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1 Introduction

The interaction of an axial-vector resonance A with two electromagnetic currents is subject
to the venerable Landau–Yang theorem [1, 2], which states that a spin-1 particle cannot
decay into two on-shell photons. Accordingly, the decay A → γγ is forbidden, and the
simplest process from which information on the general A → γ∗γ∗ matrix element can be
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extracted is the singly-virtual process. Such measurements are available from the (space-
like) reaction e+e− → e+e−A for A = f1(1285) and A = f1(1420) [3–8], providing results
for the so-called equivalent two-photon decay width Γ̃γγ as well as some constraints on
the momentum dependence of the process. Assuming U(3) symmetry then allows some
inference for A = a1(1260), but other direct phenomenological input is scarce.

Recently, renewed interest in the electromagnetic properties of axial-vector resonances
has been triggered by hadronic corrections to the anomalous magnetic moment of the muon,
with the current Standard-Model prediction [9–33],

aSMµ = 116 591 810(43)× 10−11, (1.1)

differing from experiment [34–38],

aexpµ = 116 592 061(41)× 10−11, (1.2)

by 4.2σ. While at present the uncertainty is dominated by hadronic vacuum polarization,
with an emerging tension between the determination from e+e− data [9, 14–20] and lattice
QCD [9, 39–48], see refs. [49–52], the ultimate precision expected from the Fermilab [53]
and J-PARC [54] experiments demands that also the second-most-uncertain contribution,
hadronic light-by-light (HLbL) scattering, be further improved. The uncertainty of the cur-
rent phenomenological estimate, aHLbLµ = 92(19) × 10−11 [9, 22–31, 55–60], is dominated
by the intermediate- and high-energy regions of the loop integral. In fact, while at low
energies the few dominant hadronic channels can be taken into account explicitly in a dis-
persive approach [61–65] — in terms of pseudoscalar TFFs and partial-wave amplitudes for
γ∗γ∗ → ππ [66–71] — between (1–2)GeV multi-hadron channels become relevant, which ul-
timately need to be matched to short-distance constraints for the HLbL amplitude [22, 29–
31, 72–76]. At these intermediate energies, though, the potentially most sizable contribu-
tion originates from hadronic channels that include axial-vector resonances, especially given
the role they may play in the transition to the asymptotic constraints [22, 57, 60, 77–79].
So far, however, the available estimates of axial-vector contributions are model dependent,
both because evaluated with a Lagrangian model for the HLbL tensor itself and because
of uncertainties in the interaction with the electromagnetic currents, as parameterized in
terms of their TFFs.

As a first step to improving this situation, a systematic analysis of the axial-vector
TFFs has been presented recently in ref. [80], including the decomposition into Lorentz
structures that guarantee the absence of kinematic singularities in the TFFs, following
the recipe of Bardeen, Tung, and Tarrach (BTT) [81, 82], and the derivation of
short-distance constraints in analogy to the light-cone expansion of Brodsky and Lepage
(BL) [83–85]. Here, we provide a comprehensive analysis of the TFFs of the f1(1285), for
which the most phenomenological input is available. In addition to e+e− → e+e−f1 [5–7],
there are data for f1 → 4π [86], f1 → ργ [86, 87], f1 → φγ [86, 88], and, most recently,
f1 → e+e− [89], all of which probe different aspects of the TFFs, as we will study in detail
in this paper.

Given that there are three independent TFFs, in contrast to just one in the case of
pseudoscalar mesons, a full dispersive reconstruction as in refs. [26, 27, 90–94] for the π0 or
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in progress for η, η′ [95–99] appears not feasible given the available data. Accordingly, we
will study the simplest vector-meson-dominance (VMD) ansatz, to elucidate which param-
eters can presently be determined from experiment. In contrast to previous work [100, 101],
our parameterization ensures the absence of kinematic singularities, includes short-distance
constraints, and accounts for the spectral function of the isovector resonances. In particu-
lar, we critically examine which of the processes listed above do allow for an unambiguous
extraction of TFF properties. We focus on the f1 → e+e− decay, evidence for which has
been observed only recently by the SND collaboration [89], with future improvements pos-
sible in the context of the ongoing program to measure e+e− → hadrons cross sections.
Further, since this process involves a loop integration that depends on all three TFFs, it
should provide some sensitivity also to the doubly-virtual TFFs, which are particularly
difficult to measure otherwise.

The outline of this article is as follows: in section 2, we review the BTT decomposition
of the A → γ∗γ∗ matrix element as well as the asymptotic constraints. In section 3, we
then construct a minimal VMD ansatz, an extended version, and study their asymptotic
behavior. The tree-level processes e+e− → e+e−f1, f1 → 4π, and f1 → V γ (V = ρ, φ, ω)
used to constrain the parameters are discussed in section 4, followed by the f1 → e+e−

decay in section 5. The full phenomenological analysis is provided in section 6, before we
summarize our findings in section 7. Further details are provided in the appendices.

2 Lorentz decomposition and Brodsky–Lepage limit

The matrix element for the decay of an axial-vector meson into two virtual photons,
A(P, λA)→ γ∗(q1, λ1)γ∗(q2, λ2), is given by [80]

〈γ∗(q1, λ1)γ∗(q2, λ2)|A(P, λA)〉 = i(2π)4δ(4)(q1 + q2 − P )M
(
{A, λA} → {γ∗, λ1}{γ∗, λ2}

)
(2.1)

in terms of helicity amplitudes

M
(
{A, λA} → {γ∗, λ1}{γ∗, λ2}

)
= e2ελ1

µ
∗(q1)ελ2

ν
∗(q2)ελAα (P )Mµνα(q1, q2), (2.2)

where we introduced the tensor matrix elementMµνα(q1, q2) by means of

Mµν({P, λA} → q1, q2) = ελAα (P )Mµνα(q1, q2)

= i

∫
d4x eiq1·x 〈0|T{jµem(x)jνem(0)}|A(P, λA)〉. (2.3)

In deriving these relations, the axial-vector meson is treated as an asymptotic state in the
narrow-width approximation; furthermore, the electromagnetic quark current is given by

jµem(x) = q̄(x)Qγµq(x), q(x) = (u(x), d(x), s(x))ᵀ, Q = 1
3diag(2,−1,−1). (2.4)

2.1 Lorentz structures

Following the BTT approach [81, 82], the tensor matrix element Mµνα(q1, q2) can be
decomposed into three independent Lorentz structures and scalar functions Fi(q2

1, q
2
2)
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that are free of kinematic singularities, with the result [80]

Mµνα(q1, q2) = i

m2
A

3∑
i=1

Tµναi (q1, q2)Fi
(
q2

1, q
2
2

)
, (2.5)

where mA is the mass of the respective axial-vector meson and

Tµνα1 (q1, q2) = εµνβγq1βq2γ (qα1 − qα2 ) ,
Tµνα2 (q1, q2) = εανβγq1βq2γq

µ
1 + εαµνβq2βq

2
1,

Tµνα3 (q1, q2) = εαµβγq1βq2γq
ν
2 + εαµνβq1βq

2
2, (2.6)

with the convention ε0123 = +1. Under photon crossing (µ↔ ν and q1 ↔ q2), the structures
transform according to T νµα1 (q2, q1) = −Tµνα1 (q1, q2) and T νµα2 (q2, q1) = −Tµνα3 (q1, q2), so
that for the form factors we find F1(q2

2, q
2
1) = −F1(q2

1, q
2
2) and F2(q2

2, q
2
1) = −F3(q2

1, q
2
2)

on account of Bose symmetry, Mµνα(q1, q2) = Mνµα(q2, q1). The prefactor i/m2
A in

equation (2.5) has been chosen to obtain dimensionless TFFs Fi(q2
1, q

2
2) with real-valued

normalization.
The Landau–Yang theorem [1, 2] forbids the decay into two on-shell photons, i.e.,

at least one photon has to be virtual. In particular, the decay width1

Γ(A→ γγ) = 1
32πmA

|M(A→ γγ)|2 (2.7)

vanishes [80], where |M(A→ γγ)|2 is the squared spin-average of the helicity amplitudes,
equation (2.2), for on-shell photons. Instead, the so-called equivalent two-photon decay
width is defined as [5]2

Γ̃γγ = lim
q2

1→0

1
2
m2
A

q2
1

Γ(A→ γ∗LγT), (2.8)

where the spin-averaged — longitudinal-transversal (LT) — width is given by

Γ(A→ γ∗LγT) = 1
3

∑
λA={0,±}

Λ2=±

∫
dΓ0λ2|λA

A→γ∗γ∗
∣∣∣
q2

2=0
, (2.9)

and the differential decay width for fixed polarization reads

dΓλ1λ2|λA
A→γ∗γ∗ = 1

32π2m2
A

√
λ
(
m2
A, q

2
1, q

2
2
)

2mA
|M ({A, λA} → {γ∗, λ1}{γ∗, λ2})|2dΩ, (2.10)

with center-of-mass solid angle Ω and the Källén function λ(a, b, c) = a2 + b2 + c2−2ab−
2ac− 2bc. In terms of the Fi(q2

1, q
2
2) one has [80]

Γ̃γγ = πα2

12 mA|F2(0, 0)|2 = πα2

12 mA|F3(0, 0)|2, (2.11)

where α = e2/(4π) is the fine-structure constant.
1This expression includes a factor 1/2 due to the indistinguishability of the two on-shell photons.
2The equivalent two-photon decay width is sometimes defined without the factor of 1/2, see ref. [102].
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2.2 Asymptotic constraints

In analogy to the asymptotic limits of the pseudoscalar TFF derived in refs. [83–85], one
can use a light-cone expansion to obtain the asymptotic behavior of the axial-vector TFFs.
Using the distribution amplitudes from refs. [103, 104], the asymptotic behavior is given
by [80]

F1
(
q2

1, q
2
2

)
= O

(
1/q6

i

)
,

F2
(
q2

1, q
2
2

)
= F eff

A m3
A

∫ 1

0
du uφ (u)(

uq2
1 + (1− u) q2

2 − u (1− u)m2
A

)2 +O
(
1/q6

i

)
,

F3
(
q2

1, q
2
2

)
= −F eff

A m3
A

∫ 1

0
du (1− u)φ (u)(

uq2
1 + (1− u) q2

2 − u (1− u)m2
A

)2 +O
(
1/q6

i

)
, (2.12)

where we generically denoted powers of asymptotic momenta by qi = q1, q2 and the wave
function φ(u) = 6u(1 − u) is the asymptotic form that already contributes to the pseu-
doscalar case. In writing equation (2.12), we furthermore defined an effective decay con-
stant

F eff
A = 4

∑
a

CaF
a
A, (2.13)

where the decay constants F aA are defined via

〈0|q̄(0)γµγ5
λa

2 q(0)|A(P, λA)〉 = F aAmAεµ. (2.14)

The Gell-Mann matrices λa and the conveniently normalized unit matrix λ0 =
√

2/31
determine the flavor decomposition, with the flavor weights Ca in the effective decay con-
stant given by Ca = 1/2Tr(Q2λa), i.e., C0 = 2/(3

√
6), C3 = 1/6, and C8 = 1/(6

√
3).

In equation (2.12) we retained the leading mass effects in the denominator, but stress
that this does not suffice for a consistent treatment of such corrections. We will thus mostly
set mA = 0 in the denominators when implementing the short-distance constraints, but
address the treatment of the leading mass effects in appendix A. Rewriting the results in
terms of the average photon virtuality Q2 and the asymmetry parameter w,

Q2 = q2
1 + q2

2
2 ∈ [0,∞), w = q2

1 − q2
2

q2
1 + q2

2
∈ [−1, 1], (2.15)

one finds the scaling [80]

F1
(
q2

1, q
2
2

)
= O

(
1/Q6

)
,

Fi
(
q2

1, q
2
2

)
= F eff

A m3
A

Q4 fi (w) +O
(
1/Q6

)
, i = 2, 3, (2.16)

with

f2/3(w) = 3
4w3

(
3∓ 2w + (3± w)(1∓ w)

2w log 1− w
1 + w

)
. (2.17)
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−1 −0.5 0 0.5 1
w

−3

−2

−1

0

1

2

3
f i

(w
)

f2(0) = 1/2
f2(1) = 3/4

f2(−1)→∞

f2(w)

f3(w)

Figure 1. Asymmetry functions f2(w) and f3(w), equation (2.17), with values for the limiting
cases w ∈ {−1, 0, 1} of f2(w), corresponding to q2

1 = 0, q2
1 = q2

2 , and q2
2 = 0, respectively. The

analogous limits for f3(w) follow from f2(−w) = −f3(w).

The asymmetry functions f2/3(w) are shown in figure 1, where we also illustrate the values
of the function f2(w) for the limiting cases w = −1 (q2

1 = 0), w = 0 (q2
1 = q2

2), and w = 1
(q2

2 = 0); since f2(−w) = −f3(w), the analogous limits for f3(w) follow accordingly.
More specifically, the symmetric doubly-virtual and singly-virtual asymptotic limits of

the TFFs — the latter often being referred to as the BL limit — become

F2
(
q2, q2

)
= F eff

A m3
A

2q4 +O
(
1/q6

)
, F2

(
q2, 0

)
= 3F eff

A m3
A

q4 +O
(
1/q6

)
,

F3
(
q2, q2

)
= −F

eff
A m3

A

2q4 +O
(
1/q6

)
, F3

(
0, q2

)
= −3F eff

A m3
A

q4 +O
(
1/q6

)
, (2.18)

while the expressions for F2(0, q2) and F3(q2, 0) diverge. Given that the derivation of
equation (2.12) can only be justified from the operator product expansion for |w| <
1/2 [105, 106], the singly-virtual limits need to be treated with care.3 However, physi-
cal helicity amplitudes only depend on the well-defined limits in equation (2.18), in such a
way that the problematic limits F2(0, q2) and F3(q2, 0) do not contribute to observables.
We will return to this point in the context of the f1 → e+e− loop integral.

3In soft-collinear effective theory (SCET) the BL factorization can be derived with the kernel correspond-
ing to the perturbatively calculable SCET Wilson coefficient and the wave function to the non-perturbative
matrix element of a SCET operator [107–109]. The asymptotic result as given in equation (2.12) follows in
the limit of conformal symmetry of QCD [110].
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3 Vector meson dominance

Given the scarcity of data for axial-vector resonances, we will perform our phenomenological
analysis in the context of a VMD description, which has proven to provide successful
approximations for a host of low-energy hadron-photon processes [111–116]. Most notably,
the underlying assumption that the interaction is dominated by the exchange of vector
mesons predicts the charge radius of the pion at the level of 10%. Even though the ensuing
model dependence is hard to estimate a priori, this approach allows us to analyze all
experimental constraints simultaneously in a common framework, which could be refined
as soon as improved data become available.

To construct VMD representations of the TFFs as defined in section 2, it is convenient
to recast them in terms of their symmetric (s) and antisymmetric (a) combinations

Fa1

(
q2

1, q
2
2

)
= F1

(
q2

1, q
2
2

)
,

Fa2

(
q2

1, q
2
2

)
= F2

(
q2

1, q
2
2

)
+ F3

(
q2

1, q
2
2

)
,

Fs
(
q2

1, q
2
2

)
= F2

(
q2

1, q
2
2

)
−F3

(
q2

1, q
2
2

)
, (3.1)

with the indicated symmetry properties under the exchange of momenta, q2
1 ↔ q2

2. Conse-
quently, the basis of structures transforms according to

Tµναa1 (q1, q2) = Tµνα1 (q1, q2)
= εµνβγq1βq2γ (qα1 − qα2 ) ,

Tµναa2 (q1, q2) = 1
2 [Tµνα2 (q1, q2) + Tµνα3 (q1, q2)]

= 1
2q1βq2γ

(
εανβγqµ1 + εαµβγqν2

)
+ 1

2ε
αµνβ

(
q2βq

2
1 + q1βq

2
2

)
,

Tµναs (q1, q2) = 1
2 [Tµνα2 (q1, q2)− Tµνα3 (q1, q2)]

= 1
2q1βq2γ

(
εανβγqµ1 − ε

αµβγqν2

)
+ 1

2ε
αµνβ

(
q2βq

2
1 − q1βq

2
2

)
, (3.2)

where these functions fulfill the same symmetry properties under photon crossing. Given
this alternative basis, the equivalent two-photon decay width, equation (2.11), becomes

Γ̃γγ = πα2

48 mA|Fs(0, 0)|2 (3.3)

and the tensor matrix element of equation (2.5) takes the form

Mµνα (q1, q2) = i

m2
A

∑
i=a1,a2,s

Tµναi (q1, q2)Fi
(
q2

1, q
2
2

)
. (3.4)

3.1 Quantum numbers and mixing effects

Since by far the best phenomenological information is available for the f1 ≡ f1(1285), we
will focus on this resonance in the remainder of this work, but remark that information on
the f ′1 ≡ f1(1420) and the a1(1260) can be derived when assuming U(3) flavor symmetry.
As a first step towards constructing our VMD ansatz for the TFFs,4 we review the relevant

4Related models for the f1 have previously been constructed in the literature [100, 101], see appendix C
for a more detailed comparison.
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quantum numbers and mixing patterns. From the G-parity G = + of the f1, it is imme-
diately clear that both photons have to be either in their isoscalar or isovector state when
neglecting isospin-breaking effects. Hence, the VMD coupling can only proceed via ρρ-like
or via some combination of an ω- and φ-like vector meson, each of which will be discussed
in turn in section 3.2 and section 3.3, respectively. As we will show in the following, it is
the isovector channel that dominates, with isoscalar corrections typically at the level of 5%.

To this end, we have to take into account mixing effects between the (physical) mesons
of the corresponding JPC = 1++ axial-vector nonet, i.e., the mixing pattern [86](

f1
f ′1

)
=
(

cos θA sin θA
− sin θA cos θA

)(
f0

f8

)
, (3.5)

where f0 and f8 denote the isoscalar singlet and octet states of the JPC = 1++ nonet
and θA is the corresponding mixing angle. Pure octet/singlet mixing is reproduced for
θA = π/2, whereas ideal mixing is obtained for θA = arctan(1/

√
2).

Including only the two resonances f1 and f ′1, the U(3) parameterization of the JPC =
1++ axial vectors reads

ΦA
µ =


√

2
3f

0 + 1√
3f

8 0 0

0
√

2
3f

0 + 1√
3f

8 0

0 0
√

2
3f

0 − 2√
3f

8


µ

, (3.6)

and when splitting the charge matrix into isovector and isoscalar components according to
Q = Q3 +Q8,

Q3 = 1
2diag(1,−1, 0), Q8 = 1

6diag(1, 1,−2), (3.7)

one finds

Tr
[
ΦA
µQ3Q3

]
=
f1µ

(√
2 cos θA + sin θA

)
+ f ′1µ

(
cos θA −

√
2 sin θA

)
2
√

3
,

Tr
[
ΦA
µQ8Q8

]
=
f1µ

(√
2 cos θA − sin θA

)
− f ′1µ

(
cos θA +

√
2 sin θA

)
6
√

3
. (3.8)

Using the mixing angle θA = 62(5)◦ as determined by the L3 collaboration [7, 8], see
section 4.1, one thus finds that the ratio RS/V of isoscalar to isovector contributions for
the f1γγ coupling is given by

RS/V =
√

2− tan θA
3(
√

2 + tan θA)
= −4.7(3.4)%. (3.9)

3.2 Isovector contributions

For the isovector contributions to the TFFs in equation (3.1) we include the ρ ≡ ρ(770) and
the ρ′ ≡ ρ(1450), since this is the minimal particle content that produces a non-vanishing
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contribution for the antisymmetric TFFs. We propose the minimal parameterizations

FI=1
a1/2

(
q2

1, q
2
2

)
=

Ca1/2M
2
ρM

2
ρ′(

q2
1 −M2

ρ + i
√
q2

1 Γρ
(
q2

1
))(

q2
2 −M2

ρ′ + i
√
q2

2 Γρ′
(
q2

2
)) − (q1 ↔ q2) ,

FI=1
s

(
q2

1, q
2
2

)
=

CsM
4
ρ(

q2
1 −M2

ρ + i
√
q2

1 Γρ
(
q2

1
))(

q2
2 −M2

ρ + i
√
q2

2 Γρ
(
q2

2
)) , (3.10)

where Γρ(q2) and Γρ′(q2) are yet to be specified energy-dependent widths.5 Moreover,
ρρ′ and ρ′ρ′ terms will be added to Fs(q2

1, q
2
2) below, to help incorporate the asymptotic

constraints from section 2.2. We adopt the dispersion-theoretical point of view to model
the singularities of the TFFs based on vector-meson poles, and refrain from constructing
these using effective Lagrangians in order to facilitate the implementation of high-energy
constraints.

Concerning the energy-dependent width Γρ(q2), the decay ρ→ ππ is described by

Γρ
(
q2
)

= θ
(
q2 − 4M2

π

) γρ→ππ
(
q2)

γρ→ππ
(
M2
ρ

)Γρ, γρ→ππ
(
q2
)

=
(
q2 − 4M2

π

)3/2
q2 , (3.11)

where γρ→ππ(q2) is constructed to be in accord with the behavior of the decay width
for variable M2

ρ = q2, see equation (B.9), and Γρ is the total width of the ρ meson.
For the energy-dependent width Γρ′(q2) on the other hand, we will consider two different
parameterizations. First, we assume the decay channel ρ′ → 4π to be dominant and thus
adopt the near-threshold behavior of the four-pion phase space [117, 118]. Second, we
construct a spectral shape from the decay channels ρ′ → ωπ (ω → 3π) and ρ′ → ππ,
neglecting, however, another significant contribution from ρ′ → a1π (a1 → 3π) [86]. These
parameterizations read

Γ(4π)
ρ′

(
q2
)

= θ
(
q2 − 16M2

π

) γρ′→4π
(
q2)

γρ′→4π
(
M2
ρ′

)Γρ′ , γρ′→4π
(
q2
)

=
(
q2 − 16M2

π

)9/2
(q2)2 , (3.12)

where γρ′→4π(q2) is taken from refs. [117, 118] and Γρ′ is the total decay width of the ρ′

meson, and

Γ(ωπ,ππ)
ρ′

(
q2
)

= θ
(
q2 − (Mω +Mπ)2

) γρ′→ωπ
(
q2)

γρ′→ωπ
(
M2
ρ′

)Γρ′→ωπ

+ θ
(
q2 − 4M2

π

) γρ′→ππ
(
q2)

γρ′→ππ
(
M2
ρ′

)Γρ′→ππ, (3.13)

where

γρ′→ωπ
(
q2
)

= λ
(
q2,M2

ω,M
2
π

)3/2
(q2)3/2 , γρ′→ππ

(
q2
)

=
(
q2 − 4M2

π

)3/2
q2 . (3.14)

5In writing the propagator poles of our VMD model with energy-dependent widths, we stick to the
convention of ref. [93].
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Estimates for the branching fractions required to evaluate these expressions are provided in
appendix B. Finally, the standard form of the ρ→ ππ spectral function in equation (3.11)
proves disadvantageous for the evaluation of superconvergence relations in section 3.4 due
to its high-energy behavior. We thus follow refs. [119, 120] and introduce barrier factors
according to

Γ(1)
ρ

(
q2
)

= Γρ
(
q2
)M2

ρ − 4M2
π + 4p2

R

q2 − 4M2
π + 4p2

R

, pR = 202.4MeV,

Γ(2)
ρ

(
q2
)

= Γ(1)
ρ

(
q2
) √q2

Mρ
, (3.15)

where concurrent adjustments to the ρ′ → ππ channel of Γ(ωπ,ππ)
ρ′ (q2), equation (3.13),

are implied. In the end, the numerical impact of the choice of the ρ spectral function
is subdominant, and our results will be shown for Γ(2)

ρ (q2) (both for the ρ and the 2π
component of Γ(ωπ,ππ)

ρ′ (q2)), which is identified as the best phenomenological description
for the ρ meson in ref. [119].

For the one-loop process f1 → e+e− discussed in section 5 we will use dispersively
improved variants of the isovector form factors to ensure the correct analyticity properties
when inserting the TFFs into the loop integral. The corresponding spectral representations
are constructed from the energy-dependent widths, i.e.,

F̂I=1
a1/2

(
q2

1, q
2
2

)
=
Ca1/2M

2
ρM

2
ρ′

Na

[
P disp
ρ

(
q2

1

)
P disp
ρ′

(
q2

2

)
− P disp

ρ′

(
q2

1

)
P disp
ρ

(
q2

2

) ]
,

F̂I=1
s

(
q2

1, q
2
2

)
=
CsM

4
ρ

Ns
P disp
ρ

(
q2

1

)
P disp
ρ

(
q2

2

)
, (3.16)

where the dispersive ρ and ρ′ propagators are given by

P disp
ρ

(
q2
)

= 1
π

∫ ∞
4M2

π

dx
Im

[
PBW
ρ (x)

]
q2 − x+ iε

,

P disp
ρ′

(
q2
)

= 1
π

∫ ∞
sthr

dy
Im

[
PBW
ρ′ (y)

]
q2 − y + iε

. (3.17)

The spectral functions are

Im
[
PBW
ρ (x)

]
= −

√
xΓρ (x)(

x−M2
ρ

)2
+ xΓρ (x)2

,

Im
[
PBW
ρ′ (y)

]
=

−√y Γρ′ (y)(
y −M2

ρ′

)2
+ yΓρ′(y)2

, (3.18)

and the threshold sthr ∈ {16M2
π , 4M2

π} depends on the choice of Γρ′(q2), equation (3.12) or
equation (3.13). The normalization constants Na and Ns are introduced in order to retain
the form factor normalizations Ca1/2 and Cs from equation (3.10),

Na = M2
ρM

2
ρ′P

disp
ρ (0)P disp

ρ′ (0),

Ns = M4
ρP

disp
ρ (0)P disp

ρ (0), (3.19)
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Γρ′(q2) Na Ns Ñs

Γ(4π)
ρ′ (q2) 0.577−0.037

+0.045 0.805 0.805(1− ε1 − ε2) + 0.577−0.037
+0.045ε1 + 0.414−0.051

+0.067ε2

Γ(ωπ,ππ)
ρ′ (q2) 0.642−0.039

+0.046 0.805 0.805(1− ε1 − ε2) + 0.642−0.039
+0.046ε1 + 0.512−0.060

+0.076ε2

Table 1. Numerical values of the normalization constants given in equation (3.19) and equa-
tion (3.22). The uncertainties refer to the variation Γρ′ = (400± 60)MeV, see appendix E.

i.e., to ensure that the constants Ca1/2 and Cs carry the same meaning in the original
and the dispersively improved VMD parameterizations, see table 1. With these conven-
tions, we will drop the distinction between Fi(q2

1, q
2
2) and F̂i(q2

1, q
2
2) in the following, the

understanding being that f1 → e+e− is evaluated with the dispersively improved variants.
Given that excited ρ mesons need to be introduced for the antisymmetric TFFs, it

is natural to consider an extended VMD parameterization of the symmetric form factor
including ρρ′ and ρ′ρ′ terms,

F̃I=1
s

(
q2

1, q
2
2

)
= Cs

 (1− ε1 − ε2)M4
ρ(

q2
1 −M2

ρ + i
√
q2

1 Γρ
(
q2

1
))(

q2
2 −M2

ρ + i
√
q2

2 Γρ
(
q2

2
))

+
(ε1/2)M2

ρM
2
ρ′(

q2
1 −M2

ρ + i
√
q2

1 Γρ
(
q2

1
))(

q2
2 −M2

ρ′ + i
√
q2

2 Γρ′
(
q2

2
))

+
(ε1/2)M2

ρ′M
2
ρ(

q2
1 −M2

ρ′ + i
√
q2

1 Γρ′
(
q2

1
))(

q2
2 −M2

ρ + i
√
q2

2 Γρ
(
q2

2
))

+
ε2M

4
ρ′(

q2
1 −M2

ρ′ + i
√
q2

1 Γρ′
(
q2

1
))(

q2
2 −M2

ρ′ + i
√
q2

2 Γρ′
(
q2

2
))

 , (3.20)

which is normalized in such a way that F̃I=1
s (0, 0) = Cs = FI=1

s (0, 0). Here, ε1 and
ε2 could be treated as additional free parameters, but instead we will use this freedom
to match to the asymptotic constraints in section 3.4. Similarly to equation (3.16), the
spectral representation for F̃I=1

s (q2
1, q

2
2) is given by

F̃I=1
s (q2

1, q
2
2) = Cs

Ñs

[
(1− ε1 − ε2)M4

ρP
disp
ρ

(
q2

1

)
P disp
ρ

(
q2

2

)
+
ε1M

2
ρM

2
ρ′

2 P disp
ρ

(
q2

1

)
P disp
ρ′

(
q2

2

)

+
ε1M

2
ρ′M

2
ρ

2 P disp
ρ′

(
q2

1

)
P disp
ρ

(
q2

2

)
+ ε2M

4
ρ′P

disp
ρ′

(
q2

1

)
P disp
ρ′

(
q2

2

) ]
,

(3.21)

with normalization

Ñs = (1− ε1 − ε2)M4
ρP

disp
ρ (0)P disp

ρ (0)

+ ε1M
2
ρM

2
ρ′P

disp
ρ (0)P disp

ρ′ (0) + ε2M
4
ρ′P

disp
ρ′ (0)P disp

ρ′ (0), (3.22)

see table 1.
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3.3 Isoscalar contributions

In the following, we estimate the isoscalar contributions to the TFFs of equation (3.1) under
the assumption of U(3) flavor symmetry, where we will include the resonances ω ≡ ω(782)
and φ ≡ φ(1020) as well as their excited equivalents ω′ ≡ ω(1420) and φ′ ≡ φ(1680) into
our parameterization. Mixing effects between the (physical) mesons of the corresponding
JPC = 1−− vector-meson nonets are taken into account via the pattern [86](

ω(′)

φ(′)

)
=
(

cos θV (′) sin θV (′)

− sin θV (′) cos θV (′)

)(
ω0(′)

ω8(′)

)
, (3.23)

where ω0(′) and ω8(′) denote the isoscalar singlet and octet states of the respective vector-
meson nonet with mixing angle θV (′) . For our considerations, we assume both nonets to be
ideally mixed, i.e., θV = arctan(1/

√
2) = θV ′ . Finally, we need the U(3) parameterization

of the JPC = 1−− vector mesons, which reads

ΦV (′)
µ =

ρ
0(′) + ω(′) 0 0

0 −ρ0(′) + ω(′) 0
0 0 −

√
2φ(′)


µ

(3.24)

when including only the aforementioned resonances.
Since the U(3) couplings f1ωφ, f1ω

′φ, and f1ωφ
′ vanish for ideally mixed vector

mesons, we propose the minimal parameterizations

FI=0
a1/2

(
q2

1, q
2
2

)
=

Cωω
′

a1/2
M2
ωM

2
ω′(

q2
1 −M2

ω

) (
q2

2 −M2
ω′
) +

Cφφ
′

a1/2
M2
φM

2
φ′(

q2
1 −M2

φ

) (
q2

2 −M2
φ′

) − (q1 ↔ q2) ,

FI=0
s

(
q2

1, q
2
2

)
= Cωωs M4

ω(
q2

1 −M2
ω

) (
q2

2 −M2
ω

) +
Cφφs M4

φ(
q2

1 −M2
φ

) (
q2

2 −M2
φ

) . (3.25)

The resonances ω and φ should be well described by a narrow-resonance approximation —
with M2

V → M2
V − iε for time-like applications — while for a realistic description of the

excited-state isoscalar resonances their widths would need to be taken into account. Due
to the expected smallness of the isoscalar contributions, see equation (3.9), we refrain from
giving an extended VMD parameterization analogous to equation (3.20).

With the U(3) parameterization of the axial-vector mesons, ΦA
µ , and the charge matrix

Q from section 3.1, the ratios of isoscalar to isovector couplings are found to be6

Cωω
′

a1/2

Ca1/2

= Cωωs
Cs

=
Tr
[
ΦA
µΦV

ν ΦV (′)
κ

]
|
f1µωνω

(′)
κ
Tr
[
ΦV
αQ

]
|ωαTr

[
ΦV (′)
β Q

]
|
ω

(′)
β

Tr
[
ΦA
µΦV

ν ΦV (′)
κ

]
|
f1µρνρ

(′)
κ
Tr [ΦV

αQ]|ραTr
[
ΦV (′)
β Q

]
|
ρ

(′)
β

= 1
9 , (3.26)

Cφφ
′

a1/2

Ca1/2

= Cφφs
Cs

=
Tr
[
ΦA
µΦV

ν ΦV (′)
κ

]
|
f1µφνφ

(′)
κ
Tr
[
ΦV
αQ

]
|φαTr

[
ΦV (′)
β Q

]
|
φ

(′)
β

Tr
[
ΦA
µΦV

ν ΦV (′)
κ

]
|
f1µρνρ

(′)
κ
Tr [ΦV

αQ]|ραTr
[
ΦV (′)
β Q

]
|
ρ

(′)
β

=
2
(√

2−2tanθA
)

9
(√

2+tanθA
) ,

6The notation is to be understood in such a way that for each term the prefactor of the fields indicated as a
subscript is taken, with the U(3) parameterizations from equation (3.6), equation (3.7), and equation (3.24).
In the ratios only the traces are relevant, as the common Lagrangian parameters cancel.
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which, using the mixing angle θA = 62(5)◦ as determined by the L3 collaboration [7, 8],
see section 4.1, implies

Rω =
Cωω

′
a1/2

Ca1/2

= Cωωs
Cs

= 1
9 , Rφ =

Cφφ
′

a1/2

Ca1/2

= Cφφs
Cs

= −0.158(34). (3.27)

The additional suppression in equation (3.9) then results from a cancellation between ω

and φ contributions

RS/V = Rω +Rφ = 11.1%− 15.8(3.4)% = −4.7(3.4)%. (3.28)

In practice, we will restrict the analysis of isoscalar contributions to the symmetric TFF.
First, Fs(q2

1, q
2
2) gives the dominant contribution to the observables, so that the most impor-

tant isoscalar correction is expected from there. In addition, for the antisymmetric TFFs
we would need to include the excited ω′ and φ′ states, incurring significant uncertainties
from their spectral functions and, especially for the f1 → e+e− application, the asymptotic
matching due to their large masses. Alternatively, isoscalar antisymmetric TFFs could
be produced via deviations from ideal φ–ω mixing, but again the uncertainties would be
difficult to control. For these reasons we conclude that the isoscalar contributions to the
antisymmetric TFFs should be irrelevant at present, with potential future refinements once
better data become available.

3.4 Asymptotics

The VMD representations for the TFFs should comply with the asymptotic constraints
reviewed in section 2.2, mainly to ensure that the f1 → e+e− loop integral does not
receive unphysical contributions in the high-energy region. We will focus on the isovector
amplitudes, given the strong suppression of the isoscalar contributions. Translated to the
basis of (anti-)symmetric TFFs, we have

Fa1

(
q2

1, q
2
2

)
= O

(
1/Q6

)
,

Fa2

(
q2

1, q
2
2

)
=
F eff
f1
m3
f1

Q4 fa2 (w) +O
(
1/Q6

)
, fa2 (w) = 3

4w3

(
6 + 3− w2

w
log 1− w

1 + w

)
,

Fs
(
q2

1, q
2
2

)
=
F eff
f1
m3
f1

Q4 fs (w) +O
(
1/Q6

)
, fs (w) = − 3

2w3

(
2w + log 1− w

1 + w

)
, (3.29)

see figure 2. The symmetrical doubly-virtual limits become (λ ≈ 1)

Fa2

(
q2, λq2

)
= −

6F eff
f1
m3
f1

q4 k (λ) +O
(
1/q6

)
, Fs

(
q2, q2

)
=
F eff
f1
m3
f1

q4 +O
(
1/q6

)
,

k (λ) = 3λ2 −
(
λ2 + 4λ+ 1

)
log λ− 3

(λ− 1)4 = O (λ− 1) , (3.30)

but upon symmetrization all singly-virtual limits of Fa2/s(q2
1, q

2
2) diverge. For this reason,

the asymptotic limits for Fa2/s(q2
1, q

2
2) cannot be considered in isolation, but need to be

implemented in such a way as to reproduce the physical behavior of F2/3(q2
1, q

2
2).
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−1 −0.5 0 0.5 1
w

−3

−2

−1

0

1

2

3
f i

(w
)

fa2(0) = 0

fs(0) = 1

fs(1)→∞fa2/s(−1)→∞

fa2(1)→ −∞

fa2(w)

fs(w)

Figure 2. Asymmetry functions fa2(w) and fs(w), equation (3.29), with values for the limiting
cases w ∈ {−1, 0, 1}, corresponding to q2

1 = 0, q2
1 = q2

2 , and q2
2 = 0 respectively.

We first consider the asymptotic behavior of the minimal VMD parameterization,
equation (3.10),

FI=1
a1/2

(
q2, λq2

)
∝ λ− 1

λ2
1
q6 , FI=1

a1/2

(
q2, 0

)
∝ 1
q2 ,

FI=1
s

(
q2, q2

)
∝ 1
q4 , FI=1

s

(
q2, 0

)
∝ 1
q2 . (3.31)

In this case, the scaling is correct in the doubly-virtual direction of FI=1
a1/s(q

2
1, q

2
2), while

FI=1
a2 (q2

1, q
2
2) drops too fast and the singly-virtual limits too slowly, see table 2. Phe-

nomenologically, the symmetric TFF gives the dominant contribution to f1 → e+e−, see
section 5, so that here also the coefficient deserves some attention. Comparing the asymp-
totic limit of equation (3.10) with equation (3.30), the VMD ansatz for Fs(q2

1, q
2
2) implies

the following estimate for the effective decay constant defined in equation (2.13):

F eff
f1

∣∣∣
VMD

=
CsM

4
ρ

m3
f1

= 159(19)MeV, (3.32)

where we already used the L3 result for Cs including the isoscalar contribution, see equa-
tion (4.7) below. Within uncertainties, this value agrees with the result from light-cone
sum rules (LCSRs) [80, 104]

F eff
f1

∣∣∣
LCSRs

= 146(7)LCSRs(12)θA MeV, (3.33)

so that even the minimal VMD ansatz should display a reasonable asymptotic behavior.
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Fa1(q2
1, q

2
2) Fa2(q2

1, q
2
2) Fs(q2

1, q
2
2) F2(q2

1, q
2
2)

q2
1/2 ≈ q

2 q2
2 = 0 q2

1/2 ≈ q
2 q2

1/2 = q2 q2
2 = 0

Light-cone expansion 1/q6 1/q6
1 1/q4 1/q4 1/q4

1

VMD (isovector) 1/q6 1/q2
1 1/q6 1/q4 1/q2

1

ṼMD (isovector) 1/q6 1/q2
1 1/q6 1/q6 1/q4

1

Table 2. Comparison of the asymptotic behavior of the TFFs as predicted by the light-cone expan-
sion, equation (3.29) and equation (3.30), with the implementation in the VMD representations,
equation (3.10) and equation (3.20). The doubly-virtual limits of ṼMD are tailored to decrease as
1/q6, so that the behavior of the light-cone expansion is reproduced by adding equation (3.44).

To go beyond this minimal implementation, we now turn to the extended VMD ansatz
for Fs(q2

1, q
2
2). We follow the strategy from refs. [26, 27] and add an explicit asymptotic term

that incorporates the correct doubly-virtual behavior, obtained by rewriting equation (2.12)
in terms of a dispersion relation; see also ref. [121]. Accordingly, we need to ensure that
the isovector VMD contribution to Fs(q2, q2) behaves ∝ 1/q6, resulting in

ε2 =
(1− ε1)M4

ρ + ε1M
2
ρM

2
ρ′

M4
ρ −M4

ρ′
. (3.34)

This leaves the freedom to choose ε1, which we use to implement the physical singly-virtual
scaling of FI=1

2 (q2, 0) = [FI=1
a2 (q2, 0) + F̃I=1

s (q2, 0)]/2 ∝ 1/q4, leading to

ε1 = −2
Ca2

(
M4
ρ −M4

ρ′

)
+ CsM

2
ρM

2
ρ′

Cs
(
M2
ρ −M2

ρ′

)2 . (3.35)

Further, the coefficient of 1/q4 in the resulting FI=1
2 (q2, 0) only depends on Cs, and match-

ing to equation (2.18) implies

F eff
f1

∣∣∣
ṼMD

=
CsM

2
ρM

2
ρ′

6m3
f1

= 95(12)MeV, (3.36)

reasonably close to the LCSR estimate of equation (3.33). In general, the choice for ε1
in equation (3.35) enforces the expected singly-virtual behavior at the expense of a large
coefficient, e.g., for Ca2 = 0 one has ε1 = −1.08, so that a better low-energy phenomenology
might be achieved when considering ε1 a free parameter instead. We will continue to
use equation (3.35) as a benchmark scenario in comparison to the minimal VMD ansatz,
keeping this caveat regarding ε1 in mind.

In choosing the above ε1/2, we did not take the spectral representations of equa-
tion (3.16) and equation (3.21) into account, which would lead to a set of superconver-
gence relations that need to be fulfilled, but instead made an approximate choice in terms
of equation (3.20) and equation (3.10). More specifically, these superconvergence relations
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Γρ(′)(q2) Γ(2)
ρ (q2) Γ(4π)

ρ′ (q2) Γ(ωπ,ππ)
ρ′ (q2)

P 0
ρ(′) 1.023 0.718−0.057

+0.070 0.918−0.073
+0.087

Table 3. Numerical values of P 0
ρ and P 0

ρ′ , equation (3.38), as obtained with the parameterizations
Γ(2)
ρ (q2), Γ(4π)

ρ′ (q2), and Γ(ωπ,ππ)
ρ′ (q2), equation (3.15), equation (3.12), and equation (3.13), needed

for equation (3.39). The uncertainties refer to the variation Γρ′ = (400± 60)MeV, see appendix E.

read

O
(
1/q6

)
= Cs

Ñsq4

[
(1− ε1 − ε2)M4

ρP
0
ρP

0
ρ + ε1M

2
ρM

2
ρ′P

0
ρP

0
ρ′ + ε2M

4
ρ′P

0
ρ′P

0
ρ′

]
, (3.37)

O
(
1/q4

)
= −

Ca2M
2
ρM

2
ρ′

2Naq2

[
P 0
ρ P̄

0
ρ′ − P 0

ρ′P̄
0
ρ

]
− Cs

2Nsq2

[
(1− ε1 − ε2)M4

ρP
0
ρ P̄

0
ρ +

ε1M
2
ρM

2
ρ′

2
(
P 0
ρ P̄

0
ρ′ + P 0

ρ′P̄
0
ρ

)
+ ε2M

4
ρ′P

0
ρ′P̄

0
ρ′

]
,

where we defined

P 0
ρ = − 1

π

∫ ∞
4M2

π

dx Im
[
PBW
ρ (x)

]
, P̄ 0

ρ = − 1
π

∫ ∞
4M2

π

dx
Im

[
PBW
ρ (x)

]
x

,

P 0
ρ′ = − 1

π

∫ ∞
sthr

dy Im
[
PBW
ρ′ (y)

]
, P̄ 0

ρ′ = − 1
π

∫ ∞
sthr

dy
Im

[
PBW
ρ′ (y)

]
y

. (3.38)

Solving this for ε2 and ε1, we find

ε2 =
(1− ε1)

(
M2
ρP

0
ρ

)2
+ ε1M

2
ρP

0
ρM

2
ρ′P

0
ρ′(

M2
ρP

0
ρ

)2
−
(
M2
ρ′P

0
ρ′

)2 ,

ε1 = −2

Ca2
Na

[(
M2
ρP

0
ρ

)2
−
(
M2
ρ′P

0
ρ′

)2
]

+ Cs
Ns
M2
ρP

0
ρM

2
ρ′P

0
ρ′

Cs
Ns

(
M2
ρP

0
ρ −M2

ρ′P
0
ρ′

)2 , (3.39)

in accordance with equation (3.34) and equation (3.35) upon the replacements

M2
ρ →M2

ρP
0
ρ , M2

ρ′ →M2
ρ′P

0
ρ′ ,

Ca2 →
Ca2

Na
, Cs →

Cs
Ns
. (3.40)

Numerical values for P 0
ρ and P 0

ρ′ are collected in table 3. These results show that most
correction factors are close to unity, in which case the only potentially significant correction
arises from the different normalizations Na and Ns for ε1, see table 1. However, our central
results will employ Γ(ωπ,ππ)

ρ′ (q2), and given the abovementioned caveats in the choice of ε1,
we conclude that at the current level of accuracy the naive VMD expressions equation (3.34)
and equation (3.35) are sufficient.
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The doubly-virtual behavior is implemented as follows [26, 27]: first, we rewrite the
asymptotic form factors F2(q2

1, q
2
2) and F3(q2

1, q
2
2) from equation (2.12) into a double-

spectral representation, which allows us to isolate the different energy regions, in particular
those that give rise to the correct asymptotic limits. Setting mA = 0 in the respective in-
tegrands of equation (2.12), we observe that

F2
(
q2

1, q
2
2

)
= −F eff

A m3
A

∂

∂q2
1

∫ 1

0
du φ (u)

uq2
1 + (1− u) q2

2
+O

(
1/q6

i

)
,

F3
(
q2

1, q
2
2

)
= F eff

A m3
A

∂

∂q2
2

∫ 1

0
du φ (u)

uq2
1 + (1− u) q2

2
+O

(
1/q6

i

)
(3.41)

take exactly the same form as for the pseudoscalar case, except for the partial deriva-
tives with respect to q2

i . Accordingly, the same arguments as in refs. [26, 27, 121] apply,
and the integral over the wave function can be formally expressed by a double-spectral
representation

I
(
q2

1, q
2
2

)
=
∫ 1

0
du φ (u)

uq2
1 + (1− u) q2

2
= 1
π2

∫ ∞
0

dx
∫ ∞

0
dy ρasym (x, y)(

x− q2
1
) (
y − q2

2
) , (3.42)

with double-spectral density

ρasym(x, y) = 3π2xyδ′′(x− y). (3.43)

The asymptotic form arises from the high-energy part of these integrals, so that, to avoid
overlap with the VMD contribution at low energies, we impose a lower cutoff sm, which, in
the language of LCSRs, could be identified with the continuum threshold. Evaluating the
partial derivatives and dropping surface terms in the evaluation of the δ distribution [26, 27],
we find

Fasym
2

(
q2

1, q
2
2

)
= −F eff

A m3
A

∂

∂q2
1

[
1
π2

∫ ∞
sm

dx
∫ ∞
sm

dy ρasym (x, y)(
x− q2

1
) (
y − q2

2
)]+O

(
1/q6

i

)
= 3F eff

A m3
A

∫ ∞
sm

dx q2
2
(
x+ q2

1
)(

x− q2
1
)3 (

x− q2
2
)2 +O

(
1/q6

i

)
,

Fasym
3

(
q2

1, q
2
2

)
= −3F eff

A m3
A

∫ ∞
sm

dy q2
1
(
y + q2

2
)(

y − q2
1
)2 (

y − q2
2
)3 +O

(
1/q6

i

)
. (3.44)

By construction, the asymptotic contributions in this form saturate the doubly-virtual
limits of equation (3.30), while not affecting the singly-virtual contributions F2(q2, 0),
F3(0, q2) already taken into account via the extended VMD representation. The opposite —
unphysical — cases F2(0, q2), F3(q2, 0), which do not contribute to helicity amplitudes, are
equally suppressed in the f1 → e+e− loop integral, see section 5. Given that mA > 1GeV,
it is also worthwhile to consider the potential impact of mass corrections to the asymptotic
constraints. A formulation in terms of a generalized double-spectral density is given in
appendix A.

In conclusion, the extended VMD ansatz together with the asymptotic contribution of
equation (3.44) complies with the short-distance constraints of equation (2.12), apart from
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e

e

A

p p′

q1

q2

Figure 3. Feynman diagram for two-photon hadron formation in electron-positron scattering.

the singly-virtual behavior of Fa1(q2
1, q

2
2) and small violations due to the isoscalar contribu-

tions of the form factors, see equation (3.9). As we will demonstrate below that Fa1(q2
1, q

2
2)

gives the smallest contribution to the f1 → e+e− loop integral, see equation (5.5), the
resulting VMD representation should provide a decent approximation to its high-energy
part. In particular, the sensitivity to the high-energy assumptions can be monitored by
comparing the two VMD variants constructed in this section.

4 Tree-level processes

The VMD parameterizations constructed in the previous section involve the free parameters
Ca1 , Ca2 , and Cs (and, for the extended variant, the onset of the asymptotic contributions
sm). In the following, we collect the available data that can, in principle, determine these
parameters, starting with the processes in which the TFFs appear at tree level:

1. e+e− → e+e−f1, which mainly determines the equivalent two-photon decay width
Γ̃f1
γγ , see section 4.1;

2. f1 → 4π, sensitive to the TFFs via f1 → ρρ→ 4π, see section 4.2;

3. f1 → ργ, whose branching fraction and helicity components encode information on
the TFFs, see section 4.3.

In a more rigorous, dispersive, reconstruction of the TFFs, the (partially) hadronic final
states would serve as input to a determination of their discontinuities. The strategy to
investigate the impact of these reactions on a determination of the various TFFs has already
been followed in refs. [100, 101], albeit with rather different form factor parameterizations.
Moreover, we investigate the following tree-level decays:

4. f1 → φγ and f1 → ωγ, where the measured branching fraction of the former allows
for a consistency check of our U(3) assumption for the isoscalar TFFs and the latter
predicts a branching ratio that can be confronted with potential future measurements,
see section 4.4.

4.1 e+e− → e+e−f1

In contrast to (pseudo-)scalar or tensor resonances, axial-vector resonances are only visible
in e+e− collisions, see figure 3, as long as at least one of the photons is off shell, a direct
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consequence of the Landau–Yang theorem [1, 2]. The required challenging measurements
have been performed for the f1 and f ′1, by the MARK II [3, 4], the TPC/Two-Gamma [5, 6],
and, more recently, by the L3 [7, 8] collaborations. With both measurements required to
constrain the mixing angle θA from the data, we will restrict our analysis to the L3 data,
given that they are more accurate than the results from the preceding experiments. The
L3 analyses are based on the model of ref. [122], which assumes F1(q2

1, q
2
2) = 0 for the first

form factor from equation (2.5) and uses a dipole ansatz for F2(q2, 0) = −F3(0, q2), with

FD(q2, 0) = FD(0, 0)
(1− q2/Λ2

D)2 . (4.1)

Under the assumption B(f ′1 → KK̄π) = 1 — which appears justified in light of the
smallness of the other available channels [86] — the measured parameters are

Γ̃f1
γγ = 3.5(6)(5) keV, Λf1 = 1.04(6)(5)GeV,

Γ̃f
′
1
γγ = 3.2(6)(7) keV, Λf ′1 = 0.926(72)(32)GeV, (4.2)

where the quoted uncertainties are statistical and systematic, respectively. Employing the
two-photon decay widths of the f1 and f ′1, the mixing angle of the JPC = 1++ axial-vector
nonet as defined in equation (3.5) can be extracted as follows: one calculates the coupling
of the axial-vector mesons f1 and f ′1 to two photons in analogy to equation (3.8), yielding

Tr
[
ΦA
µQQ

]
=
f1µ

(
2
√

2 cos θA + sin θA
)

+ f ′1µ

(
cos θA − 2

√
2 sin θA

)
3
√

3
, (4.3)

so that using the formula for the equivalent two-photon decay width Γ̃γγ , equation (2.11),
one finds

Γ̃f1
γγ

Γ̃f
′
1
γγ

= mf1

mf ′1

∣∣∣∣∣ 2
√

2 + tan θA
1− 2

√
2 tan θA

∣∣∣∣∣
2

= mf1

mf ′1

cot2(θA − θ0), (4.4)

where θ0 = arcsin(1/3). Solving for θA and inserting the above values for Γ̃f1
γγ and Γ̃f

′
1
γγ , one

finds the result of refs. [7, 8],
θA = 62(5)◦, (4.5)

where the statistical and systematic uncertainties have been added in quadrature.
Next, the measurement of Γ̃f1

γγ determines the normalization of the symmetric TFF,
|Cs| = |FI=1

s (0, 0)| when neglecting the isoscalar contributions, according to equation (3.3),

|Cs| = 0.89(10). (4.6)

Taking into account the isoscalar contributions and, in particular, the ratios Rω and Rφ of
isoscalar to isovector couplings, equation (3.27), the normalization of the symmetric TFF
becomes |FI=1

s (0, 0) + FI=0
s (0, 0)| = (1 +Rω +Rφ)|Cs| = 0.953(34)|Cs|, resulting in

|Cs| = 0.93(11), (4.7)
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which is slightly larger than equation (4.6), as expected from the negative ratio found in the
estimate of equation (3.9). In the following, we will use equation (4.7) for the normalization
of the symmetric TFF.

In addition, equation (4.2) determines the slope of F2(q2, 0), based on the assumption
of a dipole form. The asymptotic behavior matches onto equation (2.18) with [80]

F eff
f1

∣∣∣
L3

=
CsΛ4

f1

6m3
f1

= 86(28)MeV, (4.8)

below both the LCSR estimate, equation (3.33), and the effective decay constant implied
by VMD, equation (3.32), and close to the scale derived from the singly-virtual behavior
of the extended VMD representation, equation (3.36).7 The uncertainty in equation (4.8)
is mainly driven by the dipole parameter ΛD. In fact, most of the data points measured by
the L3 collaboration lie well below the obtained dipole scale, in such a way that the data
should be similarly well described by a monopole ansatz,

FM(q2, 0) = FM(0, 0)
1− q2/Λ2

M
, (4.9)

when adjusting the slopes of the parameterizations to coincide at q2 = 0. The corresponding
monopole scale becomes

ΛM = ΛD√
2

= 0.74(6)GeV ≈Mρ, (4.10)

thus providing strong motivation for the VMD representation constructed in section 3.
To constrain the singly-virtual VMD limits further, we need to match the L3 parame-

terization onto the full description of the e+e− → e+e−f1 cross section, which depends on
the combination [80]∣∣∣∣
(

1− q2

m2
f1

)
F1
(
q2,0

)
− q2

m2
f1

F2
(
q2,0

)∣∣∣∣2− 2q2

m2
f1

∣∣F2
(
q2,0

)∣∣2 = −q
2

m2
f1

(
2− q2

m2
f1

)
|FD

(
q2,0

)
|2.

(4.11)

The normalization agrees by construction, while matching the slopes at q2 = 0 leads to

2
Λ2
D

= 1
Nωφ

 1
M2
ρ

+ Rω

M2
ω

+ Rφ

M2
φ

+
M2
ρ′−M2

ρ

M2
ρM

2
ρ′

Ca1 +Ca2

Cs
−
m2
f1

(
M2
ρ′−M2

ρ

)2

M4
ρM

4
ρ′Nωφ

(
Ca1

Cs

)2
 (4.12)

for the minimal VMD representation, and

2
Λ2
D

= 1
Nωφ

 1
M2
ρ

+ 1
M2
ρ′

+ Rω

M2
ω

+ Rφ

M2
φ

+
M2
ρ′ −M2

ρ

M2
ρM

2
ρ′

Ca1

Cs
−
m2
f1

(
M2
ρ′ −M2

ρ

)2

M4
ρM

4
ρ′Nωφ

(
Ca1

Cs

)2


(4.13)

for the extended one. The factor Nωφ = 1+Rω+Rφ arises from accounting for the isoscalar
terms in the normalization, see equation (4.7).

7Matching the effective decay constant in the doubly-virtual direction to the quark model of ref. [122]
instead, one would obtain F eff

f1

∣∣
L3

= CsΛ4
f1/(4m

3
f1 ) = 129(42)MeV, closer to equation (3.32) and equa-

tion (3.33). This reflects the factor 3/2 by which the relative coefficients of the singly- and doubly-virtual
limits differ between the quark model and the BL prediction [80].
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4.2 f1 → 4π

In addition to e+e− → e+e−f1, the normalization of the symmetric TFF would be ac-
cessible in the process f1 → ρρ → 4π if the ρ intermediate states largely saturated the
decay within regions of the phase space reasonably close to their mass shell. In fact, up
to corrections due to the two-pion channel ρ′ → π+π−, such an identification appears
natural within the VMD approach. In constructing an amplitude M(f1 → π+π−π+π−),
which can be obtained by means of M(f1 → ρ0∗ρ0∗) and the ρππ coupling dictated by
equation (B.8), only the symmetric form factor FI=1

s (q2
1, q

2
2) and the symmetric Lorentz

structure Tµναs (q1, q2) are relevant under the above assumptions and when restricting to the
minimal VMD parameterization. More specifically, we use the amplitude M(f1 → γ∗γ∗),
in the decomposition of equation (3.4), and remove the external photons by dropping the
relevant ρ-meson propagator poles and the factors of e, at the same time dividing by the
ργ coupling g̃ργ , equation (B.7), for each cut photon. In doing so, we arrive at

M
(
f1 → ρ0∗ρ0∗

)
= Cfρρ

2 ε∗µ (q1) ε∗ν (q2) εα (P )

×
[
q1βq2γ

(
εανβγqµ1 − ε

αµβγqν2

)
+ εαµνβ

(
q2βq

2
1 − q1βq

2
2

)]
, (4.14)

where we defined Cfρρ = CsM
4
ρ/(m2

f1
g̃2
ργ). Observing that there exist two diagrams for

f1 → π+π−π+π− due to the indistinguishability of the two π+ and π− — see figure 4 —
we use the ρππ coupling as prescribed by equation (B.8) to deduce

M
(
f1 → π+π−π+π−

)
=

2Cfρρg2
ρππ(

q2
1 −M2

ρ + i
√
q2

1 Γρ
(
q2

1
))(

q2
2 −M2

ρ + i
√
q2

2 Γρ
(
q2

2
))εα (P ) εαµνβ

×
[(
M2
π + (p1 · p2)

)
k1βk2ν (p2 − p1)µ −

(
M2
π + (k1 · k2)

)
p1βp2µ (k2 − k1)ν

]
+ (p1 ↔ k1) . (4.15)

Here, the momenta are defined as in figure 4 and the pions are on shell, p2
1/2 = M2

π = k2
1/2.

Given this amplitude, one can calculate the decay width and thus branching ratio via
the four-body phase-space integration of

dΓ
(
f1 → π+π−π+π−

)
= 1

2mf1

∣∣∣M (
f1 → π+π−π+π−

)∣∣∣2 dΦ4 (P, p1, p2, k1, k2) . (4.16)

We use the differential four-body phase space dΦ4(P, p1, p2, k1, k2) in the form [86]

dΦ4(P, p1, p2, k1, k2) = dΦ2(q1; p1, p2)dΦ2(q2; k1, k2)dΦ2(P ; q1, q2)dq2
1

2π
dq2

2
2π , (4.17)

where dΦ2(P ; q1, q2), dΦ2(q1; p1, p2), and dΦ2(q2; k1, k2) are the respective two-body
phase spaces of the subsystems {ρ(q1)ρ(q2)}, {π+(p1)π−(p2)}, and {π+(k1)π−(k2)}. Since
the integration volumes of the phase spaces are Lorentz invariant, each two-body phase
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f1

π+

π−

π+

π−

P

q1

ρ

q2

ρ

p1

p2

k1

k2

f1

π+

π−

π+

π−

P

q̃1

ρ

q̃2

ρ

k1

p2

p1

k2

Figure 4. Feynman diagrams for f1 → π+π−π+π− via two ρ mesons. Since the two π+ and π−
are respectively indistinguishable, there exist two contributions (left and right).

space can be evaluated in the corresponding center-of-mass frame and we have to perform
an explicit Lorentz transformation from the center-of-mass frames of {π+(p1)π−(p2)} and
{π+(k1)π−(k2)} into the one of {ρ(q1)ρ(q2)} in order to evaluate scalar products of the kind
(pi · kj), i, j ∈ {1, 2}, appearing in |M(f1 → π+π−π+π−)|2 — see, e.g., ref. [123] for more
details.8 We perform the phase space integration numerically with the Cuhre algorithm
from the Cuba library [124], where the energy-dependent width Γρ(q2) is as specified in
equation (3.15), and obtain [125]

Γ(f1 → π+π−π+π−) = |Cs|2|gργ |4|gρππ|4 × 0.63× 10−10 GeV. (4.18)

Combining the above result with the values |gργ | = 4.96 and |gρππ| = 5.98, equation (B.3)
and equation (B.11), we find the branching ratio to be given by

B(f1 → π+π−π+π−) = |Cs|2 × 0.215(10)%. (4.19)

The comparison with the experimental ratio B(f1 → π+π−π+π−) = 10.9(6)% [86] yields

|Cs| = 7.1(3), (4.20)

in serious disagreement with equation (4.7).
Including ρ′ contributions within the minimal VMD representation, there are four

additional diagrams as compared to figure 4 and the corresponding master formula takes
the form

Γ(f1 → π+π−π+π−) = |gργ |4|gρππ|4
[
C2
a1κ

2Γa1 + C2
a2κ

2Γa2 + C2
s Γ(1)

s + Ca1Ca2κ
2Γa1,a2

+ Ca1CsκΓ(1)
a1,s + Ca2CsκΓ(1)

a2,s

]
, (4.21)

8While two diagrams contribute, as shown in figure 4, the decay rate involves an additional symmetry
factor of S = 1/(2!)2 because of the two pairs of indistinguishable particles in the final state.
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Γ(1)
s Γ(2)

s Γ(3)
s Γ(4)

s Γ(5)
s Γ(6)

s

0.63 0.01 0.00 0.16 0.01 0.00

Γa1 Γa2 Γa1,a2

0.02 0.18 −0.06

Γ(1)
a1,s Γ(1)

a2,s Γ(2)
a1,s Γ(2)

a2,s Γ(3)
a1,s Γ(3)

a2,s

−0.12 0.54 −0.01 0.05 0.00 0.00

Table 4. Decay rates needed for the evaluation of equation (4.21) and equation (4.23), all in units of
10−10 GeV. The ρ and ρ′ spectral functions are evaluated with equation (3.15) and equation (3.13),
respectively. The latter variant is chosen for consistency with the estimate of the ρ′ → ππ coupling
via equation (4.22), see appendix B.

where

κ =
M2
ρ′

M2
ρ

g̃ργ
g̃ρ′γ

gρ′ππ
gρππ

= gρ′γgρ′ππ
gργgρππ

≈ −0.7, (4.22)

see equation (B.23), and the numerical values of the defined decay rates are collected in
table 4. For the extended VMD representation, yet two additional diagrams have to be
taken into account, resulting in the master formula

Γ(f1 → π+π−π+π−) = |gργ |4|gρππ|4

×
[
C2
a1κ

2Γa1 + C2
a2κ

2Γa2 + C2
s

[
(1− ε1 − ε2)2Γ(1)

s + ε21κ
2Γ(2)

s + ε22κ
4Γ(3)

s

+ (1− ε1 − ε2)ε1κΓ(4)
s + (1− ε1 − ε2)ε2κ2Γ(5)

s + ε1ε2κ
3Γ(6)

s

]
+ Ca1Ca2κ

2Γa1,a2 + Ca1Cs
[
(1− ε1 − ε2)κΓ(1)

a1,s + ε1κ
2Γ(2)

a1,s + ε2κ
3Γ(3)

a1,s

]
+ Ca2Cs

[
(1− ε1 − ε2)κΓ(1)

a2,s + ε1κ
2Γ(2)

a2,s + ε2κ
3Γ(3)

a2,s

]]
, (4.23)

see table 4 for the numerical values of the decay rates. The numerical pattern shows that
even though the coupling κ itself is O(1), ρ′ contributions are significantly suppressed, both
due to the propagators in equation (4.15) and because the ρ′ can never be on shell in the
available phase space. For the solutions of the global phenomenological analysis in section 6,
we find that the interference effects tend to even slightly reduce the branching ratio in the
minimal VMD case, while the large values of (1 − ε1 − ε2) in the extended VMD fits can
increase B(f1 → π+π−π+π−) to the level of 1%, still far below the experimental value.

The reason for this incompatibility can be understood as follows. The available phase
space prohibits the two ρmesons from being simultaneously on-shell, and the corresponding
loss of resonance enhancement for two intermediate ρ mesons implies that other decay
mechanisms become more important. A candidate for such a mechanism is given by the
decay f1 → a1π → ρππ → 4π, see appendix D for an estimate of this decay channel. From
this analysis, we indeed infer that the intermediate state a1π likely saturates the decay
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f1

ρ

P

q1

q2

Figure 5. Feynman diagram for f1 → ργ consistent withM(f1 → γ∗γ∗).

width to a large extent, so that we have to conclude that the decay f1 → 4π does not
allow one to extract further information on the f1 TFFs. We will thus disregard this input
entirely and adopt equation (4.7) for the symmetric normalization. With Ca1 , Ca2 , and Cs
all real couplings, we will further fix the global sign by demanding that Cs be positive,

Cs = 0.93(11). (4.24)

4.3 f1 → ργ

The construction of the amplitude for f1 → ργ proceeds along the same lines as for f1 → 4π,
via M(f1 → γ∗γ∗), either by using the minimal or the extended VMD parameterization.
By definition, this decay channel only probes the isovector contribution, up to negligible
isospin-breaking effects.

For the amplitude M(f1 → ργ), we then proceed as stated above, starting with the
minimal VMD ansatz, and consider the ρ meson and photon on shell, q2

1 = M2
ρ , q2

2 = 0,
and ε∗(q1) · q1 = 0 = ε∗(q2) · q2, which also implies Γρ(q2

2 = 0) = 0 = Γρ′(q2
2 = 0) according

to equation (3.11)–equation (3.15). The corresponding diagram is depicted in figure 5 and
we find

M(f1 → ργ) = Cfργε
∗
µ(q1)ε∗ν(q2)εα(P )

×
[
Ca1ε

µνβγq1βq2γ(qα1 − qα2 ) +
M2
ρ

2 Ca2ε
αµνβq2β +

M2
ρ

2 Csε
αµνβq2β

]
,

(4.25)

where we introduced Cfργ = eM2
ρ/(g̃ργm2

f1
). The branching ratio of the decay is given by

B (f1 → ργ) =
B1C

2
a1 +B2

(
C2
a2 + C2

s + 2Ca2Cs
)
−B3 (Ca1Ca2 + Ca1Cs)

Γf
, (4.26)

where — as throughout this work — the coupling constants are assumed to be purely real
and we defined the coefficients

B1 =
α|gργ |2

(
m2
f1
−M2

ρ

)5

24m9
f1

, B2 =
α|gργ |2M2

ρ

(
m2
f1
−M2

ρ

)3 (
m2
f1

+M2
ρ

)
96m9

f1

,

B3 =
α|gργ |2M2

ρ

(
m2
f1
−M2

ρ

)4

24m9
f1

. (4.27)
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Figure 6. Surface plot of B(f1 → ργ) (blue-yellow textured), equation (4.26), using the central
value of Cs = 0.93(11), equation (4.24), together with the central value of B(f1 → ργ) = 4.2(1.0)%
(red), see section 6.

As depicted in figure 6, the solution of equation (4.26) in terms of the unknown couplings
Ca1 and Ca2 represents an ellipse, where we used the central values of Cs = 0.93(11) and
B(f1 → ργ) = 4.2(1.0)%, see section 6, to illustrate the cut surfaces. Although it is
straightforward to actually solve equation (4.26) for such an equation, we refrain from
doing so here since there is no unique solution anyway without further input.

The equivalent amplitude in the extended VMD representation reads

M̃(f1→ ργ) =Cfργε
∗
µ(q1)ε∗ν(q2)εα(P ) (4.28)

×
[
Ca1ε

µνβγq1βq2γ (qα1 −qα2 )+
M2
ρ

2 Ca2ε
αµνβq2β+

M2
ρ

2 Cs

(
1− ε12 −ε2

)
εαµνβq2β

]
,

the only difference compared to the minimal VMD parameterization being that Cs → C̃s =
(1− ε1/2− ε2)Cs. Hence, the branching ratio given in equation (4.26) becomes

B̃ (f1 → ργ) =
B1C

2
a1 +B2

(
C2
a2 + C̃2

s + 2Ca2C̃s
)
−B3

(
Ca1Ca2 + Ca1C̃s

)
Γf

, (4.29)

which, when inserting ε1 and ε2 from section 3.4, simplifies to

B̃ (f1 → ργ) =
B1C

2
a1 + B̃2C

2
s − B̃3Ca1Cs

Γf
, (4.30)

where we defined the coefficients

B̃2 =
M4
ρ′(

M2
ρ′ −M2

ρ

)2B2, B̃3 =
M2
ρ′

M2
ρ′ −M2

ρ

B3. (4.31)

In this variant, the dependence on Ca2 thus disappears from the branching fraction, which
is a subtle consequence of the correlation between Ca2 and Cs imposed via the singly-virtual
high-energy behavior, see equation (3.35).

Another measured quantity of interest with regard to f1 → ργ is the ratio of the ρ-
meson’s helicity amplitudes in its rest frame, which is accessible through the subsequent
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Figure 7. Feynman diagram for f1 → ργ → π+π−γ consistent withM(f1 → γ∗γ∗).

decay ρ → π+π−. In a similar manner to how we obtained the f1 → ργ amplitudes in
equation (4.25) and equation (4.28), we can construct an amplitude for f1 → ργ → π+π−γ,
where we indeed consider the subsequent decay of an on-shell ρ meson and furthermore
use the ρππ coupling given by equation (B.8); the process is depicted in figure 7.

Imposing q2
1 = M2

ρ , thus also Γρ(q2
1 = M2

ρ ) = Γρ according to equation (3.15), q2
2 =

0 = ε∗(q2) · q2, and p2
1 = M2

π = p2
2, we find

M(f1→ ργ→π+π−γ) = Cfργgρππ
MρΓρ

ε∗ν(q2)εα(P )(p2−p1)µ (4.32)

×
[
Ca1ε

µνβγq1βq2γ (qα1 −qα2 )+
M2
ρ

2 Ca2ε
αµνβq2β+

M2
ρ

2 Csε
αµνβq2β

]

with the minimal VMD parameterization, where the constant Cfργ = eM2
ρ/(g̃ργm2

f1
) is

defined as in equation (4.25). The equivalent expression M̃(f1 → ργ → π+π−γ) in the
extended VMD variant is obtained for Cs → C̃s = (1− ε1/2− ε2)Cs. Transforming into the
rest frame of the ρ meson, one finds the spin-averaged amplitude squared to be of the form∣∣∣M(f1 → ργ → π+π−γ)

∣∣∣2 = MTT sin2 θπ+γ + MLL cos2 θπ+γ , (4.33)

where θπ+γ is the angle between the final-state π+ and photon and

rργ = MLL
MTT

=
2m2

f1
M2
ρ[

M2
ρ − 2

(
m2
f1
−M2

ρ

)
Ca1/ (Ca2 + Cs)

]2 (4.34)

is the corresponding ratio of the longitudinal and transversal ρ-meson helicity amplitudes.
In the extended VMD case, one again needs to replace Cs → C̃s = (1− ε1/2− ε2)Cs, which
then further simplifies to

r̃ργ = M̃LL

M̃TT
=

2m2
f1
M2
ρM

4
ρ′[

M2
ρM

2
ρ′ − 2

(
m2
f1
−M2

ρ

) (
M2
ρ′ −M2

ρ

)
Ca1/Cs

]2 (4.35)

when inserting ε1 and ε2 from section 3.4. The coupling Ca2 therefore does not contribute
to either f1 → ργ observable in the extended VMD ansatz.
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Figure 8. Surface plots of rργ (blue-yellow textured), equation (4.34), using the central value of Cs =
0.93(11), equation (4.24), together with the central value of the measurement rργ = 3.9(1.3) [87]
(red) from two different perspectives (left and right).

The solution of equation (4.34) in terms of the unknown couplings Ca1 and Ca2 is given
by four unconnected straight lines, as apparent from figure 8, where we used the central
values of Cs = 0.93(11), equation (4.24), and the measurement rργ = 3.9(0.9)(1.0) =
3.9(1.3) [87] for illustration. Similar to the discussion regarding B(f1 → ργ), we refrain
from giving the explicit form of the solution here and postpone the phenomenological
analysis to section 6.

4.4 f1 → φγ and f1 → ωγ

The branching ratio of f1 → φγ has been measured experimentally, B(f1 → φγ) =
0.74(26)× 10−3 [86, 88], and thus allows for another consistency check of our VMD repre-
sentations, in particular, the U(3) assumptions for the isoscalar TFFs. Similarly, we can
predict the branching fraction for f1 → ωγ once all the parameters are determined, which
could be confronted with potential future measurements.

In complete analogy to section 4.3, we construct amplitudes for f1 → V γ, V = φ, ω,
i.e.,

M(f1→V γ) =CfV γε
∗
µ(q1)ε∗ν(q2)εα(P ) (4.36)

×
[
CV V

′
a1 εµνβγq1βq2γ(qα1 −qα2 )+M2

V

2 CV V
′

a2 εαµνβq2β+M2
V

2 CV Vs εαµνβq2β

]
,

where we defined CfV γ = eM2
V /(g̃V γm2

f1
). In terms of the ratio RV = Rφ, Rω of isoscalar

to isovector couplings, equation (3.27), the branching ratio of the decay is given by

B(f1 → V γ) = (RV )2B
V
1 C

2
a1 +BV

2
(
C2
a2 + C2

s + 2Ca2Cs
)
−BV

3
(
Ca1Ca2 + Ca1Cs

)
Γf

, (4.37)
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Figure 9. Feynman diagram for the decay of the axial-vector meson f1 into an electron-
positron pair.

cf. equation (4.26), where we defined the coefficients

BV
1 =

α|gV γ |2
(
m2
f1
−M2

V

)5

24m9
f1

, BV
2 =

α|gV γ |2M2
V

(
m2
f1
−M2

V

)3 (
m2
f1

+M2
V

)
96m9

f1

,

BV
3 =

α|gV γ |2M2
V

(
m2
f1
−M2

V

)4

24m9
f1

. (4.38)

The generalization to the extended VMD representation would be straightforward, once
applied to the isoscalar sector.

5 f1 → e+e−

As the discussion in section 4 shows, in general the constraints from e+e− → e+e−f1,
f1 → 4π, and f1 → ργ do not suffice to reliably determine all three free VMD parameters,
with the branching fraction of f1 → 4π not able to provide any additional input at all
due to significant contamination from decay channels not related to the TFFs. In this
way, the evidence for the decay f1 → e+e− reported by the SND collaboration [89] is
extremely interesting as future improved measurements of the decay have the potential to
overconstrain the system of Ca1 , Ca2 , and Cs, as we will demonstrate in section 6. In this
section, we provide the required formalism to extract information on the f1 TFFs from its
decay into e+e−; cf. also ref. [100].

The Feynman diagram for the one-loop process is depicted in figure 9. The general
form of the amplitude is

M
(
f1 → e+e−

)
= e4εµ (P )us (p1) γµγ5A1

(
m2
f1 ,m

2
e = 0,m2

e = 0
)
vr(p2), (5.1)

which implies ∣∣∣M(f1 → e+e−)
∣∣∣2 =

4e8m2
f1

3 |A1|2 (5.2)

for the spin-averaged amplitude squared and a decay width of

Γ(f1 → e+e−) = 64π3α4mf1

3 |A1|2. (5.3)
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Here and in the following, the arguments of the reduced amplitude A1 will be suppressed
and we will work in the limit me = 0. To extract A1 from the full amplitude, we first
consider the amplitudeM(f1 → γ∗γ∗) and recast it into the more convenient form

M(f1→ γ∗γ∗) = ie2

m2
f1

εµνβγ
[
Fa1(q2

1, q
2
2)ε∗µ (q1)ε∗ν (q2)εα (P )q1βq2γ (qα1 −qα2 ) (5.4)

− 1
2
[
Fa2

(
q2

1, q
2
2

)
+Fs

(
q2

1, q
2
2

)]
ε∗ν (q2)εµ (P )q2β

[
q1γε

∗
α (q1)qα1 −ε∗γ (q1)q2

1

]
+ 1

2
[
Fa2

(
q2

1, q
2
2

)
−Fs

(
q2

1, q
2
2

)]
ε∗ν (q1)εµ (P )q1β

[
q2γε

∗
α (q2)qα2 −ε∗γ(q2)q2

2

]]
.

Inserting this amplitude into the QED loop, the full amplitude can be written as

M(f1 → e+e−) = 4ie4

m2
f1

εα (P )Pµus (p1) γβγ5vr (p2)
∫ d4k

(2π)4
kµkβkα

k2q2
1q

2
2
Fa1

(
q2

1, q
2
2

)
(5.5)

+ ie4

m2
f1

εβ (P )us (p1) γµγ5vr (p2)

×
∫ d4k

(2π)4
kµkβ

k2q2
1q

2
2

[ (
q2

2 − q2
1

)
Fa2

(
q2

1, q
2
2

)
−
(
q2

2 + q2
1

)
Fs
(
q2

1, q
2
2

) ]
+ ie4

2m2
f1

εµ (P )us (p1) γµγ5vr (p2)

×
∫ d4k

(2π)4

[
2q2

1q
2
2 + k2 (q2

1 + q2
2
)]
Fs
(
q2

1, q
2
2
)

+ k2 (q2
1 − q2

2
)
Fa2

(
q2

1, q
2
2
)

k2q2
1q

2
2

,

where we have used the on-shell condition for the fermions, neglected their masses, and
written the loop integration in the most symmetric way. In particular, rewriting the TFF
combinations as (

q2
2−q2

1

)
Fa2

(
q2

1, q
2
2

)
−
(
q2

2 +q2
1

)
Fs
(
q2

1, q
2
2

)
=−2q2

1F2
(
q2

1, q
2
2

)
+2q2

2F3
(
q2

1, q
2
2

)
,[

2q2
1q

2
2 +k2

(
q2

1 +q2
2

)]
Fs
(
q2

1, q
2
2

)
+k2

(
q2

1−q2
2

)
Fa2

(
q2

1, q
2
2

)
= 2

(
k2+q2

2

)
q2

1F2
(
q2

1, q
2
2

)
−2
(
k2+q2

1

)
q2

2F3
(
q2

1, q
2
2

)
(5.6)

shows that the BL limits that are not well-defined — see equation (2.18) and the sub-
sequent comment — always appear suppressed by the respective on-shell virtuality, as
expected from the form of the physical helicity amplitudes. We conclude that these inte-
gration regions will therefore be of minor importance. Moreover, all remaining integrals
are ultraviolet and infrared convergent by inspection of the parameterization of the form
factors in equation (3.10) and equation (3.20). However, inserting the (isovector) VMD ex-
pressions directly into the loop integral would produce unphysical imaginary parts, which
can be avoided by using the spectral representations of equation (3.16) and equation (3.21)
instead, to ensure the correct analytic properties.

We performed the remaining Passarino–Veltman reduction in two ways: first, in an
automated way using FeynCalc [126–128], FeynHelpers [129] (which collects FIRE [130] and
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Package-X [131]), and LoopTools [132], and directly by introducing Feynman parameters
in equation (5.5). Decomposing the amplitude as

M
(
f1→ e+e−

)
= e4εµ (P )us (p1)γµγ5A1v

r (p2) , (5.7)

A1 =
(
DI=1

1 +DI=0
1

)
Ca1 +

(
DI=1

2 +DI=0
2

)
Ca2 +

(
DI=1

3 +DI=0
3

)
Cs+Dasym,

the latter approach, in the minimal VMD ansatz, leads to the representation

DI=1
1/2 =

M2
ρM

2
ρ′

16π4Nam4
f1

∫ ∞
4M2

π

dx
∫ ∞
sthr

dy
∫ 1

0
dz Im

[
PBW
ρ (x)

]
Im
[
PBW
ρ′ (y)

]
f1/2 (x,y,z,mf1) ,

DI=1
3 =

M4
ρ

16π4Nsm4
f1

∫ ∞
4M2

π

dx
∫ ∞

4M2
π

dy
∫ 1

0
dz Im

[
PBW
ρ (x)

]
Im
[
PBW
ρ (y)

]
f3 (x,y,z,mf1) ,

(5.8)

where

f1 = x̄−ȳ
x̄ȳ

 x̄z log ∆(x̄,ȳ,z)
−x̄z

∆(ȳ, z) −(1−z) log∆(x̄, ȳ, z)


+ z

x̄ȳ
(x̄ log(−x̄z)−ȳ log(−ȳz))+

(1−z)(1−3z) log ∆(ȳ,z)
∆(x̄,z)

2x̄ȳ −(x↔ y) ,

f2 = x̄−ȳ
2x̄ȳ

 x̄z log ∆(x̄,ȳ,z)
−x̄z

∆(ȳ, z) +z log∆(x̄, ȳ, z)+ 1
4

− 3z−2
2x̄ȳ (x̄ log∆(x̄,z)−ȳ log∆(ȳ, z))

− z

x̄ȳ
(x̄ log(−x̄z)−ȳ log(−ȳz))−

(1−z)(1−3z) log ∆(ȳ,z)
∆(x̄,z)

2x̄ȳ −(x↔ y) ,

f3 =− 2z−1
2x̄ȳ∆(ȳ, z)3

[
2z3x̄2 log ∆(x̄, ȳ, z)

−x̄z

+(1−z) ȳ∆(ȳ, z) [2x̄z+∆(ȳ, z)(1−3z+2(x̄+ȳ))]
]

+ z (4z−2+x̄(22z−5))
4x̄ȳ∆(ȳ, z)2

[
x̄z log ∆(x̄, ȳ, z)

−x̄z
+(1−z)∆(ȳ, z)

]
− z

2 (5+9x̄)
2ȳ

log ∆(x̄,ȳ,z)
−x̄z

∆(ȳ, z)

+ (1−z)
[
5
(
8z2−7z+1

)
+18(2x̄z+ȳ (1−z))

]
log∆(x̄, ȳ, z)

4x̄ȳ + x̄2−1
4ȳ log 1−x̄

−x̄

+ ȳ2−1
4x̄ log 1−ȳ

−ȳ
− 3

2ȳ log(−x̄)− 3
2x̄ log(−ȳ)+ 7+19(x̄+ȳ)+6

(
x̄2+ȳ2)

24x̄ȳ , (5.9)

with

∆(x,y,z) = z(1−z)−zx−(1−z)y, ∆(x,z) = z−x, x̄= x

m2
f1

, ȳ= y

m2
f1

, (5.10)

and the correct analytic continuation is defined by x→x−iε, y→ y−iε in the logarithms.
Similar expressions apply for the isoscalar parts and the extended VMD parameterization,
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Γ(4π)
ρ′ (q2) Γ(ωπ,ππ)

ρ′ (q2)

Dρρ′

1 × 103 (−0.126)+0.026
−0.031 + (−1.501)+0.099

−0.121 i (−0.173)+0.030
−0.034 + (−1.659)+0.107

−0.126 i

Dρρ′

2 × 103 (−0.978)+0.030
−0.038 + 1.593−0.119

+0.144 i (−1.032)+0.030
−0.036 + 1.755−0.129

+0.150 i

Dρρ
3 × 103 3.189 + 2.338 i

Dρρ′

3 × 103 4.66−0.30
+0.37 + 0.88−0.05

+0.06i 5.26−0.33
+0.39 + 0.99−0.05

+0.06 i

Dρ′ρ′

3 × 103 6.78−0.90
+1.19 + 0.06+0.00

−0.00 i 8.85−1.14
+1.45 + 0.09+0.01

−0.01 i

Dωω
3 × 103 3.835 + 3.193 i

Dφφ
3 × 103 8.736 + 3.775 i

D̄asym × 103 0.146 0.038 0.019 0.011

Table 5. Numerical results for the constants defined in equation (5.12) for the two ρ′ spectral
functions Γρ′(q2) = Γ(4π)

ρ′ (q2), equation (3.12), and Γρ′(q2) = Γ(ωπ,ππ)
ρ′ (q2), equation (3.13). The

uncertainties refer to the variation Γρ′ = (400±60)MeV, see appendix E, which gives the dominant
parametric effect. D̄asym is given for the reference points √sm ∈ {1.0, 1.3, 1.5, 1.7}GeV.

the latter including the asymptotic contribution

Dasym =
3F eff

f1

8π2m3
f1

∫ ∞
sm

dx
∫ 1

0
dz fasym(x,z,mf1), (5.11)

fasym = z4(1−z)2

2x̄(x̄−z)4 (z (1−z)−x̄)2

[
(2−z)z2

(
8−23z+27z2−14z3

)
−x̄z

(
32−100z+131z2−76z3+14z4

)
+x̄2

(
16−46z+51z2−18z3

)]
+ z (1−z)

2x̄(x̄−z)3

[
z2
(
17−37z+37z2−14z3

)
+x̄

(
2+11z−17z2+10z3

)
−3x̄2(2z+1)

]
− z

2(z(z+2)+2x̄(5−2z)−9x̄2)
2(x̄−z)4 log z(1−z)−x̄

−x̄z
.

In all cases the numerical integration is performed with the Cuhre algorithm from the Cuba
library [124].

For the numerical analysis we further write the coefficients in equation (5.7) accord-
ing to

Di = DI=1
i +DI=0

i , i = 1, 2, 3, Dasym =
F eff
f1
m3
f1

M4
ρ

D̄asym,

DI=1
i = Dρρ′

i

Na
, DI=0

i = 0, i = 1, 2, DI=0
3 = RωDωω

3 +RφDφφ
3 ,

DI=1
3

∣∣
ṼMD = Dρρ

3 (1− ε1 − ε2) +Dρρ′

3 ε1 +Dρ′ρ′

3 ε2

Ñs
, DI=1

3
∣∣
VMD = Dρρ

3
Ns

, (5.12)

where the prefactor for Dasym is motivated from equation (3.32) to ensure that the resulting
dimensionless coefficients can be compared in a meaningful way. Our numerical results are
shown in table 5, including the uncertainties from the variation in Γρ′ . Even after taking
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Γ(4π)
ρ′ (q2) Γ(ωπ,ππ)

ρ′ (q2)

DI=1
1 × 103 (−0.218)+0.033

−0.034 + (−2.601)+0.007
−0.007 i (−0.269)+0.032

−0.032 + (−2.583)+0.011
−0.010 i

DI=1
2 × 103 (−1.695)−0.060

+0.062 + 2.760−0.033
+0.031 i (−1.606)−0.053

+0.054 + 2.732−0.038
+0.036 i

DI=1
3

∣∣
VMD × 103 3.961 + 2.904 i

DI=1
3

∣∣
ṼMD × 103 2.163+0.121

−0.148 + 3.592−0.061
+0.077 i 1.930+0.128

−0.147 + 3.685−0.070
+0.085 i

DI=0
3 × 103 −0.95(30)− 0.24(13) i

Dasym × 103 0.125(12) 0.032(3) 0.017(2) 0.009(1)

Table 6. Coefficients from equation (5.12), based on table 5 and the normalizations from table 1.
For the extended VMD version the result in general depends on the ε1/2; here, we show the special
case for Ca2 = 0. For DI=0

3 the error is propagated from equation (3.27) and for Dasym from
equation (3.33).

the change in the normalizations into account, see table 1, these results show that the
uncertainties due to the spectral shape and the width itself can lead to comparable effects.

To be able to better compare the various contributions, we also show the coefficients
including their normalizations, see table 6, where we used the value of equation (3.33)
for the asymptotic contribution. These numbers show that the symmetric contribution
still produces the largest coefficient, but not by much. Accordingly, the f1 → e+e− decay
proves sensitive to the antisymmetric TFFs, about which not much is known at present.
For the extended VMD ansatz, this observations implies an important caveat regarding
the numbers shown in the table, which have been produced under the assumption that
Ca2 = 0. In this case, one observes distinct differences between the two VMD versions,
which can be traced back to the different weight given to the ρρ′ contribution. Finally, the
real part of the isoscalar coefficient comes out larger than expected from equation (3.9).
This is due to the fact that the loop integral is effectively regularized by the vector-meson
mass, and the masses of ω and φ differ by a sufficient amount that the cancellation in
equation (3.28) between the two contributions becomes less effective. The imaginary part
of the loop integral is finite also in the infinite-mass limit, so that its size complies better
with the expected isoscalar suppression.

Since the coupling constants are real, we use the decay width from equation (5.3) to
obtain a branching ratio of

B
(
f1 → e+e−

)
=
E1C

2
a1 + E2C

2
a2 + E3C

2
s + E1,2Ca1Ca2 + E1,3Ca1Cs + E2,3Ca2Cs

Γf

+ E1,asymCa1 + E2,asymCa2 + E3,asymCs + Easym
Γf

, (5.13)
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Figure 10. Surface plots of B(f1 → e+e−) (blue-yellow textured), equation (5.13), as obtained with
the minimal (top) and extended (bottom) VMD parameterization (reference point √sm = 1.3GeV
for the latter) and using the central value of Cs = 0.93(11), equation (4.24), Γρ′(q2) = Γ(4π)

ρ′ (q2)
(left), equation (3.12), and Γρ′(q2) = Γ(ωπ,ππ)

ρ′ (q2) (right), equation (3.13), together with the central
value of the measurement B(f1 → e+e−) = 5.1+3.7

−2.7 × 10−9 [89] (red).

where we defined

Ei = 64π3α4mf1

3 |Di|2, i = 1, 2, 3, (5.14)

Ei,j = 128π3α4mf1

3 Re [DiD
∗
j ], (i, j) = (1, 2), (1, 3), (2, 3),

Ei,asym = 128π3α4mf1

3 Re [DiDasym], i = 1, 2, 3, Easym = 64π3α4mf1

3 |Dasym|2,

2 and the terms involving Dasym are only included in the extended VMD representation.
Similarly to equation (4.26), the solution of equation (5.13) in terms of the unknown

couplings Ca1 and Ca2 represents an ellipse in the minimal VMD case, which, however,
changes for the extended VMD representation, see figure 10. Here, we used the central value
of Cs = 0.93(11), equation (4.24), to remove one unknown and set √sm = 1.3GeV for the
asymptotic contribution [26, 27]. In fact, the results in table 5 and table 6 show that Dasym
remains small for a wide range of matching scales sm, so that the details of the matching
do not play a role in view of the present experimental uncertainties. For definiteness, we
will continue to use √sm = 1.3GeV in the following, with the understanding that the
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Reference B(f1 → ργ) rργ B(f1 → φγ) B(f1 → e+e−)

VES [87] 2.8(9)% 3.9(1.3)

PDG [86] 6.1(1.0)%

Our fit 4.2(1.0)%

Serpukhov [86, 88] 0.74(26)× 10−3

SND [89] (5.1+3.7
−2.7)× 10−9

Table 7. Summary of the experimental measurements used in our global analysis. In addition, we
use the L3 data for e+e− → e+e−f1, see section 4.1.

matching can be refined once improved data become available, along the lines described in
appendix A.

In order to solve for all couplings, we need to consider a combined analysis of all
constraints, see section 6. However, given that the biggest contribution tends to come from
the symmetric term, see table 5, it is instructive to study the case Ca1 = Ca2 = 0 and
consider the f1 → e+e− decay as an independent determination of Cs. For the minimal
VMD ansatz we find

Cs = 1.7+0.6
−0.5, (5.15)

where the isoscalar contribution implies an increase by about 0.3(1). The extended variant
gives9

Cs = 1.9+0.8
−0.6, (5.16)

where the uncertainties from the dependence on the ρ′ spectral function, its width, and the
asymptotic contribution, ∆Cs . 0.03, are negligible compared to both the experimental
error and the uncertainty from the isoscalar contribution. Both values are larger than the
L3 result given in equation (4.24), indicating that indeed a significant contribution from
the antisymmetric TFFs should be expected, which in view of the results from table 6 is
well possible with plausible values of Ca1/2 . Finally, the difference between equation (5.15)
and equation (5.16) gives a first estimate of the sensitivity to the chosen VMD ansatz.

6 Combined phenomenological analysis

In this section, we perform a global analysis of the experimental constraints from e+e− →
e+e−f1, f1 → ργ, and f1 → e+e−. We will also consider f1 → φγ due to its relation
via U(3) symmetry, but not include f1 → 4π for the reasons stated in section 4.2 and
appendix D. Most of the input quantities follow in a straightforward way from the exper-
imental references and the compilation in ref. [86], see table 7, except for the branching
fraction of the ργ channel, for which the fit by the Particle Data Group (PDG) and the
direct measurement by VES [87] disagree by 2.5σ.

9Due to the interference with the asymptotic contribution, there are, in principle, two solutions, which,
however, are very close in magnitude.
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The PDG fit proceeds in terms of the five branching fractions for f1 → 4π, a0(980)π
(excluding a0(980)→ KK̄), ηππ (excluding a0(980)π), KK̄π, and ργ, including data on

1. Γ(f1 → KK̄π)/Γ(f1 → 4π) [133–135],

2. Γ(f1 → 4π)/Γ(f1 → ηππ) [136, 137],

3. Γ(f1 → ργ)/Γ(f1 → 4π) [138],

4. Γ(f1 → a0(980)π [excluding KK̄π])/Γ(f1 → ηππ) [136, 139, 140],

5. Γ(f1 → KK̄π)/Γ(f1 → ηππ) [136, 139–143],

6. Γ(f1 → ηππ)/Γ(f1 → ργ) [140, 141, 144],

however, with the notable exception of the constraint from ref. [87].10 This fit has a
reduced χ2/dof = 24.0/14 = 1.71, reflecting the significant tensions in the data base.
These tensions become exacerbated when including ref. [87] in the fit, leading to a slightly
smaller ργ branching fraction of 5.3%, with χ2/dof = 33.5/15 = 2.23. The origin of the
tensions can be traced back to the input for Γ(f1 → ηππ)/Γ(f1 → ργ), which is measured
as 21.3(4.4) [140], 10(1)(2) [141], and 7.5(1.0) [144],11 with some additional sensitivity to
the ργ channel from Γ(f1 → ργ)/Γ(f1 → 4π) [138].

The main reason why the fit prefers the ργ branching fraction from refs. [141, 144] is
that the χ2 minimization is set up in terms of Γ(f1 → ηππ)/Γ(f1 → ργ), not the inverse
quantity, as would be canonical given that Γ(f1 → ργ) is the smallest of the fit components
and could thus be treated perturbatively. Using Γ(f1 → ργ)/Γ(f1 → ηππ) instead in
the minimization gives a similar χ2/dof = 24.9/14 = 1.78, but reduces the ργ branching
fraction to 4.9(9)% (including the scale factor from ref. [86]), close to the naive average
of refs. [138, 140, 141, 144] when taking the respective normalization channel from the fit.
Including in addition the measurement from ref. [87], we find χ2/dof = 28.6/15 = 1.91 and

B (f1 → 4π) = 33.4 (1.8) % [32.7 (1.9) %] ,

B
(
f1 → a0 (980)π

[
excluding a0 (980)→ KK̄

])
= 38.6 (4.2) % [38.0 (4.0) %] ,

B (f1 → ηππ [excluding a0 (980)π]) = 14.6 (4.1) % [14.0 (4.0) %] ,

B
(
f1 → KK̄π

)
= 9.2 (4) % [9.0 (4) %] ,

B (f1 → ργ) = 4.3 (8) % [6.1(1.0)%] , (6.1)

where the results of the PDG fit are indicated in brackets (for better comparison the
same channel-specific scale factors have been applied as in ref. [86]). Finally, the limit

10Reference [87] only quotes the final ργ branching fraction, not Γ(f1 → ηππ)/Γ(f1 → ργ) as measured
in the experiment, but the ηππ branching fraction from ref. [145] is very close to the one from ref. [86],
rendering the systematic error from the conversion negligible.

11The latter value is given as 5.0(7) in ref. [144] for ηπ+π−, and has thus been increased by the isospin
factor 3/2 in the PDG listing. There is also a limit B(f1 → ργ) < 5% at 95% confidence level from ref. [146],
in tension with refs. [141, 144].
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f1 → φγ No Yes
Solution 1 Solution 2 Solution 1 Solution 2

χ2/dof 2.72/2 = 1.36 6.60/2 = 3.30 8.67/3 = 2.89 8.28/3 = 2.76
p-value 0.26 0.04 0.03 0.04
Cs 0.97(13) 1.01(18) 0.95(18) 0.99(17)
Ca1 −0.23(13) 0.91(21) −0.09(14) 0.80(17)
Ca2 0.51(21) 0.53(39) 0.17(25) 0.34(30)
ρsa1 0.43 0.41 0.21 0.31
ρsa2 −0.42 −0.13 −0.50 −0.37
ρa1a2 −0.44 0.77 −0.29 0.66
B(f1 → e+e−)× 109 2.7(6) 0.7(3) 1.8(6) 0.7(3)
B(f1 → φγ)× 103 2.5(1.3) 1.5(1.1) 1.3(8) 1.1(7)
B(f1 → ωγ)× 103 5.6(1.7) 4.4(2.2) 2.7(1.3) 3.3(1.4)

Table 8. Best-fit results for the three VMD couplings Cs, Ca1 , and Ca2 in the minimal VMD
representation. Each fit includes the constraints from the normalization and slope of the TFF
measured by L3 in e+e− → e+e−f1, from B(f1 → ργ), rργ , and B(f1 → e+e−). In addition,
we show the variants including B(f1 → φγ) as a sixth constraint assuming U(3) symmetry. The
uncertainties include the scale factor S =

√
χ2/dof. We also show the correlations ρij among

the three couplings and the value of B(f1 → e+e−) preferred by each fit. Since the experimental
uncertainties dominate by far in the case of B(f1 → e+e−), we only show the results for Γ(ωπ,ππ)

ρ′ (y)
and √sm = 1.3GeV and do not include the theory uncertainties discussed in detail in section 5.
The uncertainties quoted for B(f1 → V γ) refer to the fit errors and RV , but do not include any
U(3) uncertainties.

from ref. [146] tends to further reduce the average a little, which together with a slightly
increased scale factor when including refs. [87, 146] leads us to quote

B(f1 → ργ) = 4.2(1.0)% (6.2)

as our final average, which we will use in the subsequent analysis, see table 7. While our
main argument in favor of this procedure is the avoidance of a fit bias towards the larger
ργ branching fractions, one may also compare to theoretical expectations. The models
considered in refs. [140, 147–150] in general do prefer smaller ργ branching fractions, but
the spread among the models is too large to make that comparison conclusive.

The results of the global analysis are shown in table 8 and table 9, restricted to
the parameterization Γ(ωπ,ππ)

ρ′ (y) due to the dominant experimental uncertainties. The
latter are propagated as given in table 7, except for B(f1 → φγ), for which we use
B(f1 → φγ)/(Rφ)2 = 3.0(1.6)% as data point in the minimization, including the un-
certainty on Rφ from equation (3.27). As a side result, table 8 and table 9 also contain
predictions for the branching fraction of the yet unmeasured decay f1 → ωγ. The outcome
in the four cases considered — minimal and extended VMD representations each with and
without the constraint from B(f1 → φγ) — is illustrated in figure 11 and figure 12. In
all cases the parameter Cs is by far best constrained, its value hardly changes compared
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f1 → φγ No Yes
Solution 1 Solution 2 Solution 1 Solution 2

χ2/dof 2.25/2 = 1.12 4.40/2 = 2.20 4.01/3 = 1.34 7.53/3 = 2.51
p-value 0.33 0.11 0.26 0.06
Cs 1.00(10) 1.02(14) 1.00(11) 1.02(15)
Ca1 −0.18(12) 0.85(14) −0.19(12) 0.85(15)
Ca2 1.03(36) 1.17(32) −0.20(29) 0.13(47)
ρsa1 0.10 0.86 0.10 0.86
ρsa2 0.00 0.21 −0.34 −0.32
ρa1a2 0.08 0.19 0.18 −0.27
ε1 2.59(1.33) 3.00(1.15) −1.79(1.01) −0.64(1.65)
B(f1 → e+e−)× 109 5.1(3.3) 5.1(4.7) 1.5(4) 0.3(4)
B(f1 → φγ)× 103 4.4(2.4) 3.4(2.0) 0.8(6) 0.8(7)
B(f1 → ωγ)× 103 9.1(3.1) 6.8(2.2) 1.9(1.0) 3.3(1.1)

Table 9. Same as table 8, but for the extended VMD case, including the resulting parameter ε1.

to the L3 reference point given in equation (4.24), with a slight preference for a small
upward shift. The main distinctions concern the couplings Ca1 and Ca2 , with qualitative
differences between the two VMD scenarios. In each case, however, we find two sets of
solutions, corresponding to a small negative value of Ca1 (Solution 1) or a sizable positive
one (Solution 2), respectively, both of which are shown in the tables and figures. In most
cases, Solution 1 is strongly preferred, the exception being the minimal VMD fit including
B(f1 → φγ), in which case Solution 2 displays a slightly better fit quality.

In the minimal VMD representation, all constraints are sensitive to Ca2 , but especially
once including B(f1 → φγ) there is significant tension among the different bands. In
Solution 2, the region preferred by all constraints but B(f1 → e+e−), which thus dominate
the fit, would imply a much smaller value of B(f1 → e+e−) than reported by SND [89],
while Solution 1 is better in line with the SND result. An improved measurement of B(f1 →
e+e−) could therefore differentiate between these scenarios. In addition, we compare the
resulting relevant form factor combination to the L3 dipole fit — see section 4.1 — in
figure 13. While some tension is expected due to the singly-virtual asymptotic behavior
of Fa1(q2

1, q
2
2), see table 2, the resulting curves for Solution 2 start to depart from the L3

band already around Q = 0.5GeV, which further disfavors this set of solutions.
In the extended VMD representation, the dependence on Ca2 disappears in all observ-

ables apart from B(f1 → e+e−) and, potentially, B(f1 → φγ). Accordingly, in the fit
without the latter, the value of Ca2 is solely determined by B(f1 → e+e−), and the best-fit
value of this branching fraction thus coincides with the input. There is good consistency
among the other constraints, as reflected by a reduced χ2 around unity. In this case, an
improved measurement of B(f1 → e+e−) could thus be interpreted as a determination of
Ca2 . Once B(f1 → φγ) is included, one obtains an additional constraint on Ca2 , which,
however, needs to be treated with care. First, the uncertainties on Rφ have been included
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Figure 11. Contours in the Ca1–Ca2 plane for the best-fit value of Cs in the minimal VMD
representation: for Solution 1 (left) and Solution 2 (right), without (upper) and including (lower)
the constraint from B(f1 → φγ). The best-fit region is indicated by the ∆χ2 = 1 ellipse (inflated
by the scale factor).

in the fit, but in addition there are U(3) uncertainties that are difficult to quantify. More-
over, the isoscalar contributions have been treated in their minimal variant throughout,
but if excited ω′ and φ′ states were included, the dependence on Ca2 would again change,
even disappear in a scenario similar to the extended VMD representation for the isovector
contributions. Since the fit including B(f1 → φγ) favors a value of B(f1 → e+e−) smaller
than SND (for Solution 1 similar in size to the ones for Solution 1 in the minimal VMD
case), an improved measurement of B(f1 → e+e−) would also allow one to differentiate
between these scenarios. In addition to the worse χ2, Solution 2 is again disfavored by the
comparison to L3, see figure 13.

In contrast, for Solution 1 of both the minimal and the extended VMD fit departures
from the L3 dipole only arise around Q = 1GeV, which implies agreement with all but
the last data point of ref. [7] (centered around Q = 1.8GeV, where the curves still agree
within uncertainties). In fact, a large part of the pull is a result of the slightly increased
value of Cs from the global fit, while the impact of the asymptotic behavior of Fa1(−Q2, 0)
remains small. Finally, we observe that most extended VMD fits require a substantial
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Figure 12. Contours in the Ca1–Ca2 plane for the best-fit value of Cs in the extended VMD
representation: for Solution 1 (left) and Solution 2 (right), without (upper) and including (lower)
the constraint from B(f1 → φγ). The best-fit region is indicated by the ∆χ2 = 1 ellipse (inflated
by the scale factor). We do not consider equivalent solutions with very large negative Ca2 , as arise
without the B(f1 → φγ) constraint. Further local minima when including B(f1 → φγ) mirror the
indicated Solutions 1 and 2 on the lower branch of the ellipse, but display a worse χ2/dof and are
thus discarded.

ρ′ contribution, as reflected by the large values of ε1 shown in table 9. In fact, for the
fit without B(f1 → φγ) it even exceeds the coefficient of the ρ contribution, which could
be considered an indication that smaller values of B(f1 → e+e−) are preferred. We also
implemented a variant of the extended VMD fit in which ε1 was allowed to float freely, but
this did not improve the fit quality, with a resulting ε1 consistent with the ones imposed
via equation (3.35).

7 Summary and outlook

In this paper, we performed a comprehensive analysis of the TFFs of the axial-vector
resonance f1(1285), motivated by its contribution to HLbL scattering in the anomalous
magnetic moment of the muon. Our study is based on all available constraints from e+e− →
e+e−f1, f1 → 4π, f1 → ργ, f1 → φγ, and f1 → e+e−, all of which are sensitive to different
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Figure 13. Comparison of the fit solutions for the effective form factor probed in e+e− → e+e−f1
to the L3 measurement [7], according to equation (4.11), for the minimal VMD representation (left)
and the extended one (right). The L3 dipole band includes the uncertainties on |FD(0, 0)| and ΛD
as given by equation (4.2), added in quadrature; ours propagate the uncertainties from table 8 and
table 9, respectively.

aspects of the f1 → γ∗γ∗ transition. Since the amount of data is limited, a completely
model-independent determination of all three TFFs is not feasible at present, leading us to
consider parameterizations motivated by vector meson dominance. To assess the sensitivity
to the chosen parameterization, we constructed two variants, a minimal one that produces
non-vanishing results for all TFFs, and an extension that improves the asymptotic behavior
by matching to short-distance constraints. In each case this leaves three coupling constants
as free parameters, Cs, Ca1 , and Ca2 , for the symmetric and the two antisymmetric TFFs,
in terms of which the analysis is set up.

As a first step, we derived master formulae for all processes in terms of these couplings
and performed cross checks when analyzing each process in terms of the dominant coupling
Cs. This reveals that the decay f1 → 4π does not provide further information on the TFFs,
as the mechanism f1 → a1π → ρππ → 4π likely dominates with respect to f1 → ρρ→ 4π,
and only the latter can be related to the f1 TFFs. The process is thus discarded in the
subsequent analysis. For the remaining observables we performed detailed uncertainty
estimates, including the subleading isoscalar contributions, the properties of the ρ′ meson
and its spectral function, and the matching to short-distance constraints. In all cases we
conclude that the dominant uncertainties are currently of experimental origin.
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Combining all constraints in a global fit, we found that the symmetric coupling Cs is
by far best determined, with substantial differences in Ca1 and Ca2 among the different
scenarios, see table 8, table 9, figure 11, and figure 12 for our central results. Out of
two sets of solutions — Solution 1 with a small negative value of Ca1 , Solution 2 with a
sizable positive one — the former is in general preferred by the fit, with Solution 2 further
disfavored by the comparison to space-like e+e− → e+e−f1 data, see figure 13. In the case
of the minimal VMD representation, we observed some tension between B(f1 → e+e−)
and the remaining constraints especially when including B(f1 → φγ) in the fit, leading
to a preference for a branching fraction below the value recently reported by the SND
collaboration. In the extended parameterization, the dependence on Ca2 drops out in all
observables but B(f1 → e+e−) and, potentially, B(f1 → φγ), but limited information about
the isoscalar sector together with necessary U(3) assumptions render the latter constraint
less reliable. While the f1 → φγ branching fraction seems to prefer a smaller value of
B(f1 → e+e−) (similar to the minimal VMD fit), we conclude that the parameter that
controls its size, Ca2 , is largely unconstrained at the moment, and would thus profit most
from an improved measurement of B(f1 → e+e−).

In general, new measurements of B(f1 → e+e−) — as possible in the context of e+e− →
hadrons energy scans at SND and CMD-3 — would be highly beneficial to further constrain
the f1 TFFs, given that the resulting constraints are complementary to other observables,
in particular, providing sensitivity to doubly-virtual kinematics and the antisymmetric
TFFs. Apart from a more reliable determination of Ca2 , one could also validate and, if
necessary, refine the underlying VMD assumptions. Furthermore, improved measurements
of e+e− → e+e−f1 would be valuable to further constrain the singly-virtual TFFs — in
particular, the asymptotic behavior of Fa1(q2, 0) — ideally adding new data points above
1GeV and being analyzed using the full momentum dependence given in equation (4.11),
to avoid the corresponding limitation in the interpretation of the L3 data. Such analyses
are possible at BESIII [151] and Belle II [152]. To go beyond VMD parameterizations,
the energy dependence in the (dispersively improved) Breit–Wigner propagators would
need to be constrained by data, which would require differential information on f1 decays.
At the moment, our analysis summarizes the combined information on the f1 TFFs that
can be extracted from the available data in terms of simple parameterizations, which we
expect to become valuable for forthcoming estimates of the axial-vector contributions to
HLbL scattering.
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A Asymptotic behavior including mass effects

In this appendix, we generalize the considerations of refs. [26, 27] regarding a double-
spectral representation of BL scaling to include mass effects that arise from the kinematic
variables in the denominator. Starting from

F2(q2
1, q

2
2) = −F eff

A m3
A

∂

∂q2
1

∫ 1

0
du φ(u)

uq2
1 + (1− u)q2

2 − u(1− u)m2
A

+O(1/q6
i ),

F3(q2
1, q

2
2) = F eff

A m3
A

∂

∂q2
2

∫ 1

0
du φ(u)

uq2
1 + (1− u)q2

2 − u(1− u)m2
A

+O(1/q6
i ), (A.1)

see equation (2.12), we see that the asymptotic behavior of the axial-vector TFFs can still
be deduced from the simpler pseudoscalar case, which leads us to study the generic integral

Ĩ(q2
1, q

2
2,m

2) =
∫ 1

0
du φ(u)

uq2
1 + (1− u)q2

2 − u(1− u)m2 , (A.2)

which, in the case q2
1 = q2

2 = −Q2, evaluates to

Ĩ(−Q2,−Q2,m2) = − 6
Q2ξ

[
1− 2√

ξ(4 + ξ)
log
√

4 + ξ +
√
ξ√

4 + ξ −
√
ξ

]
= − 1

Q2

(
1− ξ

5 + 3
70ξ

2 − ξ3

105 +O
(
ξ4)), ξ = m2

Q2 . (A.3)

Given the large masses of the axial-vector mesons, m = mA, such corrections in ξ may
become relevant and equation (A.2) defines a convenient test case to study their impact.

As a first step, we observe that equation (A.2) can still be formulated as a single
dispersion relation [121] via the transformation x = −1−u

u

(
q2

2 −m2u
)
,

Ĩ(q2
1, q

2
2,m

2) = 1
π

∫ ∞
0

dx Im Ĩ(x, q2
2,m

2)
x− q2

1
,

Im Ĩ(x, y,m2) = 3π
m4

((x− y)2 −m2(x+ y)√
λ(x, y,m2)

− x+ y

)
, (A.4)

where y = q2
2 has been assumed to be space-like. Analytic continuation in q2

2 then allows
one to rewrite the imaginary part in equation (A.4) in terms of another dispersion relation,
leading to

Ĩ
(
q2

1, q
2
2,m

2
)

= 1
π2

∫ ∞
0

dx
∫ ∞

0
dy ρ̃

(
x, y,m2)(

x− q2
1
) (
y − q2

2
)

= − 6
m2

[
1 + q2

1
m2 log

(
1− m2

q2
1

)
+ q2

2
m2 log

(
1− m2

q2
2

)]

+ q2
1q

2
2

π2

∫ ∞
0

dx
∫ ∞

0
dy ρ̃

(
x, y,m2)

x
(
x− q2

1
)
y
(
y − q2

2
) , (A.5)

with double-spectral function

ρ̃
(
x, y,m2

)
= 3π
m4

(x− y)2 −m2 (x+ y)√
−λ (x, y,m2)

θ
(
−λ

(
x, y,m2

))
. (A.6)
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Restricting the integration in x, y should then allow one to isolate the asymptotic contri-
butions while keeping the leading mass corrections. In the subtracted version, the singly-
virtual limits become explicit since

− 6
m2

[
1 + q2

i

m2 log
(

1− m2

q2
i

)]
=
∫ 1

0
du φ(u)

uq2
i − u(1− u)m2 . (A.7)

Further, to make connection with the massless limit of equation (3.44), which
amounts to

Ĩ
(
q2

1, q
2
2,m

2
)
m→0→ I

(
q2

1, q
2
2

)
→ −3q2

1q
2
2

∫ ∞
sm

dx(
x− q2

1
)2 (

x− q2
2
)2 , (A.8)

see equation (3.42), we first note that this variant had been constructed in such a way that
the singly-virtual contributions are removed, suggesting a matching in the limit q2

1 = q2
2 =

−Q2, in which

−3q2
1q

2
2

∫ ∞
sm

dx(
x−q2

1
)2 (

x−q2
2
)2 =− 1

Q2

[
1−3 sm

Q2 +6
(
sm
Q2

)2
−10

(
sm
Q2

)3
+O

((
sm
Q2

)4
)]

.

(A.9)
To evaluate equation (A.5) in the same limit, we symmetrize the integration to v = x+ y,
w = x − y and introduce a step function θ(v − vm). In these variables, the w integration
extends between w± = ±

√
2m2v −m4, which shows that in the massless limit the double-

spectral density indeed collapses to a δ function, see equation (3.43). For q2
1 = q2

2 = −Q2,
the w integration can be performed analytically, leading to

Ĩ
(
−Q2,−Q2,m2

)
= 6
m4

∫ ∞
vm

dv

 (
v+2Q2)2−m2v

(v+2Q2)
√

(v+2Q2)2−2m2v+m4
−1

 (A.10)

=−12Q2
∫ ∞
vm

dv v+Q2

(v+2Q2)4 +O
(
m2
)

=− 1
Q2

[
1−3 vm

4Q2 +6
(
vm
4Q2

)2
−8
(
vm
4Q2

)3
+O

((
vm
Q2

)5
)]

+O
(
m2
)
.

The first three terms in the expansion thus match upon the identification vm = 4sm.

B Phenomenological Lagrangians

In this appendix, we define the Lagrangians used for the ργ, ρππ, and ρωπ couplings and
discuss the information that can be extracted for their ρ′ analogs. In particular, we derive
estimates for the branching ratios B(ρ′ → ππ) and B(ρ′ → ωπ), which are necessary inputs
for the construction of the energy-dependent width Γ(ωπ,ππ)

ρ′ (q2) in equation (3.13).
For the coupling of photons to the vector mesons {ρ, ω, φ, ρ′, . . .}, we use the effective

interaction Lagrangian [115]

LVγ = −e2F
µν

(
ρµν
gργ

+ ωµν
gωγ

+ φµν
gφγ

+
ρ′µν
gρ′γ

+ . . .

)
, (B.1)
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where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor with the photon
field Aµ, {ρ(′)

µν , ρ
(′)
µ }, {ωµν , ωµ}, and {φµν , φµ} are the respective vector meson equivalents,

and the ellipsis refers to excited isoscalar vector mesons that we omit from the following
discussion for simplicity. The couplings of the three ground-state vector mesons are linked
via SU(3) symmetry according to gργ : gωγ : gφγ = 1 : 3 : 3/

√
2 [115], with the sign of

gφγ adjusted according to equation (3.24). In the following, we neglect complex phases
associated with actual pole residues (which are known to be tiny [153]), and work with
the phase convention sgn gργ = +1. From the Lagrangian, the partial decay width of the
vector mesons into e+e− follows as

Γ(V→ e+e−) = 4πα2

3|gVγ |2

(
1 + 2m2

e

m2
V

)√
m2

V − 4m2
e. (B.2)

For the ρ meson, one can solve for the coupling and insert the (experimental) value Γ(ρ→
e+e−) = 7.04 keV [86] to find

gργ = 4.96. (B.3)

This value agrees well with the residue |gργ | = 4.9(1) extracted from the pion vector form
factor [153], and is also close to the expectation from SU(3) symmetry, gSU(3)

ργ = gωγ/3 =
5.6, where gωγ can be similarly extracted from Γ(ω → e+e−) = B(ω → e+e−)Γω =
0.625 keV [86],

gωγ = 16.7. (B.4)

Furthermore, one can use Γ(φ→ e+e−) = 1.27 keV to solve for the coupling of the φ meson,
yielding

gφγ = 13.38. (B.5)

For the VMD application considered in this work, we also need a formulation in which
the coupling of photons to vector mesons is momentum independent, with the respec-
tive vector meson considered on shell. Such a coupling can be formally defined via the
Lagrangian

L̃Vγ = eAµ
(
g̃ργρµ + g̃ωγωµ + g̃φγφµ + g̃ρ′γρ

′
µ + . . .

)
, (B.6)

where matching the amplitudes resulting from equation (B.1) and equation (B.6) for on-
shell mesons determines

g̃Vγ = m2
V

gVγ
. (B.7)

In particular, we carry over the sign convention for the coupling constants g̃Vγ from
gVγ above.

In order to describe the coupling of (uncharged) isovector vector mesons to two pions,
we employ the effective interaction Lagrangian [115]

Lρ(′)ππ =
(
gρππρµ + gρ′ππρ

′
µ

)(
π+∂µπ− − π−∂µπ+), (B.8)

where π± denote the pion fields of definite charge and the coupling to two neutral pions is
forbidden by Bose symmetry. We find the decay width for ρ(′) → π+π−

Γ
(
ρ(′) → π+π−

)
=
Mρ(′) |gρ(′)ππ|2

48π

(
1− 4M2

π

M2
ρ(′)

)3/2

. (B.9)
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A VMD ansatz for the pion vector form factor,12

FV
π (q2) ≈ gρππ

gργ

M2
ρ

M2
ρ − q2 − i

√
q2Γρ(q2)

+ gρ′ππ
gρ′γ

M2
ρ′

M2
ρ′ − q2 − i

√
q2Γρ′(q2)

, (B.10)

dictates gρππ to have the same sign as gργ , so that under the assumption Γ(ρ→ π+π−) =
Γρ [86], we obtain

gρππ = 5.98, (B.11)

again close to the actual residue |gρππ| = 6.01+0.04
−0.07 [154].

Finally, starting from the anomalous interaction Lagrangian L(3)
VΦ given in ref. [115],

we write down the Lagrangian that describes the coupling of the neutral isovector vector
mesons to ωπ0,

Lρ(′)ωπ = εµναβ

2
(
∂βπ

0
) {
gρωπ [(∂µ ρν)ωα + (∂µων) ρα] + gρ′ωπ

[(
∂µ ρ

′
ν

)
ωα + (∂µων) ρ′α

]}
.

(B.12)
The corresponding ρ′ → ωπ decay width is given by

Γ
(
ρ′ → ωπ

)
= |gρ

′ωπ|2

96πM3
ρ′
λ
(
M2
ρ′ ,M

2
ω,M

2
π

)3/2
. (B.13)

In the following, we estimate the couplings |gρ′γ |, |gρ′ππ|, and |gρ′ωπ|, as well as the
relevant relative signs in these. One purpose is the construction of the energy-dependent
width Γ(ωπ,ππ)

ρ′ (q2) in equation (3.13), which — besides the shape of the decay widths
Γ(ρ′ → ππ) and Γ(ρ′ → ωπ) — requires the branching ratios B(ρ′ → ππ) and B(ρ′ → ωπ)
as input. In addition, this allows us to assess the relative importance of ρ′ contributions in
f1 → γ∗γ∗ versus those in f1 → 4π.

Analyses of the pion vector form factor using improved variants of equation (B.10)
suggest a ρ′ contribution relative to the dominant ρ therein of an approximate strength [91,
155, 156]

gρ′ππ/gρ′γ
gρππ/gργ

≈ − 1
10 . (B.14)

On the other hand, the ω → πγ∗ TFF [91, 157] can be approximated in a VMD picture
according to

fωπ
(
q2
)
≈ gρωπ

gργ

M2
ρ

M2
ρ − q2 − i

√
q2Γρ (q2)

+ gρ′ωπ
gρ′γ

M2
ρ′

M2
ρ′ − q2 − i

√
q2Γρ′ (q2)

. (B.15)

The asymptotic behavior fωπ(q2) = O(q−4) [83, 84, 158, 159] implies a superconvergence
sum-rule constraint on the couplings of equation (B.15) according to

gρ′ωπ/gρ′γ
gρωπ/gργ

= −
M2
ρ

M2
ρ′
≈ −1

4 , (B.16)

12Strictly speaking, this form is based on equation (B.6), not equation (B.1), but the difference essentially
amounts to a constant that does not affect the relative signs.
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which is consistent with the experimental analysis of ref. [157]. From the experimental
width Γ(ω → πγ) = 0.71MeV [86] and the corresponding formula [91]

Γ (ω → πγ) = α
(
M2
ω −M2

π

)3
24M3

ω

|fωπ (0)|2, (B.17)

we furthermore obtain the normalization |fωπ(0)| = 2.3GeV−1 and thus

gρωπ ≈ 15.4GeV−1 (B.18)

when combined with equation (B.16), choosing a positive sign convention for fωπ(0). More-
over, from equation (B.14) and equation (B.16) one deduces the ratio

gρ′ωπ
gρ′ππ

≈ 6.4GeV−1, (B.19)

so that under the assumption Γρ′ ≈ Γ(ρ′ → ππ) + Γ(ρ′ → ωπ) — neglecting another
significant contribution from ρ′ → a1π (a1 → 3π)13 — one can use equation (B.9) and
equation (B.13) to obtain

|gρ′ππ| ≈ 1.60, |gρ′ωπ| ≈ 10.3GeV−1. (B.20)

The branching ratios then become

B(ρ′ → ππ) ≈ 6%, B(ρ′ → ωπ) ≈ 94%, (B.21)

and, for completeness, the ρ′γ coupling is estimated as

|gρ′γ | ≈ 13.3. (B.22)

The estimate equation (B.21) agrees with the expectation that the ρ′ should be largely
inelastic, and the resulting spectral function in equation (3.13) thus essentially defines an
estimate of the 4π channel dominated by ωπ. We stress that these considerations should
only be considered rough estimates, the main point being to define another plausible variant
that allows us to assess the sensitivity of our results to the assumptions made for the ρ′

spectral function. Finally, for our analysis of f1 → 4π including effects of the ρ′, we require
the ratio of coupling constants

gρ′ππ × gρ′γ
gρππ × gργ

≈ −0.7. (B.23)

13References [160, 161] show that e+e− → a1π, the second-largest subchannel of e+e− → 4π beyond
e+e− → ωπ, is already important at the ρ′. Adding the a1π channel will decrease the gρ′ππ and gρ′ωπ

couplings in parallel, with the ratio of branching fractions B(ρ′ → ππ)/B(ρ′ → ωπ) kept fixed, but they
then will not add up to 100% anymore.
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C Comparison to the literature

In this appendix, we briefly compare the basis of Lorentz structures and TFFs as well
as the parameterization of the latter for the f1 used in this work to the previous analysis
of refs. [100, 101]. Since the TFFs are not (anti-)symmetrized in ref. [100], we use the
basis introduced in section 2 for our comparison, that is, in particular, the structures from
equation (2.6). When using equation (2.2) to translate the amplitudeM(f1 → γ∗γ∗) from
ref. [100] to the tensor matrix element given in equation (2.5), we find the structures to be
related by

Tµνα1 [100](q1, q2) = −Tµνα1 (q1, q2),

Tµνα2 [100] (q1, q2) = −Tµνα3 (q1, q2),

Tµνα3 [100](q1, q2) = Tµνα2 (q1, q2), (C.1)

and the TFFs to be linked via

F [100]
1 (q2

1, q
2
2) = −4πF1(q2

1, q
2
2),

F [100]
2 (q2

1, q
2
2) = −4πF3(q2

1, q
2
2),

F [100]
3 (q2

1, q
2
2) = 4πF2(q2

1, q
2
2). (C.2)

While the structures are thus identical to ours except for two global signs and a permu-
tation, the additional factor of 4π in the TFFs appears due to the fact that the fine-
structure constant α is used in the definition of their matrix element instead of the factor
e2. The symmetry properties of the TFFs in their basis are given by F [100]

1 (q2
2, q

2
1) =

−F [100]
1 (q2

1, q
2
2) and F [100]

2 (q2
2, q

2
1) = F [100]

3 (q2
1, q

2
2), where an (anti-)symmetrization similar

to equation (3.1) would of course be straightforward. Moreover, the two-photon decay
width, equation (2.11), becomes

Γ̃[100]
γγ = α2

192πmA|F [100]
2 (0, 0)|2 = α2

192πmA|F [100]
3 (0, 0)|2. (C.3)

The strategy that is used in ref. [100] to determine the explicit parameterization of
the TFFs in accord with a VMD model is, in fact, quite different from our approach —
the model does not correspond to a strict VMD ansatz. Instead of proposing a VMD-
like parameterization for the form factors F [100]

i (q2
1, q

2
2) as we did in equation (3.10), three

form factors hi(q2
1, q

2
2) are introduced, based on which an amplitude M(f1 → ρ0∗ρ0∗) is

constructed by replacing F [100]
i (q2

1, q
2
2) → hi(q2

1, q
2
2) in M(f1 → γ∗γ∗); analogously, two

complex coupling constants g1 and g2 are introduced to construct an amplitude M(f1 →
ργ). We disagree that such complex couplings are allowed since the resulting imaginary
parts need to reflect the actual analytic structure of the amplitude. Moreover, the explicit
form of the hi(q2

1, q
2
2), to account for an off-shell dependence of the ρ mesons, introduces

unphysical kinematic singularities.
By employing a ργ coupling similar to the one we introduced by means of equa-

tion (B.1), the form factors F [100]
i (q2

1, q
2
2) and hi(q2

1, q
2
2) are then related to each other in
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ref. [100], where the latter can further be linked to the coupling constants g1 and g2. Using
the ργ coupling in the convention of the present work, the form factors are found to be

F [100]
1

(
q2

1, q
2
2

)
=

eg1
(
M2
ρ − iMρΓρ

) (
q2

2 − q2
1
)

gργ
(
q2

1 −M2
ρ + iMρΓρ

) (
q2

2 −M2
ρ + iMρΓρ

) ,
F [100]

2/3

(
q2

1, q
2
2

)
= −

eg2M
2
ρ

(
M2
ρ − iMρΓρ

)
gργ

(
q2

1 −M2
ρ + iMρΓρ

) (
q2

2 −M2
ρ + iMρΓρ

) , (C.4)

the width Γρ being the (energy-independent) total width of the ρ meson, as opposed to
our energy-dependent parameterization of equation (3.11) and equation (3.15). Moreover,
the magnitude of the couplings g1 and g2 is determined in ref. [100] by making use of
experimental data on f1 → ργ, see section 3; the relative phase between these coupling
constants remains undetermined, despite using, in addition, input from f1 → 4π.

By rewriting equation (C.4) as

F [100]
1

(
q2

1, q
2
2

)
=

eg1
(
M2
ρ − iMρΓρ

)
gργ

(
q2

1 −M2
ρ + iMρΓρ

) − eg1
(
M2
ρ − iMρΓρ

)
gργ

(
q2

2 −M2
ρ + iMρΓρ

) , (C.5)

one observes that F [100]
1 (q2

1, q
2
2) does not correspond to a VMD ansatz in the strict sense,

but rather arises from two diagrams, each being composed of one direct photon coupling
and one VMD-like ρ coupling. As we argued in section 3, an actual VMD representation
of the antisymmetric TFFs requires the introduction of a second multiplet. Further, equa-
tion (C.4) shows that the second and third TFFs are parameterized symmetrically, i.e., the
antisymmetric part is neglected. In either case, we believe that the f1 → 4π decay does not
allow one to extract information on the f1 TFFs, for the reasons described in section 4.2
and appendix D.

Finally, we would like so stress that, in addition to using complex couplings, energy-
independent widths are problematic when inserted into the f1 → e+e− loop integral, lead-
ing to imaginary parts below the respective thresholds and thus distorting the analytic
structure. Given, in addition, the appearance of kinematic singularities and different high-
energy behavior, it is difficult to compare our phenomenological results to the ones of
refs. [100, 101].

D f1 → a1π → ρππ → 4π

In order to investigate whether the intermediate state a1(→ ρπ)π can account for the
discrepancy in the branching ratio of f1 → 4π found in section 4.2, we use the effective
interaction Lagrangians

Lf1a1π = gf1a1π

2 εµναβ
(
∂βπ

∓) [(∂µ a±1 ν) f1α + (∂µf1ν) a±1 α
]
,

La1ρπ = ga1ρπ

[
a−1 µρ

µπ+ − a+
1 µρ

µπ−
]
, (D.1)
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where Lf1a1π is constructed in analogy to equation (B.12) and La1ρπ represents the simplest
Lagrangian possible, the relative sign originating from isospin symmetry. Before construct-
ing an amplitude for f1 → a1π → ρππ → 4π, we will in the following estimate the couplings
gf1a1π and (the magnitude of) ga1ρπ.

For the estimate of gf1a1π, we start from the observation that the Wess–Zumino–
Witten anomaly [86, 162, 163]

Fπ0γ∗γ∗ (0, 0) = 1
4π2Fπ

= 0.2745(3)GeV−1 (D.2)

is largely saturated by the VMD ansatz

Fπ0γ∗γ∗ (0, 0) ≈ gρωπ
gργgωγ

 M2
ρM

2
ω(

M2
ρ − q2

1 − i
√
q2

1Γρ
(
q2

1
)) (

M2
ω − q2

2
) + (q1 ↔ q2)


∣∣∣∣∣
q2

1=0=q2
2

= 2gρωπ
gργgωγ

= 2gρωπFρFω
MρMω

≈ 0.37GeV−1, (D.3)

where we used equation (B.3), equation (B.4), and equation (B.18). The decay constants
of the ρ and ω meson,

〈0|jµem (0) |V (p, λV )〉 = FVMV εµ(p), V = ρ, ω, (D.4)

are related to our previous notation by gV γ = MV /FV . This rough agreement suggests
that an estimate of the axial-vector analogs can be obtained in a similar manner, leading
to the axial-vector-meson-dominance ansatz

Fπ0γ∗γ∗(0, 0) ≈ 2gf1a1πFa1Ff1

ma1mf1

, (D.5)

with the corresponding decay constants defined by

〈0|q̄(0)γµγ5Qq(0)|A(p, λA)〉 = FAmAεµ(p), A = a1, f1. (D.6)

Comparing the two parameterizations results in
gf1a1π

gρωπ
≈ FρFω
MρMω

ma1mf1

Fa1Ff1

≈ 1.3, (D.7)

where we used Fa1 = 168(7)MeV, Ff1 = 87(7)MeV [80, 104].
An estimate of |ga1ρπ| is obtained by calculating the decay width of a1 → ρπ and

matching to the experimental width under the assumption Γ(a1 → ρπ) = Γa1 , taking into
account that Γ(a1 → ρπ) = Γ(a±1 → ρ±π0) + Γ(a±1 → ρ0π±) = 2Γ(a±1 → ρ0π±) for the
charged channel. We find14

Γ(a1 → ρπ) = |ga1ρπ|2

8π
|pρ|
m2
a1

(
1 + |pρ|

2

3M2
ρ

)
→ |ga1ρπ|2

8π
|pρ|
m2
a1

, (D.8)

14Note that, in addition to the expected S-wave phase space, the Lagrangian Lf1a1π also produces a
numerically small P -wave contribution proportional to |pρ|3, which — strictly speaking — would only vanish
when performing a partial-wave projection. Given the uncertainties inherent in the f1 → a1π → ρππ → 4π
estimate presented here, especially in view of the width and spectral shape of the a1, a more refined
treatment is not warranted, and we simply remove these terms in equation (D.8).
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f1

π+

π−

π+

π−

P

pa1

a+1

k−

pρ

ρ

k+

p+

p−

f1

π+

π−

π−

π+

P

p̃a1

a−1

k+

pρ

ρ

k−

p+

p−

Figure 14. Feynman diagrams for f1 → π+π−π+π− via a1π. Since the two π+ and π− are
respectively indistinguishable, there exist eight diagrams in total, that is four diagrams with a+

1 (left)
and four diagrams with a−1 (right), which are obtained by permuting the momenta appropriately.

where |pρ| =
√
λ(m2

a1 ,M
2
ρ ,M

2
π)/(2ma1) is the magnitude of the three-momentum in the

center-of-mass frame, yielding

|ga1ρπ| = (3.7 . . . 5.7)GeV, (D.9)

where the given variation is due to the width of the a1.
The amplitude for f1 → a1π → ρππ → 4π can be constructed with equation (D.1) and

equation (B.8), where eight diagrams have to be taken into account, see figure 14, leading
to

Ma1π

(
f1 → π+π−π+π−

)
=

gf1a1πga1ρπgρππ(
p2
a1 −m2

a1 + i
√
p2
a1Γa1

(
p2
a1

)) (
p2
ρ −M2

ρ + i
√
p2
ρΓρ

(
p2
ρ

))
× εµ (P ) εµναβ

[
2kν−pα−p

β
+ + kν−k

α
+ (p+ − p−)β

]
+ (p− ↔ k−) + (p+ ↔ k+)

+ (p+ ↔ k+, p− ↔ k−)− (k+ ↔ k−)− (k+ ↔ k−, p− ↔ k−)

− (k+ ↔ k−, p+ ↔ k+)− (k+ ↔ k−, p+ ↔ k+, p− ↔ k−) , (D.10)

with the momenta defined as in figure 14 and the pions on shell, p2
± = M2

π = k2
±. For the

energy-dependent width of the a1 meson, we choose an ansatz based on equation (D.8),

Γa1

(
q2
)

= θ
(
q2 − (Mρ +Mπ)2

) γa1→ρπ
(
q2)

γa1→ρπ
(
m2
a1

)Γa1 , γa1→ρπ
(
q2
)

=

√
λ
(
q2,M2

ρ ,M
2
π

)
(q2)3/2 ,

(D.11)

and the energy-dependent width Γρ(q2) is as specified in equation (3.15). The decay width
and thus branching ratio can then be calculated via the four-body phase-space integration of
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dΓa1π(f1 → π+π−π+π−) = 1
2mf1

∣∣∣Ma1π(f1 → π+π−π+π−)
∣∣∣2 dΦ4(P, p+, p−, k+, k−).

(D.12)
Although we could proceed in complete analogy to section 4.2, it is instructive to write the
differential four-body phase space differently from equation (4.17), namely in the form [86]

dΦ4(P, p+, p−, k+, k−) = dΦ2(pρ; p+, p−)dΦ2(pa1 ; pρ, k+)dΦ2(P ; pa1 , k−)
dp2

a1

2π
dp2

ρ

2π , (D.13)

where dΦ2(P ; pa1 , k−), dΦ2(pa1 ; pρ, k+), and dΦ2(pρ; p+, p−) are the respective two-body
phase spaces of the subsystems {a1(pa1)π−(k−)}, {ρ(pρ)π+(k+)}, and {π+(p+)π−(p−)}.
As argued in section 4.2, each two-body phase space can be evaluated in the correspond-
ing center-of-mass frame and we have to perform an explicit Lorentz transformation
from the center-of-mass frames of {a1(pa1)π−(k−)} and {π+(p+)π−(p−)} into the one
of {ρ(pρ)π+(k+)} in order to evaluate all the scalar products appearing in |Ma1π(f1 →
π+π−π+π−)|2.15 We perform the phase space integration numerically with the Cuhre al-
gorithm from the Cuba library [124], obtaining

Γa1π

(
f1 → π+π−π+π−

)
= |gf1a1π|2|ga1ρπ|2|gρππ|2 × (3.27 . . . 2.46)× 10−9 GeV. (D.14)

Combining the above result with |gf1a1π| ≈ 1.3 × 15.4GeV−1, |ga1ρπ| = (3.7 . . . 5.7)GeV,
and |gρππ| = 5.98, equation (D.7), equation (B.18), equation (D.9), and equation (B.11),
we find the branching ratio to be given by

Ba1π

(
f1 → π+π−π+π−

)
≈ (2.8 . . . 5.0) %, (D.15)

in fair agreement with the experimental value B(f1 → π+π−π+π−) = 10.9(6)% [86]. We
also considered the variant of this estimate obtained when further approximating the decay
f1 → a1π → ρππ → 4π by f1 → a1π → ρππ, assuming that the ρ decays into two charged
pions only:

Γa1π (f1 → ρππ) = |gf1a1π|2|ga1ρπ|2 × (2.40 . . . 2.06)× 10−7 GeV, (D.16)

and
Ba1π(f1 → ρππ) ≈ (5.8 . . . 11.8)%, (D.17)

leading to a result closer to the experimental branching fraction, which indicates that ρ
dominance in this decay mode is again subject to sizable corrections. In both estimates,
given that the VMD saturation of the anomaly, equation (D.3), actually overpredicts the
expected value, equation (D.2), a somewhat smaller value of |gf1a1π| may be favored.

We stress that the estimates presented here are merely supposed to give an indica-
tion for why the VMD description of f1 → 4π in section 4.2 is in serious disagreement
with the experimental branching ratio, i.e., we do not claim to have a reliable prediction

15As in section 4.2, the decay rate involves an additional symmetry factor of S = 1/(2!)2 because of the
two pairs of indistinguishable particles in the final state.
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Quantity Variable Value Reference
Mass pion Mπ 139.57MeV [86]
Mass a1(1260) ma1 1230(40)MeV [86]
Mass f1(1285) mf1 1281.9(5)MeV [86]
Mass f1(1420) mf ′1

1426.3(9)MeV [86]
Mass ω(782) Mω 782.65(12)MeV [86]
Mass φ(1020) Mφ 1019.461(16)MeV [86]
Mass ρ(770) (charged) Mρ 775.11(34)MeV [86]
Mass ρ(1450) Mρ′ 1465(25)MeV [86]
Total width a1(1260) Γa1 (250 . . . 600)MeV [86]
Total width f1(1285) Γf1 22.7(1.1)MeV [86]
Total width f1(1420) Γf ′1 54.5(2.6)MeV [86]
Total width ρ(770) (charged) Γρ 149.1(8)MeV [86]
Total width ρ(1450) Γρ′ 400(60)MeV [86]
Mass ρ(770) (charged) Mρ 774.9(6)MeV [155]
Mass ρ(1450) (charged) Mρ′ 1428(30)MeV [155]
Total width ρ(770) (charged) Γρ 148.6(1.8)MeV [155]
Total width ρ(1450) (charged) Γρ′ 413(58)MeV [155]
Mass ρ(770) (neutral) Mρ 775.02(35)MeV [164]
Mass ρ(1450) (neutral) Mρ′ 1493(15)MeV [164]
Total width ρ(770) (neutral) Γρ 149.59(67)MeV [164]
Total width ρ(1450) (neutral) Γρ′ 427(31)MeV [164]

Table 10. Selected masses and decay widths from ref. [86], in comparison to the ρ(770) and ρ(1450)
parameters from refs. [155, 164].

for Ba1π(f1 → π+π−π+π−), as, in particular, the uncertainty in assuming an axial-vector
saturation of the anomaly is difficult to quantify. Still, the arguments leading to equa-
tion (D.15) and equation (D.17) should make plausible that the intermediate state a1π

can indeed cover the experimental branching ratio to a large degree, thus rendering the
f1 → 4π decay unsuitable for extracting information on the f1 TFFs.

E Constants and parameters

In this appendix, we collect the particle masses and decay widths used throughout this
work, see table 10. Isospin-breaking effects can be safely neglected, in particular, the
pion mass is identified with the mass of the charged pion. Some comments are in order,
however, regarding the treatment of broad resonances, most notably the ρ(1450) and, to
a lesser extent, the ρ(770). Especially for the former, the quoted masses and widths are
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strongly reaction dependent, as referring to Breit–Wigner parameters, not to the model-
independent pole parameters. We thus need to make sure that we use determinations that
apply to the channels that we consider here. Since the main application concerns the
description of multi-pion decay channels in the VMD propagators, both for the ρ(770)
and the ρ(1450), it appears most natural to consider reactions that provide access to both
resonances, which points towards τ → ππντ from ref. [155] and e+e− → ππ from ref. [164].
In particular, this allows us to see if there are relevant systematic differences between the
charged and neutral channel. For the ρ(770), the mass parameter agrees well between all
channels, but while there is also good agreement between refs. [155, 164] for the width,
the compilation from ref. [86] quotes a significantly lower value for the neutral channel.
Accordingly, we will use its ρ(770) parameters from the charged channel in our analysis.
Regarding the ρ(1450), the mass from ref. [86] lies half-way between refs. [155, 164], with
a width that agrees well with both channels within uncertainties. We will therefore take
over the recommended parameters for the ρ(1450).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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