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1 Introduction

As of 2016 the observation of gravitational waves (GWs) has become a reality [1]. An
unexpected variety of GW events has already been observed from black hole and neutron
star binary mergers on the first and second observation runs of the LIGO and Virgo col-
laborations [2–4]. The continuously increasing influx of data expected from the expanding
worldwide network of ground-based interferometers [5–8] and anticipated space-based de-
tectors in complementary frequencies [9, 10] places significant demands on the precision
of theoretical predictions. The theoretical waveform templates used for these observations
are uniquely created using the effective one-body (EOB) framework [11, 12], which in turn
relies heavily on the post-Newtonian (PN) theory of General Relativity as input [13]. Even
relatively high-order corrections beyond Newtonian gravity, such as the sixth PN (6PN)
order, are required for accurate waveforms, and to gain further information about the inner
structure of the individual components of the binary.

PN theory provides an analytic treatment of the long inspiral phase, in which the two
compact objects in the binary move with non-relativistic velocities. The orbital dynamics
of the compact binaries is an essential ingredient for theoretical waveform models. The
current state of the art for orbital dynamics for generic compact binaries in PN theory is
presented in table 1. This table shows the sectors obtained at order n + l + Parity(l)/2
in the PN expansion, where l is the order of spin that appears in the sector with the
corresponding parity for even or odd l, and for l ≥ 2 finite-size effects have to be tackled.
Along the years much of the progress in PN theory has been made only for the simple
unrealistic case, in which the compact objects are not spinning and are considered as
point-masses (corresponding to the first row in table 1), due to the considerable conceptual
and computational difficulty of treating spinning objects in gravity.

Nevertheless, in recent years remarkable progress has also been made in the spinning
sectors via the effective field theory (EFT) approach to PN gravity [14, 15] within the
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n (N0)LO N(1)LO N2LO N3LO N4LO N5LO

S0 1 0 3 0 25 0
S1 2 7 32 174
S2 2 2 18 52
S3 4 24
S4 3 5

Table 1. The minimum number of n-loop graphs within the EFT framework for each PN sector
that has been completed to date for the orbital dynamics of generic compact binaries. The gray
area indicates the sectors that correspond to gravitational Compton scattering with quantum spins
s ≥ 3/2.

framework of the EFT of gravitating spinning objects [16]. The filled entries in table 1
show the number of n-loop graphs that contribute within the EFT framework in each
NnLO sector that has been completed to date. The boldface entries in the table have been
completed only via the EFT of gravitating spinning objects [16], in a series of works [17–26].
In particular, in [16] the leading non-minimal gravitational couplings to all orders in spin
were formulated, thus enabling the completion of all sectors with finite-size effects up to
the current state of the art at the 4PN order.

This line of work was recently extended along both of the axes of table 1: the first
three-loop calculation in the spinning sector was computed in [25], using the publicly-
available EFTofPNG code [23], and the cubic- and quartic-in-spin sectors were tackled at
one-loop level in [24, 26]. The latter sectors thus uniquely explore the gray area in table 1,
which corresponds to gravitational Compton scattering with quantum spins s ≥ 3/2, as
sectors with classical spin at the l-th order correspond to scattering with quantum spin of
s = l/2 [27]. Altogether, this has been pushing the precision frontier to the 5PN order.

This work derives for the first time the complete N3LO gravitational interactions which
are quadratic in the spins from a diagrammatic expansion at order G4. All contributions
at this order are static, meaning that they involve no explicit factors of the velocities of the
compact objects. This sector involves both three-loop graphs and finite-size effects due to
the spin-induced quadrupole. It enters at the 5PN order for maximally-spinning compact
objects, thus further pushing the precision frontier of PN gravity. This work builds on the
EFT of gravitating spinning objects [16] and its implementation in the publicly-available
EFTofPNG code in [23], as well as on their recent implementations and upgrade at the
two-loop level [21] and at the three-loop level [25].

As noted above the spinning sectors are considerably more challenging to handle than
the non-spinning ones. First, contrary to the non-spinning case, in the spinning sectors all
possible graph topologies are realized at each order of G [28]. While there are no three-
loop graphs that enter in the non-spinning N3LO sector, in the present sector there are 52
such graphs (see table 1), which turn out to be precisely those that produce divergences
and logarithms. Further, this sector contains 163 graphs to evaluate compared to only
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8 in the N3LO sector without spins. We also recall that spins are derivatively coupled,
which in this sector with two spins leads to integrand tensor numerators up to rank eight,
comparable to N5LO in the sector without spins. Finally, at this order we also have to
consider further contributions from higher-order operators with spins that are beyond linear
in the curvature (note, however, that tails that involve spin couplings do not contribute at
the order considered here [13, 29]).

The paper is organized as follows. We begin in section 2 by reviewing the formal
framework of the EFT of gravitating spinning objects, which we extend in section 2.1 to
include further non-minimal couplings in the effective action of a spinning particle that
become relevant at this order. We proceed in section 3 to consider the diagrammatic
expansion of interactions that are quadratic in the spins, highlighting how the graphs in
this sector can be constructed out of the graphs in lower-order sectors. We discuss the
total outcome for the sector in section 4, and conclude in section 5.

2 EFT of gravitating spinning objects

We start by reviewing the framework of the EFT of gravitating spinning objects, which en-
ables our derivation of the N3LO quadratic-in-spin sectors from a diagrammatic expansion
at order G4. We follow closely the setup presented in the recent work [25] and also build
on [21], keeping similar conventions and notations. First we will extend the one-particle
effective action that was required for the N3LO spin-orbit in [25], introducing further Feyn-
man rules that are required in this sector. Thus, from the two-particle effective action that
describes a compact binary [14, 15]:

Seff = Sg[gµν ] +
2∑

a=1
Spp(λa), (2.1)

we will only be concerned with Spp, the worldline action of a spinning particle for each of
the two components of the binary, where λa are their respective worldline parameters.

From the pure gravitational action, Sg, given in [25] in the harmonic gauge, no ad-
ditional ingredients are required beyond those presented in [25]. Hence, we use similar
propagators for the gravitational field components in terms of the Kaluza-Klein (KK) de-
composition [30, 31], and no further bulk vertices are required beyond those which were
added in [25]. As in [25] the spatial dimension, d, is kept generic throughout, which also
matches what is done in the EFTofPNG code [23]. We use the corresponding d-dimensional
gravitational constant [25],

Gd ≡ GN
(√

4πeγ R0
)d−3

, (2.2)

where GN ≡ G is Newton’s gravitational constant in three-dimensional space, γ is Euler’s
constant, and R0 is a fixed renormalization scale. This corresponds to the modified minimal
subtraction (MS) prescription in dimensional regularization used in this work, see e.g. [32].
As in the N3LO sector at order G4 in [25] relativistic corrections to the propagators are
not relevant in this paper.
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We now focus on the point-particle action for each of the spinning particles [15, 16].
The quadratic-in-spin sector includes three types of interaction: i. the coupling between the
spins of both objects, referred to as the spin1-spin2 interaction, ii. the nonlinear interaction
of each object’s spin with itself, referred to as spin1-spin1 interaction, and iii. finite-size
effects that involve the spin-induced quadrupole of each of the rotating objects. Due to
the latter interaction, the effective action should be considered beyond minimal coupling,
which is sufficient for the spin-orbit sector, and for interactions that are dependent on the
linear spin couplings as in the spin1-spin2 and spin1-spin1 interactions. Considering all
these interactions, the effective action of each of the spinning particles reads [15, 16]:

Spp(λ) =
∫
dλ

[
−m
√
u2 − 1

2 ŜµνΩ̂µν − Ŝµνpν
p2

Dpµ
Dλ

+ LNMC [gµν , uµ, Sµ]
]
, (2.3)

where LNMC denotes the non-minimal coupling part of the action induced by the spin of
the object. This part is initially formulated in terms of the definite-parity pseudovector Sµ,
as defined in [16, 19, 24]. Beyond these non-minimal couplings all of the previous terms
in the action are similar to what is noted in [25], where the difference with the action
in [33–35] was highlighted.

The non-minimal coupling part of the effective action involving the spin was con-
structed in [16], where the spin-induced non-minimal couplings to all orders in spin and
linear in the curvature were derived to be:

LNMC(R) =
∞∑
n=1

(−1)n

(2n)!
CES2n

m2n−1Dµ2n · · ·Dµ3
Eµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2n−1Sµ2n

+
∞∑
n=1

(−1)n

(2n+ 1)!
CBS2n+1

m2n Dµ2n+1 · · ·Dµ3
Bµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2nSµ2n+1 , (2.4)

which involves new spin-induced Wilson coefficients, the electric and magnetic curvature
components of definite parity, defined as

Eµν ≡ Rµανβuαuβ , (2.5)

Bµν ≡
1
2εαβγµR

αβ
δνu

γuδ, (2.6)

as well as their covariant derivatives, Dµ. Of the infinite series in eq. (2.4) only the first
operator is required in this paper, corresponding to the spin-induced quadrupole that reads:

LES2 = −CES2

2m
Eµν√
u2
SµSν . (2.7)

Up to missing generic symmetry and construction considerations, a closely related expres-
sion was used in [36], which conformed with the well-known LO spin-squared interaction
from [37, 38].

There are no additional Feynman rules (such as worldline mass and spin couplings)
required for the spin1-spin2 and spin1-spin1 interactions, which originate from the minimal-
coupling part of the point-particle action, beyond those presented in [20, 25]. Thus, we
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turn now to the Feynman rules required for this sector due to the interaction involving the
spin-induced quadrupole, which go beyond the rules in previously computed lower-order
spinning sectors [21]. All of the aforementioned Feynman rules can be obtained within the
public EFTofPNG code [23] for a generic number of spatial dimensions d. The new relevant
Feynman rules for this sector were obtained by further extending the FeynRul module of
the EFTofPNG code [23].

For the three-graviton coupling to the worldline spin-induced quadrupole, the new
required Feynman rule is

= −CES2

4m
1

d− 2

∫
dt

[
dSiSj

(
2σik

(
∂jφ∂kφ+ φ∂j∂kφ

)
+ φ∂kφ

(
2∂iσjk − ∂kσij

))

− S2
(
2σij

(
∂iφ∂jφ+ dφ ∂i∂jφ

)
+ dφ ∂iφ

(
2∂jσij − ∂iσjj

))]
,

(2.8)

while there is also a new Feynman rule for the four-graviton coupling to the worldline
spin-induced quadrupole, given by

= CES2

12m
d2

(d− 2)3

∫
dt

[
dSiSj

(
3φ2 ∂iφ∂jφ+ φ3 ∂i ∂jφ

)

− S2
(
3φ2 (∂iφ)2 + dφ3∂i∂iφ

) ]
. (2.9)

We remind the reader that these rules are already given in terms of the physical spatial
components of the local Euclidean spin vector in the canonical gauge [16], and that all of
the indices are in fact Euclidean.

2.1 Extending the EFT of a spinning particle

To complete the effective action at this order in PN accuracy in the spinning sectors [21, 25]
including the current sector, we extend the non-minimal coupling part of the effective
action of a spinning particle given in eq. (2.4). This extension contains operators that
are quadratic in the curvature components and hence stand for tidal deformations of the
extended compact object. Following similar symmetry considerations and the logic outlined
in [16], we find that the new terms to quadratic order in spin are given by

LNMC(R2) =CE2
EαβE

αβ

√
u2 3 +CB2

BαβB
αβ

√
u2 3 +. . .

+CE2S2SµSν
EµαE

α
ν√

u2 3 +CB2S2SµSν
BµαB

α
ν√

u2 3

+C∇EBSSµ
DµEαβB

αβ

√
u2 3 +CE∇BSSµ

EαβDµB
αβ

√
u2 3

+C(∇E)2S2SµSν
DµEαβDνE

αβ

√
u2 3 +C(∇B)2S2SµSν

DµBαβDνB
αβ

√
u2 3 +. . . (2.10)
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These terms involve new tidal Wilson coefficients (that in contrast with eq. (2.4) are defined
here to absorb all numerical and mass factors).

In the first line of eq. (2.10) we have written the leading mass-induced quadrupolar tidal
deformations, which are known to enter at the 5PN order [15], and have suppressed higher-
order mass-induced tidal operators, which can be found in [39]. We have additionally shown
the adiabatic tidal operators which involve the spin up to quadratic order. From dimen-
sional analysis and power-counting considerations (as explained in [15, 16]), one can infer
that the terms in the second line of eq. (2.10) enter at the 5PN order, while the terms on the
third and fourth lines of eq. (2.10) enter only at the 6.5PN and 7PN orders, respectively.

Therefore at the 5PN order considered in this work there are two new operators which
are quadratic in the spin and quadratic in the curvature. However, the leading contribution
from these operators at the 5PN order shows up in the two-graviton exchange topology at
order G2 (see e.g. figure 2(a) in [25]), and is therefore not relevant in the current paper,
but rather will be addressed in a subsequent publication. Notice that interestingly if this
expansion that is quadratic in the curvature is continued to higher orders in spin as in [26],
only spin orders l = 0, 2, 4 that relate to bosons of quantum spin s = 0, 1, 2 enter at
leading order. Spin orders that correspond to fermions and quantum spin s > 2 all require
additional covariant derivatives and enter at higher orders.

3 Perturbative expansion of quadratic-in-spin interactions

In this paper we evaluate the contribution to the N3LO sector that is quadratic in the spins,
and originates from Feynman graphs at order G4 in the diagrammatic expansion of the
two-particle effective action in eq. (2.1). A comprehensive analysis of the generic topologies
at order G4 in the EFT framework was presented in the recent work [25]. Using the termi-
nology defined in that work, these topologies are shown in figure 1, classified according to
their self-interaction vertices and the corresponding loop order in the worldline picture [25].
As in [25], it is only the graphs that are at three-loop order in the worldline picture that
genuinely represent a higher level of complexity in the N3LO spinning sectors. These graphs
have topologies (d), (f), or (g), as depicted in figure 1 (see also figure 12 in [15]).

As of the two-loop order we also have higher-rank topologies, which means that more
than a single basic integral of n-loop form, as specified in [25], is required to express
integrals of that topology. In general, a rank-r topology requires a combination of r of the
basic n-loop integrals (at order Gn+1). In this sector at order G4 we have four higher-rank
topologies: topology (e8) is a rank-two topology, whereas topologies (f5), (g4), and (g5),
are rank-three topologies [25]. In contrast to the rank-one topologies, which easily boil
down to one-loop computations, the higher-rank topologies require considerable processing
mainly by means of integration-by-parts (IBP) [40].

We proceed to the construction of the Feynman graphs that contribute to this sec-
tor. We recall that the spinning sector is more complicated than the non-spinning sector,
because all possible topologies are realized at each order in G, even when the KK field
decomposition is used [28, 30, 31], in contrast to the non-spinning sector, where in par-
ticular at NnLO for odd n, n-loop graphs are absent, as can be seen in table 1. As we
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(a1) (a2) (a3)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2)

(d1) (d2)

(c3)

(e2) (e3)(e1) (e4) (e5) (e6) (e7) (e8)

(f1) (f2) (f3) (f4) (f5)

(g1) (g2) (g3) (g4) (g5)

Figure 1. Graph topologies at order G4 classified according to their internal bulk vertices and the
corresponding loop order in the worldline picture [25]: (a) 0-loop; (b) One-loop; (c), (e) Two-loop;
(d), (f), (g) Three-loop. Topology (e8) is a rank-two topology, whereas topologies (f5), (g4), and
(g5), are rank-three topologies [25].
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noted in section 2 this sector contains three types of interactions of two distinct origins:
there are the spin1-spin2 and spin1-spin1 interactions, which originate from the minimal
coupling part of the action of a spinning particle in eq. (2.3), and the interaction that in-
volves the spin-induced quadrupole, which originates from the non-minimal coupling part
of the action.

Graphs with the first two types of interaction are readily constructed as subsets of the
corresponding graphs in the N3LO spin-orbit sector [25] by replacing in the graphs of the
latter some of the worldline mass couplings to the gravito-magnetic vector with its leading
linear spin couplings. The presence of two spin couplings among the worldline insertions
leads to fewer unique graphs than in the N3LO spin-orbit sector, but still more than were
present in the non-spinning sector. Graphs with the third type of interaction can similarly
be obtained as a subset of the non-spinning N3LO sector [41, 42] by replacing some of the
worldline mass couplings to the scalar graviton with its leading spin-quadrupole coupling,
or by adding a scalar graviton exchange to the few graphs at order G3 that can be made
static as a result (we remind the reader that this even-parity sector is static at order G4).

Therefore, as no three-loop graphs enter at this order in the non-spinning case when the
KK field decomposition is used, there are in fact no three-loop graphs with the spin-induced
quadrupole which contribute to the N3LO quadratic-in-spin sector; the only contribution to
this sector dependent on the spin-induced quadrupole comes from graphs below three-loop
order in the worldline picture, as can be seen in figure 6. Note that this is exactly what
happens in the NLO spin-squared sector [16] due to the absence of one-loop graphs at the
NLO non-spinning sector with the KK fields [30]. Altogether, this reasoning provided a
complete crosscheck for the automated generation of the Feynman graphs using the FeynGen
module of the EFTofPNG public code [23], which was extended to handle this sector. The
resulting graphs are drawn in figures 2–6 below (using JaxoDraw [43, 44] based on [45]).

There are in total 163 distinct graphs in this sector. Of these 52 are three-loop graphs
with spin1-spin2 and spin1-spin1 interactions, as shown in figures 3 and 5, respectively.
There are 31 higher-rank graphs to evaluate. Of these 12 are rank-two and 19 are rank-
three. The evaluation of the graphs was carried out using the upgrade to the publicly
available EFTofPNG code which was described in [25], where the higher-rank graphs are
reduced using projection [46–48] and IBP [49] methods. Due to the additional spin with
respect to the spin-orbit sector further projection of the numerators of the integrands was
required. Further, more integrals show up in this sector compared to the corresponding
spin-orbit one.

In the supplementary material to this publication we list the values of each of the
Feynman graphs, both in PDF form and in machine-readable form. We recall that all of the
graphs in figures 2–6 should be accompanied by their ‘mirror’ graphs, in which worldline
labels are exchanged, namely 1 ↔ 2. We note that for the spin-squared interactions in
figures 4–6 we present the value for the graph with the spins on worldline “1”, while for the
spin1-spin2 interaction in figures 2–3 we present the value for the graph with higher power
of m1. Two independent implementations of the framework outlined thus far were carried
out in the present work in order to crosscheck and verify all the new results we present.
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Figure 2. Feynman graphs below three-loop order in the worldline picture, which contribute to the
N3LO spin1-spin2 static interaction at order G4. All of the graphs in this figure and the following
ones should be accompanied by their ‘mirror’ graphs, in which worldline labels are exchanged,
namely 1↔ 2.
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(d1.1) (d2.1) (f1.1) (f1.2) (f2.1) (f3.1) (f3.2) (f4.1)

(f5.1) (f5.2) (f5.3)

(g4.1) (g4.2) (g4.3) (g4.4) (g5.1) (g5.2) (g5.3)

(g1.1) (g1.2) (g2.1) (g3.1) (g3.2)

(g3.3)

Figure 3. Feynman graphs at three-loop order in the worldline picture, which contribute to the
N3LO spin1-spin2 static interaction at order G4.

(b1.1) (b2.1) (b3.1) (b4.1)

(e5.2)

(b5.1) (b6.1) (c1.1) (c1.2)

(c2.1) (c3.1) (c3.2)

(e6.1) (e6.2) (e7.2) (e7.3) (e8.1) (e8.2)(e7.1)

(e4.2) (e5.1)(e3.1) (e4.1)(e1.1)

Figure 4. Feynman graphs below three-loop order in the worldline picture, which contribute to
the N3LO spin1-spin1 static interaction at order G4.

Similar features to those which were noted in [25] are observed in this sector, with the
new ones (which did not appear below N3LO) similarly originating uniquely from three-loop
topologies in the worldline picture. Let us enumerate the notable features encountered:

1. Zeros. There are 15 graphs that vanish, 13 of which have topologies (c1) and (e4): these
vanish due to contact interaction terms, as discussed in [25]. In addition, the graphs
4(e8.1), 4(e8.2) vanish, which was expected since these factorizable graphs contain the
vanishing graph in figure 6(c1) in the N2LO spin-squared sector [21] as a subgraph.
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(d1.1) (d1.2) (d2.1) (f1.1) (f1.2) (f2.1) (f3.1)
(f3.2)

(f4.1) (f4.2)

(g4.1) (g4.2) (g4.3) (g5.1) (g5.2) (g5.3)

(g3.4)(g3.1) (g3.2) (g3.3)

(f5.1) (f5.2) (f5.3) (g1.1) (g1.2) (g1.3)

(g2.1) (g2.2)

Figure 5. Feynman graphs at three-loop order in the worldline picture, which contribute to the
N3LO spin1-spin1 static interaction at order G4.

2. Riemann zeta values. There are 7 graphs of the rank-three topologies (f5), (g4), (g5),
that give rise to terms with ζ(2) ≡ π2/6, which occur as explained in [25].

3. Divergences and logarithms. There are 36 graphs, which make up the majority of
the three-loop graphs, that give rise to simple poles in the dimensional parameter
ε ≡ d− 3 in conjunction with logarithms in r/R0, where R0 is some renormalization
scale. They appear in virtually all three-loop topologies (except (d2), (f3), (g2)) and
are discussed in [25].

We recall that the ζ(2) terms or the poles and accompanying logarithms originate inde-
pendently from different basic integrals as explained in [25].

4 N3LO gravitational quadratic-in-spin action at G4

Summing all graphs at order G4, we obtain the following contribution to the N3LO gravi-
tational quadratic-in-spin action:

LN3LO
S2 = LN3LO

S1S2 + LN3LO
S2

1
+ LN3LO

C1ES2S2
1

+ (1↔ 2) , (4.1)
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(a1.1) (a1.2) (a1.3) (a2.1) (a2.2) (a2.3) (a2.4) (a3.1)

(b1.1) (b1.2) (b2.1) (b3.1) (b4.1) (b5.1) (b6.1)

(a3.2)

(e4.1) (e4.2) (e4.3) (e4.4) (e5.1) (e5.2) (e5.3) (e5.4)

(e6.1) (e6.2) (e6.3) (e6.4) (e7.1) (e7.2) (e7.3) (e7.4) (e7.5)

(e8.1) (e8.2) (e8.3) (e8.4) (e8.5)

Figure 6. Feynman graphs below three-loop order dependent on the spin-induced quadrupole,
which contribute to the N3LO quadratic-in-spin static interaction at order G4. This is the only
contribution to the sector with the spin-induced quadrupole.

with

LN3LO
S1S2 = −G

4

r6
1

m1m2

[
~S1 · ~S2

(
5m4

1m2 + 63m3
1m

2
2

)
− ~S1 · ~n~S2 · ~n

(
25m4

1m2 + 300m3
1m

2
2

)]
,

(4.2)

LN3LO
S2

1
= G4

r6
1
m2

1

[
S2

1

( 1
14 m

4
1m2 −

73
70 m

3
1m

2
2 − m2

1m
3
2

)

+ (~S1 · ~n)2
(23

7 m4
1m2 + 2851

70 m3
1m

2
2 + 31m2

1m
3
2

)]
, (4.3)

and

LN3LO
C1ES2S2

1
= −G

4

r6
C1ES2

m2
1

(
S2

1 − 3(~S1 · ~n)2
)(23

28 m
4
1m2 + 341

14 m3
1m

2
2 + 57m2

1m
3
2 + 9m1m

4
2

)
,

(4.4)

where ~r ≡ ~r1 − ~r2 and ~n ≡ ~r/r.
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Interestingly, in contrast to the situation in the N3LO spin-orbit sector [25], all diver-
gent terms, logarithms, and factors of ζ(2) that appear in the individual graphs leading to
eqs. (4.2) and (4.3) conspire to cancel out from the final result, which contains only finite
rational terms. This is similar to the situation within analogous EFT derivations in the
non-spinning sector, where all the poles in ε, logarithms, and Riemann zeta values conspire
to cancel out in each of the NnLO sectors at Gn+1 as known for n ≤ 5 [50, 51]. We recall
that both the non-spinning sector and the present one are static at the highest order in G,
and have even parity with respect to the order of spin (see table 1). This contrasts with
the odd-parity spin-orbit sector, where the analogous piece is non-static. It is curious then
whether this occurrence carries over to all of the even-parity sectors in spin.

In any case, we know that the appearance and treatment of divergent terms and
logarithms is related to the treatment of terms with higher-order time derivatives [13].
Since the appearance of higher-order time derivative terms is delayed by one order in the
quadratic-in-spin sectors with respect to the spin-orbit sector, where it occurs already at
the LO [52], it may have been expected that the related novel features that show up in the
final N3LO spin-orbit result are absent from the final N3LO quadratic-in-spin result here.

5 Conclusions

In this paper we derived for the first time the complete static N3LO gravitational inter-
actions that are quadratic in the spins in inspiralling compact binaries from Feynman
diagrams with topologies at order G4 within the framework of the EFT of spinning gravi-
tating objects [16]. The derivation builds on the recent work in [25], in which an upgrade
of the EFTofPNG public code [23] was carried out, with further extensions required for the
present sector. The contribution we have calculated in this paper constitutes the most
computationally challenging piece of the N3LO quadratic-in-spin sector in terms of inte-
gration, due to the three-loop level that is the highest loop level in this sector. This sector
enters at the 5PN order for maximally-spinning compact objects, and complements the
non-spinning sector at the same order, with relevant pieces in e.g. [50, 51] and [53].

This sector contains three types of interactions that originate from the two distinct
parts of the effective action of a spinning particle, where in particular one interaction
involves finite-size effects, which arise from the non-minimal coupling part of the point-
particle action. Such effects distinguish between black holes and neutron stars, in contrast
to the spin-orbit coupling or point-mass interactions. Further, at this PN order higher non-
minimal coupling operators beyond linear in the curvature with spin need to be included for
the first time. We have correspondingly extended the effective action formulated in [16] to
include operators that are quadratic in the curvature, similar to [26] at the same PN order.
While we find such operators that are quadratic in spin, and that can enter at this PN
order, they do not enter at this order in G4, and are thus left to a forthcoming publication.

The N3LO quadratic-in-spin interactions consist of a total of 163 unique graphs at
order G4. Of these 52 are three-loop graphs, which arise uniquely from the interactions
that originate from minimal spin coupling, and in which special features are observed,
similar to the analogous sector in the spin-orbit interaction [25]. However, these features
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(including divergences, logarithms, and transcendental factors) conspire to cancel out in
the final result, similar to what happens in the non-spinning sector within EFT derivations
for n ≤ 5 in the NnLO sectors at order Gn+1 [51]. Nevertheless, the present sector is still
considerably more challenging than the corresponding non-spinning sector. The evaluation
of the remaining contributions up to order G3 that are required to complete the N3LO
quadratic-in-spin sector should be facilitated with our extended upgrade of the EFTofPNG
code [23, 25], and this completion of the sector will be reported in forthcoming publications.

As previously noted, all of the sectors denoted with boldface entries in table 1, including
the current sector, have been derived to date for all generic only within the framework of
the EFT of gravitating spinning objects [16, 23–25]. Clearly, independent crosschecks of
these precision results are essential, and thus overlapping studies, possibly with further
modern amplitudes methods as in [54–58], are very welcome.
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