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1 Introduction

Supersymmetry breaking in string theory is notoriously difficult to achieve in a controllable
manner. There are several challenging and well-known problems to overcome at the string
level and at the effective field theory one.

A generic issue, both at string perturbative and effective supergravity levels, is that
supersymmetry breaking generates potentials for some moduli fields that are of runaway
type, which typically drive the dynamics towards zero or strong string coupling, and also
lead to decompactification or compactification of the internal space [1]. The state of the
art is to generate a local minimum somewhere far from the runaway regime, that is com-
putationally reliable and such that the corresponding lifetime is beyond the age of the
universe. Such a minimum is very hard to obtain in string perturbation theory, and easier
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in practice to obtain at the effective field-theory level, adding extra ingredients like fluxes
or nonperturbative effects.

At the string perturbative level, supersymmetry breaking generates a vacuum energy
(more precisely, a scalar potential) at some order in perturbation theory. In the first models
of supersymmetry breaking, so-called Scherk-Schwarz or breaking by compactification [2–7],
this arises at one loop.1 The generated scalar potential is typically of runaway type2 and the
classical vacuum used in perturbation theory is therefore not valid anymore. It is however
possible, in a more refined construction, to stabilize the corresponding modulus, yielding a
negative scalar potential [9]. In a subclass of models, which satisfy a classical Bose/Fermi
degeneracy at the massless level, this one-loop potential turns out to be exponentially
suppressed at low supersymmetry breaking scale [18–30], but not vanishing [31].

Later on, tachyon-free orientifold string models where supersymmetry is broken at the
string scale in the open-string (gauge) sector, whereas the closed-string (gravity) sector
is supersymmetric at lowest perturbative order were constructed [32–37]. Since in such
frameworks a massless gravitino is present, supersymmetry has to be nonlinearly realized
in the open sector and this was indeed shown explicitly in [38, 39]. Such models contain
non-BPS tachyon-free configurations. An important application of such setups is the KKLT
scenario of moduli stabilization [40], see e.g. [41–47]. There was also a recent simplification
in constructing supergravity models with nonlinear supersymmetry [48–52], stimulated in
part by “Brane Supersymmetry Breaking” (BSB) type models. In such settings, there is a
runaway scalar potential generated at the disk level. Ignoring the true vacuum state and
working naively at fixed values of moduli fields leads to so-called NS-NS tadpoles for the
corresponding moduli, which ruin perturbation theory since they generate unphysical UV
divergences. It is widely believed that this does not signal any inconsistency of the theory,
but just the fact that naive perturbation theory is performed around a point in field space
that is not an extremum. Indeed, all models of this type constructed in the literature
satisfy all known consistency conditions. Mechanisms of shifting the vacuum, in analogy
with field-theory examples, were proposed in the literature [53–56]. However their practical
implementation is limited to toy examples or to special models with small tadpoles. Hence,
whereas the BSB models are tachyon-free, the presence of NS-NS tadpoles raises the ques-
tion of the validity of perturbation theory and the fate of such constructions [57–60]. Let
us also mention that the coexistence of massless gravitinos and broken supersymmetry in
the open sector in BSB models is shared by compactifications with internal magnetic fields
that break supersymmetry [61–64].

In another class of non-supersymmetric models based on type II asymmetric orbifolds
or their orientifold descendants [65–71], a classical Bose/Fermi degeneracy valid at any mass
level implies that the potential arises only at two loops [72, 73]. In such frameworks, there
are no tadpoles at one loop and no need to shift scalar expectation values for describing
vacua at this order of perturbation theory. However, stability at one loop of the moduli
fields has not been analyzed.

1Scherk-Schwarz compactifications also have often additional, tachyonic-like instabilities in some range
of parameters. Tachyon-free examples however exist, see e.g. [8–10].

2The cosmological evolution of the moduli fields can be studied in a thermal [11–15] or cold [16, 17]
universe.
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The goal of the present paper is the construction of BSB string vacua without NS-
NS disk tadpoles. Recently, it was conjectured that massless gravitinos in string theory
with broken supersymmetry implies a breakdown of the effective field theory [74, 75]. It is
clearly of interest to check this conjecture in explicit string models, by trying to avoid NS-
NS tadpoles. In this paper we identify constructions in which the supersymmetry breaking
scale in the gauge (open) sector is much higher than in the closed-string sector. This
was actually achieved previously in [76]. However, our construction avoids the open-string
tachyonic instabilities typically present in such constructions. A runaway behaviour for
internal radii is however still present. We show that the limit of vanishing gravitino mass is
inconsistent. The existence of such constructions was already anticipated in the pioneering
paper [77] in an algebraic construction using the tools of the Tor-Vergata school [78–86]. We
provide here the correct geometric interpretation of the eight-dimensional class of models
proposed in [77], which turns out to contain several types of perturbative orientifold and
anti-orientifold planes. We also point out that the simultaneous presence of orientifold and
antiorientifold planes suggests that the closed-string sector is not exactly supersymmetric
at tree-level, but has softly broken supersymmetry. The basic mechanism goes as follows.

One starts with a supersymmetric orientifold model containing both O− (negative
tension, negative RR charge) and O+-planes (positive tension, positive RR charge). A
consistent supersymmetry-breaking deformation of the model turns one O−-O+ pair into
an O−-O+ pair, which is mutually BPS but preserves the other half of the supersymmetries
compared to the O±-planes and D-branes. Since both the initial O−-O+ pair and its SUSY
breaking avatar O−-O+ have zero total tension and charge, there will be no RR or NS-NS
tadpoles generated in the non-supersymmetric case. Depending on where the background
D-branes sit in the internal space, their massless spectrum can be supersymmetric (if they
sit on top of O− or O+-planes or in the bulk) or non-supersymmetric (if they sit on top
of O− or O+-planes, in which case supersymmetry is nonlinearly realized in their world-
volume). Such models also have a supersymmetric limit, when a certain radius is taken
to zero.3 For small values of this radius, the breaking can be interpreted as spontaneous,
whereas for large values, supersymmetry breaking can be considered as nonlinearly realized
if branes sit on top of anti-orientifold planes. Interestingly, naive energetic considerations
on brane-orientifold plane interactions suggest that the branes move towards stable con-
figurations with maximal (string scale) breaking of supersymmetry. Whereas at first sight
the closed-string spectrum could be supersymmetric, we show that a detailed look at the
orientifold projections leading to the geometry of O-planes and, independently, considera-
tions from low-energy effective field theory suggest that the correct option is a specific soft
supersymmetry breaking deformation in the closed-string sector. A more detailed analysis
of the effective field theory of this class of models deserves however a dedicated study.

The structure of the paper is the following: in section 2, we review the 8d USp(16)
supersymmetric orientifold theory and introduce the novel Brane Supersymmetry Breaking
(BSB) mechanism. In particular, we discuss the consistency between the soft breaking of

3A similar option is available in IIB flux compactifications [87]. We thank J. Mourad and A. Sagnotti
for sharing their results with us.
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supersymmetry in the closed-string spectrum and the supersymmetry breaking deformation
in the open-string sector. The generalization of the construction to dimensions lower than
8 turns out to be rich but straightforward. We give various examples in section 3. Section 4
discusses consistency conditions coming from probe branes as well as nonperturbative con-
straints to be satisfied by these models. In section 5, we study the supersymmetry breaking
mass scales in the closed- and open-string sectors for different positions of stacks of D7-
branes in 8d. We also comment on the limit of vanishing gravitino mass and the connexion
with the gravitino mass conjecture put forward recently in [74, 75], in the context of the
swampland program [88–90]. Conclusions and outlooks can be found in section 6, whereas
an appendix contains examples of consistent and inconsistent geometric configurations.

2 The 8d USp(16) superstring and its SUSY breaking avatar

In this section, we review the construction of the supersymmetric USp(16) orientifold model
in 8 dimensions and then present its non-supersymmetric version.

2.1 The type IIB torus amplitudes

Let us start by describing alternative viewpoints for deriving the supersymmetric and non-
supersymmetric torus amplitudes to be combined later on with orientifold amplitudes.

The original orientifold models described in [91, 92] make use of a non-trivial quantized
background for the internal components of the antisymmetric tensor field, Bij . This field is
odd under worldsheet parity and therefore it is projected out by the orientifold projection
Ω in type I superstring. However, this still leaves the possibility to add a quantized value
2
α′Bij ∈ Z, where α′ is the string tension. In this case, the left and right momenta of
closed-string states are given, for a torus factorized into two circles, by

p8
L,R = m8 + n9/2

R8
± n8R8

α′
, p9

L,R = m9 − n8/2
R9

± n9R9
α′

. (2.1)

The type IIB torus amplitude is given by

T =
∫ d2τ

τ5
2

[
Λm9,2n9Λm8,2n8 + Λm9+1/2,2n9Λm8,2n8+1

+Λm9,2n9+1Λm8+1/2,2n8 + Λm9+1/2,2n9+1Λm8+1/2,2n8+1
] ∣∣∣∣V8 − S8

η8

∣∣∣∣2 , (2.2)

where V8, S8 (along with O8, C8) are the SO(8) affine characters and η is the Dedeking
function. They all depend on the Teichmüller parameter τ of the genus-1 surface, whose
imaginary part is denoted τ2. Moreover, the lattices are expressed in terms of

Λmi,ni = q
α′
4

(
mi
Ri

+ni
Ri
α′

)2

q̄
α′
4

(
mi
Ri
−ni Riα′

)2

, q = e2iπτ , (2.3)

where mi, ni are the momentum and winding numbers along direction Xi.4 Note that this
amplitude is invariant under the T-duality transformation (R8, R9)→ (

α′

2R8
, α′

2R9

)
.

4Throughout our work, all discrete sums over integer mi, ni are implicit. The conventions used in
partition functions are those given e.g. in the reviews [85, 86].
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There is another particularly useful way of constructing the torus amplitude with non-
trivial discrete antisymmetric tensor uncovered by Pradisi [93]. The starting point is a
freely-acting orbifold of type IIB with B89 = 0 and generator g = δw8δp9 , where δw8 stands
for a winding shift along direction X8 while δp9 denotes a momentum shift along direction
X9. The action of this generator on the lattice states is

g|m,n〉 = (−1)n8+m9 |m,n〉 . (2.4)

The gauging of the theory with this generator implies the existence of four contributions
in the torus amplitude corresponding to the untwisted and twisted sectors, both with or
without insertion of the orbifold generator in the traces. One obtains

T = 1
2

∫ d2τ

τ5
2

[
1 + (−1)n8+m9

] (
Λm8,n8Λm9,n9 + Λm8+ 1

2 ,n8
Λm9,n9+ 1

2

) ∣∣∣∣V8 − S8
η8

∣∣∣∣2 . (2.5)

A rescaling of the radius R9 → 2R9 then leads to the torus amplitude with discrete anti-
symmetric tensor given in eq. (2.2).

Note that another derivation can be obtained by applying the T-duality transformation
R8 → α′

R8
= R̃8 on the freely-acting orbifold of type IIB with B89 = 0. In fact, the complex

coordinate Z = X̃8+iX9
2πR̃8

, where X̃8 is the T-dual coordinate, satisfies the identifications
Z = Z+ 1 = Z+ iR9

R̃8
. Moreover, the orbifold generator g = δw8δp9 is mapped to g̃ = δp8δp9

defined as (X̃8, X9) = (X̃8 +πR̃8, X9 +πR9). We have therefore three identifications, which
can be encoded in the following two:

Z = Z + 1 , Z = Z + U , where U = 1
2 + i

R9
2R̃8

. (2.6)

Hence, by rescaling R9 → 2R9, the coordinate Z is that of a tilted torus of complex
structure U = 1

2 + iR9
R̃8

. However, it is known that the type IIA theory compactified on this
tilted torus is T-dual to the type IIB theory with antisymmetric background B89 = α′

2 .
From the freely-acting orbifold perspective, it is now easy to build a non-super-

symmetric deformation of the type IIB model in a Scherk-Schwarz spirit. It is obtained by
replacing g with the generator g′ = (−1)F δw8δp9 , where F denotes the spacetime fermion
number. The construction of the torus amplitude is straightforward and the result is

T = 1
2

∫ d2τ

τ5
2

{
Λm8,n8Λm9,n9 |V8 − S8|2 + (−1)n8+m9Λm8,n8Λm9,n9 |V8 + S8|2

+ Λm8+ 1
2 ,n8

Λm9,n9+ 1
2
|O8 − C8|2 + (−1)n8+m9Λm8+ 1

2 ,n8
Λm9,n9+ 1

2
|O8 + C8|2

} 1
|η8|2 .

(2.7)
The rescaling of the radius R9 → 2R9 then leads to

T =
∫ d2τ

τ5
2

{(
Λm8,2n8Λm9,2n9 + Λm8,2n8+1Λm9+ 1

2 ,2n9

) (
|V8|2 + |S8|2

)
(2.8)

−
(
Λm8,2n8+1Λm9,2n9 + Λm8,2n8Λm9+ 1

2 ,2n9

) (
V8S8 + V 8S8

)
+
(
Λm8+ 1

2 ,2n8
Λm9,2n9+1 + Λm8+ 1

2 ,2n8+1Λm9+ 1
2 ,2n9+1

) (
|O8|2 + |C8|2

)
−
(
Λm8+ 1

2 ,2n8+1Λm9,2n9+1 + Λm8+ 1
2 ,2n8

Λm9+ 1
2 ,2n9+1

) (
O8C8 +O8C8

)} 1
|η8|2 .
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The type IIB gravitinos acquire masses

M1 = R8
α′

or M2 = 1
2R9

, (2.9)

which vanish in the supersymmetric limits R8 → 0 and/or R9 → ∞. Moreover, as usual
with a Scherk-Schwarz mechanism, a scalar in the twisted sector becomes tachyonic when
the radii satisfy

1
4R2

8
+ R2

9
α′2

<
2
α′
. (2.10)

Notice that, unlike its supersymmetric version (2.2), the torus amplitude (2.8) is not
invariant under the T-duality (R8, R9)→ (

α′

2R8
, α′

2R9

)
. Indeed, this transformation amounts

to exchanging the lattice sums of the two directions and thus switching X8 ↔ X9, leading
to the new amplitude

T̃ =
∫ d2τ

τ5
2

{(
Λm8,2n8Λm9,2n9 + Λm8+ 1

2 ,2n8
Λm9,2n9+1

) (
|V8|2 + |S8|2

)
−
(
Λm8,2n8Λm9,2n9+1 + Λm8+ 1

2 ,2n8
Λm9,2n9

) (
V8S8 + V 8S8

)
+
(
Λm8,2n8+1Λm9+ 1

2 ,2n9
+ Λm8+ 1

2 ,2n8+1Λm9+ 1
2 ,2n9+1

) (
|O8|2 + |C8|2

)
−
(
Λm8,2n8+1Λm9+ 1

2 ,2n9+1 + Λm8+ 1
2 ,2n8+1Λm9+ 1

2 ,2n9

) (
O8C8 +O8C8

)} 1
|η8|2 .

(2.11)

The latter can therefore be obtained by a free action generated by g′′ = (−1)F δp8δw9 ,
followed by the rescaling R8 → 2R8. In this case, the masses of the gravitinos are

M1 = 1
2R8

or M2 = R9
α′

(2.12)

and supersymmetry is restored in the limits R8 →∞ and/or R9 → 0.

2.2 The supersymmetric orientifold amplitudes

In eight dimensions, the gauge group in supersymmetric orientifold models has rank 16, 8
or 0.5 For rank 8, the gauge group of maximal dimension, i.e. in the absence of Wilson
lines, is USp(16). This 8d model was first constructed by Bianchi, Pradisi and Sagnotti in
terms of D9-branes and an O9−-plane [91, 92]. It also has a dual description in terms of
CHL strings [94]. Moreover, it admits a geometrical T-dual picture understood later on by
Witten, which we will consider hereafter [95].

In the case of the standard SO(32) type I superstring, i.e. with B89 = 0, the standard
T-duality transformation (R8, R9)→ ( α′R8

, α
′

R9
) turns the O9−-plane wrapping the torus into

four O7−-planes located at the orientifold fixed points of the generator Ω′ = ΩΠ8Π9(−1)FL .
In our notations, Πi is a parity operation Xi → −Xi and FL is the left-handed fermion
number. This geometry is depicted in figure 1a and the resulting model contains 16 D7-
branes6 in order to cancel the RR tadpole.

5We refer only to the gauge group arising from the open-string/D-brane sector.
6Or equivalently 32 “half-branes” of type IIB organized as 16 mirror pairs referred to as 16 “branes” in

the orientifold theory.
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X8

X9

O7− O7−

O7− O7−

(a) Geometry of the standard
SO(32) superstring. There is an
O7−-plane at each of the four
fixed points.

X8

X9

O7+ O7−

O7− O7−

(b) Geometry of the supersym-
metric USp(16) model. There is
1 O7+-plane at (0, 0) and 3 O7−-
planes at (πR8, 0), (0, πR9) and
(πR8, πR9).

X8

X9

O7+ O7−

O7− O7−

(c) Geometry of the non-
supersymmetric USp(16) model.
There is 1 O7+-plane at (0, 0),
1 O7−-plane at (πR8, 0) and
2 O7−-planes at (0, πR9) and
(πR8, πR9).

Figure 1. Eight dimensional T-dual geometries: the standard SO(32) superstring theory, the
USp(16) supersymmetric theory and its non-supersymmetric version.

On the other hand, it has been shown that for the USp(16) theory, i.e. with B89 = α′

2 ,
the T-duality transformation (R8, R9)→ ( α′

2R8
, α′

2R9
) turns the original O9−-plane into three

O7−-planes and one O7+-plane [95]. While an O7−-plane has charge (and tension) equal
to −4 in units of a regular D7-brane charge, an O7+-plane has charge (and tension) equal
to +4. The geometry is depicted in figure 1b, where R8, R9 now refer to the radii in the
T-dual theory. The switch O7− → O7+ has the overall effect of halving the RR tadpole, a
fact that requires the addition of only eight D7-branes (16 half-branes). The rank of the
gauge group is thus reduced to 8. Furthermore, while D7-branes on top of an O7−-plane
lead to an orthogonal (SO) gauge group, D7-branes on top of an O7+-plane lead to a
symplectic (USp) gauge factor. Therefore, the configuration with all the D7-branes sitting
on top of the O7+-plane yields the gauge symmetry USp(16).

From now on, the description of the USp(16) theory we choose is that of the type
IIB theory with orientifold projection Ω′ = ΩΠ8Π9(−1)FL , which involves O7±-planes and
D7-branes. The spectrum is encoded in the partition functions which can be worked out
using standard methods. The torus contribution is given by half that given in eq. (2.2).7
Moreover, the Klein, cylinder and Möbius amplitudes are

K = 1
2

∫ ∞
0

dτ2
τ5

2
W2n9W2n8

V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞
0

dτ2
τ5

2
Wn9Wn8

V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞
0

dτ2
τ5

2
Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 − Ŝ8
η̂8

(
iτ2
2 + 1

2

)
, (2.13)

7Remind that the type IIB amplitude (2.2) is self-dual. Hence, it can be used in the orientifold theory
obtained by modding with Ω [91, 92] or that obtained with Ω′. Being T-dual, they are physically equivalent.
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where N is the number of half-D7-branes and the lattices of winding modes are defined as

Wni = e−πτ2n2
i

R2
i
α′ . (2.14)

The “field-theory” open-string spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

[
N(N + 1)

2 W2n9W2n8

+N(N − 1)
2

(
W2n9+1W2n8 +Wn9W2n8+1

)] V8 − S8
η8

∣∣∣∣
0
, (2.15)

where the index 0 stands for the constant mode of the characters. It is manifestly su-
persymmetric and describes a USp(N) gauge symmetry. The value N = 16 is found by
imposing the RR tadpole condition, which can be derived from the amplitudes in the
tree-level channel,

K̃ = 25α′

8R9R8

∫ ∞
0

dl Pm9Pm8
V8 − S8
η8

(
il
)
,

Ã = 2−5N2α′

2R9R8

∫ ∞
0

dl Pm9Pm8
V8 − S8
η8

(
il
)
,

M̃ = Nα′

2R9R8

∫ ∞
0

dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − Ŝ8
η̂8

(
il + 1

2

)
, (2.16)

where the lattices of momentum states are given by

Pmi = e
−π l2m2

i
α′

R2
i . (2.17)

The tree-level amplitudes encode uniquely the geometry of the D-branes and O-planes.
Indeed, the geometry can in general be revealed by remembering that the tree-level channel
amplitudes capture the propagation of closed strings between orientifold planes and/or D-
branes. As an example, a generic Klein-bottle amplitude can be formally written as

K̃ =
∑
a,m

∑
A,B

(−1)FLCaACaB Gam(xA,xB) , (2.18)

where a labels the NS-NS and RR closed-string degrees of freedom in ten dimensions and
m = (m8,m9) (in 8d models as above) are the internal momenta of their Kaluza-Klein
(KK) modes. Moreover, Gam(xA,xB) is the tree-level scalar propagator transverse to the
O-planes for a flat internal space, while CaA captures the coupling to the O-plane A located
at xA = (x8

A, x
9
A). In our examples, CaA ∝ TA for the NS-NS states and CaA ∝ QA for

the RR ones, where TA and QA denote the tension and charge of the O-plane A and the
proportionality constants are equal. Actually, the closed-string states a,m propagating in
K̃, which are bosons arising in the NS-NS and RR sector, have different Lorentz structures:
for instance the dilaton is a scalar, the graviton is a tensor, etc. Hence, they have different
propagators and couplings to branes and orientifolds. Contracting the couplings and the
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propagators, one obtains the effective couplings CaA and a scalar propagator Gam(xA,xB)
for each closed-string state. Explicitly, we have

Gam(xA,xB) = eim(xA−xB) 1
p2
‖ +M2

a +∑
i
m2
i

R2
i

= πα′

2 eim(xA−xB)
∫ ∞

0
dl e

−π l2α′
(
M2
a+
∑

i

m2
i

R2
i

)
, (2.19)

where by convention the variables xiA take values in the range [−π, π] and the internal
coordinates are defined as Xi = xiRi. The closed-string channel Klein-bottle amplitude is
therefore given by

K̃ = πα′

2
∑
a,m

∑
A,B

CaACaB

∫ ∞
0

dl e
im(xA−xB)−π l2α′

(
M2
a+
∑

i

m2
i

R2
i

)
. (2.20)

The factors eim(xA−xB) capture the locations of the O-planes and display the products of
the wavefunctions of a closed-string Kaluza-Klein mode a,m respectively located on the
O-planes A and B.

In the 8d examples of this section, there are four orientifold fixed points (0, 0), (0, πR9),
(πR8, 0), (πR8, πR9), where the O7-planes sit. The phases eim(xA−xB) encoding the prop-
agation between the four O-planes take values 1, (−1)m9 , (−1)m8 or (−1)m9+m8 . Once
dressed by the signs given by the tensions and charges, they produce projectors in the
tree-level channel amplitude. In the SO(32) type IIB orientifold case, which contains 4
O7−-planes, the projector in the tree-level Klein-bottle amplitude is

ΠK̃ ∝ 4[1 + (−1)m9 ][1 + (−1)m8 ] , (2.21)

which projects onto even KK states. In contrast, the corresponding one for the supersym-
metric USp(16) type IIB orientifold satisfies

ΠK̃ ∝ 4− 2(−1)m9 + 2(−1)m9 − 2(−1)m8 + 2(−1)m8 − 2(−1)m9+m8 + 2(−1)m9+m8

∝ 4 , (2.22)

leading to no projection of the KK states.
The tree-level channel cylinder and Möbius amplitudes take similar formal expressions.

In the former case, the objects A and B are D-branes while in the latter case they are a
D-brane and an O-plane. For instance, in the USp(16) model, the lattices in the Möbius
amplitude involve all momentum states subject to the projector

Π = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 , (2.23)

which is consistent with the geometry of one stack of 8 (regular) D7-branes coincident with
the O7+-plane, whereas the three other orientifold fixed points are occupied by standard
O7−-planes. Moving all the D7-branes on top of one of the O7−-planes lead to an SO(16)
gauge group, whereas moving all of them into the bulk in one stack leads to a U(8) open-
string gauge group.
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2.3 The non-supersymmetric orientifold amplitudes

Let us now turn to the implementation of supersymmetry breaking in the Klein, cylinder
and Möbius amplitudes, without introducing perturbative instabilities or tadpoles. The al-
lowed form of the corresponding torus amplitude will be determined in the next subsection.

Geometrically, the mechanism of supersymmetry breaking is the following. A pair of
O7+-plane and O7−-plane have globally zero tension and RR charge. From a string-theory
viewpoint, it is possible to replace such a pair by an O7+ and O7− pair, which also has
vanishing total tension and charge. However, the second option breaks supersymmetry in
the presence of the 8 D7-branes needed to cancel the tadpoles. This geometry is depicted in
figure 1c. Supersymmetry breaking is not visible in the cylinder amplitude, which describes
D7-D7 amplitudes. It is less obvious but true that the orientifold configuration with 2 O7−,
1 O7+, 1 O7− and the supersymmetric one with 1 O7+ and 3 O7−-planes lead to identical
Klein-bottle amplitudes. Indeed, in the former case we have

K̃ ∝
{

[4− 2(−1)m8 + 2(−1)m8 ](V8 − S8)+

[−2(−1)m9 + 2(−1)m9 − 2(−1)m9+m8 + 2(−1)m9+m8 ](V8 + S8)
}
Pm8Pm9

∝ 4(V8 − S8)Pm8Pm9 , (2.24)

where the character V8 − S8 describes the tree-level propagation of closed strings between
mutually BPS O7-planes (O7−-O7−, O7±-O7±), whereas V8 + S8 describes the tree-level
propagation of closed strings between mutually non-BPS O7-planes (O7−-O7±, O7±-O7−).
The phases reflect the geometry of O-planes and lead to a cancellation of the non-BPS
terms, leaving the unprojected supersymmetric sum over all KK states as in the supersym-
metric case (see eqs. (2.16) and (2.22)).

As will be shown later, the configuration where the 8 D7-branes are coincident with the
O7+-plane is the only stable configuration at one loop. Using the above given geometrical
interpretation of O-planes, it is easy to check that the tree-level channel amplitudes are
given by

K̃ = 25α′

8R9R8

∫ ∞
0

dl Pm9Pm8
V8 − S8
η8

(
il
)
,

Ã = 2−5N2α′

2R9R8

∫ ∞
0

dl Pm9Pm8
V8 − S8
η8

(
il
)
,

M̃ = Nα′

2R9R8

∫ ∞
0

dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
. (2.25)

Notice that the only change in (2.25) compared to the supersymmetric case (2.16) is the
extra phase (−1)m8 in the RR couplings of the closed strings propagating between the
D7-branes and the O7-planes in the Möbius amplitude. The projector in the RR sector is
thus transformed accordingly,

ΠNSNS = +1− (−1)m9 − (−1)m8 − (−1)m9+m8

2

ΠRR = (−1)m8ΠNSNS = −1− (−1)m9 + (−1)m8 − (−1)m9+m8

2 , (2.26)
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where ΠNSNS is identical to that of the supersymmetric case, eq. (2.23). The above pro-
jectors encode all the information about the geometry. In fact, with all D-branes located
at the origin, the change of signs of the RR couplings at (0, 0) and (πR8, 0) tells us that
the orientifold planes located there preserve opposite supersymmetry as compared to the
D7-branes and are therefore O7+ and O7−.

The loop-channel amplitudes can be worked out by the usual methods, leading to

K = 1
2

∫ ∞
0

dτ2
τ5

2
W2n9W2n8

V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞
0

dτ2
τ5

2
Wn9Wn8

V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞
0

dτ2
τ5

2
Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 + (−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (2.27)

Comparing the Möbius amplitude with its supersymmetric counterpart (2.13) reveals a
supersymmetry breaking orientifold projection

Ω′′ = ΩΠ8Π9(−1)FL(−δw9)F , (2.28)

where, as before, Πi is the parity operation Xi → −Xi, FL is the left-moving fermion num-
ber, F is the spacetime fermion number and δw9 generates a winding shift in the coordinate
X9. The latter acts on the zero-modes as |m,n〉 → (−1)n9 |m,n〉, as follows from a left-
right asymmetric action X9

L → X9
L + πR9

2 , X9
R → X9

R − πR9
2 on the left- and right-moving

parts of the coordinate. Notice that since there is no fermion propagating in the Klein
bottle, the supersymmetry breaking deformation (−δw9)F has no effect in this amplitude.

The massless field-theory open-string spectrum is captured by

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

[
N(N + 1)

2
V8
η8

∣∣∣∣
0
− N(N − 1)

2
S8
η8

∣∣∣∣
0

]
(2.29)

and displays supersymmetry breaking at the string scale, of the brane supersymmetry
breaking type. The gauge group is USp(16) as before. The vector bosons are thus in
the symmetric representation, but the fermions are in the antisymmetric representation,
which contains in particular the gauge-singlet goldstino. This is the basic indication of
the nonlinear realization of supersymmetry where the D7-branes sit. It is then easy to
move D7-branes in the internal two-torus and derive the resulting spectrum. Putting all
D-branes on top of the O7−-plane leads to an SO(16) gauge group with massless fermions
in the symmetric representation. The latter contains the singlet goldstino implying again
a nonlinear supersymmetry and a supersymmetry breaking at the string scale. Putting
all D7-branes on top of one of the two remaining O7−-planes leads to a supersymmetric
massless spectrum with SO(16) gauge group and a supersymmetry breaking at the massive
level due to the far-away presence of the two O7-planes.

Let us stress again that despite the fact that the O7-planes are of types orientifold
and anti-orientifold, the Klein bottle amplitude is exactly the same as in the supersym-
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metric case, due to the cancellation of the supersymmetry-breaking contributions.8 At one
loop, only the Möbius amplitude “knows” about supersymmetry breaking, without how-
ever generating NS-NS tadpoles (of course, RR tadpoles are non-negotiable and always
have to cancel).

The precursor paper of Angelantonj and Cardella contains a model equivalent to the
one presented above [77].9 In our work, we provide a microscopic geometrical interpreta-
tion of the source of supersymmetry breaking in terms of the replacement of an O7+-O7−
pair by an O7+-O7− pair, which leads to a novel form of brane supersymmetry break-
ing without tadpoles. Moreover, as argued in the next subsection, we believe that the
closed-string sector is not supersymmetric at tree-level but features spontaneously broken
supersymmetry.

Notice that the cancellation of the disk NS-NS tadpoles in our class of models does not
imply an exact Bose/Fermi degeneracy at each mass level. Indeed, the latter is related to
the cancellation of the one-loop cosmological constant, whereas the NS-NS disk tadpoles
are of lower order in perturbation theory.

Let us now make considerations of energetics. The O-planes have no dynamical posi-
tions. The D7-branes, on the other hand, do have dynamical positions. To find which con-
figuration is expected to minimize the one-loop effective potential, recall that the D7-branes
are mutually BPS and have therefore no net interactions with the O7+ and O7−-planes. On
the contrary, they are attracted by the O7+-plane and repelled by the O7−-plane. Hence,
the only stable configuration is obtained by putting all D7-branes on top of the O7+-plane,
leading to a USp(16) gauge group and breaking SUSY at the string scale, as explained
above. At first sight, one could think that a second option would be to put some stuck (or
rigid) half-D7-branes on top of O7− or O7−-planes, with no gauge group (but a Z2 global
symmetry). As will be seen in section 4, such configurations are however inconsistent, a
fact that can be checked by adding probe D3-branes.

To confirm these expectations, we write the Möbius amplitude for arbitrary brane
positions along X9 and X8. To this end, we introduce vectors ~aα = (a8

α, a
9
α) such that the

8We will discuss in the next subsection the issue of supersymmetry in the closed-string spectrum. The
O-planes and anti O-planes are mutually non-BPS. The cancellation of the non-supersymmetric contribu-
tions in the Klein bottle does not mean that the closed-string sector is supersymmetric, even ignoring the
supersymmetry breaking transmission from the open sector. As we will see, the most plausible possibility
is that the tree-level closed-string spectrum has softly broken supersymmetry. Another possibility, which
we consider however unlikely, is that the closed-string spectrum is supersymmetric but the interactions
are not. Another insight about this issue is the gravitino masses: a supersymmetric closed-string spectrum
would be in contradiction with the presence of orientifold and anti-orientifold planes, which impose opposite
boundary conditions for the gravitinos.

9In the model constructed in section 3 of [77], the O7+-O7− pair sits on the diagonal of the two-torus,
which corresponds to a different choice of the projector in the Möbius, ΠRR = (−1)m9+m8 ΠNSNS. The 8 D7-
branes were separated into two stacks of four branes, sitting on top of the anti-orientifolds. The attraction
of the D7-branes on top of O7+ cancels the repulsion of the D7-branes on top of O7−. However, as already
known by the authors of [77] and obvious from the discussion below, this configuration is unstable, since
the D7-branes on top of O7− are repelled by O7− and attracted towards the O7+ -plane, leading to the
stable configuration with one stack of eight coincident D7-branes, negative potential and USp(16) gauge
group discussed above.
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X8

X9

O7+ O7−

O7− O7−

Figure 2. Example of vector field
(
−∂V

∂a8
r
,− ∂V

∂a9
r

)
obtained numerically. The lighter the color is, the

longer the vector norm is.

position of the half-brane α ∈ {1, . . . , 16} along direction Xi is 2πaiαRi. In both channels,
we obtain

M = 1
2
∑
α

∫ dτ2
τ5

2

{ [
(−1)n9W2n8+2a2

α
−W2n8+1+2a2

α

] V̂8
η̂8

−
[
(−1)n9W2n8+1+2a2

α
−W2n8+2a2

α

] Ŝ8
η̂8

}
Wn9+2a1

α
,

M̃ = α′

2R9R8

∑
α

∫
dl e4iπm9a1

α e2iπm8a2
α Pm8

{ [
e2iπa1

αP2m9+1 − (−1)m8P2m9

] V̂8
η̂8

−
[
e2iπa1

α(−1)m8P2m9+1 − P2m9

] Ŝ8
η̂8

}
.

(2.30)

The dependance of the one-loop effective potential V on the independent positions can
be derived solely from M and M̃ in various regimes of the internal radii. Among the
16 vectors ~aα, at most 8 are dynamical degrees of freedom since the half-branes move by
pairs and unpaired half-branes stuck at a fixed point are not dynamical. We will label the
dynamical ones by an index r. In figure 2, we display the vector field

(−∂V
∂a8
r
,− ∂V

∂a9
r

)
obtained

numerically for a given brane r of arbitrary position. As anticipated before, the minimum
of the potential is reached when the branes sit at the origin, on the O7+-plane.
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2.4 Consistent pairing of torus and orientifold amplitudes

At first sight, one may think that the supersymmetric torus amplitude (2.2) as well as
the non-supersymmetic ones (2.8) and (2.11) are all consistent with the supersymmetric
orientifold amplitudes (2.13) and their non-supersymmetric deformation (2.27). If true,
this would yield six different orientifold models. There are however arguments based on
the understanding of the orientifold projections as well as on the effective field theories
that suggest that only two options are consistent.

Let us combine the non-supersymmetric torus amplitude (2.8) with the non-super-
symmetric orientifold amplitudes (2.27). The torus amplitude can be constructed as an
orbifold generated by g′ = (−1)F δw8δp9 , while the orientifold amplitudes are obtained from
the action of Ω′′ = Π8Π9(−1)FL(−δw9)F . Hence, the (anti-)orientifold planes are located at
the fixed points of Ω′′ and Ω′′g′. To be specific, Ω′′ fixes (0, 0) as well as (πR8, 0), thanks to
the 2πR8 periodicity. Moreover Ω′′g′ fixes (0, πR9) because g′ contains a factor δp9 acting
as X9 → X9 + 2πR9 after rescaling of the radius R9 → 2R9. It also fixes (πR8, πR9)
thanks to the 2πR8 periodicity. Notice that the presence of a factor (−1)F in such a
group element changes the orientifolds into anti-orientifold planes, as can be seen in the
Möbius amplitude where (−1)F changes the sign of the RR coupling. As a result, the fixed
points of Ω′′ are anti-orientifold planes, while those of Ω′′g′ are orientifold planes due to
the cancellation of the factors (−1)F . Therefore, the nature of the O-planes derived from
the non-supersymmetric amplitudes (2.27) and shown in figure 1c are in agreement with
the non-supersymmetric torus amplitude (2.8).

As shown in section 2.1, the second non-supersymmetric torus amplitude (2.11) is
equivalent to (2.8) under the interchange of the coordinates X8 ↔ X9. Therefore, a
consistent orientifold model is obtained by applying the same operation on the non-
supersymmetric orientifold amplitudes (2.27) and orientifold action (2.28). The correspond-
ing geometry of O-planes is like in figure 1c, with the O7−-plane now located at (0, πR9).

Finally, reasoning as above with the generators g = δw8δp9 and Ω′ = ΩΠ8Π9(−1)FL ,
one concludes that the supersymmetric orientifold amplitudes (2.13) are compatible with
the supersymmetric torus amplitude (2.2).

In fact, the reason why the four other combinations of torus and orientifold amplitudes
are inconsistent is that the orientifold projections are not symmetries of the closed-string
spectrum. For instance, the supersymmetric torus amplitude (2.2) does not seem to be com-
patible with the orientifold projection (2.28). Indeed, because the factor (−δw9)F in Ω′′ is
equivalent to (−1)n9F , fermions with even and odd winding numbers n9 are projected differ-
ently. Due to interactions, the same conclusion should apply for bosons. However, there is
no such selection rule in (2.2), as opposed to the non-supersymmetric torus amplitude (2.8),
where fermions with even n9 are gravitinos while those with odd n9 are spin 1

2 particles.
Moreover, any attempt to combine the supersymmetric torus amplitude (2.2) with the

non-supersymmetric orientifold amplitudes (2.27) is unlikely to be consistent, since the
former implies the existence of massless gravitinos that would be difficult to explain from
the point of view of the effective field theory. Instead, there seems to be no obstruction,
from the point of view of the effective supergravity, to couple the non-supersymmetric torus
amplitude (2.8) with the orientifold ones (2.27), since in this case all gravitinos are massive.
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To understand a little better how the nature of (anti-)orientifold planes may or may
not induce gravitino masses, let us consider first the orientifold projection Ω′. In this case,
O±-planes, which preserve the same supersymmetry, are located at the four fixed points of
T 2. The action on the two gravitinos ψµ and ψ̃µ of the 10-dimensional type IIB is given by

Ω′ψµ(X8, X9)(Ω′)−1 = ψµ(−X8,−X9) = Γ8Γ9ψ̃µ(X8, X9) ,
Ω′ψ̃µ(X8, X9)(Ω′)−1 = ψ̃µ(−X8,−X9) = −Γ8Γ9ψµ(X8, X9) , (2.31)

where Γ8 and Γ9 are 10-dimensional gamma matrices. A minus sign appears for one of the
two gravitinos because of the presence of the factor (−1)FL in the orientifold projection Ω′.
Note that this is consistent with that fact that the action of (Ω′)2 is the identity:

Ω′
(
Ω′ψµ(X8, X9)(Ω′)−1

)
(Ω′)−1 = −Γ8Γ9Γ8Γ9ψµ(X8, X9) = ψµ(X8, X9) . (2.32)

As a consequence, the orientifold action (2.31) only preserves one linear combination of the
two gravitinos. Let us now consider a geometry where anti-orientifold planes are located
at the four fixed points. The corresponding orientifold projection denoted Ω̃′ contains an
additional factor (−1)F compared to Ω′ which, once combined with the term (−1)FL , yields
a factor (−1)FR . The action of Ω̃′ then gives a minus sign to the other gravitino,

Ω̃′ψµ(X8, X9)(Ω̃′)−1 = ψµ(−X8,−X9) = −Γ8Γ9ψ̃µ(X8, X9) ,
Ω̃′ψ̃µ(X8, X9)(Ω̃′)−1 = ψ̃µ(−X8,−X9) = Γ8Γ9ψµ(X8, X9) , (2.33)

and thus preserves the orthogonal linear combination of gravitinos compared to Ω′. We
have seen that the geometry corresponding to the non-supersymmetric orientifold ampli-
tudes (2.27) involves both orientifold and anti-orientifold planes, as shown in figure 1c.
Therefore, the boundary conditions of the gravitinos at X9 = 0 are of the type (2.33),
whereas at X9 = πR9 they are of the type (2.31). Overall, one obtains a shift in the
KK spectrum of gravitinos m9/R9 → (m9 + 1

2)/R9, which is precisely what features the
non-supersymmetric torus amplitude (2.8) (see eq. (2.9)).

3 Lower dimensional compactifications

In this section, we extend the mechanism of supersymmetry breaking to models in even
dimension d ≤ 6.

In type IIB, a change of basis can always put an arbitrary discrete background for the
antisymmetric tensor Bij into a block-diagonal form, with 2× 2 antisymmetric matrices,

B = α′



0 λd
−λd 0 (0)

. . .
(0) 0 λ9

−λ9 0


, λi ∈

{
0, 1

2

}
. (3.1)
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The rank of the tensor Bij is twice the number of non-zero λi’s. Since they play no
significant role in the sequel, we choose to set to zero the off-diagonal elements of the
symmetric tensor Gij . The internal space is thus a Cartesian product of circles of radii Ri.

In the supersymmetric case, one can switch on some λi’s by implementing a free-
orbifold action on the background where Bij = 0. For instance, λ9 = λ8 = 1

2 in 6d
is achieved by considering the orbifold generated by g1 = δw8δp9 and g2 = δw6δp7 . In
4d, for λ7 = 1

2 , one simply adds an extra generator g3 = δw4δp5 . By considering an
orientifold action involving parities in all internal directions, one obtains a model involving
210−d O(d − 1)±-planes. It is then allowed to turn some O(d − 1)+-O(d − 1)− pairs into
O(d− 1)+-O(d− 1)− ones in order to break supersymmetry.

In the following, we consider various configurations of orientifold planes of this type and
provide the corresponding Klein, cylinder and Möbius amplitudes. In orbifold language,
the corresponding type IIB backgrounds can be realized by including operators (−1)F in
the definition(s) of one or several of the generators gi.

3.1 Geometry description

The geometry of a model is given by the precise locations of the various O± and O±-planes.
Since pictorial representations become involved when the number of internal dimensions
increases, it is useful to consider another way to describe a generic geometry. If one specifies
an ordering for the labelling of the fixed points, the geometry can simply be given by the
list of O-plane types following this ordering. In the 10 − d dimensional internal space, a
fixed point can be represented by a (10− d)-vector with components 0 or 1 that indicate if
it is located at the origin or at πRi in each direction Xi, i ∈ {d, . . . , 9}. For example, in 6d
the fixed point located at (X6, X7, X8, X9) = (0, πR7, πR8, 0) is represented by (0, 1, 1, 0).

In practice, let us label the fixed points by an index A ∈ {0, . . . , 2(10−d) − 1}. With
this convention, their positions are given by A written as a binary number. For instance
in 6d, the fixed points are labelled as follows,

A = 0 = (0, 0, 0, 0) , A = 1 = (0, 0, 0, 1) , A = 2 = (0, 0, 1, 0) ,
A = 3 = (0, 0, 1, 1) , · · · A = 15 = (1, 1, 1, 1) . (3.2)

3.2 Models in six dimensions

Projectors on the momenta in the Klein-bottle and Möbius amplitude can either be fac-
torized in the two internal T 2’s, or non-factorized. However, to obtain fully consistent
models, compatibility of the projectors with the RR tadpole condition turns out not to
be sufficient. Indeed, we give in the appendix examples of non-factorizable projectors,
where one is consistent and another one is not. In the following, we will consider only
consistent factorizable projectors. Supersymmetry breaking in the orientifold amplitudes
will be implemented by choosing different projectors for the NS-NS and RR closed-string
states propagating between the D-branes and the O-planes in the Möbius amplitude. On
the contrary, the Klein-bottle and cylinder amplitudes will take forms identical to those in
the SUSY cases.
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In six dimensions, a non-trivial antisymmetric tensor can have rank B = 2 or 4.

• rank B = 2: 8d model compactified on T 2 (T-dualized)

By compactifying the 8d model on an extra T 2 and T-dualizing both of its coordinates,
one finds a 6d model with D5-branes and 16 O5-planes. In the supersymmetric case, one
would have 12 O5− and 4 O5+-planes. In the non-SUSY case, one obtains a configuration
with 8 O5− and 4 × (O5− + O5+)-planes, where the geometry is simply the 8d one
duplicated along the new compact dimensions. The rank of the gauge group is 8 and,
depending on the location of the stacks of D5-branes, one finds for a single stack USp(16)
if the D5-branes are on top of one O5+ or O5+-plane, SO(16) if the D5-branes are on
top of one O5−-plane or O5−-plane, or U(8) if the stack of D5-branes is in the bulk.
Supersymmetry is broken at the string scale (nonlinearly realized) if the D5-branes
are coincident with anti-orientifolds, and broken only at the massive level (due to the
separation in the internal space from the source of supersymmetry breaking) if the
D5-branes are coincident with orientifold planes.

When the D5-branes are put at the origin, the corresponding projectors on the momen-
tum states running in the Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 ×
7∏
i=6

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.3)

The torus amplitude can be constructed as a free-orbifold generated by g′1 =(−1)F δw8δp9 .

• rank B = 4

Following the ordering of the fixed points given in eq. (3.2), the list of O±-planes of the
SUSY model we discuss here is

(O5+,O5−,O5−,O5−,O5+,O5−,O5−,O5−,O5−,
O5+,O5+,O5+,O5+,O5−,O5−,O5−) , (3.4)

with a total of 10 O5− and 6 O5+-planes. There are several possible consistent SUSY
breaking deformations. One example corresponds to a configuration containing 8 O5−
and 4× (O5− + O5+)-planes as follows,

(O5+,O5−,O5−,O5−,O5+,O5−,O5−,O5−,O5−,
O5+,O5+,O5+,O5+,O5−,O5−,O5−) . (3.5)

The rank of the gauge group is 4 and, depending on the location of the stacks of D5-
branes, one finds for a single stack USp(8) if the D5-branes are on top of one O5+ or
O5+ -plane, SO(8) if the D5-branes are on top of one O5−-plane or O5−-plane, and
U(4) if the D5-brane stack is in the bulk. Supersymmetry breaking pattern is of course
the same as in the rank B = 2 case discussed above.
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When the 4 D5-branes (8 half-D5-branes) are coincident with the O5+-plane at the
origin of the internal space, the projectors on the momentum states in the tree-level channel
Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 × 1 + (−1)m7 − (−1)m6 + (−1)m7+m6

2 ,

ΠRR = (−1)m8ΠNSNS . (3.6)

In order to write the orientifold amplitudes, it is convenient to denote lattices and volume
factors as folows,

P
(10−d)
m =

9∏
i=d

Pmi , W
(10−d)
n =

9∏
i=d

Wni , v10−d =
9∏
i=d

Ri . (3.7)

In these notations, the tree-level channel amplitudes are given by

K̃ = (α′)2

v4

∫ ∞
0

dl P (4)
m
V8 − S8
η8

(
il
)
,

Ã = 2−5N2(α′)2

2v4

∫ ∞
0

dl P (4)
m
V8 − S8
η8

(
il
)
,

M̃ = N(α′)2

4v4

∫ ∞
0

dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

[
P2m7 − (−1)m6P2m7+1

]
Pm6

× V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
, (3.8)

while in the loop-channel they become

K = 1
2

∫ ∞
0

dτ2
τ4

2
W

(4)
2n
V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞
0

dτ2
τ4

2
W

(4)
n
V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞
0

dτ2
τ4

2
Wn9

[
W2n8 − (−1)n9W2n8+1

]
Wn7

[
W2n6 − (−1)n7W2n6+1

]
× (−1)n9 V̂8 + Ŝ8

η̂8

(
iτ2
2 + 1

2

)
. (3.9)

The torus amplitude can be constructed as a free-orbifold generated by g′1 = (−1)F δw8δp9

and g2 = δw6δp7 . The presence of the factor (−1)F in g′1 can be understood from the
difference between the NS-NS and RR projectors in eq. (3.6), which is the same as in 8d
examples. Actually, the same will be true for all models we construct in what follows, only
g′1 will contain the supersymmetry breaking deformation (−1)F .
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3.3 Models in four dimensions

In four dimensions, a non-trivial antisymmetric tensor can have rank B = 2, 4 or 6.

• rank B = 2: 8d model compactified on T 4 (T-dualized)
By compactifying the 8d model on T 4 and T-dualizing the four extra compact directions,
one finds a 4d model with D3-branes and 64 O3-planes. In the supersymmetric case,
one has 48 O3− and 16 O3+-planes. In the non-SUSY case, one obtains a configuration
with 32 O3− and 16 × (O3− + O3+)-planes. Like in the six dimensional rank B = 2
case, the geometry is simply the one of the 8d model duplicated along the new compact
directions. Since the model is T-dual to the 8d model compactified on an extra T 4, the
rank of the gauge group is 8. For a single stack of D3-branes, the gauge symmetry is
USp(16) if the D3-branes are on top of one O3+ or O3+-plane, SO(16) if the D3-branes
are on top of one O3−-plane or O3−-plane, and U(8) if the D3-brane stack is in the
bulk. Supersymmetry is broken at the string scale (nonlinearly realized) if the D3-
branes are coincident with anti-orientifolds, and broken only at the massive level (due
to the separation in the internal space from the source of supersymmetry breaking) if
the D3-branes are coincident with orientifold planes.
When the D3-branes are put at the origin, the corresponding projectors on the momen-
tum states running in the Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 ×
7∏
i=4

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.10)

• rank B = 4: 6d model compactified on T 2 (T-dualized)
By compactifying the 6d model on T 2 and T-dualizing the two extra compact directions,
one finds a 4d model where, in the supersymmetric case, one has 40 O3− and 24 O3+-
planes. In the non-SUSY case, one finds a configuration with 24 O3−, 8 O3+ and
16 × (O3− + O3+)-planes. The geometry is the one of the 6d model duplicated along
the two new dimensions. Since the model is T-dual to the 6d model compactified on T 2,
the rank of the gauge group is 4. For a single stack of D3-branes, the gauge symmetry
is USp(8) if the D3-branes are on top of one O3+ or O3+-plane, SO(8) if the D3-branes
are on top of one O3−-plane or O3−-plane, and U(4) if the D3-brane stack is in the
bulk. The supersymmetry breaking pattern is the same as in the previous cases.
The corresponding projectors on the momentum states in the Möbius for D3-branes put
at the origin are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2

× 1 + (−1)m7 − (−1)m6 + (−1)m7+m6

2 ×
5∏
i=4

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.11)
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• rank B = 6

Following our binary ordering, the geometry of the SUSY model discussed here is

(O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3−,
O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3+,O3−,O3−,O3−,O3+,O3−,
O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3+,O3−,O3−,
O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,

O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−) , (3.12)

with a total of 36 O3− and 28 O3+-planes. Again, there are several SUSY breaking
deformations that are possible. One example is a configuration with 20 O3−, 12 O3+
and 16× (O3− + O3+)-planes as follows

(O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3−,
O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3+,O3−,O3−,O3−,O3+,O3−,
O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3+,O3−,O3−,
O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,

O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−) . (3.13)

The rank of the gauge group is 2 and, depending on the location of the stacks of D3-
branes, one finds for a single stack USp(4) if the D3-branes are on top of one O3+ or
O3+-plane, SO(4) if the D3-branes are on top of one O3−-plane or O3−-plane, and U(2)
if the D3-brane stack is in the bulk.

When the 2 D3-branes (4 half-D3-branes) are at the origin, the projectors on the
momentum states in the Möbius amplitude are

ΠNSNS =
4∏
i=2

1− (−1)m2i+1 − (−1)m2i − (−1)m2i+1+m2i

2 ,

ΠRR = (−1)m8ΠNSNS . (3.14)

The tree-level amplitudes are given by

K̃ = (α′)3

4v6

∫ ∞
0

dl P (6)
m
V8 − S8
η8

(
il
)
,

Ã = 2−5N2(α′)3

2v6

∫ ∞
0

dl P (6)
m
V8 − S8
η8

(
il
)
,

M̃ = −N(α′)2

8v4

∫ ∞
0

dl
4∏
i=2

[
(−1)m2iP2m2i+1 − P2m2i+1+1

]
Pm2i

× V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
, (3.15)
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while in the loop-channel they become

K= 1
2

∫ ∞
0

dτ2
τ3

2
W

(6)
2n
V8−S8
η8

(
2iτ2

)
,

A= N2

2

∫ ∞
0

dτ2
τ3

2
W

(6)
n
V8−S8
η8

(
iτ2
2

)
,

M= N

2

∫ ∞
0

dτ2
τ4

2

4∏
i=2

Wn2i+1

[
(−1)n2i+1W2n2i−W2n2i+1

] V̂8+(−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (3.16)

The torus amplitude can be constructed as a free-orbifold generated by g′1 = (−1)F δw8δp9 ,
g2 = δw6δp7 and g3 = δw4δp5 .

4 Consistency conditions from probe branes

It is well-known that the standard consistency rules of open-string partition functions are
not enough to define a consistent string model. There are indeed K-theory constraints [96,
97], which can also be understood in terms of the Witten SU(2) anomalies [98] on probe
branes [99]. We are therefore interested in probe branes with SU(2) gauge group. Probe
branes mean D-branes that are not constrained by the RR tadpole cancelation. In the
type I string, background branes are D9 and the probe branes can be of D7, D5, D3 or
D1 types, where the D5 and D1-branes are BPS, whereas the D7 and D3 are non-BPS.
Since D1-branes lead to a 2d theory, whereas we are interested in Witten four-dimensional
SU(2) anomalies, we will ignore D1-branes in what follows. D7 and D3-branes in type I
support unitary gauge groups U(M), D5-branes support USp(M) gauge groups [100, 101]
for Bij = 0, whereas SO(M) is also possible on D5-branes for Bij 6= 0. The cases of interest
for us are SU(2) ⊂ U(2) and USp(2), which will be implicitly assumed in what follows.
For Witten SU(2) anomaly, only the strings stretched between the background D9-branes
and the probe branes, which transform in the fundamental representation of the SU(2)
probe-brane gauge group, are relevant. Since the spectrum of these bifundamental strings
are given entirely by the cylinder amplitude, supersymmetry breaking by the orientifold
projection is not affecting our discussion below. In the following, we will first consider
the corresponding spectra in type I language and then perform T-dualities in all internal
directions. After T-duality, one obtains a geometry with O+, O−, O+, O−-planes, but due
to the argument above one can restrict to configurations with O±-planes only. The only
cases giving constraints are when background branes are located on O−-planes, which is
implicitly assumed in what follows.

4.1 Probe branes in eight dimensions

In the type I string compactified to eight dimensions on T 2, two T-dualities switch the
description into the type IIB/Ω′ orientifold framework, where Ω′ contains two parity op-
erations (X8, X9) → (−X8,−X9). One finds that: D9-D5 states contain six-dimensional
Majorana-Weyl fermions in the (M, 2) of the gauge group SO(M)9 × USp(2)5. After T-
duality, if the D5 probe brane wraps T 2, the configuration becomes D7-D3 with four-
dimensional Weyl fermions in the bifundamental representation. Placing some D7 and D3
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on the four O7-planes, we learn that at each orientifold fixed point, M should be even.
Therefore stuck half-D7-branes i.e. without dynamical positions, and in particular SO(1)
configurations, are not allowed.

Once this rule is satisfied, there are no further non-trivial constraints coming from D5
probe branes wrapped differently, or from D7 and D3 probe branes.

4.2 Probe branes in six dimensions

In type I string compactified to six-dimensions on T 4, the probe branes of interest are D5-
branes (which are not points in T 4), D7-branes whose worldvolume wrap T 4 and D3-branes.
The strongest constraints come from D9-D5 strings, which become D5-D5 strings after four
T-dualities, with the probe D5-branes wrapping a T 2 in the compact internal space. The
consistent configurations with stacks of odd numbers of background half-D5-branes on
orientifold fixed points must contain even numbers of such stacks in each T 2 in T 4.

4.3 Probe branes in four dimensions

In type I string compactified to four-dimensions on T 6, the only probe branes of interest
are D7-branes and D3-branes. The former give no constraint since the number of D9-D7
Weyl fermions after reduction to four dimensions is always even. Moreover, after six T-
dualities, the probe D3-branes become D9-branes which wrap the entire internal space,
while the background D9-branes become D3-branes. Hence, the probe D9-branes intersect
all background D3-branes, leading to no constraint.

4.4 Extra non-perturbative constraint

In addition to the Witten anomaly, another constraint on the allowed configurations comes
from imposing that, in any dimension, the Wilson lines (or brane positions after T-duality)
belong to SO(N) (actually Spin(N)) and not O(N). This is because at a nonperturbative
level, the component of O(N) disconnected from SO(N) cannot be defined [97]. This
implies that all determinants of Wilson-line matrices must equal one.

In practice, when the branes are located at fixed points, the matrix of Wilson lines
along a direction Xi is diagonal, with entries 1 or −1 only. The number of 1’s corresponds
to the number of half-branes sitting at the origin of direction Xi while the number of −1’s
is the number of half-branes at position Xi = πRi [18–30]. For the determinant to be one,
we thus conclude that the allowed brane configurations are the ones for which the number
of half-branes in each hyperplan Xi = 0 or Xi = πRi is even.

5 Gravitino mass versus SUSY breaking scale on D-branes

The main feature of the class of models constructed in this paper is the existence of two
supersymmetry breaking mass scales: one in the closed-string sector, which is related to the
compactification (KK or winding) scale, and another one in the open-string (gauge) sector,
which is either the winding scale or the string scale, depending on which one is smaller. As
mentioned in the introduction, this was already achieved in [76]. Our construction, which
is motivated by the orientifold projection put forward in the pioneering paper [77], allows
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one to avoid the open-string instabilities typically present in such constructions. In the
following, we discuss in some details the mass scales and the limits where supersymmetry
is restored in the non-SUSY 8d model of section 2.

In the geometry of O-planes shown in figure 1c, the 8 D7-branes can be put in a single
stack located in the bulk or coincident with one of the four orientifold planes. Let us
consider the latter case.

• Putting the stack on top of the O7−-plane closer to the O7−-plane, the Möbius contri-
bution to the vacuum energy is positive, since the D7-branes are repelled from the O7−
plane and attracted towards the O7+-plane. The Möbius amplitude takes the form

M = −N2

∫ ∞
0

dτ2
τ5

2
Wn9

[
W2n8 + (−1)n9W2n8+1

] V̂8 − (−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
, (5.1)

while the cylinder amplitude is still given by (2.27). The “field-theory” open-string
spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

{
N(N−1)

2

[
W2n9Wn8

V8−S8
η8 +W2n9+1

(
W2n8

V8
η8 −W2n8+1

S8
η8

)]∣∣∣∣
0

+N(N+1)
2 W2n9+1

(
W2n8+1

V8
η8 −W2n8

S8
η8

)∣∣∣∣
0

}
, (5.2)

and is supersymmetric at the massless level. The gauge group is SO(N), where N = 16
is fixed by the RR tadpole condition. Since the closed-string spectrum becomes super-
symmetric when R8 → 0 and/or R9 →∞ (in particular gravitinos become massless), it
is interesting to take these limits in the open (gauge) spectrum. The first limit R8 → 0
leads to a supersymmetric spectrum on the D7-branes. Indeed, the winding towers of
bosons and fermions collapse to the same value. Supersymmetry is broken only at the
massive winding level and for R8 ≤

√
α′ can therefore be considered as spontaneous at

the field-theory massless level, after including quantum corrections. In the other limit
R9 → ∞, the open-string states featuring supersymmetry breaking become infinitely
heavy and decouple at low energy.10

• Putting all D7-branes on one stack coincident with the O7−-plane closer to the O7+-
plane, the Möbius contribution to the vacuum energy is negative. Otherwise there are
no major differences.

• Let us now consider the case where all D7-branes are coincident with the O7+-plane,
whose amplitudes are displayed in eqs. (2.27) and (2.25). The “field-theory” open-string
spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

{
N(N + 1)

2 W2n9

(
W2n8

V8
η8 −W2n8+1

S8
η8

)∣∣∣∣
0

+N(N − 1)
2

[
W2n9

(
W2n8+1

V8
η8 −W2n8

S8
η8

)
+W2n9+1Wn8

V8 − S8
η8

]∣∣∣∣
0

}
.

(5.3)
10However, none of the limits has a purely perturbative orientifold description. In the first case R8 → 0

the open-string spectrum does not have a 9d interpretation, whereas in the second case R9 →∞ there are
local charges and tensions that generate a strong backreaction (local tadpoles are not cancelled).
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The gauge group is USp(N), where N = 16 is fixed by the RR tadpole condition.
In this case, the pattern of supersymmetry breaking depends on the value of R8. If
this radius is large (and in general when branes are coincident with anti-orientifold
planes) the breaking is at the string scale, with nonlinearly realized supersymmetry.
This interpretation is valid in the regime of large R8 and R9 >

√
α′, when there are

light gravitinos in the spectrum.

In the limit R8 → 0, the spectrum becomes however supersymmetric. In fact, when R8
is small, supersymmetry can be interpreted as spontaneously broken, since there is a
shift in the fermion masses compared to the bosons in the winding sector. Although
this seems similar to the familiar Scherk-Schwarz breaking, the mechanism has also
features in common with Brane Supersymmetry Breaking since the deformation does
not affect the cylinder but acts in the Möbius amplitude by exchanging symmetric with
antisymmetric gauge-group representations for fermions (compared to bosons) in the
open-string spectrum. Throughout the paper, we have used the terminology “super-
symmetry breaking at the string scale” for this situation, in order to distinguish it with
the case where the D-branes are on top of O±-planes.

When R9 → ∞ at fixed R8, the spectrum encoded in (5.3) does not become super-
symmetric, whereas the closed-string spectrum does. This is interesting since one may
think that an exact Brane Supersymmetry Breaking Spectrum is realized in this limit.
If true, this would also be a counter-example of the gravitino mass conjecture put for-
ward recently in [74, 75]. However, when R9 → ∞, the local sources from D-branes
and O-planes generate local tadpoles and thus large backreactions responsible for the
breaking of the effective field theory description, as conjectured in [74, 75].11 On the
other hand, the model shows that the value of the gravitino mass m3/2 can be decoupled
from the size of the scalar potential V , for fixed values of the moduli. In particular,
|m3/2| � |V |1/d is possible. Hence, we do not see any fundamental reason in quantum
gravity to necessarily have a high gravitino mass compared to the Hubble scale [102],
as recently proposed in [103, 104].

• Finally, putting all D7-branes on one stack coincident with the O7−-plane, the Möbius
contribution to the vacuum energy is positive and the pattern of supersymmetry break-
ing is similar to that found in the previous case.

Let us summarize the similarities and differences between BSB models and the ones
we have constructed in this paper. In BSB models, the closed-string spectrum is super-
symmetric, therefore there are massless gravitinos, whereas in the open-string spectrum
supersymmetry is non-linearly realized, meaning that bosonic and fermionic degrees of
freedom do not match level by level. The price to pay is the presence of a disk NS-NS

11Note however that these references do not claim that a limit of zero gravitino mass is not possible.
There are known examples of Scherk-Schwarz type where the whole spectrum and interactions (closed and
open strings in orientifolds, or only closed strings in heterotic and type II strings) become supersymmetric
in the decompactification limit. The claim is that such a limit is not possible, within an effective field
theory description, if there is some sector breaking supersymmetry in the limit of vanishing gravitino mass.
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tadpole, which could signal a breakdown of perturbation theory. In the models we dis-
cussed in this paper, supersymmetry is broken in the closed sector at the compactification
scale, whereas the scale of supersymmetry breaking in the open sector can be the string
scale. There are no disk NS-NS tadpoles, but generically there is a one-loop cosmological
constant. There is a continuous modulus which in the limit R9 → ∞ seems to realize an
exact BSB setup. However, local sources (local tadpole cancelation conditions) generate a
strong backreaction and prevents this limit to be realized.

6 Conclusions and open questions

We have constructed supersymmetry-breaking orientifold models where a certain num-
ber n of O− (negative tension, negative charge) -O+ (positive tension, positive charge)
orientifold-plane pairs are transformed into n O− (negative tension, positive charge) -
O+ (positive tension, negative charge) pairs. The anti-orientifold plane pairs preserve
the other half of supersymmetries, compared to the other ingredients of the background,
which are O±-planes and D-branes. In the open-string sector, supersymmetry is only bro-
ken in the Möbius vacuum amplitude, whereas the closed-string sector has softly broken
supersymmetry.

The main interest of this mechanism is that both the original O−-O+ pairs and their
SUSY breaking cousins O−-O+ have zero tension and charge, so that the total tension and
charge of the models are unchanged upon replacement. Therefore there are neither NS-NS
nor RR tadpoles generated in the process.

Depending on where the background D-branes sit in the internal space, their massless
spectrum is supersymmetric or not. In the latter case, which corresponds to D-branes
located on anti-orientifold planes, the pattern of supersymmetry breaking depends on the
value of a radius. If it is large, the breaking is at the string scale, with nonlinearly realized
supersymmetry. On the contrary, if the radius is small, the same configuration describes
a spontaneous breaking of supersymmetry. In this regime, the winding states in the D-
brane spectrum are light and supersymmetry breaking can be interpreted as a shift in the
fermion masses compared to the bosons in the winding sector. This seems similar to the
more familiar breaking by compactification (Scherk-Schwarz), but it differs in detail in that
the brane-brane cylinder amplitude is not subject to this shift.

Constructions of this type naturally stabilize open-string moduli. Indeed, energetic
considerations favor the D-branes to sit on top of O+-planes, where the scale of supersym-
metry breaking on their worldvolume is maximal.

An interesting issue in such models is their effective field-theory limits. At first sight,
as initially considered in [77], it seems possible that the closed-string spectrum is super-
symmetric at tree level. However, we have provided arguments showing that this is not
plausible, as it would be at odds with the boundary conditions of the gravitinos imposed by
the simultaneous presence of orientifold and anti-orientifold planes, which suggests massive
gravitinos. In fact, we have given reasons in favor of a specific soft supersymmetry-breaking
deformation in the closed-string sector, rendering massive the gravitinos. Moreover, if an
exact supersymmetric closed-string spectrum would be compatible with the orientifold
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amplitudes discussed in our paper, one would obtain new models of Brane Supersymme-
try Breaking type. This would also give counter-examples of the gravitino mass conjec-
ture [74, 75], whereas the models constructed in our paper are in agreement with it. More
generally, existence of models with exact supersymmetry in the closed-string sector and
broken supersymmetry in the open-string sector would contradict the conjecture in [74, 75].
Three more comments are in order here.

First of all, all known models of this type, which are of BSB type or with internal
magnetic fields and broken supersymmetry, have NS-NS disk tadpoles that could plausibly
trigger a breakdown of the effective field theory in the perturbative vacuum, in agreement
with [74, 75]. Secondly, the exact supersymmetry in the closed-string sectors of such
models is valid only at tree-level, as it is broken by quantum corrections induced by the
open-string sector. It is unclear to us if the conjecture on the gravitino mass should apply
to the classical theory (tree-level spectrum) or to the quantum one. Lastly, in the string
models we have constructed, it is possible to decouple the gravitino mass from the size
of the scalar potential. In particular, the gravitino can be much lighter than the scale
determined by the magnitude of the quantum potential. This fact could play a role in
inflationary models of the type studied in [102–107].

Eventually, the string models we have considered are based on toroidal compactifica-
tions and the fermionic spectrum, once reduced to four dimensions, is non-chiral. It would
be of course very interesting to construct chiral four-dimensional models with supersymme-
try breaking, by combining the mechanism put forward in this paper with other ingredients
producing chirality, like orbifolds and/or fluxes. We hope to come back to this interesting
question in the near future.
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A Consistency of supersymmetric Möbius projectors

In the construction of models in even dimension lower than 8, we have chosen factorized
Möbius projectors for simplicity. However, this is not imposed by the RR tadpole condition.
In this appendix, we will confirm that non-factorized projectors can be fully consistent, but
we will also see that imposing the RR tadpole condition is not enough to obtain a Möbius
projector fully consistent. In the latter case, the inconsistency can only be seen in the
direct Klein-bottle amplitude, while it is invisible in the open-string sector. We will study
supersymmetric examples in 6d with rank B = 4.

A.1 A consistent non-factorized Möbius projector

In 6d, with all D-branes located at the origin, a generic Möbius projector contains 16 terms,
one for each fixed point with appropriate phases. The RR tadpole condition constrains the
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overall charge of the O-planes and thus the number of O− and O+-planes. In the projector,
this translates into a given number of minus and plus signs. In 6d with maximal rank for
Bij , there are 10 O5− and 6 O5+-planes. This yields 10 terms with a minus sign and 6
terms with a plus sign in the projector. The total number of possibilities that fulfils this
requirement is

(16
6
)

= 8008.
Let us look at the following projector,

Π = 1 + (−1)m9 + (−1)m8 − (−1)m9+m8 + (−1)m7 − (−1)m9+m7 − (−1)m8+m7

− (−1)m9+m8+m7 + (−1)m6 − (−1)m9+m6 − (−1)m8+m6 − (−1)m9+m8+m6

− (−1)m7+m6 − (−1)m9+m7+m6 − (−1)m8+m7+m6 + (−1)m9+m8+m7+m6 . (A.1)

With all D-branes at the origin, we deduce the geometry of the model,

(O5+,O5+,O5+,O5−,O5+,O5−,O5−,O5−,O5+,

O5−,O5−,O5−,O5−,O5−,O5−,O5+) . (A.2)

It turns out to give no projection in the tree-level channel Klein-bottle amplitude, as was
the case in eq. (3.8). This is thus consistent with the supersymmetric torus amplitude
generated by g1 and g2. The transverse cylinder amplitude is also the one obtained in
eq. (3.8), while the Möbius amplitudes, both in tree-level and loop channels, are

M̃=−N(α′)2

4v4

∫ ∞
0

dl
[
(P2m9 +P2m9+1(−1)m6)(P2m8P2m7+1+P2m8+1P2m7)

+(P2m9+1−P2m9(−1)m6)(P2m8P2m7−P2m8+1P2m7+1)
]
Pm6

V̂8−Ŝ8
η̂8

(
il+ 1

2

)
M=

∫ ∞
0

dτ2
τ4

2

[
Wn9 (W2n8W2n7−W2n8+1W2n7+1)(W2n6 +W2n6+1(−1)n9)

+(W2n8W2n7+1+W2n8+1W2n7)(W2n6(−1)n9−W2n6+1)
] V̂8−Ŝ8

η̂8

(
iτ2
2 + 1

2

)
. (A.3)

The tree-level channel Möbius amplitude contains all momentum states, just like the tree-
level Klein bottle and cylinder, so that the factorization property of the amplitudes is
satisfied. The loop-channel Möbius amplitude is also consistent with the cylinder since it
contains the contributions of the same states with signs. We conclude that the projec-
tor (A.1) yields a fully consistent model.

A.2 An inconsistent Möbius projector

Now consider the following projector, which has the correct number of signs to satisfy the
RR tadpole condition,

Π = 1 + (−1)m9 + (−1)m8 + (−1)m9+m8 + (−1)m7 + (−1)m9+m7 − (−1)m8+m7

− (−1)m9+m8+m7 − (−1)m6 − (−1)m9+m6 − (−1)m8+m6 − (−1)m9+m8+m6

− (−1)m7+m6 − (−1)m9+m7+m6 − (−1)m8+m7+m6 − (−1)m9+m8+m7+m6 . (A.4)
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With all D-branes at the origin, the distribution of O-planes is given by

(O5+,O5+,O5+,O5+,O5+,O5+,O5−,O5−,O5−,
O5−,O5−,O5−,O5−,O5−,O5−,O5−) . (A.5)

With this geometry, the tree-level channel Klein bottle is now different and not all mo-
mentum states are present. The tree-level and loop-channel Klein-bottle and Möbius am-
plitudes are

K̃ = (α′)2

v4

∫ ∞
0

dl P2m9 (Pm8Pm7Pm6 + 8P2m8P2m7P2m6+1) V8 − S8
η8

(
il
)
,

K = 1
4

∫ ∞
0

dτ2
τ4

2
Wn9 (W2n8W2n7W2n6 +Wn8Wn7(−1)n6Wn6) V8 − S8

η8
(
2iτ2

)
,

M̃ = N(α′)2

4v4

∫ ∞
0

dl P2m9

{
P2m8 [Pm7Pm6 − 2P2m7 (P2m6 − P2m6+1)]

+ P2m8+1 (P2m7 − P2m7+1)Pm6

} V̂8 − Ŝ8
η̂8

(
il + 1

2

)
,

M = N

2

∫ ∞
0

dτ2
τ4

2
Wn9Wn8 (W2n7W2n6 −Wn7W2n6+1 + (−1)n8W2n7+1W2n6)

× V̂8 − Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (A.6)

The loop-channel Möbius amplitude contains all states present in the cylinder. Moreover,
the tree-level Klein-bottle, cylinder and Möbius amplitudes respect amplitude factorization.
The only inconsistency comes from the Klein bottle in the loop-channel, which contains
states not present in the torus amplitude. This means that the RR tadpole condition is
not enough to produce a consistent Möbius projector. The inconsistency can only be seen
in the closed-string sector and comes from the geometry of the model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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