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Previous studies have shown that the ground state of systems of nucleons composed by an equal number 
of protons and neutrons interacting via proton-neutron pairing forces can be described accurately by a 
condensate of α-like quartets. Here we extend these studies to the low-lowing excited states of these 
systems and show that these states can be accurately described by breaking a quartet from the ground 
state condensate and replacing it with an “excited” quartet. This approach, which is analogous to the 
one-broken-pair approximation employed for like-particle pairing, is analyzed for various isovector and 
isovector-isoscalar pairing Hamiltonians which can be solved exactly by diagonalization.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The role played by α-like quartets for systems of nucleons in-
teracting by proton-neutron (pn) pairing forces has been debated 
for many years [1–7]. In a series of recent studies we have shown 
that α-like quartets, defined as correlated structures of two pro-
tons and two neutrons coupled to total isospin T = 0, represent 
the key elements for a proper description of N = Z systems gov-
erned by proton-neutron pairing interactions. In the case of a 
state-independent isovector pairing Hamiltonian, in particular, we 
have provided semi-analytical expressions of the T = 0 seniority-
zero eigenstates and shown that these are linear superpositions of 
products of distinct α-like quartets built by two collective T = 1
pairs [8]. For the same Hamiltonian it has also been shown that 
a trial state formed by a single product of quartets of different 
structure provides ground state correlation energies which coincide 
with the exact values up to the 5th digit [9]. Similar approximate 
solutions in terms of products of distinct quartets have been also 
proposed for the isoscalar-isovector pairing interactions [10].

A particular class of quartet states of physical interest are those 
built by a product of identical quartets. These states, called quar-
tet condensates, have been studied for both the isovector [11] and 
isoscalar-isovector [12,13] pairing Hamiltonians in the framework 
of quartet condensation model (QCM) approach. In the special case 
of the state-independent isovector pairing Hamiltonian of Ref. [8], 
the link between the complex exact structure of the ground state 
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and this simple approximation scheme has been discussed in detail 
[14]. The QCM approach, which conserves exactly both the particle 
number and the isospin, has been found to describe accurately the 
ground state correlation energies of proton-neutron pairing Hamil-
tonians, with an accuracy below 1%. The quartet correlations have 
turned out to be important also in the ground state of N > Z
systems. For these systems the ground state has been well approx-
imated by a condensate of α-like quartets to which a condensate 
of pairs, built with the extra neutrons, is appended [15,16]. Finally 
it is worth mentioning that also in the case of realistic shell-model 
type interactions, the quartet condensate has been found to ap-
proximate well the ground state of N = Z nuclei [17–19] and, to a 
good extent, also the first excited 0+ states of sd-shell nuclei [19].

With the only exception of Ref. [19], all the studies men-
tioned above have been fully addressed to a description of the 
ground states of proton-neutron pairing Hamiltonians. The pur-
pose of this paper is to extend these studies to the excited states 
of these Hamiltonians. This work will be focused on even-even 
N = Z systems for which, as said above, the ground state can be 
well-approximated by a condensate of α-like quartets. For these 
systems we shall analyze a particular class of excited states built 
by breaking a quartet from the condensate which describes the 
ground state and replacing it with an “excited” quartet. This ap-
proximation will be analyzed for various isovector and isovector-
isoscalar proton-neutron pairing Hamiltonians and the results will 
be contrasted with the exact eigenstates provided by diagonaliza-
tion.

The manuscript is structured as follows. In Section 2, we will 
illustrate our approach in the case of the isovector pairing. In 
Section 3, we will discuss the case of an isovector plus isoscalar 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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pairing Hamiltonian. Finally, in Section 4, we will summarize the 
results and draw the conclusions.

2. Excited states for the isovector pairing

The isovector pairing Hamiltonian considered in this section has 
the expression

H =
∑

i

εi Ni +
∑
i, j

V T =1
J=0 (i, j)

∑
T z

P+
i,T z

P+
j,T z

(1)

where

Ni =
∑

σ=±,τ=± 1
2

a†
iστ aiστ , P+

i,T z
=

√
2 ji + 1

2
[a+

i a+
i ]T =1, J=0

T z
. (2)

The operator a†
iστ (aiστ ) creates (annihilates) a nucleon in the 

single-particle state i characterized by the quantum numbers 
(σ , τ ), where σ = ± labels states which are conjugate with re-
spect to time reversal and τ = ± 1

2 is the projection of the isospin 
of the nucleon. The operator P †

iT z
(PiT z ) creates (annihilates) a 

pair of nucleons in time-reversed states with total isospin T = 1. 
The three isospin projection T z correspond to pp, nn and pn
pairs. In Eq. (2) the pair operators are written for the case of a 
spherically-symmetric Hamiltonian with pairs which have a well-
defined angular momentum J=0.

We start by recalling the quartet condensation model (QCM) 
for the ground state of this Hamiltonian, which will be used below 
for introducing the new class of excited states. In Ref. [9] it was 
shown that the ground state of the Hamiltonian (1) with nq/2 ac-
tive protons and neutrons can be well approximated by a quartet 
condensate:

|Q C M〉 = (Q +
iv)nq |−〉 (3)

where

Q +
iv =

∑
i j

xi j[P †
i P †

j]T =0=
∑

i j

xi j
1√
3
(P †

i1 P †
j−1 + P †

i−1 P †
j1 − P †

i0 P †
j0)

(4)

is the collective quartet built by a linear combination of two non-
collective isovector pairs coupled to the total isospin T = 0. By 
construction the quartet (4) contains two types of 4-body corre-
lations between the protons and neutrons: (a), those generated by 
the isospin coupling and, (b), those arising from the mixing pa-
rameters xij .

In order to establish a connection between collective quartets 
and collective pairs, in Ref. [11] the mixing parameters have been 
taken separable in the indices, i.e., xij = xi x j . In this approximation 
the ground state becomes

|Q C M〉 = (Q
+
iv)nq |−〉 (5)

where the new quartet operator

Q
+
iv = 2�+

1 �+
−1 − (�+

0 )2 (6)

is expressed in terms of the collective pair �+
t = ∑

xi P+
it . From 

Eq. (6) one can see that in this approximation the quartets contain 
only those 4-body correlations generated by the isospin coupling. 
We remark that it has been recently shown that the QCM state (5)
results from the projection on the isospin T = 0 and the particle 
number of the BCS-type function e�+

0 |−〉 [20].
In order to study the excitation spectrum of the Hamiltonian (1)

for the same system of protons and neutrons, in the present study 
2

we shall consider a new class of QCM states obtained by remov-
ing a quartet from the condensate describing the ground state and 
replacing it with a new “excited” quartet. We shall explore this ap-
proximation in correspondence with both types of condensates (3)
and (5).

We shall begin from the condensate (3), in which the quartets 
have the most general expression (4) without any factorization of 
the amplitudes xij . We shall refer to this case as Approximation 
(A). The excited states have the form

|�ν〉 = Q̃ +
ν (Q +

iv)nq−1|−〉, (7)

where

Q̃ +
ν =

∑
i j

y(ν)
i j [P+

i P+
j ]T =0 (8)

represents the excited collective quartet. These excited states are 
therefore linear superpositions of the states

[P+
i P+

j ]T =0(Q +
iv)nq−1|−〉. (9)

In order to construct the amplitudes y(ν)
i j defining the collective 

quartet Q̃ +
ν , once a QCM calculation for the ground state has been 

performed and the quartet Q +
iv has been defined, it suffices to 

diagonalize the Hamiltonian (1) in the space spanned by the non-
orthogonal states (9). Being built in terms of non-collective oper-
ators P+

iT z
which create pairs of nucleons in time-reversed states, 

the eigenstates (7) are zero seniority states [21].
To test this approximation, we shall consider a system with 6 

protons and 6 neutrons interacting through a state independent 
isovector pairing force (i.e. V T =1

J=0 (i, j) ≡ −g in Eq. (1)) and dis-
tributed over 6 equidistant levels with four-fold degeneracy (due 
to the presence of both spin and isospin degrees of freedom). 
There are two different ways (equivalent in practice) to interpret 
this model space. On one side, this space can be associated with 
a set of single-particle states of orbital angular momentum l=0 
and j=1/2. In this case the quartets are built by pairs with an-
gular momentum J =0 and, consequently, all the states (7) have 
J =0. Alternatively, the single-particle levels can represent a set of 
axially-deformed single-particle states associated with an intrinsic 
deformed mean field. In the latter case the pairs operators, defined 
by P+

i,T z
= [a+

i a+
i ]T =1

T z
, and the eigenstates (7) have J z=0 but not 

well-defined angular momentum. In a realistic application of the 
model the deformed mean field can be generated self-consistently 
by Hartree-Fock calculations [11]. Here, as a natural continuation 
of the works of Refs. [8,14], we have adopted a schematic model 
with the single-particle energies εi = −16 + 2(i − 1) which are 
characterized by a constant spacing 	ε = 2.

In Fig. 1a we compare the excitation energies provided by the 
approximation (7), as a function of the pairing strength g , with 
the exact results obtained by diagonalization. One can observe that 
the approximation (7) works well for all pairing strengths, from 
weak to strong coupling regimes. It can be also noticed that the 
exact low-lying spectrum contains a few states which cannot be 
represented by the approximation (7).

As a next step we shall consider the same type of approxima-
tion discussed so far but in correspondence with the ground state 
condensate (5), where we assume a factorization xij = xi x j of the 
amplitudes of the quartets. This implies that the quartets are now 
built in terms of the collective isovector pair �+ , as described in 
Eq. (6). We shall refer to this case as Approximation (B). The ex-
cited states are now defined as

|�ν〉 = Q̂ +
ν (Q

+
iv)nq−1|−〉, (10)

with
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Fig. 1. Excitation spectra of the isovector pairing Hamiltonian (1) for a system of N = Z = 6 particles moving on 6 equidistant levels. Dashed lines in Figs. 1a and 1b refer, 
respectively, to the approximations (A) and (B) discussed in the text while full lines represent the exact results. Energies and the pairing strength g are in units of the spacing 
	ε between the levels.
Fig. 2. Low-lying spectra of the isovector pairing Hamiltonian (1) for the same sys-
tem discussed in Fig. 1 and a pairing strength g = 1. The spectra (A) and (B) refer, 
respectively, to the Approximations (A) and (B) discussed in the text while the spec-
trum EX corresponds to the exact one. Energies and the pairing strength g are in 
units of the spacing 	ε between the levels.

Q̂ +
ν = [�̃+

ν �+]T =0 ∝ �̃+
ν,1�

+
−1 + �̃+

ν,−1�
+
1 − �̃+

ν,0�
+
0 . (11)

The state |�ν〉 differs from the corresponding ground state |Q C M〉
only for the presence of the “excited” pair �̃+

ν,t = ∑
i z(ν)

i P+
it , the 

pair �+ being instead that defining the quartets Q
+
iv . In order to 

define the coefficients z(ν)
i it suffices to diagonalize the Hamilto-

nian in the basis of non-orthogonal states

[P+
i �+]T =0(Q

+
iv)nq−1|−〉. (12)

In Fig. 1b we show the eigenvalues corresponding to the ex-
cited quartets (10) for the same system considered above. Only 5 
approximate excited states can be built in this case (the index i
of (12) ranging over the number of the levels) and they are seen 
to follow quite closely the behavior of 5 exact low-lying excited 
states. From a comparison with Fig. 1a one may notice that, for val-
ues of g > 0.8, the 5 exact eigenstates in this figure coincide with 
the 5 lowest excited states of the Hamiltonian (1) while for smaller 
values of g an “intruder” exact eigenstate exists which crosses 
these states and which is not reproduced in the Approximation 
(B). In this figure, for simplicity, only 5 exact excited eigenstates 
have been reported and the agreement with the approximate ones 
appears fairly good, the largest deviations being observed in the 
weak coupling regime.

In order to better understand the quality of the Approximations 
(A) and (B) in the calculations just discussed, in Fig. 2 we show 
a more detailed description of the results of these approximations 
in a specific case. The calculations of this figure refer to a value of 
the strength g = 1.0 and report not only the spectra but also the 
overlaps between exact and approximate eigenstates. One can no-
tice that the overlaps are very large both in the approximation (A) 
and (B). An overlap equal to zero indicates that the corresponding 
exact eigenstate is not a QCM state.
3

Two remarks are in order with reference to this figure. The 
first remark concerns the approximate ground states. These ground 
states are those resulting from the diagonalization of the Hamilto-
nian (1) in the space of states (9) (Approximation (A)) and in the 
space of states (12) (Approximation (B)). Strictly speaking, thus, 
they are not true QCM condensates since one of the quartets re-
sults from a diagonalization and is not constrained to be equal to 
the others. However, the fact that the QCM ground state corre-
sponds to a minimum in energy, causes this new quartet to be 
essentially identical to the others as we have also verified by the 
fact that both the energy and the overlap of this state are basically 
indistinguishable from those of the true QCM state. The second 
remark has to do with a peculiarity of the exact spectrum already 
evidenced in Figs. 1a and 1b, namely the existence of degeneracies. 
The evaluation of the overlaps between a generic state |α〉 and 
two degenerate states |
1〉 and 
2〉 is hampered by the fact that 
the wave functions of the degenerate states cannot be unambigu-
ously defined since any other two states |
(+)

12 〉 = d1|ψ1〉 + d2|ψ2〉
and |
(−)

12 〉 = d1|ψ1〉 − d2|ψ2〉, with d2
1 + d2

2 = 1, also represent a 
pair of degenerate eigenstates with the same energy. The over-
laps 〈α|
(±)

12 〉 obviously depend on the (arbitrary) coefficients d1

and d2. In such a circumstance we have followed the approach of 
Ref. [22] and introduced the quantity M(12)

α = 〈α|
1〉2 + 〈α|
2〉2. 
This quantity is invariant with respect to any transformation |
(±)

12 〉
and it can be seen to provide the maximum squared overlap be-
tween the state |α〉 and a generic state |
(+)

12 〉. This maximum is 
found in correspondence with the state

|
(+)
12 〉 = 1√

M(12)
α

(〈α|
1〉|
1〉 + 〈α|
2〉|
2〉) (13)

while the paired eigenstate

|
(−)
12 〉 = 1√

M(12)
α

(〈α|
1〉|
1〉 − 〈α|
2〉|
2〉) (14)

is, by construction, such that 〈α|
(−)
12 〉 = 0 [22]. The overlap shown 

in Fig. 2 in correspondence to two degenerate states |
1〉 and 
2〉
is thus the square root of the quantity M(12)

α .
The examples discussed so far have involved quartets formed 

by the isovector operators P+
iT z

, which under the assumption of 
spherical symmetry, are characterized by an angular momentum 
J = 0. In what follows, aiming at a more realistic application of 
the isovector pairing Hamiltonian (1) in a spherical mean field, we 
introduce the most general pair creation operator

P+
J J z,T T z

(i, j) = [a+
i a+

j ] J T
J z T Z

(15)

and, by means of this, the most general collective T = 0 quartet
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Fig. 3. The low-lying spectrum provided by the QCM approximation (17) for the 
valence nucleons of 28Si interacting by an isovector pairing force extracted from the 
USDB interaction. The numbers are the overlaps between the QCM and the exact 
wave functions. Energies are in MeV.

Q̃ +
ν, J J z

=
∑

T ′

∑
J1(i1 j1)

∑
J2(i2 j2)

Y (ν)
J J z

(T ′, J1(i1 j1), J2(i2 j2))

×[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)] J ,T =0
J z

. (16)

This quartet is employed to define the exited states

|�ν, J J z 〉 = Q̃ ν, J J z (Q +
iv)nq−1|−〉, (17)

where the collective quartet Q +
iv is still restricted to isovector pairs 

only. Q +
iv has been assumed to be of the type (4), by therefore 

excluding a factorization of the coefficients xij . Similarly to the 
cases discussed above, in order to find the coefficients Y (ν)

J M of the 
quartet (16) and so construct the excited states one needs to diag-
onalize the Hamiltonian (1) in the space of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)] J ,T =0
J z

(Q +
iv)nq−1|−〉. (18)

To assess the validity of the approximation (17) we have per-
formed calculations for a system of N = Z = 6 nucleons moving 
in the sd-shell and interacting with an isovector pairing force ex-
tracted from the USDB interaction [23]. This system corresponds 
to 28Si. The energies obtained for the low-lying T = 0 states (17)
are given in Fig. 3 and are compared with the exact eigenvalues 
(calculated with the shell model code BIGSTICK [24]). As it can be 
seen, the approximation (17) reproduces quite well the exact re-
sults with overlaps between corresponding states which are close 
to unity for all the low-lying states.

3. Excited states for the isovector-isoscalar pairing

The isovector-isoscalar pairing Hamiltonian has the expression

H =
∑

i

εi Ni +
∑
i, j

V T =1
J=0 (i, j)

∑
T z

P+
i,T z

P j,T z

+
∑

i≤ j,k≤l

V T =0
J=1 (i j,kl)

∑
J z

D+
i j, J z

Dkl, J z . (19)

The first two terms are the same as in Eq. (1) while the last term 
is the isoscalar pairing interaction written in term of the isoscalar 
pair operator

D+
j1 j2 J z

= 1√
1 + δ j1 j2

[a+
j1

a+
j2
] J=1,T =0

J z
(20)

As in the previous section, we start by recalling the QCM ap-
proach for the ground state of the isovector-isoscalar Hamiltonian 
[13]. For even-even N = Z systems the QCM ansatz for the ground 
state has formally the same expression as in the case of isovector 
pairing
4

Fig. 4. The low-lying spectrum provided by the QCM approximation (24) for the 
valence nucleons of 28Si interacting by an isovector-isoscalar pairing force extracted 
from the USDB interaction. The numbers are the overlaps between the QCM and the 
exact wave functions. Energies are in MeV.

|
gs〉 = (Q +
ivs)

nq |0〉. (21)

The difference is that now the quartet operator Q +
ivs , still having 

total isospin T = 0, is the sum of two quartets

Q +
ivs = Q +

iv + Q +
is , (22)

where Q +
iv is the quartet (4) built by isovector pairs while Q +

is is 
formed by two isoscalar pairs coupled to total J = 0, i.e.,

Q +
is =

∑
j1 j2 j3 j4

y j1 j2 j3 j4 [D+
j1 j2

D+
j3 j4

] J=0. (23)

A simpler version of this approach can be obtained by adopting 
in (23) the factorization y j1 j2 j3 j4 = y j1, j2= j̄1

y j3, j4= j̄3
(the bar in-

dicating time-reversing) and by using the expression (6) for the 
isovector quartet. This QCM approximation has been investigated 
in detail in Ref. [12] and will not be further discussed in the 
present work.

Acting as in the isovector pairing case, in correspondence with 
the QCM ansatz (21) for the ground state, we construct a class of 
excited states by replacing a quartet of the condensate with an “ex-
cited” quartet. For the case of a spherically-symmetric mean field, 
these states take the form

|�ν, J J z 〉 = Q̃ ν, J J z (Q +
ivs)

nq−1|−〉, (24)

where the operator Q̃ ν, J J z is identical to that defined in Eq. (16). 
In order to define its coefficients Y (ν)

J J z
, one has now to diagonalize 

the Hamiltonian (19) in the basis of non-orthogonal states

[P+
J1,T ′(i1, j1)P+

J2,T ′(i2, j2)] J ,T =0
J z

(Q +
ivs)

nq−1|−〉. (25)

To illustrate the accuracy of the approximation (24) we have 
still referred to the case of 28Si and assumed an isovector-isoscalar 
pairing force corresponding to the ( J = 0, T = 1) and ( J = 1, T =
0) channels of the USDB interaction [23]. Exact and approximate 
spectra are shown in Fig. 4. It can be seen that the inclusion of 
the isoscalar force removes the degeneracies observed in the case 
of the isovector interaction. The overall agreement is good also in 
this case although the quality of the overlaps is, in some cases, not 
as high as that of Fig. 3. As a peculiarity, we notice that the first 
excited J = 6 state has not a corresponding state in the QCM ap-
proximation while the second J = 6 exact state is well reproduced 
both for the energy and the overlap.

4. Summary and conclusions

We have extended the quartet condensation model (QCM) to 
describe the T = 0 excited states of proton-neutron pairing Hamil-
tonians. These excited states have been generated by breaking a 
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quartet from the quartet condensate which describes the ground 
state and replacing it with an “excited” quartet. We have first 
discussed this approach for a state-independent isovector pairing 
force acting on a system of N = Z = 6 nucleons moving on a set of 
equidistant level. For such a system we have considered two levels 
of approximation, one assuming the quartets of the ground state 
formed by two identical isovector collective pairs coupled to T = 0
and the other, less restrictive, letting the quartets be simply super-
positions of products of two uncorrelated isovector pairs coupled 
to total isospin T = 0. In the first case, the “excited” quartet has 
been generated by breaking only one of the two collective pairs. In 
both cases a very good agreement between exact and approximate 
spectra has been found both at the level of the energies and of the 
overlaps.

As further applications we have considered the cases of isovec-
tor and isovector-isoscalar pairing Hamiltonians in a spherical 
mean field. The quartets of the ground state condensates have 
been restricted in these two cases to isovector and isovector plus 
isoscalar pairs only while the excited quartet has been assumed 
in both cases to be the most general combination of two protons 
and two neutrons coupled to total isospin T =0 and total angu-
lar momentum J . We have examined, in particular, the case of 
N = Z = 6 nucleons moving in the sd-shell (corresponding to 28Si) 
with isovector and isovector-isoscalar pairing forces extracted from 
the shell-model interaction USDB [23]. In both cases the low-lying 
excited states predicted by the extended QCM approach have com-
pared well with the exact eigenstates. As a major result, then, all 
the results illustrated in this paper clearly point to the relevance 
that α-like degrees of freedom play not only in the ground state 
but also in the excited states of proton-neutron pairing Hamilto-
nians. The approach illustrated in this paper provides an effective 
tool to construct approximate spectra of these Hamiltonians by al-
lowing a simple interpretation of the structure of their eigenstates.

We like to conclude by noticing the interesting analogy be-
tween the eigenstates of proton-neutron and like-particle paring 
Hamiltonians. As already pointed out in previous studies, the QCM 
ansatz for the ground state of even-even N=Z systems is the anal-
ogous of the particle-number projected-BCS (PBCS) approximation 
for like-particle systems proposed many years ago by Bayman and 
Blatt [25,26]. On the other hand, the one-broken-quartet approx-
imation for the excited states of N = Z systems discussed in the 
present work shows a clear analogy with the one-broken-pair ap-

proximation employed for the treatment the excited states in like-
particle systems [27].
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