressing the solutions (3.40)
with a function of R introduces the fourth parameter. Since the most general solution of
the Helmholtz equation (3.6) is expected to depend on 10 parameters, clearly the wave-
functions (3.35) form a very small subset. Unfortunately, the nice separability encountered
in (3.35) does not persist for the X-dependent functions, but several infinite families of
wavefunctions can be constructed, and they will be discussed in the next subsection.

3.4 Solutions linear in X coordinates

In the previous subsection we have constructed the most general X-independent solution
of the Helmholtz equation (3.6). Unfortunately, explicit closed-form expressions for all
X dependent eigenfunctions are unlikely to exist.23 Nevertheless in this subsection we
construct several infinite families of X-dependent eigenfunctions, and these results can
be viewed as a complement of the algebraic procedure (3.10), which is practical only for
representations with a small number of boxes in the Young diagrams.

23Procedure (3.10) allows to construct all such functions algorithmically, but the combinatorics becomes
complicated.
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Let us look at wavefunctions which are linear in (X1, X2, X3, X4). The explicit ex-
amples (3.15) suggest that it might be useful to write the solutions in terms of complex
variables (z1, z̄1, z2, z̄2). Let us impose an ansatz

Φ = e2i[n1αL+n2βL+n3αR+n4βR]

(1 +R2)q
[
z1g1(Y1, Y2) + z̄1g2(Y1, Y2) + z2g3(Y1, Y2) + z̄2g4(Y1, Y2)

]
.

(3.45)

Substituting this function into the equation (3.6), and requiring the coefficients in front of
eight combinations (X2

1X2, X
3
1 , X

2
2X1, X

3
2 , X

2
3X4, X

3
3 , X

2
4X3, X

3
4 ), to vanish, we can alge-

braically solve the resulting equations for the eight second derivatives

∂2
Y1gi(Y1, Y2), ∂2

Y2gi(Y1, Y2). (3.46)

Substituting the result back to (3.6), we observe that the coefficients in front of (X2
1X3,

X2
2X3,X2

3X1,X2
4X2) contain only functions gi, but not their derivatives. Requirement of

having non-trivial solutions implies that the determinant of the characteristic matrix has
to vanish. This condition leads to only eight possibilities:

n2 = n1 ± 1, n3 = n4;
n2 = −n1 ± 1, n3 = −n4; (3.47)
n4 = n3 ± 1, n1 = n2;
n4 = −n3 ± 1, n1 = −n2.

Some of the resulting solutions can be obtained from the others by applying discrete sym-
metries of the metric. First, by taking a complex conjugate of the solution, if necessary, we
can focus only on “−1” option instead of ±1. Furthermore, the first two options in (3.47),
are related by changing the signs of (αL, αR). While such change by itself is not a symmetry
of the metric, it is a part of a larger one:

(αL, αR, Y1, X1)→ −(αL, αR, Y1, X1). (3.48)

This symmetry also interchanges the last two options in (3.47). Therefore, there are two
genuinely distinct possibilities:

n2 = n1 − 1, n3 = n4 and n4 = n3 − 1, n1 = n2 . (3.49)

If one of these constraints is imposed, some of the algebraic equations for gi can be solved,
and the results are

n2 = n1− 1, n3 = n4 : Ψ = En1,n2,n3,n4

(1 +R2)q
[g1(Y1, Y2)z̄1 + g2(Y1, Y2)z2] , (3.50)

n1 = n2, n4 = n3− 1 : Ψ = En1,n2,n3,n4

(1 +R2)q

[{
z̄2 + Y1 +Y2

1−Y1Y2
z̄1

}
g4 +

{
z2 + Y1Y2− 1

Y1 +Y2
z1

}
g3

]
.

The differential equations for these two ansatze are analyzed in the appendix C.1, and they
lead to the following solutions.
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• For the first option in (3.50), functions g1 and g2 can depend on the (Y1, Y2) coordi-
nates only through the combination y− defined in (3.13):

g1[Y1, Y2] = h1 [y−] , g2[Y1, Y2] = h2 [y−] , y− = Y1 − Y2
1 + Y1Y2

. (3.51)

Function h1 and h2 satisfy an overdetermined system of ordinary differential equa-
tions, and one of the consistency conditions implies that

h1(w) = 1
2wσ

[
−w(1 + w2)h′2 + [n3(1 + w2)− n1(1− w2)]h2

]
(3.52)

with some constant σ. The remaining equations lead to the expressions for (Λ, σ) in
terms of the parameters (q, n1, n3) of the ansatz (3.50), and all regular solutions can
be divided into two branches:
(a): Λ = 2q(q + 2), σ = n1 + q,

n1 > n3 − 1 ⇒ h2[w] = wn1−n3

(1 + w2)qF [n1 − q,−n3 − q;n1 + 1− n3;−w2],

n3 > n1 − 1 ⇒ h2[w] = wn3−n1

(1 + w2)qF [n3 − q,−n1 − q;n3 + 1− n1;−w2];

(3.53)

(b): Λ = 2q(q + 1), σ = n1 − q,

n1 > n3− 1 ⇒ h2[w] = wn1−n3

(1 +w2)q−1F [1 +n1− q, 1−n3− q;n1 + 1−n3;−w2],

n3 > n1− 1 ⇒ h2[w] = wn3−n1

(1 +w2)q−1F [1 +n3− q, 1−n1− q;n3 + 1−n1;−w2].

As in the X-independent case (3.40), (3.42), the eigenvalue Λ depends only on q, and
the [U(1)]4 charges enter only through the regularity bounds: the first arguments of
the hypergeometric functions appearing in (3.53) must be non-positive integers.

• For the second option in (3.50), functions g3 and g4 can depend on the (Y1, Y2)
coordinates only through the combination y− defined in (3.13), up to a fixed prefactor.
Specifically, the second line in (3.50) must have the form

n1 = n2, n4 = n3 − 1 : (3.54)

Ψ = En1,n2,n3,n4

(1 +R2)q
Y1 + Y2√

1 + Y 2
2

√
1 + Y 2

1

[{
z̄1 + 1

y+
z̄2

}
ĝ4[y−] +

{
z2 −

1
y+
z1

}
ĝ3[y−]

]
.

Functions ĝ3 and ĝ4 satisfy an overdetermined system of ODEs, and one of the con-
sistency conditions gives

ĝ3 = −yĝ4 + h, ĝ4 = [1 + 2(Λ− 3q − 2q2)y2 + (n1 − n3)(1 + y2)]h+ y(1 + y2)h′
2(1− n3 + Λ− 3q − 2q2)y(1 + y2) .

(3.55)

The remaining equations lead to two branches for function h, the counterparts of (3.53)
for the present case:
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(a): Λ = 2q(q + 2),

n1 > n3 − 2 ⇒ h[w] = wn1−n3+1

(1 + w2)q− 1
2
F [n1 − q, 1− n3 − q; 2 + n1 − n3;−w2],

n3 > n1 ⇒ h[w] = wn3−n1−1

(1 + w2)q− 1
2
F [n3 − q − 1,−n1 − q;n3 − n1;−w2];

(3.56)

(b): Λ = 2q(q + 1),

n1 > n3− 2 ⇒ h[w] = w1+n1−n3

(1 +w2)q− 3
2
F [1 +n1− q, 2−n3− q; 2 +n1−n3;−w2],

n3 > n1 ⇒ h[w] = wn3−n1−1

(1 +w2)q− 3
2
F [n3− q, 1−n1− q;n3−n1;−w2].

Once again, the eigenvalue Λ depends only on q, and the [U(1)]4 charges enter only
through the regularity bounds: the first arguments of the hypergeometric functions
appearing in (3.56) must be non-positive integers.

To summarize, we have constructed all wavefunctions which have the form (3.45). Apart
from the R-dependence these solutions are linear in (X1, X2, X3, X4) coordinates. We have
shown that there are only eight possibilities (3.47) for the [U(1)]4 charges, and for each of
these options the final answers are specified by three quantum numbers (n1, n3, q). The
solutions can be divided into several groups:

(i) For n2 = n1 − 1, n4 = n3, the wavefunctions are given by

Ψ = En1,n1−1,n3,n3

(1 +R2)q
[
h1[y−]z̄1 + h2[y−]z2

]
(3.57)

with functions h1 and h2 given by (3.52) and (3.53).

(ii) The wavefunctions with (n2, n4) = (−n1 − 1,−n3) are obtained by applying the
map (3.48) to the solution (3.57). The result reads

Ψ = E−n1,n1−1,−n3,n3

(1 +R2)q
[
− h1[−y+]z1 + h2[−y+]z2

]
. (3.58)

(iii) The solutions with (n2, n4) = (±n1 + 1,±n3) are constructed by taking complex
conjugates of (3.57) and (3.58). The four branches covered by the items (i)–(iii) have
the general structure similar to (3.57).

(iv) The solution with (n2, n4) = (n1, n3 − 1) has the form (3.54) with various functions
given by (3.55) and (3.56).

(v) The wavefunctions with (n2, n4) = (−n1,−n3 − 1) are obtained by applying the
transformation (3.48) to equations (3.54), (3.55), and (3.56).
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(vi) The solutions with (n2, n4) = (±n1,±n3 + 1) are obtained by taking complex conju-
gates of the wavefunctions from the items (iv) and (v). All four solutions covered by
the items (iv)–(vi) have the general structure of the state (3.54).

Each of the eight branches discussed in this subsection has wavefunctions which are specified
by three integer parameters (n1, n3, q). The fourth quantum can be added by dressing the
solutions using (3.31) and (3.32) with p = 1. Therefore, we have constructed eight four-
parameter branches of scalar wavefunctions with linear dependence on individual Xi and
a complicated dependence on R.

3.5 Separable states in symmetric representations

In the last few subsections we have constructed several infinite families of scalar eigenfunc-
tions by solving the differential equation (3.6). Alternatively, one can use the algebraic
method (3.10), but unfortunately it involves combinatorics which becomes very compli-
cated as the size of a representation grows. Nevertheless, the construction (3.10) can be
used to find some infinite families of wavefunctions in a closed form, and in this subsection
we will do so for the fully symmetric representations of SO(5). We will begin with re-casing
the family (3.9) as a summation (3.10) for the symmetric representations, and then we will
extend this construction to more general wavefunctions in such representation.

While it is very easy to find the family (3.9) using differential equations (one just needs
to use the general structure (3.5) of the metric), it is instructive to recover these solutions
from the group theoretic construction (3.10). Since solutions (3.9) are neutral under [U(1)]2,
and they depend only on R, but not on the individual coordinates (X1, X2, X3, X4, Y1, Y2),
it is clear that the wavefunctions are built only from g55 in the parameterization (3.2).
With only one available matrix element, the wavefunction (3.10) vanishes unless the rep-
resentation is fully symmetric, and in the latter case one has

Φ = g55 . . . g55 − (traces). (3.59)

After recovering the family (3.9) from the last equation, we will analyze more general states
constructed from products of ga5: once again, since all ingredients have the same second
index, only symmetric representations are allowed, and the expression (3.10) reduces to

Φ = ga15 . . . gak5 − (traces). (3.60)

The structure of traces in (3.59) and (3.60) will be specified below.
We begin with analyzing the wavefunction (3.59). In general, the state in a symmetric

representation is24

Φ = ga1b1 . . . ga2sb2s +
s∑

k=1
(−1)k (4s+ 1− 2k)!!

(4s+ 1)!! δkΠ2s−2k , (3.61)

24We are focusing on the even number of boxes (2s) in the Young tableau, and the odd case can be
discussed in the same way.
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where we defined a shorthand notation

δkΠ2s−2k ≡
∑
i1...i2k

{[
δai1ai2 . . . δai2k−1ai2k

δbi1bi2 . . . δbi2k−1bi2k

] [ ga1b1 . . . ga2sb2s

gai1bi1 . . . gai2k bi2k

]}
.

(3.62)
Combinatorial factors in (3.61) are determined by requiring the contraction with respect
to any pair of indices (ai, aj) to vanish. For example, observing that25

δa1a2ga1b1 . . . ga2sb2s = δb1b2ga3b3 . . . ga2sb2s

and
δa1a2δ1Π2s−2 = (5 + 2(2s− 2))δb1b2ga3b3 . . . ga2sb2s + (terms with fewer g),

we conclude that the coefficient in front of the k = 1 term in (3.61) is indeed − 1
4s+1 . The

other coefficients are determined using induction.
To apply equation (3.61) to the state (3.59), we observe that if all indices ai = bj =

5, then
δkΠ2s−2k = (2s)!

(2s− 2k)!s! (g55)2s−2k . (3.63)

Substitution into (3.61) gives

Φ = (g55)2s +
s∑

k=1
(−1)k (4s+ 1− 2k)!!

(4s+ 1)!!
(2s)!

(2s− 2k)!s! (g55)2s−2k ∝ F
[
−s, 3

2 + s; 1
2 ; (g55)2

]
.

(3.64)

To relate this answer to the solution (3.9) we observe that equation (3.2) gives

g55 = 1−R2

1 +R2 ,

and that function (3.9) can be rewritten as

Φ = c1F

[
−k2 ,

3 + k

2 ; 1
2; (g55)2

]
+ c2g55F

[
−k − 1

2 ,
4 + k

2 ; 3
2; (g55)2

]
. (3.65)

The numerical coefficients (c1, c2) are such that c1 = 0 for the odd values of k, and c2 = 0
for the even ones. Clearly, there is a perfect agreement between (3.64) and (3.65) for
k = 2s, and the case of odd k can be analyzed in the same way.26 Therefore, the algebraic
construction (3.10) reproduces the family (3.9). We went though this derivation to illustrate
the procedure for analyzing (3.61) in a simple setting, and now we will present the results
for more complicated cases. The derivation follows the same logic, but the technical details
are more involved, and they are presented in the appendix C.2.

Let us go back to the states in the symmetric representation (3.61), take all indices bk
to be equal to five, and allow indices ak to take values from one to four. In other words, we

25Recall that since g is an element of SO(5), it satisfies the orthogonality relation ggT = 1.
26One would have to start with a counterpart of equation (3.61) for the representations with an odd

number of boxes in the Young tableaux.
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are looking at states (3.60). The experience gained in the previous subsections, suggests
that it is convenient to use complex coordinates z1 = X1 + iX2 and z2 = X3 + iX4 instead
of Xj , and to accommodate this change of coordinates we define27

gz5 = g15 + ig25, gw5 = g35 + ig45 . (3.66)

To perform contractions of these ingredients one can use the relevant Kronecker symbols

δzz = δx1+ix2,x1+ix2 = 0, δzz̄ = δx1+ix2,x1−ix2 = 2, δww = 0, δww̄ = 2. (3.67)

For example, let us consider a wavefunction built only from gz5 and gz̄5. Let us assign
charge one to gz5 and charge minus one gz̄5. It is clear that a contraction cannot change
the charge of the product, so all terms in (3.61) have the same. Assuming that this charge
q is non-negative, we conclude that the last term in (3.61) is equal to (gz5)q multiplied by
a constant. For other terms one finds a counterpart of (3.63):

δkΠq+2s−2k = 2kk!
[

s!
k!(s− k)!

] [ (s+ q)!
k!(s+ q − k)!

]
(gz5)q+s−k(gz̄5)s−k . (3.68)

Then the sum (3.61) can be easily performed, and it gives

Φ = (gz5)qF
[
−k, 3

2 + k + q; 1 + q; (gz5gz̄5)
]
. (3.69)

The solution with a negative q is obtained by a making a replacement gz5 ↔ gz̄5.
Once all ga5 are included, the combinatorics becomes more complicated, but the final

result is rather compact:

Φ = (gz5)q1(gw5)q2F2

[3
2 + q1 + q2 + k1 + k2,−k1,−k2; q1 + 1, q2 + 1; gz5gz̄5, gw5gw̄5

]
,

Λ = (2k1 + 2k2 + q1 + q2)(3 + 2k1 + 2k2 + q1 + q2). (3.70)

Here F2 is the Appell’s generalization of the hypergeometric function defined by the series
expansion28

F2[a, b1, b2; c1, c2;x, y] =
∞∑

m,n=0

(a)m+n(b1)m(b2)n
m!n!(c1)m(c2)n

xmyn . (3.71)

Regularity requires (k1, k2) to be non-negative integers. Combinatorial derivation of the
expression (3.70) is presented in the appendix C.2.

Expression (3.70) reduces to the standard hypergeometric function in the special
case (3.69) and its simple extension

Φ = (gz5)q1(gw5)q2F

[
−k, 3

2 + k + q1 + q2; 1 + q1; gz5gz̄5
]
, s = q1 + q2 + 2k, (3.72)

27We use (z, w) instead of (z1, z2) to avoid double superscript in various expressions written below. Also,
our results will be applicable to solutions which depend on different (z, w) complex structures, for example
for z = X1 − iX3, w = X2 − iX4, however, such combinations will not carry specific charges under [U(1)]4

symmetries corresponding to translations in (αL, βL, αR, βR).
28Recall the standard notation (a)n = a . . . (a+ n− 1).
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with various permutations of indices (z, z̄, w, w̄). Note that solutions (3.70) and (3.72)
carry specific [U(1)]4 charges, but their R-dependence is rather complicated. This can be
seen from the explicit form of the matrix elements:

gz5 = −2e−2iαLz

1 +R2 , gw5 = −2e−2iβLw

1 +R2 . (3.73)

In particular, the solutions described in this subsection don’t have the form (3.23), so
they cannot be dressed with additional functions of R using the procedure described in
section 3.2. Furthermore, all arguments of this subsection are equally applicable to g5a, so
by making replacements

ga5 → g5a (3.74)

in the expressions (3.70), (3.72), one still gets solutions of the Helmholtz equation (3.6)
with the same eigenvalues. The resulting separation is perhaps even more impressive since
the relevant matrix elements are more complicated

gz5 = 2e−2iαR(Z1− − y+Z2−)
D

, gw5 = 2e−2iβR(Z2− + y+Z1−)
D

. (3.75)

We used the convenient notation introduced in (3.13)–(3.14).
We conclude this subsection by counting parameters. There are 12 branches of (3.70)

corresponding to different choices of complex structures,29 and 12 more branches of the
solutions flipped by (3.74). Each branch has four integer parameters (q1, q2, k1, k2). In-
terestingly, each of the solutions (3.40) dressed with functions of R had four parameters
as well. It would be very interesting to find separable solutions with a larger number of
free parameters since a general solution in 10 dimensions should be parameterized by ten
numbers.

3.6 Separation in terms of spherical harmonics

To conclude the discussion of separable solutions in the SO(5) WZWmodel, we also mention
an alternative parameterization of the group element (3.2) that leads to another set of
eigenfunctions depending on four coordinates. This alternative parameterization has a
major disadvantage in comparison to (3.2): the Cartan group of SO(5) × SO(5) acts in a
complicated way,30 so we are discussing it only for completeness.

Let is consider a scalar field on the background of an SO(N) WZW model. A general
group element g can be written as

g = q h, (3.76)

where q is an element of the subgroup SO(N − 1) and h is a coset representative of
SO(N)/SO(N − 1) which describes the symmetric space SN−1. Then the left-invariant
one-form frames are given by

L = g−1dg = h−1(dhh−1 + q−1dq)h ≡ h−1L̃h. (3.77)
29Here we focus only on the complex structures in (X1, X2, X2, X4) space. There are also wavefunctions

obtained from (3.66) and (3.70) by replacements like X1 ↔ X5, but they have more complicated coordinate
dependence, so we have not studied them in detail.

30Recall that the WZW model on a group G has G×G global symmetries acting by g → hLghR.
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The action (2.1), can be rewritten in terms of L̃,

S = − k

2π

∫
d2σηαβtr(L̃αL̃β) + ik

6π

∫
tr(L̃ ∧ L̃ ∧ L̃) ,

so these objects can be used as frames. Introducing a split between the group and the
coset,

L̃ = dhh−1 + q−1dq ≡ Rh + Lq (3.78)

we can write the frames as a lower triangular block matrix:

L̃A
M =

[
Rαµ 0
Raµ L

a
m

]
, A = (α, a), M = (µ,m). (3.79)

where we have used the Greek (Latin) indexes are denoting the coset (subgroup) projec-
tions. The inverse of this lower triangular block matrix leads to the frames with contravari-
ant indices31

êMA =
[

Rµα 0
−LmaRaνRνα Lma

]
≡
[
Rµα 0
Nm

α L
m
a

]
, (3.80)

and the resulting inverse metric has a fibered structure:

GMN = ê M
A ê N

B ηAB = ηαβ(R µ
α +N m

α )(R ν
β +N m

β ) + ηabL m
a L n

b . (3.81)

In particular, if we look at the Helmholtz equation (3.6) and assume that the scalar Φ
depends only on the coset coordinates, then the problem reduces to the eigenvalue equation
on the sphere SN−1. The eigenvalues are given by

Λ = k(k +N − 2), (3.82)

and eigenfunctions are fully separable in several coordinate systems. For example, writing
the metric of Sp as

ds2
p = dθ2

p + sin2 θpds
2
p−1, (3.83)

we can build the eigenfunctions using induction:

Φ =
N−1∏
p

Φp(θp). (3.84)

Function Φp(θp) satisfies an ordinary differential equation

1
(sin θp)p−1

d

dθp

[
(sin θp)p−1dΦp

dθp

]
− Λp−1Φp

sin2 θp
+ ΛpΦp = 0 . (3.85)

The normalizable solutions of this equation can be written in terms of the associated
Legendre polynomials:

Φp = (sin θp)
2−p

2 P
(µ)
λ (cos θp), λ = kp − 1 + p

2 , µ = kp−1 − 1 + p

2 . (3.86)

31Note that RaνR ν
α 6= δaα.
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In the case of the SN−1 dimensional sphere, the solution depends on (N−1) integer param-
eters (k1, . . . kN1). Interestingly, for SO(5) we find four parameters, the same number that
has been encountered elsewhere in this section, although the spherical separation is very
different form the other constructions discussed here. In the SO(4) case spherical separa-
tion gives only three parameters, in contrast to the six-parameter separation encountered
in section 2.1. It would be interesting to see whether for larger groups spherical separation
becomes more or less powerful than the one coming from parameterizations like (3.1).

4 Discussion

In this article we have studied equations for scalar and vector fields on backgrounds of
several (gauged) WZW models. While the scalar spectrum has been known for some
time [2, 3], the algebraic construction of the relevant eigenfunctions turns out to be rather
involved [5], and it is desirable to look for a more explicit form of the solutions. Fur-
thermore, the CFT construction of eigenvalues and eigenfunctions [2, 3, 5] does not seem
to be easily extendable to vector and tensor fields. To cure these problems, we focused
on extracting the wavefunctions directly from the perspective of field equations instead of
appealing to algebraic methods.

For the SO(4) group and its cosets, we demonstrated the full separation of variables in
equations for the scalar and vector fields, including the vectors with field strength twisted by
the B-field. Although we derived separation of variables from the first principles, therefore
establishing uniqueness of the separable ansatz for the vector components, we found that
the final expressions have the same structure as their counterparts for the rotating black
holes [31]. This suggests universality of the form (2.74) for the separable components of
vector fields on all geometries that admit separation, and it would be very interesting to
test this hypothesis on other backgrounds.

For the SO(5) group, the full separation of scalar and vector equations seems unlikely,
but we found several classes of separable solutions. All our families are parameterized
by four integers, in contrast to ten quantum numbers expected for the ten-dimensional
geometry. It would be interesting to either find separable families with more parameters
or to understand why this can’t be done. It would also be interesting to study scalar and
vector fields on manifolds corresponding to larger groups and cosets.

Acknowledgments

This work was supported in part by the DOE grant DE-SC0017962 (OL) and by the UCAS
program of the Special Research Associate, as well as the internal funds of the KITS (JT).

A Vector field on the SU(2) WZW model

In section 2.2.2 we outlined the procedure for finding vectors modes on SU(2), and in this
appendix we present the technical details of this derivation. We will perform the analysis in
two steps. In section A.1 we will focus on the standard equations for the vector ((2.42) with
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ζ = 0) and give technical details supporting the steps (i)–(iv) presented in section 2.2.2.
This justifies the ansatz (2.57) and prove its uniqueness. In section A.1, we will impose
the ansatz (2.57) for the modified vector equation (2.42) and derive the relations (2.67)
and (2.68). This would justify step (v) in section 2.2.2.

A.1 Standard equation for the vector: ζ = 0

In this subsection we will focus on ζ = 0 case to justify the ansatz (2.57) and prove its
uniqueness. To get some intuition about the structure of relevant components we will begin
with a special case n1 = n2 = ζ = 0 of the system (2.42), (2.44). Then we extend the
analysis to arbitrary values of (n1, n2).

We begin with recalling that the most general separable solution for a vector field in
the geometry (2.43) is given by

Cidxi = ein1γL+in2γR [Vydy1 + V1dγL + V2dγR] , (A.1)

where (Vy, V1, V2) are functions of y1, which are mixed in equations (2.42). We are looking
for combinations of these components that satisfy decoupled equations, and to get insights
into the structure of such combinations, we begin with studying a special case:

n1 = n2 = 0, ζ = 0. (A.2)

Once these conditions are imposed, the mode Vy decouples, it gives λvector = 0, while func-
tion Vy remains arbitrary. This “pure gauge” describes the scalar mode (2.35) in the special
case (A.2). To decouple the remaining components, we introduce linear combinations V±:

V± = V1 ± V2
2 : Cidxi = [Vydy1 + V+(dγL + dγR) + V−(dγL − dγR)] . (A.3)

Then the system (2.42) with λvector 6= 0 reduces to differential equations for V±

(y1 ± 1) d

dy1

[
(y1 ∓ 1)V ′±

]
+ λvectorV± = 0. (A.4)

The normalizable solutions are

V±(y1) = C±F

[
−M,M ; 1; 1∓ y1

2

]
, λvector = −M2, (A.5)

where M is a non-negative integer. Comparing this with (2.16) for n+ = n− = 0, we can
identify M with L and express the vector modes in terms of the solutions of the scalar
equation (2.14):

V±(y1) = C±
[
(1− y2

1)B′1 +M(y1 ± 1)B1
]
. (A.6)

Then equations (A.4) with λvector = −M2 reduce to an ODE for B1:

d

dy1

[
(y2

1 − 1)B′1
]
−M(M + 1)B1 = 0, (A.7)

which is a special case of (2.14).

– 44 –



J
H
E
P
0
6
(
2
0
2
1
)
1
1
4

Next we relax the values (n1, n2) while keeping ζ = 0. In addition to the pure gauge,
Cidx

i = dC(x), which describes the scalar mode (2.35), we encounter two vector modes,
and inspired by (A.3), we write the gauge field as

Cidxi = ein1γL+in2γR [Vydy1 + V+(dγL + dγR) + V−(dγL − dγR)] . (A.8)

Assuming that λvector 6= 0, we find the expression for Vy in terms of (V+, V−):

Vy = −i(n1 + n2)(1− y1)V ′+ + (n1 − n2)(1 + y1)V ′−
n2

1 + n2
2 + λ(y2

1 − 1)− 2n1n2y1
. (A.9)

It turns out that the components (V+, V−) decouple only if n2 = ±n1, so in the general
case we write

V+ = V̂+ + u1(n2
1 − n2

2)V̂−, V− = V̂− + u2(n2
1 − n2

2)V̂+ (A.10)

with undetermined constants (u1, u2). Direct calculations show that equations for (V̂+, V̂−)
decouple only for the specific values of u1,2:

u1 = u2 = − 1
[
√
λ− n2

1 +
√
λ− n2

2]2
, (A.11)

and the eigenvalue problems are

d

dy1

[
(1− y2

1)V̂ ′−
λy1 − n1n2 − µ

]
+ λy1 − n1n2 + µ

λ(y2
1 − 1) V̂− = 0

d

dy1

[
(1− y2

1)V̂ ′+
λy1 − n1n2 + µ

]
+ λy1 − n1n2 − µ

λ(y2
1 − 1) V̂+ = 0 .

(A.12)

Here we defined
µ =

√
(λ− n2

1)(λ− n2
2) . (A.13)

Note that the ansatz (A.8) can be rewritten as

Cidxi = ein1γL+in2γR
[
Vydy1 + q+(V̂+ + V̂−)dγL + q−(V̂+ − V̂−)dγR

]
, (A.14)

where
q+ = (1 + u2n

2
1 − u2n

2
2), q− = (1− u2n

2
1 + u2n

2
2).

In particular,
q−
q+

=
[
λ− n2

2
λ− n2

1

]1/2

. (A.15)

Similar to (A.6), functions (V̂+, V̂−) can be written as

V̂±(y1) = C±

[
(1− y2

1)B′1 + 1
M

[λy1 − n1n2 ± µ]B1

]
, (A.16)

where function B1 satisfied the differential equation (2.14), and parameters (λ, ν1,M) are
related by

λ = M2, ν1 = M(M + 1). (A.17)
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The two free parameters C± characterize two different degrees of freedom of the vector
fields. As demonstrated in section 2.2.2, the expressions for the vector field become espe-
cially simple if one considers C+ = C− or C+ = −C− (see (2.57)–(2.58) and (2.59)–(2.60)).
In the next subsection we will extend these two polarizations to the modified equations for
the vector field (2.42) with a nontrivial value of ζ.

A.2 Modified vector equation: arbitrary ζ

To demonstrate separation of variables and decoupling of various components in equa-
tions (2.42) for all values of ζ, we introduce the frames (2.56),

eµ3∂µ = ∂γR , eµ±∂µ = − e∓iγR

2
√

1− y2
1

[
(1− y2

1)∂y1 ± i(y1∂γR − ∂γL)
]
,

(A.18)

eµ3e
µ
3 + 1

2
(
eµ+e

ν
− + eν+e

µ
−
)

= 2gµν .

and impose the ansatz (2.57)32

eµ3Cµ = a3e
µ
3∂µZ, eµ+Cµ = a+e

µ
+∂µZ, eµ−Cµ = a−e

µ
−∂µZ . (A.19)

Here (a3, a+, a−) are undetermined constant coefficients, and function Z is related to the
solution of the scalar equation (2.14) by

Z = B1e
in1γL+in2γR . (A.20)

Such Z after normalization can be expressed in terms of the Wigner’s coefficients,

Z = DJ
p,q , p = n2, q = n1, (A.21)

which obey an important set of identities:33

eµ3∂µD
J
p,q = ipDJ

p,q, eµ+∂µD
J
p,q = 1

2cpD
J
p−1,q, eµ−∂µD

J
p,q = −1

2cp+1D
J
p+1,q . (A.22)

Here we defined
cp =

√
(J + p)(J − p+ 1) . (A.23)

This leads to an alternative form of the ansatz (A.19):

eµ3Cµ = a3 ipD
J
p,q, eµ+Cµ = a+

cp
2 D

J
p−1,q, eµ−Cµ = −a−

cp+1
2 DJ

p+1,q . (A.24)

To evaluate the field strength, we need the expressions for the spin connections in the
frames (A.19). Although the spin coefficients Γabc,

dea + Γacbec ∧ eb = 0, (A.25)
32A similar ansatz for a vector field in a five dimensional black hole with two equal angular momenta was

also considered in [62].
33Winger’s functions are naturally defined with Euler’s angle parametrization and one can check these

identities explicitly in that parametrization of the group element.
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can be easily evaluated from the definition above, it is instructive to compute these coef-
ficients using the group-theoretic analysis. Specifically, substituting the expression for the
group element (2.3) into the definition of the left-invariant forms,

σa = Tr(T ag−1dg) . (A.26)

we arrive at a very simple relation
ea = −iσa . (A.27)

Then the Maurer-Cartan equations for the left-invariant forms lead to the expressions for
the spin coefficients in terms of the structure constants of SU(2):

dσa + i

2f
a
bcσ

b ∧ σc = 0 ⇒ Γabc = −1
2f

a
bc . (A.28)

These coefficients lead to the expression for the frame components of the modified field
strength,

Fab ≡ Fab + ζHc
abCc = ∂aCb − ∂bCa + (f cab + ζHc

ab)Cc, H3
+− = i

4 , (A.29)

and substitution of the ansatz (A.24) and the derivatives (A.22) gives

F+− = 1
4
(
−c2

p+1a− + c2
pa+ − 2p(1 + ζ)a3

)
DJ
p,q, (A.30)

F+3 = i

2cpp (a3 − (1 + ζ)a+)DJ
p−1,q, (A.31)

F−3 = i

2cp+1p ((1− ζ)a− − a3)DJ
p+1,q. (A.32)

To proceed, we project the equations (2.42) to the frames (A.19). We begin with the
derivative of the modified field strength:34

∇µFαβ = ∂µFαβ + ΓαµλFλβ + ΓλµβFαλ
= ∂µ(F bceαb eβc ) + ΓαµλF bceλb eβc + ΓλµβFbceαb eλc
= ∂µF bceαb eβc + F bc

(
∇µeαb eβc +∇µeβc eαb

)
. (A.33)

Here we used the relation
Γabc = eaαe

β
b∇βe

α
c . (A.34)

Substitution of (A.33) into the eigenvalue problem (2.42) gives35

∇µFµβ + 2ΛCβ = ∂aFaceβc + F bc(∇αeαb eβc + eαb∇αeβc ) + 2ΛCβ = 0. (A.35)

Multiplication by eβd and summation over β gives the final form of the system (2.42) pro-
jected to frames:36

∂aFad −
1
2F

bdfaab −
1
2F

bcfdbc + 2ΛCd = 0. (A.36)

34In this appendix, we denoting the spacetime indexes with Greek letters, (µ, ν, . . . ), and the local frame
indexes with Latin letters, (a, b, . . . ).

35The factor 2 before Λ is for our convenience to compare the result here with the results in the (y, γL, γR)
coordinates.

36Recall that Γabc = − 1
2f

a
bc.
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More explicitly, we find three independent equations:

∂−F+3 + ∂+F−3 − iF−+ + Λ
2C3 = 0,

∂+F−+ + 1
2∂3F3+ −

i

2F+3 + Λ
2C+ = 0, (A.37)

∂−F+− + 1
2∂3F3− + i

2F−3 + Λ
2C− = 0.

Substitution of (A.24) and (A.30) reduces (A.37) to a system of algebraic equations for
coefficients (a3, a+, a−):

M

 a3
a+
a−

 =

 0
0
0

 , (A.38)

M ≡

 p[c
2
p + c2

p+1 − 2(Λ− ζ − 1)] −(1 + p+ ζ) 1− p+ ζ

2p(1 + p+ ζ) 2Λ− 2p(p+ ζ)− c2
p c2

p+1
2p(1− p+ ζ) −c2

p 2p(p− ζ)− 2Λ + c2
p+1

 .
Setting the determinant of the matrix M to zero,

[J(J − ζ)− Λ][(1 + J)(1 + J + ζ)− Λ]Λ = 0, (A.39)

we find two physical polarizations of the vector field, as well as a pure gauge:37

Λ = J(J − ζ) : a± = n2
n2 ± J

a3 ;

Λ = (1 + J)(1 + J + ζ) : a± = n2
n2 ∓ (J + 1)a3 ; (A.40)

Λ = 0 : a− = a+ = a3 .

The last line gives Fµν = 0, but Fµν is still nontrivial:

F+− = −pζ2 a3D
J
p,q, F+3 = − ipζ2 cpa3D

J
p−1,q, F−3 = − ipζ2 cp+1a3D

J
p+1,q. (A.41)

This field is divergence-free, so it gives Λ = 0.
To threat the first two solutions from (A.40) in a unified fashion, we observe that

Z = DJ
n2,n1 is a solution of the scalar equation (2.14) with an eigenvalue

ν1 = J(J + 1), J ≥ 0. (A.42)

The last expression can be rewritten as

ν1 = M(M + 1) with M = J or M = −J − 1 . (A.43)
37Here we recalled the definition (A.21) to go back from parameter p to n2, which is used in the main

body of the paper.
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This concluded the derivation of the vector eigenvalues (2.68). Taking the first option for
the first line in (A.40) and the second option for the second line, we can summarize both
branches as

Λ = M(M − ζ) : a± = n2
n2 ±M

a3 ν1 = M(M + 1), (A.44)

where M can take both positive and negative values. This concludes the derivation of the
vector eigenvalues (2.68).

Although it is not obvious a priori, it is straightforward to check that the solu-
tions (A.24) (A.44) satisfy the “Lorenz gauge” condition:38

∇µCµ = ∇aCa = 2n2
2a3 + (J + 1 + n2)(J − n2)a− + (J + n2)(J + 1− n2)a+ = 0. (A.45)

This fact plays an important role in section 2.2, where the SU(2) vectors are combined to
produce separable solutions for the vector fields on SO(4).

This method can be easily generalized to model with higher rank semi-simple groups.
Take a highest weight representation in which states can be labelled by their weight ~r. The
proper ansatz of the vector field will be

eHiµ ∂µAµ =
∑
~r

aHiD~r, e
E~αi
µ ∂µAµ = aE~αiD~r−~αi , (A.46)

where Hi correspond to the Cartan subgroup (the analogue of T3), ~αi correspond to the
roots (the analogue of T±) and D~r are the higher dimensional analogue of Wigner’s func-
tions. Using the general commutation relations between the Cartan and root operators,
one can see that indeed that different modes will not mix in any components of the field
strength if we assume there are no degeneracies. However to derive the corresponding
eigenvalue problem is very cumbersome.

B Geometries for the gauged WZW models

The gauged WZW on coset G/H can be constructed by integrating out the gauge fields
A± corresponding to the subgroup H from WZW on G. In this appendix, we present the
construction of this geometric background. It is convenient to separate the generators TA
of the group G into T a corresponding to the subgroup H and Tα corresponding to the
coset G/H and define the left and right Maurer-Cartan forms on G as

LAM = −iTr(TAg−1∂Mg), RAµ = −iTr(TA∂Mgg−1),
RAM = DABL

B
M , DAB = Tr(TAgTBg−1), g ∈ G. (B.1)

In terms of the left and right forms the corresponding metric, Kalb-Ramond and dilaton
field of the gauged WZW are given by

Gµν = k

2π
(
ηABL

A
µL

B
ν − Laµ(Dab − ηab)−1Rbν −Ra(Dab − ηab)TLbν

)
, (B.2)

Bµν = k

2π
(
B0
µν − Laµ(Dab − ηab)−1Rbν +Ra(Dab − ηab)TLbν

)
,

e−2Φ = det(Dab − ηab), (B.3)
38Since we are dealing with a massive vector field C, the equations (2.42) are not invariant under the

C → C + df transformations.
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where B0 is defined by H0 = dB0 with

H0
MNP = fABCL

A
ML

B
NL

C
P , fABC = −iTr([TA, TB]TC). (B.4)

After some manipulations, the metric can also be written in terms of local frames as

Gµν = k

2π ηαβ e
α
µe
β
ν = k

2π ηαβ ê
α
µ ê
β
ν , (B.5)

eαµ = Lαµ −DT
aα(Dab − ηab)−TLbµ, êαµ = Rαµ −Dαa(Dab − ηab)−1Rbµ. (B.6)

In the group model (2.1), there are also two natural local frames LAM and RAM which are
related to the GL × GR isometries of the group model. By gauging the subgroup H, the
GL × GR isometries are mostly explicitly broken and the resulted gWZW model should
only depend on the gauge invariant quantities. As a result the two local frames (B.6) of
gWZW are gauge invariant projections and restrictions of LAM and RAM . Therefore the two
local frames (B.6) are the ones (after some linear combinations) we used in our separable
ansatz (2.57) and (2.105) inherited from the general form (A.46).

C Scalar wavefunctions for the SO(5) sigma model

In this appendix we provide some technical details relevant for deriving several classes of
scalar eigenfunctions on the background of the SO(5) WZW model.

C.1 Solutions with linear z-dependence

In section 3.4 we outlined the procedure for starting with a general expression (3.45) for
the eigenfunction linear in (X1, X2, X2, X4) and using various algebraic relations following
from the Helmholtz equation (3.6) to derive the options (3.6) that correspond to two types
of branches (3.50). In this appendix, we will begin with (3.50) and derive the expressions
for functions (g1, g2, g3, g4). We will focus on the first option in (3.50), and the second one
can be analyzed in the same way.

Let us define a convenient function

F = (1 +R2)q(∇2 + Λ)Ψ. (C.1)

Once the first solution from (3.50),

n2 = n1 − 1, n3 = n4 : Ψ = En1,n2,n3,n4

(1 +R2)q [g1(Y1, Y2)z̄1 + g2(Y1, Y2)z2] , (C.2)

is substituted, function F must vanish. This leads to complicated overdetermined equations
for g1 and g2, but one of the necessary conditions is very simple:

∂2F

∂X2
3

∣∣∣∣∣
X1=iX2

= 0 :
[
(1 + Y 2

2 )∂Y2 + (1 + Y 2
1 )∂Y1

]
g2 = 0. (C.3)

The most general solution of the resulting first order PDE is

g2 = h2

[
Y1 − Y2
1 + Y1Y2

]
, (C.4)
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where h2 is an arbitrary function of its argument. Next we look at another necessary
condition:

∂

∂X4
(F |X3=−iX4)

∣∣∣∣
X4=0

= 0 :
[
(1 + Y 2

2 )∂Y2 + (1 + Y 2
1 )∂Y1

]
g1 = 0 . (C.5)

This gives
g1 = h1

[
Y1 − Y2
1 + Y1Y2

]
. (C.6)

All remaining equations contain (Y1, Y2) only in one combination

y− = Y1 − Y2
1 + Y1Y2

, (C.7)

so we find an overdetermined system of ordinary differential equations for (h1[y−], h2[y−])
with coefficients depending on (X1, X2, X2, X4). One of these equations gives the expres-
sion (3.52) for h1 in terms of h2, then the consistency of the remaining system for h2 leads
to two options for Λ:

Λ = 2q(q + 1) or Λ = 2q(q + 2). (C.8)

In both cases, the system collapses to a single hypergeometric equation for h2, and the
solutions are given by (3.53).

The second option in (3.50) can be analyzed in the same way, and the result
is (3.55)–(3.56).

C.2 Wavefunctions in the symmetric representations

The goal of this subsection is to derive the expression (3.70) from the general re-
sult (3.61). To do so, we focus on the wavefunction (3.61) containing four building blocks:
(gz5, gz̄5, gw5, gw̄5). To evaluate the relevant combinatorial factors, it is convenient to white
the leading term in (3.61) more explicitly as

ga15 . . . ga2s5 → [gz5]q1 [gw5]q2xs1ys2 , (C.9)

where we defined
x = gz5gz̄5, y = gw5gw̄5 (C.10)

Furthermore, relations (3.67) ensure that the only two types of contractions in (3.61):
gz5 with gz̄5 and gw5 with gw̄5. Therefore, the index k in (3.61) can be decomposed as
k = k1 + k2 to keep track of the contractions of the first and the second types. With this
notation we find

δkΠ2s−2k
[gz5]q1 [gw5]q2xs1ys2

=
k∑
p=0

{
2pp!

[ (s1 + q1)!
p!(s1 + q1 − p)!

] [
s1!

p!(s1 − p)!

]

× 2k−p(k − p)!
[ (s2 + q2)!

(k − p)!(s2 + q2 − k + p)!

] [
s2!

(k − p)!(s2 − k + p)!

] 1
xpyk−p

}

= 2k
k∑
p=0

x−pyp−k

p!(k − p)!
(s1 + q1)!

(s1 + q1 − p)!
s1!

(s1 − p)!
(s2 + q2)!

(s2 + q2 − k + p)!
s2!

(s2 − k + p)! . (C.11)
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Substitution into (3.61) gives

Φ =
s∑

k=0
(−1)k (4s+ 1− 2k)!!

(4s+ 1)!! δkΠ2s−2k

= [gz5]q1 [gw5]q2
s∑

k=0
(−1)k (4s+ 1− 2k)!!

(4s+ 1)!! 2k

×
k∑
p=0

xs1−pys2+p−k

p!(k − p)!
(s1 + q1)!

(s1 + q1 − p)!
s1!

(s1 − p)!
(s2 + q2)!

(s2 + q2 − k + p)!
s2!

(s2 − k + p)!

= [gz5]q1 [gw5]q2
∑
m,n

xmyn

m!n!(−2)m+n−s1−s2

(4s+ 1 + 2m+ 2n− 2s1 − 2s2)!!
(4s+ 1)!!

×(−s1)m
(−1)m

(−s2)n
(−1)n

(s1 + q1)!
(m+ q1)!

(s2 + q2)!
(n+ q2)! . (C.12)

At the last stage we used the relation

(−s1)m = (−s1)(−s1 + 1) . . . (−s1 +m− 1) = (−1)m s1!
(s1 −m)! (C.13)

for the coefficients (a)n = a . . . (a+ n− 1) which appear in the definition of the hypergeo-
metric function and its generalization (3.71). To simplify the expression (C.12), we observe
that the definition of s from (3.61) implies s = s1 + s2 + q1+q2

2 . Then

(4s+ 1 + 2m+ 2n− 2s1 − 2s2)!! = (2[s1 + s2 + q1 + q2] + 2[m+ n] + 1)!!

= 2m+n
(
s1 + s2 + q1 + q2 + 3

2

)
m+n

(2[s1 + s2 + q1 + q2] + 1)!! . (C.14)

Substituting this into (C.12) and dropping a complicated but irrelevant overall factor which
depends on (s1, s2, q1, q2), we find39

Φ ∝ [gz5]q1 [gw5]q2
∑
m,n

xmyn

m!n!

(
s1 + s2 + q1 + q2 + 3

2

)
m+n

(q1 + 1)m(q2 + 1)n
(−s1)m(−s2)n

∝ [gz5]q1 [gw5]q2F2

[3
2 + q1 + q2 + s1 + s2,−s1,−s2; q1 + 1, q2 + 1;x, y

]
. (C.15)

Here we used the definition (3.71) of the Appell series. Equation (C.15) completes the
derivation of the wavefunction (3.70).

We conclude this subsection by justifying the wavefunction (3.72) for the special sit-
uation of s2 = 0. In this case the Appell series reduce to the standard hypergeometric
function, but one can also easily derive the result (3.72) from the first principles without
appealing to the reduction formulas. For the solution with s2 = 0, the contractions can
happen only between gz5 and gz̄5, so the contraction rule becomes

δpΠ2s−2p = 2pp!
[ (s1 + q1)!
p!(s1 + q1 − p)!

] [
s1!

p!(s1 − p)!

]
xs1−p(gz5)q1(gw5)q2 . (C.16)

39To arrive at this expression we also used the relations (m+q1)! = (q1+1)mq1! and (n+q2)! = (q2+1)nq2! .
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Then the summation (3.61) gives

Φ = (gz5)q1(gw5)q2
∑
k

(−2)k (4s+ 1− 2k)!!
(4s+ 1)!!

xs1−k

k!
(s1 + q1)!

(s1 + q1 − k)!
s1!

(s1 − k)!

∝ (gz5)q1(gw5)q2
∑
n

1
(−2)n

(2[s1 + q1 + q2] + 2n+ 1)!!
(4s+ 1)!!

xn

(s1 − n)!
(s1 + q1)!
(n+ q1)!

s1!
n!

∝ (gz5)q1(gw5)q2
∑
n

(
s1 + q1 + q2 + 3

2

)
n

(−s1)n
(n+ q1)!

xn

n! .

We used the expressions (C.13) and (C.14) for the factorials and double factorials in terms
of the gamma functions, and, as before, we dropped the complicated but irrelevant constant
prefactors in front of Φ. Performing the sum in the last expression, we arrive at the final
result (3.72):

Φ = (gw5)q2(gz5)q1F

[
−k, 3

2 + k + q1 + q2; 1 + q1; gz5gz̄5
]
, s = q1 + q2 + 2k. (C.17)

This concludes our justification of various combinatorial formulas used in section 3.5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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