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1 Introduction

The one-dimensional time independent Schrödinger equation, describing a non-relativistic
particle with energy E in a potential V (q),

− ~2ψ′′(q) + (V (q)− E)ψ(q) = 0 (1.1)

has always been an inexhaustible source of useful toy models in physics. However, solving it
exactly is a tricky and subtle matter, depending on the form of the potential. Solving (1.1)
for generic potentials is still an active research subject, even though almost a hundred
years have passed since his first inception [1]. Applying perturbation theory on (1.1)
yields a profusion of different perturbative series — corresponding to different classical
configurations — which are divergent most of the time. Resumming and organizing these
divergent series into a non-perturbative and coherent picture of the quantum system of
interest was achieved mainly during the late 70s and 80s through Exact asymptotics: the
seemingly paradoxical idea that drastically divergent series can be used to perform fully
exact computations. Providing a comprehensive and impartial bibliography or a complete
review of this rich subject is far outside the scope of the present work. We will instead briefly
present some of the key developments we deem directly relevant for the understanding of
this paper. In order to fix the notations, we will also provide a lightening review of the
exact WKB method in section 2.1.

One of the pioneering work using WKB techniques in order to investigate divergences
in the anharmonic quartic oscillator is from Bender and Wu [2]. Yet, a better starting point
for the “exact” story is Balian-Bloch’s idea that we can reconstruct Quantum Mechanics
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from the complex classical trajectories [3]. Leveraging this idea with resumming techniques
(Borel resummation), one can develop an exact version of the WKB method. Using Écalle’s
Resurgence theory [4], the exact WKB method can be further refined and anchored to
rigorous grounds. This resurgent program was first applied on one-dimensional Quantum
Mechanics mainly by Voros [5–8], then was further refined by Delabaere, Dillinger and
Pham [9–11] and led to powerful exact results, like exact connection formulae and exact
quantization conditions (EQC). These EQC are relating the resummed WKB periods to
the energy of the quantum system, thus allowing to solve exactly the spectral problem that
is (1.1) provided that we know the exact periods. The road map is pretty straightforward
in principle: given a quantum system, compute the all order WKB periods, resum them,
then extract the spectrum from the EQC.

We were stuck with this three step program until more recent progress. Dorey and
Tateo realized in [12] that certain quantities in Quantum Mechanics were satisfying func-
tional equations arising in the seemingly unrelated topic of integrable models. Indeed,
these functional equations are strongly reminiscent of solutions of the non-linear integral
equations appearing in the context of the thermodynamic Bethe ansatz (TBA). One can
find a fairly modern review in e.g. [13]. This correspondence between ordinary differential
equation (in the form of the Schrödinger equation for this instance) and integrable models
is called the ODE/IM correspondence. By solving these TBA equations, one can (among
other quantities) obtain the resummed WKB periods, thus taking care of the step one
and two of our recipe above in one go. However, the method presented in [12] is quite
limited: one can only apply it on pure potentials of the form x2M (and is then generalized
to potentials of the form |x|α). See [14] for a more recent review, from Dorey, Dunning and
Tateo, extending the ODE/IM correspondence to some other interesting examples beyond
pure potentials (like V (x) = x2M + l(l+1)

x2 ).
In QM, when one want to reconstruct the exact WKB periods using only classical

periods, asymptotic behaviors and discontinuities of the functions obtained by Borel-
resummation of the quantum-periods, a Riemann-Hilbert problem arises. A generalization
of the ODE/IM correspondence presented above can be realized as the fact that the so-
lutions of the aforementioned Riemann-Hilbert problem are precisely given in term of a
TBA system. Actually, this description of the WKB periods in the language of monodromy
and resurgence theory is known since Voros’ work [7] and is named “analytical bootstrap”.
However, it did not led to alternative computational methods in QM before these ideas
were promoted to the method described in this paper, first developed by Ito, Mariño and
Shu in [15], reformulating [16] in a pure quantum mechanical and resurgent framework.

In order to understand what motivated [15], a good starting point is the seminal works
of Gaiotto, Moore and Neitzke [17, 18] in the context of four-dimensional N = 2 gauge the-
ories. They are deriving integral equations solving a Riemann-Hilbert problem in term of
the X map defined in [17], the discontinuities of which are given by Kontsevich-Soibelman
symplectomorphisms when crossing a BPS ray. See the Kontsevich-Soibelman wall-crossing
formula, originally proposed in [19]. These integral equations can in fact be restated as
a version of the TBA in [20], as pointed out by Zamolodchikov (see appendix E in [17]).
To connect these results with standard Quantum Mechanics, the final step is to realize,
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as Gaiotto in [16], that the conformal limit of the TBA equations for the Hitchin system
obtained in [17, 18] leads to TBA equations that are solving Schrödinger-type spectral
problems. Moreover, they have applications outside Dorey and Tateo’s ODE/IM corre-
spondence, limited to pure potentials. See [21] for recent numerical experiments testing
the predictions of [16].

Before finishing this introduction, we want to establish yet another fascinating con-
nection: the Hitchin problem studied in [17, 18] is related to the geometrical problem of
computing minimal surfaces in AdS, as explained by Alday and Maldacena in [22] and
as precised below. See also [23]. The study of minimal surfaces in AdS is motivated by
the study of the holographic dual QFT through gauge/gravity duality, since we can then
leverage integrability and compute interesting quantities (see [24]). To be more accurate,
computing the minimal surfaces in AdS delimited by a particular polygonal contour on
the boundary allow us to compute the scattering amplitude or Wilson loop expectation
value. Provided that these models are integrable, we can write a Hitchin system leading
to a system of TBA equations. A precise example would be the quantum sigma model
describing strings in AdS5 × S5, the classical limit of which consists of strings moving
in AdS5,1 and is integrable. This model is corresponding (through AdS/CFT ) to four-
dimensional N = 4 super Yang Mills, integrable in the planar limit. Another interesting
example, more closely related to the TBA system of interest in this paper, is the study of
minimal surfaces in AdS3 delimited by a polygonal closed contour on the boundary. This
problem simplifies and reduces to the Z2 projection of a SU(2) Hitchin problem arising
in [17, 18] in the context of four-dimensional N = 2 gauge theories, as described in the
previous paragraph. They are numerous interesting papers on the subject, including (but
not limited to) [22, 23, 25–27].

As we already explained, the conformal limit of the TBA equations in [17, 18] brings
us back to the TBA equations in [15]. Therefore, this property is transposed to the TBA
equations arising in the context of minimal surfaces in AdS3 (explicitly written in their
integral form in [23, 27] for example). Additionally, the TBA equations in [15] are obtained
using the generalized ODE/IM correspondence and work in principle for any polynomial
potential. Consequently, when restricting to pure potentials, one should be able to recover
the TBA equation of the standard ODE/IM correspondence found in [12, 14] as a special
case. The relations between all the aforementioned TBA equations are contained in the
diagram of figure 1.

In section 2, we review the general theory of [15]. The exact WKB method will be pre-
sented, and a rigorous link between the TBA system and the Schrödinger problem (1.1) will
be established in two different way. First, we will derive the TBA equations as solutions
of a Riemann-Hilbert problem. Then, we will be directly deriving functional equations
from (1.1), leading to the appropriate TBA system. This section is not containing any
original work per sei, but is containing the necessary information to make this paper self
contained as well as to fix the notations. In section 3, we explain how to analytically
continue the TBA equations obtained in section 2 outside the regime where all the turning

1We can forget about the worldsheet fermions and five sphere in this limit.
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ODE/IM ODE/IM generalization Minimal surfaces in AdS

TBA in [12] TBA in [15] AdS3 TBA in [23]

d = 4, N = 2 gauge theory

Special case Conformal limit

Figure 1. Implication diagram for the TBA systems mentioned in the introduction.

points are real i.e. outside the so called “minimal chamber”; this procedure is called “wall-
crossing”. We provide (inspired by Toledo’s work in [27]) a fast and simple diagrammatic
procedure that allows us to carry out wall-crossing from any chamber to any other. In
addition, we will also use this procedure in order to write the quantum mechanical TBA
system originating from the ODE/IM generalization for arbitrary degree polynomial po-
tentials in the maximal chamber. We then justify and clarify how it is implying the TBA
system originating from the standard ODE/IM correspondance as a special case. In sec-
tion 4, we present some of the results obtained solving the TBA equations numerically and
we compare them to known quantities computed using more standard Quantum Mechan-
ical techniques. In appendix A, we discuss the methods used in order to solve the TBA
integral equations numerically. In appendix B, we describe how to extract exact quantiza-
tion conditions from connection formulae. Finally, in the appendices C and D, we provide
the standard quantum mechanical techniques we used to verify our TBA results. In ap-
pendix C, we explain how one can compute the quantum corrections to the WKB periods
using differential operators. In appendix D, we describe how to extract the bounded or
resonant spectrum from a Hamiltonian with polynomial potential by expressing it in the
harmonic oscillator basis.

2 WKB periods and TBA equations

In this section, we will prove constructively — reviewing the ideas of [15] — that the
spectral problem (1.1) can be related to a TBA system. A summary of the exact WKB
method will be presented in section 2.1. For a comprehensive review of the WKB method,
see also [28]. We will then construct the TBA system in 2.2 and 2.3, by looking at Voros’
Riemann-Hilbert problem arising from the resurgent analysis of (1.1) for the former, and
writing functional equations arising by massaging (1.1) directly for the later.

2.1 The WKB method and resurgent quantum mechanics

The one-dimensional time independent Schrödinger equation (1.1) can be written as

~2ψ′′(q) + p2(q)ψ(q) = 0 (2.1)

where p(q) =
√
E − V (q) is the classical momentum. The ~ → 0 limit cannot be taken

directly in (2.1) since it clearly become algebraic in this limit. Nonetheless, we can write
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the following ansatz for the wavefunction

ψ(q) = exp
(
i

~

∫ q

Q(q̄)dq̄
)

(2.2)

By plugging (2.2) into (2.1), we transform it into the Riccati equation for Q(q):

Q2(q)− i~Q′(q) = p2(q) (2.3)

We can solve (2.3) by writing Q(q) as a (formal2) power series in ~,

Q(q) =
∑
k∈N

Qk(q)~k (2.4)

Solving for the Qk(q) recursively, one finds

Qn+1(q) = 1
2Q0(q)

(
iQ′n(q)−

n∑
k=1

Qk(q)Qn+1−k(q)~k
)
, with Q0(q) = p(q) (2.5)

By splitting the formal series (2.4) in odd and even powers of ~, such that Q(q) = P (q) +
Qodd(q), i.e.

P (q) =
∑
k∈N

pk(q)~2k, with p0(q) = p(q) and Qodd(q) =
∑
k∈N

Q2k+1(q)~2k+1 (2.6)

one realizes that (2.3) splits into two equations. The odd equation is allowing us to solve
Qodd(q) in terms of P (q) alone. In fact, one finds that Qodd(q) is a total derivative:

Qodd(q) = i~
2
d

dq
logP (q) (2.7)

and one can reexpress the problem without this redundancy. The WKB ansatz (2.2)
becomes then

ψ(q) = 1√
P (q)

exp
(
i

~

∫ q

P (q̄)dq̄
)

(2.8)

Geometrically, we can interpret P (q)dq as a meromorphic differential on the so called
“WKB curve”:

y2 = 2(E − V (q)) (2.9)

In this paper, we will treat the case where V (q) is a polynomial of degree d. In this
case, (2.9) is a hyperelliptic curve defining a Riemann surface ΣWKB of genus

⌊
d−1

2

⌋
. This

curve is characterized by a set of moduli (the energy E and the parameters of the polynomial
V (q)). The basic objects appearing in the WKB method are the quantum periods or WKB
periods. They consist of the periods of the meromorphic differential P (q)dq integrated
along the one-cycles γ ∈ H1(ΣWKB):

Πγ(~) =
∮
γ
P (q)dq (2.10)

2I.e. we will not adress the convergence issues: (2.4) is never meant to be a convergent series in ~!
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As P (q), the quantum periods can be expressed as (formal) power series in ~2:

Πγ(~) =
∑
n∈N

Π(n)
γ ~2n , where Π(n)

γ =
∮
γ
pn(q)dq (2.11)

For an efficient algorithm computing the coefficients Π(n)
γ , see appendix C. As stated in

the introduction, the formal series used as basic objects in Quantum Mechanics are almost
always divergent. This is the case with the WKB periods which are typically diverging like
double-factorials:

Π(n)
γ ∼ (2n)! (2.12)

Thus, we need to promote them into a meaningful function using resummation techniques.
In this paper, we will use the Borel resummation [29] procedure as defined below. First,
we define the Borel transform of the WKB periods as

Π̂γ(ξ) =
∑
n∈N

Π(n)
γ

(2n)! ξ
2n (2.13)

such that this new power series has finite radius of convergence.3 The Borel resummation
of a series is the Laplace transform of its Borel transform. In the context of the quantum
periods, one gets

B(Πγ)(~) = 1
~

∫
R+
e−ξ/~ Π̂γ(ξ) dξ (2.14)

These definitions are coming from the well known integral definition of the Gamma func-
tion.4 The integral (2.14) is called Borel summable if it converges for ~ sufficiently small.
Let us denote that (2.13) can be analytically continued in the complex ξ-plane. It can
display various type of singularities (poles and branch cuts typically). Now, let us assume
that a singularity is present on the positive real axis. Then, the Borel resummation (2.14)
will hit it and will be undefined for any ~: it will not be Borel summable anymore! This
happens everywhere in Quantum Mechanics. In order to circumvent this apparent prob-
lem and “dodge” the singularities, we will now introduce some of the key ingredients of
resurgence.

If diverging series occurring in the context of differential equations can appear unde-
fined hence useless, they are containing in fact a lot of useful information on the system
of interest. In the same spirit, if singularities in the Borel complex ξ-plane are obstacles
to Borel summability, their discontinuities are containing a crucial amount of information
nonetheless: it’s not a bug, it’s a feature! These discontinuities are the result of the Borel
transform of the all-order WKB periods after all. In fact, we will show in the following
that they are involving only the WKB periods and are relating them together. First, let’s
generalize (2.14) by allowing to integrate along any direction in the complex plane. The

3Usually, we define the borel transform of f(z) =
∑

f (n)zn as f̂(ξ) =
∑

n∈N
1
n!f

(n) ξn, which has finite
radius of convergence if and only if f is of Gevrey-1 type, i.e. f (n) < |Cnn!|. But we can recover our case by
a simple change of variable z 7→ ~2 (at the cost of introducing new monodromies in the complex z-plane).

4Indeed, Γ(n+ 1) = n! =
∫
R+ ξ̄

ne−ξ̄dξ̄ such that 1 = 1
n!

∫
R+ ξ̄

ne−ξ̄dξ̄.

– 6 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

directional Borel resummation along the direction ϕ is defined as the directional Laplace
transform of the Borel transform:

Bϕ(Πγ)(~) = 1
~

∫
eiϕR+

e−ξ/~ Π̂γ(ξ) dξ (2.15)

where
∫
eiϕR+ denotes an integration path between 0 and eiϕ∞ i.e. along the complex ray

forming an angle ϕ with the real axis. As before, (2.15) is Borel summable — along the
direction ϕ this time — if and only if the integral (2.15) converges. Now, let’s assume that
the Borel transformation Π̂γ has a singularity along the direction ϕ. Then, the value of
the directional Borel transform will jump when we cross ϕ: there will be a discontinuity. It
defines two possible directional Borel resummation: just above and just below the critical
angle ϕ, or

Bϕ±(Πγ)(~) = lim
δ→0
Bϕ±δ(Πγ)(~) (2.16)

which are called the lateral Borel resummations. From them, we can define the median
Borel resummation, which is the average of the lateral resummation above and below ϕ:

Bϕmed(Πγ)(~) = 1
2 (Bϕ+(Πγ)(~) + Bϕ−(Πγ)(~)) (2.17)

One can also measure the previously mentioned discontinuity by subtracting them:

discϕ(Πγ)(~) = Bϕ+(Πγ)(~)− Bϕ−(Πγ)(~) (2.18)

Let’s note that the Bϕ± and discϕ can be regarded as operators acting on formal power
series Π ∈WKB. From this point of view, one can define the Stokes automorphism by the
commutativity of the diagram5

WKB WKB

S

Sϕ

Bϕ+ Bϕ− (2.19)

where S denotes the space of “proper functions” leading to resurgent solutions of the
Schrödinger equation through (2.8). In other words,

Sϕ = Bϕ+ ◦ B−1
ϕ− = 1 + discϕ ◦ B−1

ϕ− = (1− discϕ ◦ Bϕ+)−1 (2.20)

In the following, we purposefully gloss out most of the technical details. The reader can
find rigorous statements and proofs in [11]. In essence, we can define connection paths
relating the WKB elements between different Stokes regions. The action of the connection
cycle γ is simply a multiplication by a Voros symbol. A special subset of Voros symbols
are Voros multipliers Vγ . At the end of the day, they simply end up being the exponent of
our WKB periods:

Vγ = exp
(1
~

Πγ

)
(2.21)

5In the literature, the inverse convention (the S arrow is swapped, corresponding to our S−1) is often
used. This is the case in [11] for example, but we are following the conventions in [15].
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These definitions lead to the Delabaere-Pham formula (theorem 2.5.1 in [11]), that is ex-
pressing a relation between Voros multipliers, thus between quantum periods. Let’s con-
sider the case where all the d turning points of the potential are on the real axis, and the
d−1 cycles are encircling classically allowed and classically forbidden regions in succession
(one can find such an example in figure 2a and 2c). We call this subspace of the moduli the
minimal chamber for reason we will develop later. In this regime, we will be interested in
the φ = 0 direction and will be omitting the index φ. The Delabaere-Pham formula then
yields

SVγa =
∏

{1,...,d−1}\{a}

(
1 + V−1

γb

)〈γb,γa〉 Vγa (2.22)

where 〈γb, γa〉 is the intersection of cycles.6 As an application of (2.22), let’s look at a = 1,
corresponding to the first cycle from the left (the first red cycle in figure 2c for example).
In this case, 〈γ2, γ1〉 = +1 is the only non trivial cycle intersection and (2.22) reduces to

SVγ1 =
(
1 + V−1

γ2

)
Vγ1 (2.23)

Applying the operator identity (2.23) on our WKB periods yields an alternative formulation
of the Delabaere-Pham formula:

disc (Πγ1) (~) = −i~ log
(

1 + exp
(
− i
~

Πγ2(~)
))

(2.24)

As a result, Πγ1 is not Borel summable along the direction φ = 0. This is an inevitable
consequence of (2.24), that is measuring the precise discontinuity when we cross the real
axis, hence revealing the presence of singularities along this ray. (2.24) also contains a very
resurgent statement: this discontinuity in the Borel resummation of the quantum period
Πγ1 is entirely encoded in another quantum period, Πγ2 . This is the same situation for
the general case (2.22), which is linking all the quantum periods together (as long as they
don’t have a null intersection of cycle), through their Voros symbol and the action of the
Stokes automorphism.

One of the goals of the resurgent analysis of Quantum Mechanics is the complete deter-
mination of the discontinuity structure of the quantum periods we just outlined. However,
in order to solve Schrödinger spectral problems exactly, one need to find a way to use
the all-order resumed quantum periods in a meaningful way. This needed key ingredients
typically takes the form of functional equations relating all the WKB periods together, i.e.

Q (Vγ1 , . . . ,Vγr) = 0 (2.25)

which are called exact quantization conditions. A standard way to derive them is to con-
sider that the wave function is decaying at ±∞ along a ray in the complex plane, applying
the Voros-Silverstone connection formula at each turning points, as is done in [28] for ex-
ample. We will provide a brief presentation of this method in appendix B. An alternative

6I.e. the algebraic number of times γa is crossing the Stokes line associated with the Voros symbol Vγb ,
with signature + (resp. −) when it is crossing it from right to left (resp. left to right). See [11] for the
detail.

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

E

(a) Energy bellow the wells.

E

(b) Energy above the wells.

(c) Minimal chamber (5 TBA equations). (d) Maximal chamber (15 TBA equations).

Figure 2. In (a)–(b), we plot the triple well potential (blue curve) along with the energy (green
line) and real turning points (black dots). In (a), the energy is below the wells and there are 6 real
turning points since the potential is a sextic polynomial. If we increase the energy above the wells,
we end up in the case (b) where the turning points are moved into the complex plane. In (c)–(d),
we plot Im p(x) for the different energy configurations and the associated relevant cycles along wich
we are integrating in order to get the periods. The branch cuts are drawn as black squiggly lines
and the turning points as black dots. In (c) we draw the cycles of the periods corresponding to the
classically allowed (resp. forbidden) region as dashed red (resp. blue) cycles. The cycles in (c) are
corresponding to the red cycles in (d) after analytical continuation. The cycles in (d) are squished
into lines between turning points for clarity.

and equivalent way to derive EQC is to relate Stokes regions, crossing Stokes lines around
turning points as is done in [6, 9–11] (Knoll-Schaeffer connection method). For a recent
paper exploring the connections between EQC arising in the exact WKB context and the
other nonperturbative approach to Quantum Mechanics, i.e. saddle point analysis in the
Euclidean path integral formulation, see [30]. Typically, there are multiple EQC corre-
sponding to different lateral Borel resummations. A very non-trivial check for this kind
of EQC is to see if we can go from one EQC to the others by the use of the Delabaere-
Pham formula (2.22). We will show a concrete example of this in the context of the cubic
oscillator in section 4.1.1.

The periods are depending on ~ but also on the moduli of the WKB curve, including
the energy. This means that the constraint (2.25) is selecting a codimension one — we will
assume discrete7 — submanifold in the moduli×~ space. If we fix every moduli parame-
ters excepted the energy, the EQC (2.25) is drawing an infinite discrete family of curves,

7In this paper, we will only consider bounded or resonant potentials, leading to discrete spectra.
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parametrized by (~, E) and labeled by the quantum number n. Normally, one wants to
compute the energy spectrum as a function of ~: En(~), slicing the (~, E) plane along
the vertical axis, leaving an infinite tower of energies. But one can notice that nothing is
preventing us from doing the contrary, reversing last relation, thus extracting the “Planck
spectrum” ~n(E). In fact, as we shall soon see, the unknown functions intervening in
the TBA equations — main actors of the present paper — are functions of the variable
θ = − log(~). It is then more natural to adopt the later convention and compute what we
will be calling the “Voros spectrum” θn(E), as in [15]. To connect a TBA result with a
standard quantum mechanical control result, we can simply check that

E(c)
n (exp(−θn(E))) = E(c)

n (~n(E)) = E (2.26)

where E is to be tough as a parameter of the WKB curve and E(c)(~) is the control
computation that take a ~ value as an input and output the standard energy spectra.
For our purpose, we will use the methods decribed in appendix D, basically diagonalizing
the Hamiltonian in the harmonic oscillator basis, in order to compute the spectra E

(c)
n

numerically and control our results. In section 4, we will typically present tables of the
levels E(c)

n , normalized to 1 in the sense that we divide them by the WKB curve parameter
E, using the Voros level m, i.e.

1
E
E(c)
n (~m(E)) (2.27)

such that we can check that its diagonal is indeed respecting

1
E
E(c)
n (~n(E)) = 1 (2.28)

within the numerical precision.

2.2 The TBA equations as a solution of a Riemann-Hilbert problem

The goal of this paper is to provide an exact non-perturbative solution to the Schrödinger
spectral problem (1.1) for arbitrary polynomial potential. As we already mentioned, if the
degree of V (q) is d, the WKB curve (2.9) for this problem is a hyperelliptic curve defining
a Riemann surface ΣWKB of genus

⌊
d−1

2

⌋
. At first, let us assume we are in a very special

region of the moduli space: the “minimal chamber”, in which all the turning points of V (q)
are real and distinct. An example of such a configuration can be found in the figure 2a,
with the relevant cycles shown in figure 2c. We shall extend the result found here later, in
the section 3, by analytical continuation. In the minimal chamber, we can always organize
our turning points qi, i ∈ {1, . . . , d} such that

q1 < . . . < qd (2.29)

The only relevant d − 1 periods in this regime are obtained integrating along the cycles
γa,a+1, a ∈ {1, . . . , d− 1}, where γi,j denotes a cycle encircling the tuning point qi and qj .
In the following, γi,j will often be omitted in expressions of the form Qγi,j , preferring Qi,j
for shortness of notation.
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In order to make the computation more tractable, we will use the “masses” conventions,
defined below, as long as we are in the minimal chamber (i.e. in the rest of this section),
following the conventions in [15]. The name masses is reminiscent of similar quantities in
two-dimensional integrable theories and is borrowed for this reason. The masses ma,a+1
are defined as following, depending on the parity of a:

m2k−1,2k =
∮
γ2k−1,2k

p(q)dq = Π(0)
2k−1,2k

m2k,2k+1 = i

∮
γ2k,2k+1

p(q)dq = i Π(0)
2k,2k+1

(2.30)

with the branch cut prescriptions and the cycle orientations chosen so that (2.30) are
all real and positive. Note that we are however switching for an equivalent “periods”
formulation (i.e. using the classical periods Π(0)

γ ), following the conventions in [27], once
we are analytically continuing the problem outside of the minimal chamber.

The starting point for deriving the TBA equation is the Delabaere-Pham formula (2.22).
The WKB periods in the classically allowed region (corresponding to the red cycles in
figure 2c) are not Borel summable, as stated by (2.22), and the discontinuity is expressed
only in terms of the other periods. In the minimal chamber, (2.22) simplifies considerably
and involves only the (at most 2, 1 for the extremities) “tangent periods” corresponding to
encircling the classically forbidden region (corresponding to the blue cycles in figure 2c).
In the language of Stokes automorphisms,

SV2k−1,2k =
(
1 + V−1

2k−2,2k−1

)〈2k−2,2k−1〉 (
1 + V−1

2k,2k−1

)〈2k,2k−1〉
V2k−1,2k (2.31)

which translates into

disc (Π2k−1,2k) (~) =− i~〈2k − 2, 2k − 1〉 log
(

1 + exp
(
− i
~

Π2k−2,2k−1(~)
))

− i~〈2k, 2k − 1〉 log
(

1 + exp
(
− i
~

Π2k,2k−1(~)
)) (2.32)

where the intersection 〈a, b〉 is either 0 or 1; 〈0, 1〉 = 0, 〈d, d + 1〉 = 0 and 〈a, a + 1〉 = 1.
Note that this formula is intended to work only on a ray of the complex plane, the real axis
in this case. Nonetheless, remember that we are considering a formal power series in ~2,
such that a similar formula also holds for the negative real axis. Finally, we can repeat this
analysis almost verbatim along the imaginary axis (positive and negative): let’s notice that
a rotation ~ → i~ is simply exchanging the classically allowed and classically forbidden
region, hence exchanging the odd and the even cycles in (2.31) and (2.32). Thus, we can
unify these Delabaere-Pham formulae in one unique formula along the direction φ = π/2
by defining the “pseudo-energies” or “ε-functions” as

lim
δ→0

ε2k−1,2k

(
θ + iπ

2 ± iδ
)

= i

~
B± (Π2k−1,2k) (~)

ε2k,2k+1 (θ) = i

~
B (Π2k,2k+1) (~)

(2.33)
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where θ = exp(−~). Notice that, because of (2.33), if we find the ε-functions, we also find
the Borel resumed all order WKB periods. The resulting unified Delabaere-Pham formula
is then

discπ/2 εa,a+1 = La−1,a(θ) + La+1,a+2(θ) (2.34)

with La,b(θ) = log (1 + exp (−εa,b(θ))) and, because of the intersection cycles, L0,1(θ) =
Ld,d+1(θ) = 0. A similar formula can be obtained along the −π/2 direction. The equa-
tion (2.34), together with the asymptotic property

εa,a+1(θ)−ma,a+1 exp(θ) = O(exp(−θ)) as θ →∞ (2.35)

produce a Riemann-Hilbert problem, the solution of which is given by

εa,a+1(θ) = ma,a+1 exp(θ)−K ? La−1,a(θ)−K ? La+1,a+2(θ) (2.36)

where the convolution ? with the kernel K is defined as

K ? f(θ) =
∫
R
K(θ, θ̄)f(θ̄)dθ̄ = 1

2π

∫
R

f(θ̄) dθ̄
cosh

(
θ − θ̄

) (2.37)

One can very easily notice that the TBA system (2.36) is indeed the “conformal limit” (i.e.
2 cosh(θ) 7→ exp(θ)) of the AdS3 TBA system (appearing in e.g. [23, 27]), as stated in the
introduction. Since the “wall-crossing” procedure follow the same pattern in both cases,
this fact will stay true outside the minimal chamber.

As an example, let’s write the TBA system for the sextic potential in the minimal
chamber, consisting of 5 TBA equations. An example of such moduli and energy config-
uration can be observed in figure 2a. According to (2.36), the TBA system solving the
associated Riemann-Hilbert problem is

ε1,2(θ) = m1,2 exp(θ)−K ? L2,3(θ)
ε2,3(θ) = m2,3 exp(θ)−K ? L1,2(θ)−K ? L3,4(θ)
ε3,4(θ) = m3,4 exp(θ)−K ? L2,3(θ)−K ? L4,5(θ)
ε4,5(θ) = m4,5 exp(θ)−K ? L3,4(θ)−K ? L5,6(θ)
ε5,6(θ) = m5,6 exp(θ)−K ? L4,5(θ)

(2.38)

This TBA system is corresponding to the configuration of cycles in figure 2c in the sense
that each relevant cycle can be associated in a one to one relation to an ε-function since they
are encoding the Borel resummed WKB periods, periods that are obtained by integration
along the said cycles.

2.3 The TBA equations as a generalization of the ODE/IM correspondence

In this section, we repeat the arguments presented in [15] with a few changes of notation.
We want to study the Schrödinger equation (1.1) provided that the potential is a degree
d polynomial. Getting rid of the qd−1 term by a shift and scaling ud 7→ 1, it is always
possible to rewrite (1.1) in the canonical form(

−~2∂2
q + qd +

d−2∑
k=0

ukq
k

)
ψ(q, u, ~) = 0 (2.39)
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where u is the vector of uk, k ∈ {1, . . . , d−1}. (2.39) is analogous to the ~ = 1 Schrödinger
equation (

−∂2
z + zd +

d−2∑
k=0

bkz
k

)
ψ̃(z, b) = 0 (2.40)

obtained by the scaling
q 7→ ~

2
d+2 z , uk 7→ ~

2(d−k)
d+2 bk (2.41)

First, let’s study the equation (2.40). It is connecting with the usual ODE/IM correspon-
dence in the particular case where b0 6= 0 but bk = 0 for k 6= 0 (i.e. the potential is a pure
polynomial). The WKB expansion of (2.40) yields for the exponentially decaying solution
at positive infinity

ỹ(z, b) ∼ 1√
2i
znd(b) exp

(
− 2
d+ 2z

d+2
2

)
(2.42)

where

nd(b) =

−
d
4 d odd
−d

4 −B d+2
2

(b) d even
(2.43)

and the coefficients Bn(b) defined such that√√√√1 +
d−2∑
a=0

baza−d = 1 +
∑
n>0

Bn(b)z−n (2.44)

(2.40) is invariant under the Symanzik rotations

z 7→ ωz , ba 7→ ωd−aba , ω = e
2πi
d+2 (2.45)

which acts on the coefficients Bn(b) as

B d+2
2

(ω−k(d−a)ba) = (−1)kB d+2
2

(ba) (2.46)

With the use of Symanzik rotation, we can extend the solution (2.42), valid in S0, to the
d+ 2 sectors Sk defined as

Sk =
{
z ∈ C |

∣∣∣∣arg(z)− 2πk
d+ 2

∣∣∣∣ < π

d+ 2

}
(2.47)

Explicitly, the extended solutions ỹk are

ỹk(z, b) = ω
k
2 ỹ(ω−kz, ω−k(d−a)ba) (2.48)

A general property of Wronskians is that the Wronskian of two solutions is independent
of z:

W̃k1,k2(b) = W (ỹk1(z, b), ỹk2(z, b)) (2.49)

where we remind that the Wronskian of two differentiable functions is defined as
W (f(z), g(z)) = f(z)g′(z) − f ′(z)g(z). Furthermore, it is not too hard to evaluate (2.49)
when k2 = k1 + 1 = k + 1:

W̃k,k+1(b) =

1 d odd
ω(−1)kB d+2

2
(b) d even

(2.50)
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Now, let us introduce f [n](z, b) as a short hand notation for the function with rotated
arguments

f [n](z, b) = f
(
ω−

n
2 z, ω−

n
2 (d−a)

)
(2.51)

such that one can prove
W̃k1+1,k2+1(b) = W̃

[2]
k1,k2

(b) (2.52)

and deduce the following Plücker type relation.

W̃
[2]
k1,k2

W̃k1,k2 = W̃k1+1,k2+1W̃k1,k2 = −W̃k1+1,k2W̃k2+1,k1 − W̃k1+1,k1W̃k2,k2+1 (2.53)

We will now introduce the Y -functions associated with (2.40) as

Ỹ2n(b) =
(
W̃−n,nW̃−n−1,n+1

W̃n,n+1W̃−n−1,−n

)
(b)

Ỹ2n+1(b) =
(
W̃−n−1,nW̃−n−2,n+1

W̃n,n+1W̃−n−2,−n−1

)[1]

(b)

(2.54)

with n ∈ N. Using (2.53) repeatedly, one can find the functional equations

Ỹ [+1]
a (b)Ỹ [−1]

a (b) =
(
1 + Ỹa+1(b)

) (
1 + Ỹa−1(b)

)
(2.55)

By the definition (2.54), Ỹa = 0. Because ỹn+d+2(z) ∝ ỹn(e−2πiz) = ỹn(z), we also have
Ỹd = 0. As a result, we have d − 1 Y -functions leading to a Y -system of the Ad−1-type,
reproducing in the pure potential case the Y -system of the usual ODE/IM correspondence,
as stated above.

However, because of the rotated arguments (introduced through the f [n] notation), the
moduli in the r.h.s. of (2.55) are not the same than in the l.h.s. and the Y -system is not
closed. In order to circumvent this problem, let’s go back to the equation (2.39), including
the extra parameter ~. First, we can relate the solutions ỹ(z, b) and y(q, u, ~) using the
scaling (2.41):

y(q, u, ~) = ỹ(z, b) = ỹ

(
~−

2
d+2 q, ~

2(a−d)
d+2 u

)
(2.56)

Noticing that the Symanzik rotation (2.45) are just a rotation of ~, i.e. that

ω−kz = (eiπk~)−
2
d+2 , ω(a−d)kba = (eiπk~)

2(a−d)
d+2 (2.57)

one can extend the solution y(q, u, ~) to other sectors of the complex plane using

yk(q, u, ~) = y(q, u, eiπk~) (2.58)

The associated Wronskian, Wk1+1,k2+1(u, ~) = W̃k1+1,k2+1(b), is then

Wk1+1,k2+1(u, ~) = ~−
2
d+2 W (yk1(q, u, ~), yk2(q, u, ~)) (2.59)
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and we can define the Y -functions as

Y2n(u, ~) =
(
W−n,nW−n−1,n+1
Wn,n+1W−n−1,−n

)
(u, ~)

Y2n+1(u, e−iπ/2~) =
(
W−n−1,nW−n−2,n+1
Wn,n+1W−n−2,−n−1

)
(u, ~)

(2.60)

such that they satisfy the functional equations

Ya(u, eiπ/2~)Ya(u, e−iπ/2~) = (1 + Ya+1(u, ~)) (1 + Ya−1(u, ~)) (2.61)

with Y0(u, ~) = Yd(u, ~) = 0 as in the Y -system (2.55). This time, unlike (2.55), the
Y -system (2.61) is involving the same uk parameters on both sides.

The ultimate goal of this section is to derive the TBA equations (2.36). Now that
we found the Y -system (2.61), we need to convert it into a TBA system. To achieve this,
we still need to make the ε-functions and masses (2.30) appear. Let us look at the low ~
behaviour of the Y -functions. In a sense we shall make very precise soon, the small ~ regime
in this section corresponds to the large θ regime in the previous section. We should then
have an equivalent formulation of the asymptotic property (2.35) containing the masses
and ε-functions. In order to evaluate the asymptotic behaviour of the Y -functions, we need
the Wronskian which means we need the asymptotic solutions. Proceeding to the WKB
expansion of yk at small ~, one gets

yk(q, u, ~) ∼ (−1)
1
2k

√
2i

~
d

2(d+2) exp
(
∓(−1)k i

~

∫ q

sk

P (q̄)dq̄
)

(2.62)

where ∓ denotes in which Riemann sheet q lives and sk ∈ Sk. Using this form of yk(q, u, ~),
one can evaluate the Wronskian Wk1+1,k2+1(u, ~) then the Y -functions using (2.60). Their
asymptotic behavior for ~→ 0, valid for |arg(~)| < π, is

log Y2k(u, ~) ∼ − i
~

∮
γd−2k,d−2k+1

p(q)dq = −1
~
md−2k,d−2k+1

log Y2k+1(u, ~) ∼ −1
~

∮
γd−1−2k,d−2k

p(q)dq = −1
~
md−1−2k,d−2k

(2.63)

In (2.63), the cycles thus the masses have confusing indices due to the definition (2.60).
To make the equations nicer, let us relabel the Y -functions as Yk 7→ Yd−k. This relabeling
leaves (2.61) invariant. Now, let us define the analytic functions `a,a+1(~) in |arg(~)| ≤
π/2 as

`a,a+1(~) = log Ya(~) + ma,a+1
~

(2.64)

where we omitted the dependencies on the moduli uk. The Y -system translates to

`a,a+1(eiπ/2~) + `a,a+1(e−iπ/2~) = log (1 + Ya−1(~)) + log (1 + Ya+1(~))
= La−1,a(~) + La+1,a+2(~)

(2.65)
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We can conclude by setting

~ = e−θ , Ya = e−εa,a+1(θ) (2.66)

which is coherent with La,b(θ) = log (1 + exp (−εa,b(θ))) as it has been already defined pre-
viously. Convoluting (2.65) with the kernel K(θ) defined in (2.37) and using the analyticity
of ` yields the TBA system (2.36) and complete our derivation.

3 Wall crossing

3.1 Preamble on notations

In order to make the equations in the present section more readable, we will group the couple
of indices into one “edge” index: quantities of the form Qi,j will sometime be written as
Q(a), where (a) is to be understood as the ordered couple (i, j) with j > i, corresponding
to a cycle encircling the turning points qi and qj . The orderedness of (a) is due to the fact
that the quantities Qi,j are typically antisymmetric since they are involving integration over
cycles, i.e. Qi,j = −Qj,i. Later, when developing the theory of TBA graphs, the indices (a)
will be representing oriented edges. The natural way to represent such edges, because of
their antisymmetric nature, is the structure we just mentioned. In other words, we have a
one to one map between quantities Q(i,j) and Q(j,i), hence then can be used interchangeably
and we make the choice to use the canonical form where j > i.

In previous sections (where we were in the context of the minimal chamber), we used
notation of the form Qi,i+1, notation that seems more cumbersome than it should be since
one could use a unique index i instead. But later, when we lose the ordering property of the
turning points (2.29) (because some of them are sent into the complex plane), we will find
out that new relevant cycles are appearing into TBA systems and having two indices will
be helpful in order to link together arbitrary turning points instead of limiting ourselves to
consecutive ones. Additionally, we introduce this edge index notation Q(a) because it will
be useful for writing more general TBA system in a concise way, especially when summing
(so we can sum over the appropriate set of edges). For example, the TBA system (2.36)
can be written as

ε(a)(θ) = m(a) exp(θ)−
∑

(b)∈s(a)
d

K ? L(b)(θ) (3.1)

where (a) = (i, i + 1) and i ∈ {1, . . . , d − 1} are labeling the d − 1 relevant cycles in the
minimal chamber and where s(a)

d = {(i− 1, i), (i+ 1, i+ 2)} = {(a− 1), (a+ 1)} is the set
of the edges “tangent” to the edge (a) and where we defined addition on the element (a),
(a+ n), as a short hand for (i+ n, j + n). This notation will be especially useful when the
kernel depends on two distinct cycles (thus will have two edges indices). As we shall soon
see, we can write these kind of TBA in the following compact form:

ε(a)(θ) =
∣∣∣Π(a)

∣∣∣ exp(θ) +
∑

(b)∈Sd

K(a),(b) ? L(b)(θ) (3.2)

where K(a),(b) is a carefully selected kernel, (a) = (i, i + k), i ∈ {1, . . . , d − k}, k ∈
{1, . . . , d− 1} and Sd the set containing the d(d − 1)/2 possible nonequivalent oriented

– 16 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

edges. When there is no kernels or sums and that the two indices are explicitly specified,
we will prefer Qi,j to Q(i,j) for shortness of notation.

Of course, one could use four indices, writting Kijkl instead of K(a),(b) = K(i,j),(k,l), but
when we leave the edges unspecified (as mute variable in sums for example) the edge index
notation is a little bit more compact, natural and reminiscent of a traditional vector-matrix
multiplication. Alternatively, as in [15], one could use only one index and write quantities
Q(a) as Qa, with a ∈ {1, . . . , d(d − 1)/2}, which is even more compact, but at the cost of
transparency (it is harder to see which turning points are involved once we are grouping
the edges (a) consisting of pairs into only one larger list). In our opinion, the ordered pair
(a) = (i, j) with j > i is the most natural way to describe more complicated TBA equations
and related quantities, especially in the so-called maximal chamber regime, for which the
TBA system is the most intricate.

3.2 Analytical continuation of two TBA equations in the mass representation

The equations (3.1) hold as long as we are in this special region of the moduli space where
all the masses are real — or equivalently where all the turning points of V (q) are on the
real axis — i.e. in the minimal chamber. We can analytically continue the TBA system
outside this region of the moduli space. Doing so, the d−1 masses are acquiring a complex
part, and we can decompose them into their usual polar form:

m(a) =
∣∣∣m(a)

∣∣∣eφ(a) , (a) = (i, i+ 1) and i ∈ {1, . . . , d− 1} (3.3)

We also introduce the shifted function

f̃(a)(θ) = f(a)(θ − iφ(a)) (3.4)

such that ε̃(a)(θ) ∼
∣∣∣m(a)

∣∣∣ in the large θ limit. Rewriting (3.1) with the shifted functions
yields

ε̃(a)(θ) =
∣∣∣m(a)

∣∣∣ exp(θ)−
∑

(b)∈s(a)
r

K(a),(b) ? L̃(b)(θ) (3.5)

where we are convoluting with the kernel

K(a),(b)(θ) = K(θ + i(φ(b) − φ(a))) = 1
2π

1
cosh

(
θ + i(φ(b) − φ(a))

) (3.6)

As long as
∣∣∣φ(a) − φ(a±1)

∣∣∣ < π/2, the modified TBA system (3.5) holds and the analyt-
ical continuation is trivial. However, notice that we are hitting a pole once we cross∣∣∣φ(a) − φ(a±1)

∣∣∣ =
∣∣∣φ(a),(a±1)

∣∣∣ = π/2 and we have to modify the TBA system in order to
incorporate this non-trivial contribution.

Let us proceed to the analytical continuation of two consecutive TBA equations as an
exercise. Let’s say the ε̃(a) and ε̃(a+1) equations, with (a) = (1, 2). As φ(a),(a+1) crosses π/2
(hence φ(a+1),(a) crosses −π/2), we pick the pole contribution from the kernel and modify
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the ε̃(a) and ε̃(a+1) accordingly:

ε̃1,2(θ) = |m1,2| exp(θ)−K(1,2),(2,3) ? L̃2,3(θ)− L̃−2,3
(
θ + iφ(2,3),(1,2) + iδ

)
(3.7)

ε̃2,3(θ) = |m2,3| exp(θ)−
∑

(b)∈{(1,2),(3,4)}
K(2,3),(b) ? L̃(b)(θ)− L̃+

1,2

(
θ + iφ(1,2),(2,3) − iδ

)
(3.8)

where the subscript ± indicates a shift of ±iπ/2 in the argument, i.e.

f±(θ) = f

(
θ ± iπ

2

)
(3.9)

The resulting system of d−1 TBA equations is not closed anymore. On could close the TBA
system by adding the two additional equations corresponding to ε̃+1,2

(
θ + iφ(1,2),(2,3) − iδ

)
and ε̃−2,3

(
θ + iφ(2,3),(1,2) + iδ

)
, thus obtaining a TBA system with d + 1 equations. But

there is a clever way to close this system using d equations instead, as it was done in [17].
By redefining a new set of Y -functions (related to the ε-functions through Y(a) = e−ε(a) ,
see (2.66)) one can absorb the new source terms in the l.h.s. This set of new Y -functions is

Y n
1,2 = Y1,2

1 + Y −2,3
, Y n

2,3 = Y2,3

1 + Y +
1,2
, Y n

1,3 =
Y1,2Y

−
2,3

1 + Y1,2 + Y −2,3
(3.10)

Rewriting (3.5) with the new functions, then omitting the superscript n, one find that the
two concerned TBA and their neighbor (there is only one in this case: (3, 4)) are modified:

ε̃1,2(θ) = |m1,2| exp(θ)−K(1,2),(2,3) ? L̃2,3(θ)−K+
(1,2),(1,3) ? L̃1,3(θ)

ε̃2,3(θ) = |m2,3| exp(θ)−
∑

(b)∈{(1,2),(3,4),(1,3)}
K(2,3),(b) ? L̃(b)(θ)

ε̃3,4(θ) = |m3,4| exp(θ)−
∑

(b)∈{(2,3),(4,5)}
K(3,4),(b) ? L̃(b)(θ)−K+

(3,4),(1,3) ? L̃1,3(θ)

(3.11)

The rest of the system stays the same. In order to get the additional TBA equation,
one need to consider the sum (3.7)+(3.8), evaluated at θ 7→ θ + iφ(1,3),(1,2) and θ 7→
θ + iφ(1,3),(2,3) − iπ/2 respectively, yielding

ε̃1,3(θ) = |m1,3| exp(θ)−
∑

(b)∈{(1,2),(3,4)}
K−(1,3),(b) ? L̃(b)(θ)−K(1,3),(2,3) ? L̃2,3(θ) (3.12)

where |m1,3|eφ1,3 = m1,3 = m1,2 − im2,3. This last definition for the mass is better under-
stood in the period representation where Π1,3 = Π1,2 + Π2,3.

As an application, let’s write the TBA system for the cubic potential (d = 3) in the
maximal chamber:

ε̃1,2(θ) = |m1,2| exp(θ)−K(1,2),(2,3) ? L̃2,3(θ)−K+
(1,2),(1,3) ? L̃1,3(θ)

ε̃2,3(θ) = |m2,3| exp(θ)−K(2,1),(1,2) ? L̃1,2(θ)−K(2,1),(1,3) ? L̃1,3(θ)
ε̃1,3(θ) = |m1,3| exp(θ)−K−(1,3),(1,2) ? L̃1,2(θ)−K(1,3),(2,3) ? L̃2,3(θ)
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The mass representation has the advantage that it is convenient to use in the minimal
chamber, and it is easy to define the branch cuts and orientations prescription: all the
masses are real and positive by definition in the minimal chamber. Furthermore, the kernel
takes a particular simple form in this regime. But it also have some drawbacks: the masses
are pairing in an unnatural way. Worse, we have these shifted kernels K± after wall-
crossing, which require additional data in the form of the matrix 〈(a), (b)〉±. Notice that
one can encode all the TBA system in any chamber writing the TBA equations in the
compact form

ε(a)(θ) =
∣∣∣m(a)

∣∣∣ exp(θ)−
∑

(b)∈Sd

K(a),(b) ? L̃(b)(θ) (3.13)

by defining the kernel to be

K(a),(b)(θ) = 1
2π

〈(a), (b)〉I
cosh

(
θ + iφ(b),(a) + 〈(a), (b)〉±

) (3.14)

All the data of the TBA system is contained in two matrices. On one hand the matrix
〈(a), (b)〉I , encoding the intersection of cycles; it is symmetric and can take the values 0, 1
or 2. On the other hand, 〈(a), (b)〉±, encoding the shifts on the argument of the kernel K±;
it is antisymmetric and can take the values ±iπ/2 or 0. By using the period representation,
one can encode any TBA system using a unique antisymmetric matrix 〈(a), (b)〉 with values
±2, ±1 or 0. For this reason, we shall now depart from our present conventions (the one
in [15, 23]) in order to adopt the period formulation (used in [27]).

3.3 Analytical continuation of two TBA equations in the period represen-
tation

Instead of the masses (2.30), we are now going to use the classical periods

Π(a) =
∮

(a)
p(q)dq (3.15)

where we omitted the superscript (0) and where
∮

(a) denotes an integration along the cycle
encircling the two turning points contained in the edge index (a). We slightly change our
conventions for the contours orientations and branches prescriptions: we chose them such
that the periods corresponding to cycles encircling the allowed (resp. forbidden) region is
real (resp. imaginary) and positive. Equivalently, it simply comes down to multiply the
even masses of the form m2k,2k+1 by i in our previous representation. We want to write
our complex periods in the polar coordinates:

Π(a) =
∣∣∣Π(a)

∣∣∣eiϕ(a) (3.16)

In the minimal chamber, the argument ϕ(a) is either 0 or π/2 with the prescription adopted
above, such that ϕ(a) = φ(a) or ϕ(a) = φ(a) + π/2 depending if (a) is selecting a classically
allowed or forbidden region. In order to take into account the fact that the periods are
already complex in the minimal chamber, we have to define an index-dependent kernel from
the start:

K(a),(b)(θ) = 1
2πi

〈(a), (b)〉
sinh

(
θ + iϕ(a),(b)

) (3.17)

– 19 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

which is obviously equivalent to the kernel (2.37) in the minimal chamber8 with the appro-
priate choice of sign for the intersection (antisymmetric) matrix 〈(a), (b)〉; for now it can
only take the value ±1 (the cycles are intersecting) or 0 (no intersection of cycles). If we
rewrite the TBA equations for a system in the minimal chamber in the following way

ε̃(a)(θ) =
∣∣∣Π(a)

∣∣∣ exp(θ) +
∑

(b)∈sd

K(a),(b) ? L̃(b)(θ) (3.18)

where sd = {(i, i + 1)} with i ∈ {1, . . . , d − 1} (i.e. the set of all the relevant couplings in
the minimal chamber), then the system (3.18) is equivalent to the system in (3.5) if the
intersection matrix is a tridiagonal antisymmetric matrix 〈(a+ k), (a+ k + 1)〉 = (−1)k =
−〈(a+k+1), (a+k)〉; 〈(a), (b)〉 = 0 otherwise. A graphical representation of such matrices
can be fond for d ∈ {3, . . . , 8} in figure 7: the (d − 1) × (d − 1) matrix in the uper left
corner (delimited by the black lines) is (−1)d−1〈(a), (b)〉. The sign of the intersection matrix
〈(a), (b)〉 is correlated to the sign of ϕ(a),(b).

We just reformulated our minimal chamber TBA system using the classical periods
instead of the masses. Let us now proceed to its analytical continuation. This time,
because of the modified kernel (3.17), we hit a pole when ϕ(a),(a+1) crosses 0, i.e. when the
phases of the periods align (this fact will be important for the diagrammatic procedure in
section 3.5). As for the masses case, we will focus on the (a) = (1, 2) case that is coupling
ε̃1,2 and ε̃2,3 together. Appart from the small convention modifications, we can reproduce
the story of the previous section verbatim. Deforming the contour and picking the pole
leads to additional source terms.

ε̃1,2(θ) = |Π1,2| exp(θ) +K(1,2),(2,3) ? L̃2,3(θ) + L̃2,3
(
θ + iϕ(1,2),(2,3) + iδ

)
(3.19)

ε̃2,3(θ) = |Π2,3| exp(θ) +
∑

(b)∈{(1,2),(3,4)}
K(2,3),(b) ? L̃(b)(θ) + L̃1,2

(
θ + iϕ(2,3),(1,2) − iδ

)
(3.20)

As before, they can be absorbed by defining new Y -functions (hence new ε-functions
through Y(a) = e−ε(a)):

Ỹ n
1,2 = Ỹ1,2

1 + Ỹ +
2,3
, Ỹ n

2,3 = Ỹ2,3

1 + Ỹ −1,2
, Ỹ n

1,3 =
Ỹ1,2Ỹ

−
2,3

1 + Ỹ1,2 + Ỹ +
2,3

(3.21)

except that the ± superscrip in (3.21) is no longer describing a shift by ±iπ/2 as in (3.10)
but a shift by ±iϕ(1,2),(2,3) = ∓iϕ(2,3),(1,2). Besides, one can notice that in the additional
source terms in (3.19) and (3.20) as well as in the new Y -functions definition (3.21), one
does not need this ±iπ/2 shift anymore. Plugging (3.21) into (3.19) and omitting the
superscript n, one gets the reformulated version of (3.11)

ε̃1,2(θ) = |Π1,2| exp(θ) +
∑

(b)∈{(2,3),(1,3)}
K(1,2),(b) ? L̃(b)(θ)

ε̃2,3(θ) = |Π2,3| exp(θ) +
∑

(b)∈{(1,2),(3,4),(1,3)}
K(2,3),(b) ? L̃(b)(θ)

ε̃3,4(θ) = |Π3,4| exp(θ) +
∑

(b)∈{(2,3),(4,5),(1,3)}
K(3,4),(b) ? L̃(b)(θ)

(3.22)

8Since sinh(x− iπ/2) = −i cosh(x).
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and the new TBA equation involving ε̃1,3 and the additional period Π1,3 = Π1,2 + Π2,3 is
obtained by adding ε̃1,2 and ε̃2,3, with the appropriate shifts. One finds

ε̃1,3(θ) = |Π1,3| exp(θ) +
∑

(b)∈{(1,2),(2,3),(3,4)}
K(1,3),(b) ? L̃(b)(θ) (3.23)

In fact, the lack of ±iπ/2 shifts allow us to rewrite the general analytic continuation
of the couple (ε̃(i,i+1), ε̃(i+1,i+2)) leading to the additionnal TBA equation ε̃(i,i+2) = ε̃(c) in
a nice and compact manner:

ε̃(a)(θ) =
∣∣∣Π(a)

∣∣∣ exp(θ) +
∑

(b)∈s(a)
d
∪(c)

K(a),(b) ? L̃(b)(θ)

ε̃(c)(θ) = |Πi,i+2| exp(θ) +
∑

(b)∈A
K(a),(b) ? L̃(b)(θ)

(3.24)

where the (a) ∈ A and A is the set including the four couples (i + k, i + k + 1) with
k ∈ {−1, 0, 1, 2}. The rest of the TBA system is unchanged. As a final simplifying remark,
let’s notice that we only selected the explicitly non-zero kernels in the system above. If we
allow for null kernels (through the intersection matrix 〈(a), (b)〉), one can simply defines the
set of the r relevant coupling in the minimal chamber: sd = {(j, j+1)} with j ∈ {1, . . . , d},
and extend it with the new pair (c) = (i, i+ 2). The system (3.24) reduces to

ε̃(a)(θ) =
∣∣∣Π(a)

∣∣∣ exp(θ) +
∑

(b)∈sd∪(c)
K(a),(b) ? L̃(b)(θ) (3.25)

where (a) ∈ sd ∪ (c) such that it is unifying the d TBA equations into the same expres-
sion. All the terms that are not appearing explicitly in (3.24) are put to 0 through the
intersection matrix 〈(a), (b)〉 included into the definition of the kernel (3.17). In the next
section (section 3.4), we will prove that we have at most d(d − 1)/2 TBA equation for
the maximally involved TBA system describing the resumed WKB periods of a degree d
polynomial. In other words, it means that one can encode any TBA system in the (at
most) d(d− 1)/2× d(d− 1)/2 dimensional intersection matrix. We will explain how to find
this matrix graphically in the section 3.5, then we will proceed to write it for an arbitrary
degree d polynomial.

3.4 Number of TBA equation and the associated region in the moduli space

In the minimal chamber, for a polynomial with d roots, they are only d − 1 relevant
pairings of these turning points, corresponding to the d − 1 couples of successive turning
points i.e. of the form (i, i + 1). This is the a priori minimal number of TBA equation9

one need to solve in order to resum the quantum periods, hence the “minimal” in minimal
chamber. One can see the wall-crossing procedure presented above as a way to form (TBA
equations that are involving) the desired additional pair of turning points, hence period. By
repeating the process, one can continue to produces the desired periods until one obtains

9I.e. before simplifications due to symmetries; see section 3.6 for examples of TBA system reduced
because of symmetries.
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the appropriate TBA system. For a number of TBA equation > d − 1, we will designate
the corresponding region in the moduli space as the intermediate chamber. However, this
process can’t continue forever. Indeed, after the d−1 pairs of the form (i, i+1), one can add
the pairs of the form (i, i+ 2), (i, i+ 3) etc. until one reaches the last possible pair: (1, d).
Thus, all the possible non-equivalent pairs can be labeled by (i, i+k) with i ∈ {1, . . . , d−k},
k ∈ {1, . . . , d − 1}. We call this set Sd, and it has exactly

∑d−1
n=1 n = d(d − 1)/2 elements.

We will call a TBA system with exactly this number of TBA equation in the maximal
chamber.

We explain in section 3.3 that we can encode any TBA system using a (at most)
d(d− 1)/2×d(d− 1)/2 dimensional matrix. Indeed, it is always possible to write any TBA
system in the form

ε̃(a)(θ) =
∣∣∣Π(a)

∣∣∣ exp(θ) +
∑

(b)∈Sd

K(a),(b) ? L̃(b)(θ) (3.26)

and (a) ∈ Sd. Of course, if the system is not in the maximal chamber, we can select the
appropriate subset of Sd and the system (3.26) reduces to a simpler one.

3.5 Wall crossing as a diagrammatic procedure

In the previous sections (3.3 and 3.2), we derived in great detail the standard procedure to
follow in order to analytically continue the TBA equations outside the minimal chamber.
However, this process can be quite cumbersome to carry on multiple times using only
algebra, especially when the degree of the polynomial of interest is large (the number of
times we have to wall-cross is increasing with the square of d for the maximal chamber).
For example, if one was supposed to analytically continue the TBA system for the sextic
potential from the minimal chamber to the maximal chamber, one would need to repeat
the wall-crossing process ten times! In order to make this process simple, tractable and
less prone to errors, it is a good idea to abstract it into a diagrammatic procedure. The
purpose of this section is to provide simple rules that accomplish just that, inspired by
Jonathan Toledo’s thesis [27]. The diagrammatic rules could in principle accommodate the
mass formulation of the TBA equations. Yet, we found the diagrammatic process easier to
carry on using the period formulation. We shall then use it in the following.

First, let us define how to associate a TBA system with a diagram. The starting point
is Toledo’s idea consisting of drawing the successive periods in the minimal chamber con-
figuration as two dimensional vectors (Re Π(a), Im Π(a)), starting with Π1,2 placed at some
origin point, then arranging the next vectors of periods tail to tip, i.e. the endpoint of a
given period vector is the starting point of the next. In the minimal chamber, this con-
struction produces some kind of “stair” diagram, because we alternate between classically
allowed and forbidden regions, such that if ϕ(a) = 0, then ϕ(a+1) = π/2 etc. Therefore, the
angle difference ϕ(a),(a+1) = ±π/2 ∀a in the minimal chamber. The diagram should look
like the figure 3 at this point.

We can abstract this construction a little bit further. Indeed, the length
∣∣∣Π(a)

∣∣∣, if
intervening into the associated TBA equation through the

∣∣∣Π(a)

∣∣∣ exp(θ) term, will not be
relevant to derive the TBA system (the length of the periods vector is always confined
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φ(2,3),(3,4)

φ(1,2),(2,3)

φ(3,4),(4,5)

φ(4,5),(5,...)

{∏1,2
1

2

3
4

5

dd – 1

d – 2

d – 3

d – 4

Figure 3. TBA graph corresponding to a polynomial of degree d in the minimal chamber.

in the “length” term, the structure of which stays unchanged whatever the TBA system
is). All we need to find using this diagrammatic procedure is the intersection matrix
〈(a), (b)〉. Furthermore, the global orientation is inconsequential, and one can even “locally”
transform the angles ϕ(a),(a+1), but at a crucial condition. As we have already stated, as
we are deforming the integral contour, the kernel (3.17) hits a pole when ϕ(a),(b) = 0, and
we want to keep that property of paramount importance. Therefore, we are allowed to
transform these angles as long as the transformed difference of angles f(a),(b)(ϕ(a),(b)) is 0
exactly when the untouched difference of angles is 0 and nowhere else.10 We can throw all
these transformed diagrams into the same class of equivalence, which defines a new, more
abstract, diagrammatic object. The later is a lot more flexible but just as useful at the
task of deriving the morphed TBA equations. If this diagrammatic object has a little bit
more structure than a graph (because of the angle property), we will call it the TBA graph
nonetheless, by abuse of notation and with the purpose of using some graph lingo, like edge
and vertex. In this regard, each turning point is symbolized by a vertex qi and each TBA
equation is symbolized by an edge (a) = {qi, qj} = (i, j). With this in mind, it is time to
state the very simple first diagrammatic rule: the connection rule.

1. Connection rule: the intersection matrix 〈(a), (b)〉 = ±1 if and only if the edges (a)
and (b) are connected (i.e. they share a common vertex).

The precise sign depends on the sign of ϕ(a),(b). One can check that the TBA graph in
figure 3 is indeed reproducing the TBA system in the minimal chamber: since the edge
(a) is connected to the edges (a ± 1), we find this tridiagonal antisymmetric structure we
found previously (the anti-symmetry of the intersection matrix is a direct result of the
anti-symmetry of ϕ(a),(b)).

Now that we are armed with the TBA graph and its first rule, let us show how and
under what additional rules it is reproducing the wall-crossing procedure. As stated before,
nothing really dramatic happens as long as ϕ(a),(b) is not crossing 0. But when it does, we get
an additional ε function. To be precise, when ϕ(i,i+1),(i+1,i+2) cross 0, we get an additional
TBA equation involving the new ε(i,i+2). This new pseudoenergy is coupled with four of

10I.e. the functions f(a),(b) must satisfy f(a),(b)(x) = 0 if and only if x = 0.
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i – 1 i

i + 1
i + 2

i + 3

i – 1

i

i + 1
i + 2

i + 3

ϵ(i,i+2)

ϵ(i,i+1)

ϵ(i+1,i+2)

ϵ(i+2,i+3)

ϵ(i–1,i)

ϵ(i–1,i)

ϵ(i,i+1)

ϵ(i+1,i+2)

ϵ(i+2,i+3)

Figure 4. Four TBA equations in the “stair” configuration with arbitrary TBA graph attached
at the end points vertices i − 1 and i + 3 (green and blue disks). We are analytically continuing
from the left TBA graph, where ϕ(i,i+1),(i+1,i+2) 6= 0, then we cross the 0 angle, where the periods
are aligning (red dashed line); appling the Wall-crossing rule, we end up with an additional TBA
equation for ε(i,i+2) (red full line) in the TBA graph on the right. If the discs are other “stairs”,
this is corresponding to the morphing from the minimal chamber as presented in section 3.3.

the “neighbour” TBA, as defined in (3.24). That’s the whole story of section 3.3. Let us
reproduce this procedure by stating the second diagrammatic rule: the wall-crossing rule.

2. Wall-crossing rule: when the edges (i, j) and (j, k) cross their common alignment
line, one add the new edge (i, k) to the TBA graph.

Of course, (i, j) and (j, k) are aligning exactly when ϕ(i,j),(j,k) = 0. This means that, with
the addition of this rule, the TBA graph is at least modified at the right time. Now we can
use the connection rule to verify if we are reproducing the correct TBA. Before applying
the wall-crossing rule, we are in the following situation: two connected edges, (i, j) and
(j, k), are aligning. They are themselves possibly connected to other edges through the
vertex i and k, but let’s assume for now that the edges (i, j) and (j, k) have only one
neighbor each, (m, i) and (k, n) (this is the case in the minimal chamber for example,
where m = i− 1, j = 1 + 1, k = 1 + 2 and n = i+ 3). Applying the wall-crossing rule, we
draw an additional edge (i, k). Now, we can read the new TBA system by applying the
connection rule hence updating the intersection matrix. The TBA equation associated to
the new edge is coupling the four neighbor together and no other. This is the case in (3.24).
Only the four neighbor are morphed by this wall-crossing. This is still the case in (3.24).
The whole story of section 3.3 is in fact reproduced by the diagrammatic process presented
in figure 4.

We stated a “construction rule” (the wall-crossing rule), that is allowing us to analyti-
cally continue a TBA graph, and a “reading rule” (the connection rule) that provides a way
to read a TBA graph and make it corresponds to a TBA system. However, we still miss an
ingredient in the reading side to complete the story and have a correct correspondence be-
tween TBA graphs and TBA systems. The third and last diagrammatic rule is taking care
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of this missing element and complete the translation. We purposefully put an important
detail under the rug until now: there are some ±2 elements appearing in the intersection
matrix for some TBA systems. This is a new effect that is not predicted by our current
set of rules. As an exercise, one can start by working out the simpler case where this new
effect takes place: the quartic potential (d = 4). After the first wall-crossing, we are in the
situation described diagrammatically by a triangle with an unique leg, corresponding to the
TBA system (3.24) and containing 3 + 1 = 4 equations (this is the starting configuration
of figure 5 with empty discs). By repeating the wall-crossing procedure algebraically two
more times, one obtains the following TBA system corresponding to a quartic potential in
the maximal chamber:

ε1,2(θ) = |Π1,2| exp(θ) +K(1,2),(2,3) ?L2,3 +K(1,2),(1,3) ?L1,3 +K(1,2),(2,4) ?L2,4 +K(1,2),(1,4) ?L1,4

ε2,3(θ) = |Π2,3| exp(θ)−K(2,3),(1,2) ?L1,2−K(2,3),(3,4) ?L3,4−K(2,3),(1,3) ?L1,3−K(2,3),(2,4) ?L2,4− 2K(2,3),(1,4) ?L1,4

ε3,4(θ) = |Π3,4| exp(θ) +K(3,4),(2,3) ?L2,3 +K(3,4),(1,3) ?L1,3 +K(3,4),(2,4) ?L2,4 +K(3,4),(1,4) ?L1,4

ε1,3(θ) = |Π1,3| exp(θ)−K(1,3),(1,2) ?L1,2 +K(1,3),(2,3) ?L2,3−K(1,3),(3,4) ?L3,4−K(1,3),(1,4) ?L1,4

ε2,4(θ) = |Π2,4| exp(θ)−K(2,4),(1,2) ?L1,2 +K(2,4),(2,3) ?L2,3−K(2,4),(3,4) ?L3,4−K(2,4),(1,4) ?L1,4

ε1,4(θ) = |Π1,4| exp(θ)−K(1,4),(1,2) ?L1,2 + 2K(1,4),(2,3) ?L2,3−K(1,4),(3,4) ?L3,4 +K(1,4),(1,3) ?L1,3 +K(1,4),(2,4) ?L2,4

(3.27)
where we omitted the θ dependence on the convolutions and the tildes for shortness, and
where we factored out the intersection matrix 〈(a), (b)〉 in the definition (3.17) for clarity.
Here, all the terms are correctly predicted by our two diagrammatic rules, except two
terms with coefficient ±2 (in red). If we repeat this exercise with other TBA systems, the
same phenomenon occurs each time we have to wall-cross two (or more) successive edges
attached to the same vertex, thus creating intersecting graphs. To take these coefficient 2
terms into account, one can add the third and final diagrammatic rule to our current set:
the intersection rule.

3. Intersection rule: the intersection matrix 〈(a), (b)〉 = ±2 if and only if the edges (a)
and (b) are intersecting.

Let us review the diagrammatic process explained and justified above in a compact
paragraph. The rule two — the wall-crossing rule — is a “construction rule”. One could
start with any TBA graph and apply it as much as needed in order to end up with the
required morphed TBA graph. Once this process is finished and the final TBA graph is
obtained, one can read it using the “reading rules” one and three — the connection and
intersection rules — encoding the intersection matrix thus encoding the full TBA system.

As an example, let’s apply this procedure on some polynomials potential: from the
cubic up to the octic potential and from the minimal chamber all the way to the maximal
chamber. The first step is to find the associated TBA graph. A specific example is provided
for the sextic polynomial in figure 6, and we end up with the maximal graph with 6 vertices.
This is always the case for any polynomial of degree d, with one exception if we are talking
about stricto sensu graphs: the quartic. In proper graph theory, the maximal graph formed
by 4 vertex is planar, hence having no intersecting edges. This is not possible with our
TBA graphs defined above because of the alignment property. Otherwise, the TBA graph
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Figure 5. Analytical continuation crossing two consecutive period alignments around the same
“pivot” vertex. The blue and green discs are arbitrary TBA graphs. Crossing the second alignment
angle produces an intersection from which we can extract an additional entry of the intersection
matrix through the intersection rule. Notice that we could have generalized this diagram, having
k green discs (linked or not) instead of only two. One would have obtained k additional TBA
equations after morphing the TBA equation attached to the blue disc around the “pivot” vertex,
k − 1 of which would be intersecting the further right TBA equation with linked green disc, k − 2
would be intersecting the second TBA from the right etc.

1
2

3
4

5 6

3
4

5 6

4

5 6 5 6

12

1

2

3

3

12

4

5 6

4

1 2

3

Figure 6. Analytical continuation of the TBA system corresponding to a sextic (d = 6) potential,
from the minimal chamber (far left) to the maximal chamber (far right). There are multiple possible
analytical continuations that lead to the maximal chamber; in this specific example, we chose to
analytically continue around the “pivot vertex” 2, i.e. when ϕ(1,2),(2,3) = 0, then the “pivot vertex”
3 etc. Because of the wall-crossing rule, we are obtaining one additional equation at step one, two
at step two etc. After four of these steps, we are finally in the maximal chamber. The TBA system
is then consisting of 15 TBA equations, corresponding to the maximal graph with 6 vertices (graph
on the far right).

of a degree d polynomial in the maximal chamber is equivalent to a complete graph with d
vertices.

Now that we have obtained the TBA graph, we can read the TBA system encoded in it
by applying the connection and intersection rule. Remember that the intersection matrix
is antisymmetric, therefore one only has to find a little bit less than half of the matrix
elements.11 First, let us use the connection rule to set all the matrix elements that are

11Since the matrix is a N ×N antisymmetric matrix with null diagonal and N = d(d− 1)/2, one need to
identify exactly d(d− 1)(d2 − d− 2)/8 independent matrix elements.
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equal to ±1. Read row after row (or column after column) — starting from the colomn (or
row) k + 1 if you are considering the row (or column) k, i.e. one square after the diagonal
in case you want to save time by computing only the independents elements — if there is
only one shared vertex in the associated column (resp. row) entry, put a 1.12 In the sextic
case, if we are considering the row (1, 2) for example, look for every edge that is containing
either 1 or 2 (but not both) in the corresponding column, i.e. (2, 3), (1, 3), (2, 4), (1, 4),
(2, 5), (1, 5), (2, 6) and (1, 6). This specific example is contained in figure 7 (first line/row
of the sextic potential). At this point you are already done with d TBA equation, since the
concave hull of the polygon formed by the d vertices provides necessarily non-intersecting
edges.13 Furthermore, every row (column) should have exactly 2(d − 2) entries set to one
at this point: since every vertex is shared between d − 1 edges in the maximal chamber,
each edge formed by a given couple of vertices will be connected to d − 2 different edges
through each of its two vertices. With the explication above, one can see that the matrix
elements for the signless connection matrix (the ±1 part of the full intersection matrix
without taking into account the sign) is then simply given by:∣∣∣〈(i, i+ k), (j, j + l)〉connection

∣∣∣ = δi,j + δi,j+l + δi+k,j + δi+k,j+l − 2δi,jδi+k,j+l (3.28)

with i ∈ {1, . . . , d − k}, j ∈ {1, . . . , d − l}, and k, l ∈ {1, . . . , d − 1}. An example of this
structure for d ∈ {18, 19} can be observed in figure 11 by looking at the teal and orange
entries as 1, 0 otherwise.

In order to take care of the ±2 elements, chose a row (or column) associated to an edge
inside the convex polynomial hull but not on the boundary (hence with intersection), then
check all the columns (or rows) — after the diagonal and not already set to one. Put a
two if the column edge and the row edge are intersecting in the TBA graph. Let’s consider
the sextic example once more: if one start with the row corresponding to the edge (2, 5),
one have to put a 2 in the column corresponding to the edges (3, 4), (1, 5), (2, 6) and (1, 6).
Finding the exact number of intersection for any edges, i.e. the number of elements set to
±2 in a given row/column, is a little bit more involved than finding the number of matrix
elements set to ±1. Let us open a parenthesis about it in the next paragraph.

First, note that because of the Zd symmetry, this problem is not affected by which
particular vertex we chose as the starting point for an edge, such that there are only
d − 1 non-equivalent edges in the resulting equivalence class. We will denote them as
[k] = (v0, v0 + k) with k ∈ {1, . . . , d− 1} and where v0 is inconsequential. For our labeling
purpose, the non-equivalent edge [k] is obtained by connecting the starting vertex with the
vertex we reach after k “jumps” along the convex polygonal hull formed by all the vertices
(or equivalently, this jump can be seen as a rotation of 2πi/d with respect to the center
of the polygon). Furthermore, because of the reflection symmetry, we will ultimately only
need “half” of them:

⌈
d−1

2

⌉
to be precise (we could also have started directly with the Dd

dihedral symmetry). This new equivalent class is obtained by identifying a “jump” in the
clockwise and anticlockwise direction, and we will still denote the elements of this class

12If both are the same, this is obviously a diagonal element, which is 0.
13The is why the first non trivial intersecting case is the quartic in the maximal chamber: the cubic has

only d = 3 = d(d− 1)/2 TBA equations.
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by [k], but this time with k ∈
{

1, . . . ,
⌈
d−1

2

⌉}
. Each of them have a unique number of

intersections. A simple recursive observation allows us to fully count them: if we call Ik,d
the number of edges intersecting with [k] for a maximally connected polygonal containing d
vertex, then Ik,d+1 = Ik,d + k− 1 and Ik+1,d = Ik,d + 1 the first time a new k is appearing14

(i.e. each time
⌈
d−1

2

⌉
increases), starting with I2,4 = 1. Of course, I1,d = 0 since [1] is always

on the convex polygonal hull. These recursion relations imply that Ik,d = (k−1)(d−k−1).
As an example, this formula predicts that for the TBA system corresponding to an octic
potential in the maximal chamber we have either 0, 5, 8 or 9 terms with coefficient ±2 in a
given TBA equation (corresponding to [1], [2], [3] and [4] resp.). This is what is observed
in figure 7.

We know how to count them, but we still want to determine the exact matrix ele-
ments of this signless pure intersection matrix (i.e. without the connection part described
in (3.28)). In order to achieve that, let us fix a labeling for concreteness. Let’s say for
simplicity that all of our vertices are the dth roots of the unity. Instead of labeling the
vertices by complex numbers in the complex plane, we label them by the n in e2πn/d. One
can then define [k]v = (v, v + k) in order to label the class of d − 1 edges containing v0
among its vertices. Because edges are non ordered pairs, i.e. (v, v+k) = (v+k, v), we have
the identifications [k]v = [d − k]v+k. Another useful property is that the pure signless in-
tersection matrix

∣∣∣〈[n]v, [m]v+k〉intersection
∣∣∣ is transposed under the reflection k 7→ d− k, i.e.∣∣∣〈[n]v, [m]v+d−k〉intersection

∣∣∣ =
∣∣∣〈[m]v, [v]v+k〉intersection

∣∣∣ (we used that fact during the count-
ing of the crossings in the previous paragraph). Now, let’s fix the matrix elements. The
edges of the form [k]v will never intersect among each other ∀k ∈ {1, . . . , d− 1} since they
share the same starting point but are ending on a different endpoint. Furthermore, any
edge on the convex polygonal hull, i.e. such that it can be written as [1]v or [d − 1]v will
never intersect with any edge. As a result, the pure signless intersection matrix will have
a factor

∣∣∣〈[n]v, [m]v+k〉intersection
∣∣∣ ∝ (1− δn,1− δn,d−1)(1− δm,1− δm,d−1). Additionally, be-

cause of the non ordered properties, two equivalent edges (of the form [k]v = [d−k]v+k) will
never intersect since they are the same edge. The pure signless intersection matrix hence
takes a factor

∣∣∣〈[n]v, [m]v+k〉intersection
∣∣∣ ∝ (1− δn,k)(1− δm,d−k). The procedure is splitting

the (d − 1) × (d − 1) matrix
∣∣∣〈[n]v, [m]v+k〉intersection

∣∣∣ (at k fixed and arbitrary v) in four
sub-matrices, delimited by the cross of zeroes introduced by the factor (1−δn,k)(1−δm,d−k):

∣∣∣〈[n]v, [m]v+k〉intersection
∣∣∣ =



0 0 0 0 0
0 R

(1)
(d−k−2)×(k−2) 0 L(k−2)×(k−2) 0

0 0 0 0 0
0 U(d−k−2)×(d−k−2) 0 R(2)

(k−2)×(d−k−2) 0
0 0 0 0 0


(3.29)

where the subscript is indicating the size of the sub-matrix (of course, if one of the com-
ponent is of size ≤ 0, the “cross” is not really splitting our matrix into 4 sub-matrices but
only one square sub-matrix of size d − 1 if k ∈ {1, d − 1} or d − 2 if k ∈ {2, d − 2}). By

14It also happens to be a perfect square: Ik+1,d = k2 the first time k + 1 is appearing.
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studying this geometric problem (using recursions for example), one can convince himself
that the rectangular matrices R(i) = 0, when U is the upper triangular matrix and L the
lower triangular matrix. Putting all these results together, we get the matrix elements∣∣∣〈[n]v, [m]v+k〉intersection

∣∣∣ = (1− δn,1 − δn,d−1)(1− δm,1 − δm,d−1)(1− δn,k)(1− δm,d−k)
d−k−3∑
lx≤ly
ly=0

δn,k+1+lyδm,2+lx +
k−3∑
ly≤lx
lx=0

δn,2+lyδm,d−k+1+lx


(3.30)

or, going back to the pair of vertices notation, themselves denoted by the dth root of the
unity:∣∣∣〈(v, v + n), (w,w +m)〉int.

∣∣∣ = (1− δv,w)(1− δn,1 − δn,d−1)(1− δm,1 − δm,d−1)

(1− δn,((w−v) mod d))(1− δm,d−((w−v) mod d))
d−((w−v) mod d)−3∑

lx≤ly
ly=0

δn,((w−v) mod d)+1+lyδm,2+lx

+
((w−v) mod d)−3∑

ly≤lx
lx=0

δn,2+lyδm,d−((w−v) mod d)+1+lx



(3.31)

For the following, it will be useful to relabel our vertices, still considering them as the dth
roots of the unity, but instead sorting them according to their real part then imaginary
part. Doing so, 0↔ d, d− 1↔ d− 1, 1↔ d− 2 etc. and we get the following dictionary,
given by the bijection v ↔ i

{0, . . . d− 1} 3 v =
(1

4
(
2d+ 1 + (−1)d+i(2i− 1)

))
mod d

{1, . . . d} 3 i =


d v = 0
d− 2v + 1 2v ≤ d
2v − d 2v > d

(3.32)

An example of this structure for d ∈ {18, 19} and the labeling defined above can be observed
in figure 11.

The remaining elements (i.e. not set to ±1 or ±2 after application of the connection
and intersection rules) of the triangular part of the intersection matrix 〈(a), (b)〉 are set
to 0. In order to determine the signs, you can multiply every element in this resulting
triangular matrix with sign(ϕ(a),(b)). Once this is done, copy in 〈(b), (a)〉 the opposite of
the result in 〈(a), (b)〉 and the full intersection matrix 〈(a), (b)〉 is finally

〈(a), (b)〉 = sign
(
ϕ(a),(b)

) (∣∣∣〈(a), (b)〉connection
∣∣∣+ 2

∣∣∣〈(a), (b)〉intersection
∣∣∣) (3.33)
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Figure 7. The TBA graph and intersection matrices 〈(a), (b)〉 for the cubic up to the octic
(d ∈ {3, . . . , 8}) in the maximal chamber. The intersection matrix is read from the TBA graph
according to the diagrammatic rules of section 3.5. Orange, red, teal, blue and white are color
coding respectively +1, +2, −1, −2 and 0. The intersection matrices are organized such that the
d(d−1)/2 entries (a) are, from top to bottom (resp. (b), from left to right) (i, i+k), i ∈ {1, . . . , d−k}
and k ∈ {1, . . . , d − 1}; we denote an increment of k by a black line. For example, the 6 en-
tries for the quartic reads in this order: (1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4), and the element
〈(2, 3), (1, 4)〉 = −2.

as stated earlier by the connection and intersection rules. The associated TBA system is
given by (3.26). This process is carried on for polynomials of degree d ∈ {3, . . . , 8} in the
maximal chamber and the resulting intersection matrices can be found in figure 7. In order
to have a broader view of the general structure for arbitrary d, one can also look at the
matrices depicted in figures 10 and 11 for larger d (d ∈ {18, 19} in that case).

3.6 Simplifying a TBA system using symmetries

In the precedent sections, we assumed our polynomials of interest were completely general.
Let us now assume they have some sort of symmetry. This symmetry will relates some ε-
functions together and reduces the TBA system to a simpler one, with less TBA equations.
The tilde on the ε or L-functions is omitted in the following.

Let us consider an important class of polynomials in order to illustrate this fact: the
symmetric polynomials (i.e. with the q 7→ −q symmetry). In that case, because the turning
points/classical periods/masses on one side are the same than on the other side, we can
pair the ε-functions using

εi,i+k(θ) = εd−i−k+1,d−i+k(θ) (3.34)

By substituting the redundant ε-functions into the TBA system, one gets a simpler and
reduced TBA system. Alternatively, one can simplify the TBA system by considering the
reduced intersection matrix obtained from the full intersection matrix by deleting every

– 30 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

1

2

4

6

5

3

→

3

1

2

4

6

8

7

5

→

Figure 8. The colored TBA graph and reduced intersection matrices 〈(a), (b)〉 for the symmet-
ric sextic and octic potentials in the maximal chamber. We paired the equivalent TBA equations
through (3.34). This identification is denoted in the TBA graph by edges of the same color, result-
ing in 1

2
(⌈ 3

2 −
d
2
⌉
− 3
) ⌈ 3

2 −
d
2
⌉

+ 1
2
⌊

d
2
⌋ (⌊

d
2
⌋

+ 1
)

+ 1 independent TBA equations in the maximal
chamber case (parallel lines). Concerning the intersection matrix: yellow, orange, orange-red, dark
red, light teal, cerulean, dark blue, purple and white are color coding respectively +1, +2, +3, +4,
−1, −2, −3, −4 and 0. The intersection matrices are organized in the same way as figure 7, with
the exception of the redundant ε-functions that are deleted.

row and column corresponding to the same equivalent TBA equation except from one,
adding the value of each deleted matrix element to the corresponding still existing matrix
element in the reduced matrix. This intersection matrix can also be read from the TBA
graph by identifying the equivalent TBA equations together. We provide two examples of
such computation for the symmetric sextic and symmetric octic in the figure 8.

Let us explicitly write the resulting reduced TBA system for the quartic potential.
Starting from (3.27), we identify ε1,2 = ε3,4 and ε1,3 = ε2,4 since the corresponding peri-
ods/masses are also equal. We can simply substitute these identifications into (3.27) and
obtain

ε1,2(θ) = |Π1,2| exp(θ) +K(1,2),(2,3) ? L2,3 + 2K(1,2),(1,3) ? L1,3 +K(1,2),(1,4) ? L1,4

ε2,3(θ) = |Π2,3| exp(θ)− 2K(2,3),(1,2) ? L1,2 − 2K(2,3),(1,3) ? L1,3 − 2K(2,3),(1,4) ? L1,4

ε1,3(θ) = |Π1,3| exp(θ)− 2K(1,3),(1,2) ? L1,2 +K(1,3),(2,3) ? L2,3 −K(1,3),(1,4) ? L1,4

ε1,4(θ) = |Π1,4| exp(θ)− 2K(1,4),(1,2) ? L1,2 + 2K(1,4),(2,3) ? L2,3 + 2K(1,4),(1,3) ? L1,3

(3.35)

where we factored out the intersection matrix 〈(a), (b)〉 coefficients as in (3.27), i.e. the
kernel is (3.17) without the intersection matrix or

K(a),(b)(θ) = 1
2πi

1
sinh

(
θ + iϕ(a),(b)

) (3.36)
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for clarity. Notice that in this symmetric reduction procedure, the periods/masses are
exactly equal, such that the kernels are also equal, which allows us to keep that compact
intersection matrix formulation of the TBA system. This is not always the case for other
symmetries as we shall see.

Similar statements (with appropriate modifications on the rules linking the pseudo-
energies together) can be made for other symmetries. Important examples are antisymme-
try, potentials leading to a PT-symmetric Hamiltonian or — the most restrictive one and
the subject of the rest of the next section — the Dd dihedral symmetry of pure potentials.

3.7 TBA equations and pure potentials

3.7.1 Geometric and preliminary observations

In order to link our result to Dorey and Tateo equations — which is next section’s goal —
we still have to investigate how the TBA system simplifies when the potential is pure, i.e.
in the form V (q) = aqd. In that case, we are always in the maximal chamber (as long as
d > 2) since the turning points are forming a regular convex d-gon in the complex plane. If
one draw all the possible cycles between the turning points of the d-gon, the resulting graph
is a complete graph like the one in figure 7. We can apply the same arguments presented
in section 3.5 when we were computing the number of intersections of a given edge in a
complete graph on the absolute value of the periods: because of the dihedral symmetry
of the problem, we can group the d(d − 1)/2 absolute values of the periods in

⌈
d−1

2

⌉
non-

equivalent elements, denoted by the equivalent classes of edge [k] with k ∈
{

1, . . . ,
⌈
d−1

2

⌉}
,

resulting in the independent pseudo-energies denoted by ε[k].15 The ε[k] can be read from
the reduced TBA graph with

⌈
d−1

2

⌉
color, like the ones in figure 9. Unlike the symmetric

case, the periods/masses are not exactly equal: their absolute values are, but their phases
are not the same. For this reason, we cannot simply reduce the intersection matrix as
described in the symmetric case since some kernels will not have the same complex shift.
We can however group the sum of the kernels having same L-functions as a common factor
into a new kernel. Doing so, the TBA system for a pure potential takes the form

ε[k](θ) =
∣∣∣Π[k]

∣∣∣ exp(θ) +
d d−1

2 e∑
l=1
K[k],[l] ? L[l](θ) (3.37)

where K[k],[l] is the sum of kernels with common factor L[l], i.e.

K[k],[l](θ) =
∑
b∈[l]

K(k),(b)(θ) (3.38)

Where the sum
∑
b∈[l] is to be understood as a sum over every edge (b) that is in the

equivalence class [l] (same color in the TBA graph). In other words, instead of a d(d −
1)/2×d(d−1)/2 intersection matrix of coefficients, we can encode the reduced TBA system
with a

⌈
d−1

2

⌉
×
⌈
d−1

2

⌉
matrix of kernels K[k],[l](θ). Since the ϕ[k],[l] are always some multiple

15The Zd symmetry leaves d − 1 independent TBA equations, equivalent to the equations in [12] as we
shall see. The reflection reduces this number to

⌈
d−1

2

⌉
.
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Figure 9. The colored TBA graph (taking into account the dihedral symmetry) resulting in the
reduced TBA system for a monic potential of degree d for d ∈ {3, . . . , 8}. One can observe the⌈

d−1
2
⌉
different colors corresponding to the independent ε-functions. If one does not take into

account the symmetry under reflection and only consider the Zd symmetry, one has d − 1 colors
instead, corresponding to the equations in [12].

of π/d in the pure case (see the next subsection for an exact statement), the resulting sum
of kernels simplifies (in particular, it is always a real function).

Let us give a concrete example by computing the kernels for the pure quartic. Starting
with the TBA system associated with the symmetric quartic (3.35), we have two more
identifications to do in order to end up with the TBA system for a pure quartic: ε1,2 =
ε1,3 = ε[1] (red TBA in figure 9) and ε2,3 = ε1,4 = ε[2] (cyan TBA). The reduced TBA
system is

ε1,2(θ) = |Π1,2| exp(θ) + 2K(1,2),(1,3) ? L1,2 + (K(1,2),(2,3) +K(1,2),(1,4)) ? L2,3

ε2,3(θ) = |Π2,3| exp(θ)− 2(K(2,3),(1,2) +K(2,3),(1,3)) ? L1,2 − 2K(2,3),(1,4) ? L2,3
(3.39)

which simplifies in the system (3.37) with the following matrix of kernels

K(θ) =

 1
π

1
cosh(θ)

√
2
π

cosh(θ)
cosh(2θ)

2
√

2
π

cosh(θ)
cosh(2θ)

1
π

1
cosh(θ)

 (3.40)

or, explicitly written:

ε[1](θ) =
∣∣∣Π[1]

∣∣∣ exp(θ) + 1
π

∫
R

L[1](θ̄) dθ̄
cosh

(
θ − θ̄

) +
√

2
π

∫
R

cosh
(
θ − θ̄

)
cosh

(
2(θ − θ̄)

)L[2](θ̄) dθ̄

ε[2](θ) =
∣∣∣Π[2]

∣∣∣ exp(θ) + 2
√

2
π

∫
R

cosh
(
θ − θ̄

)
cosh

(
2(θ − θ̄)

)L[1](θ̄) dθ̄ + 1
π

∫
R

L[2](θ̄) dθ̄
cosh

(
θ − θ̄

)
(3.41)
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As an additional example, the matrix of kernels for the pure sextic (3 colors) yields

K(θ) =


√

3 sinh(2θ)
π sinh(3θ)

3 cosh(2θ)
π cosh(3θ)

√
3 sinh(2θ)
π sinh(3θ)

3 cosh(2θ)
π cosh(3θ)

3
√

3 sinh(2θ)
π sinh(3θ)

3 cosh(2θ)
π cosh(3θ)

2
√

3 sinh(2θ)
π sinh(3θ)

6 cosh(2θ)
π cosh(3θ)

2
√

3 sinh(2θ)
π sinh(3θ)

 (3.42)

where ε[1] = ε1,2 = ε5,6 = ε1,3 = ε2,4 = ε3,5 = ε4,6 (red), ε[2] = ε2,3 = ε4,5 = ε1,4 = ε3,6 =
ε1,5 = ε2,6 (green) and ε[3] = ε3,4 = ε2,5 = ε1,6 (blue) as can be read from figure 9.

3.7.2 Exact classical periods for pure potentials
A pure potential V (x) = aqd with energy E > 0 has a momentum given by (2.9), i.e.√

2(E − aqd). By the rescaling q 7→
(
E
a

) 1
d q one can rewrite the classical periods in a

friendly manner,

Πγ =
√

2E
(
E

a

) 1
d
∫
γ

√
1− qddq (3.43)

where γ denotes a path encircling two turning points. With the previous scaling, the
turning points are simply listed by the dth roots of unity, i.e. qktp = e2πik/d, with k ∈ Z,
such that the previous integral (3.43) resolves to

2qk2
tp 2F1

(
−1

2 ,
1
d

; 1 + 1
d

;
(
qk2

tp

)d)
− 2qk1

tp 2F1

(
−1

2 ,
1
d

; 1 + 1
d

;
(
qk1

tp

)d)
(3.44)

We can factorize the only building block we need,

2 2F1

(
−1

2 ,
1
d

; 1 + 1
d

; 1
)

=
√
π

Γ
(
1 + 1

d

)
Γ
(

3
2 + 1

d

) (3.45)

in order to express all of our classical periods as

Π
q
k1
tp ,q

k2
tp

=
√

2πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) (qk2
tp − q

k1
tp ) (3.46)

For the following, let us fix the labeling of the turning points for concreteness: the indices
1 . . . d are listing the sorted turning points, ordered from the smallest to largest real part
first, then imaginary part. We want to relate this labeling with the dth root of unity
qktp = e2πik/d. The one with largest real part, qd, is obviously q0

tp = 1. Then we can identify
qd−2n = qntp and qd−2n−1 = q−ntp until we run out of turning point after d− 1 labeling if d is
odd. If d is even, the smallest turning point is q1 = q

d/2
tp = −1. Grouping all these results

together, we get the dictionary

qn = exp
(
iπ

2d
(
2d+ 1 + (−1)d+n(2n− 1)

))
(3.47)

relating qn and qktp through the bijection (3.32). With this labeling, we can rewrite our
exact classical periods as

Πn,m =
√

2πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) (qm − qn) (3.48)
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The last result is analytically explaining the geometric observation that there are
⌈
d−1

2

⌉
differently colored ε-functions in figure 9: since the absolute value of the periods is given by

∣∣∣∣Πq
k1
tp ,q

k2
tp

∣∣∣∣ =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin(π (k1 − k2)
d

)∣∣∣∣ (3.49)

|Πn,m| =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin( π4d ((−1)m(2m− 1)− (−1)n(2n− 1))
)∣∣∣∣

|Πn,n+k| =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin( π4d
(
2k + 2n− 1 + (−1)k(1− 2n)

))∣∣∣∣
and, in particular, realizing that we can identify the equivalence classes as ε[n] = εn,n+1 ∀n ∈{

1 . . .
⌈
d−1

2

⌉}
(or, alternatively, that ε[k] = εn,n+2k ∀n ∈ {1 . . . d} and ∀k ∈

{
1 . . .

⌈
d−1

2

⌉}
)

intervening in (3.37),

∣∣∣Π[n]

∣∣∣ = |Πn,n+1| =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin(nπd
)∣∣∣∣ (3.50)

is indeed describing
⌈
d−1

2

⌉
different periods. With (3.48), we entirely described all the

exact classical periods Π(a) intervening in the TBA graph for arbitrary pure potentials of
degree d. With (3.49) and (3.50), we gave precision on the exact form of their absolute
values. To complete the picture, let us work their explicit arguments, i.e. the angles ϕ(a):

ϕn,m = (−1)dπ
4d

(
2(−1)d + (2d (2 + (−1)m) + (−1)n(2n− 1) + (−1)m(2m− 1))

)
(3.51)

ϕn,n+k = (−1)dπ
4d

(
(−1)k+n(2d+ 2k + 2n− 1) + 4d+ 2(−1)d + (−1)n(2n− 1)

)
(3.52)

such that the exact periods can be written in the polar form as

Πn,n+k =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin( π4d
(
2k + 2n− 1 + (−1)k(1− 2n)

))∣∣∣∣
e
iπ
4d (−1)d((−1)k+n(2d+2k+2n−1)+4d+2(−1)d+(−1)n(2n−1))

(3.53)

3.7.3 Intersection matrix for general d

Thanks to the computations above, we know the exact sign matrix sign(ϕ(a),(b)) for arbi-
trary d. On can write it as

sign(ϕ(i,i+k),(j,j+l)) = sign
(
i log

(
e−

iπ
d
vijkl

))
(3.54)

in the real/imaginary labeling, where vijkl = vji + (−1)d(vj+l+d,i+k+d), vij = vi − vj and
vi = (2d+ 1 + (−1)d+i(2i− 1))/4, the map found in (3.32), i.e. vi/d is simply the argument
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of the root ϕi in the dth root of unity labeling for a monic potential. We left it in the
form i log(exp(−ix)) since one has to pay attention to the periodicity of this function. An
alternative non ambiguous form would be

sign(ϕ(i,i+k),(j,j+l)) = sign
(
vijkl − 2d

⌊
vijkl
2d + 1

2

⌋)
(3.55)

For example of this sign matrix at large d (so the repeating structure can be observed),
one can look at figure 10. In order to get the full exact intersection matrix (3.33) for
polynomials in the maximal chamber, one just need to put together the signless connection
matrix (3.28) and signless intersection matrix (3.31). For explicitness’ sake, let us rewrite
them in our labeling system:∣∣∣〈(i, i+ k), (j, j + l)〉connection

∣∣∣ = δi,j + δi,j+l + δi+k,j + δi+k,j+l − 2δi,jδi+k,j+l (3.56)∣∣∣〈(i, i+ k), (j, j + l)〉int.
∣∣∣ = (1− δvi,vj )(Aijkl +Ajilk) (3.57)

where, after simplification,

Aijkl = δ2,µi+k,iδ1+µij ,µj+l,jθd>3+µij + θµi+k,i>1δd,2+µj+l,jδd,1+µij+µi+k,i

+ θd>2+µj+l,jθµj+l,j<µij+µi+k,iθd>µij+µi+k,iθd<µi+k,i+µj+l,j

+ θµi+k,i>2θµij<µj+l,jθd>2+µj+l,jθµj+l,j<µij+µi+k,iθd+1>µi+k,i+µj+l,j

(3.58)

µij = vij mod d and θb = 1 if b is true, 0 otherwise. As an important note, if we initially
derived the formulas (3.54) or (3.55) for the specific case of pure potentials, let us remark
than it also applies to a larger class of polynomials. As long as one is in presence of some set
of roots of E−V (q) “not to far” from the dth roots of the unity, in the sense that as long as
identifying the two sets of roots is not modifying the sign of (3.54), the intersection matrix
is invariant under the deformation from the pure potential case to the more difficult case
of interest. By using the appropriate classical periods and labeling system, on can solve
TBA systems of the form (3.26) with the same matrix of intersection we derived above
in the context of pure potential. For example, d/2-wells problems with energy above the
maximas. Using (3.33) with the sign matrix derived here, we are indeed reproducing the
structures found in figure 7.

3.7.4 Restricting the TBA equations to pure polynomial potentials

Putting (3.33) and (3.50) into (3.26), one finds, in our real/imaginary labeling prescription,

ε̃(i,i+k)(θ) =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin(πdvi+k,i
)∣∣∣∣ exp(θ)

+
∑
j≤d−l
l≤d−1

K(i,i+k),(j,j+l) ? L̃(j,j+l)(θ)
(3.59)

where

K(i,i+k),(j,j+l)(θ) = 〈(i, i+ k), (j, j + l)〉
2πi sinh

(
θ + log

(
e−

iπ
d
vijkl

)) (3.60)
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Figure 10. Structure of the sign matrix for polynomials of degree 18 and 19 respectively. Orange,
teal and white are color coding +1, −1 and 0 respectively. The sign matrix is organized such
that the d(d − 1)/2 entries (a) are, from top to bottom (resp. (b), from left to right) (i, i + k),
i ∈ {1, . . . , d− k} and k ∈ {1, . . . , d− 1}; we denote an increment of k by a black line.

Figure 11. Structure of the (full, signed) intersection matrix (3.33) for polynomials of degree 18
and 19 respectively. Orange, red, teal, blue and white are color coding respectively +1, +2, −1,
−2 and 0. Orange and teal (resp. red and blue) entries are the non-null entries of the signless
connection (resp. signless intersection) matrix (3.28) (resp. (3.31)). We used the same organization
conventions as in figure 10.
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and where the full intersection matrix 〈(i, i+k), (j, j+ l)〉 is given by (3.33), with the inter-
section and connection part given explicitly in our prescription by (3.56) and (3.57). The
TBA system (3.59) is containing d(d+ 1)/2 equations, but most of them are redundant: as
explained in section 3.7.1, we can associate a TBA graph to this pure polynomial potential
system, which is the fully connected polygonal graph with d vertices, and the identifications
are given by the edges with same lengths. In the dth-root of unity prescription, it means
that the edge (or TBA equation or ε-function) (v, v + k) = [k] is in the equivalence class
[k] ∀v ∈ {1, . . . , d}. We can go back to our real/imaginary prescription using the bijec-
tion (3.32): in this prescription, the equivalence class is given by the relation (i, j) = [|vji|]
(with vij = vi − vj and vi = (2d+ 1 + (−1)d+i(2i− 1))/4). Equivalently, one can also look
at (i, i+ k) directly in the real imaginary prescription: if k is odd, then it is a member of[
i+ k−1

2

]
, if k is even then it is a member of [k/2]. In any prescription, this leaves us with

d−1 TBA equations that are equivalent to Dorey and Tateo equations after simplification.
However, these equations can still be paired with the reflected edge of same length, such
that we can enlarge the equivalence class adding the relation [d − k] = [k]. At the end of
the day, we are left with

⌈
d−1

2

⌉
independent TBA equations

ε̃(k,k+1)(θ) = ε[k](θ) =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin(πdvk+1,k

)∣∣∣∣ exp(θ)

+
∑
j≤d−l
l≤d−1

K(k,k+1),(j,j+l) ? L̃(j,j+l)(θ)
(3.61)

in the real/imaginary prescription, with k ∈
{

1, . . . ,
⌈
d−1

2

⌉}
. The expression (3.61) can be

further simplified realizing than the sum is involving equivalent L-functions (of course, since
the ε[k] are members of the same equivalence class, so do the L[k] = log

(
1 + exp

(
−ε[k]

))
).

We can use the linearity of the integration and factorize these equivalent L-functions into a
common factor of a new kernel, sum of the old ones, as we already outlined in (3.38). Doing
so, we get the following simplified TBA system, involving only member of the equivalence
class, as expected then exemplified from (3.37),

ε[k](θ) =
√

8πE
(
E

a

) 1
d Γ

(
1 + 1

d

)
Γ
(

3
2 + 1

d

) ∣∣∣∣sin(πdvk+1,k

)∣∣∣∣ exp(θ) +
d d−1

2 e∑
l=1
K[k],[l] ? L[l](θ) (3.62)

where the matrix of kernels is given by

K[k],[l](θ) =
∑

(a,b)∈[l]

〈(k, k + 1), (a, b)〉
2πi sinh

(
θ + log

(
e−

iπ
d
vk,a,k+1,b

)) (3.63)

If one want to rewrite (3.63) in a more concrete fashion, one has to explicit the sum over the
edges (a, b) which are members of the equivalent class [l], i.e. find how to generate the set
[l] over which we will be summing. Let us work before the reflection pairings [k] = [d− k]
for now. The rules above, telling in which equivalence class an arbitrary edge (i, i+ k) is,
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need to be inverted. Using these rules, it is easy to see that the equivalence class [1] is
the set,

[1] = {(1, 2)} ∪
(
d−2⋃
i=1
{(i, i+ 2)}

)
in our prescription. Likewise,

[2] = {(2, 3)} ∪ {(1, 4)} ∪
(
d−4⋃
i=1
{(i, i+ 4)}

)
,

etc. and it follows that the sum spawn over

[l] =

min(l,d−l)⋃
i=1

{(l + 1− i, l + i)}

 ∪ (d−2l⋃
i=1
{(i, i+ 2l)}

)

and one can write the matrix of kernels (3.63) involved in the TBA system (3.62) as

K[k],[l](θ) =

φIMS
k,l (θ) d− l = l

φIMS
k,l (θ) + φIMS

k,d−l(θ) otherwise
(3.64)

thus taking into account the reflection symmetry [d − k] = [k] we glossed out until now,
and with φ the matrix of kernels one would obtain considering d− 1 TBA equations,

φIMS
k,l (θ) =

min(l,d−l)∑
n=1

〈(k, k + 1), (l + 1− n, l + n)〉
2πi sinh

(
θ + log

(
e−

iπ
d
vk,l+1−n,k+1,l+n

))
+
d−2l∑
n=1

〈(k, k + 1), (n, n+ 2l)〉
2πi sinh

(
θ + log

(
e−

iπ
d
vk,n,k+1,n+2l

))
(3.65)

We purposefully called it φ since it analogous to the matrix of kernels (3.68) found in Dorey
and Tateo equations (3.67). However, notice that φIMS

k,l (θ) 6= φk,l(θ); it is only when we
are applying the reflection symmetry that we have K[k],[l](θ) = KDT

[k],[l](θ) element-wise. For
example, one can notice that φIMS

d−1,d−1(θ) = 0 and φIMS
k,l (θ) = 0 ∀k ∈ {1, · · · , 2l−d−1} and

∀l ∈
{⌈

d
2

⌉
+ 1, · · · , d− 1

}
(a triangle of zeroes of height d− 3 and length

⌈
d−3

2

⌉
), when φ

is symmetric and non zero ∀k, l ∈ {1, · · · , d − 1} (excepted for some specific values of θ)
as one can see from the definition (3.68). Nonetheless, we expect φIMS

k,l (θ) + φIMS
k,d−l(θ) =

φk,l(θ)+φk,d−l(θ) element-wise, since it is equivalent to the statement K[k],[l](θ) = KDT
[k],[l](θ).

3.8 Dorey and Tateo equations as a special case

Let us present a lightning review of the main result of [12] (a more recent and complete
review about the ODE/IM correspondence can be found in [14]). The starting point is to
consider an integrable massive quantum field theory associated with the Ad−1 Lie algebra
and d − 1 massive particle species. The scattering theory is factorisable with two particle
S-matrix elements:

Sab(θ) =
a+b+1∏
|a−b|+1
step 2

(p− 1)(p+ 1), (x) =
sinh

(
θ
2 + iπ

2dx
)

sinh
(
θ
2 −

iπ
2dx

) and a, b ∈ {1, . . . , d− 1} (3.66)
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where θ is the rapidity. Using TBA techniques, one can find the following system consisting
of d− 1 pseudo-energies εa(θ) that are solving

εa(θ) = mar cosh(θ) +
d−1∑
b=1

φab ? Lb(θ), a ∈ {1, . . . , d− 1} (3.67)

where r is linked with the finite-size scaling of the system of interest and with kernel

φab(θ) = i ∂θ log(Sab(θ)) (3.68)

Dorey and Tateo’s conjecture is that the T -functions (cousins of the Y -functions which are
the exponentiated pseudo-energies) coincide with the spectral determinant of the quantum
system of interest — a pure potential of the form qd — after taking the “conformal limit”
of (3.67). For all of our purposes, we can write (3.67) in this limit as

εa(θ) = |Πa| exp(θ) +
d−1∑
b=1

φab ? Lb(θ) (3.69)

This system is very reminiscent of the TBA system (3.37) we wrote earlier for a pure
potential. In fact, this is the “Ad−1 reduction” of our maximal system. Furthermore,
“half” of the ε-functions are redundant, because of the “reflection” identification εa = εd−a.
This identification is actually the missing reflection symmetry we need to quotient out in
order to end up with the reduced system (3.37). Indeed, by applying this identification
on (3.69), one find

ε[k](θ) =
∣∣∣Π[k]

∣∣∣ exp(θ) +
d d−1

2 e∑
l=1
KDT

[k],[l] ? L[l](θ) (3.70)

where

KDT
[k],[l](θ) =

φk,l(θ) d− l = l

φk,l(θ) + φk,d−l(θ) otherwise
(3.71)

and φa,b defined in (3.68). As we already stated, the matrix of kernels (3.71) should be
equal element-wise to (3.64) ∀θ. Let us work out the monic cubic in detail as a simple
concrete example. In that simple case, the scattering matrix and matrix of kernels for the
A2 equations are

S(θ) =

−
cosh( θ2− iπ6 )

cosh(− θ2 + iπ
6 )

sinh(−θ2 − iπ6 )
sinh( θ2 + iπ

6 )
sinh(−θ2 − iπ6 )
sinh( θ2 + iπ

6 ) − cosh( θ2− iπ6 )
cosh(− θ2 + iπ

6 )

 ⇒ φ(θ) =

 √
3

4π cosh(θ)+2π

√
3

4π cosh(θ)−2π√
3

4π cosh(θ)−2π

√
3

4π cosh(θ)+2π



Applying (3.71), we find

KDT(θ) = φ1,1(θ) + φ1,2(θ) =
√

3 sinh(2θ)
π sinh(3θ) (3.72)
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By reading the monochromatic TBA graph of the monic cubic in figure 9 (or simply com-
puting (3.64), given explicitly), one indeed finds the following TBA equation:

ε(θ) = |Π| exp(θ) +
√

3
π

∫
R

sinh
(
2(θ − θ̄)

)
sinh

(
3(θ − θ̄)

)L(θ̄)dθ̄ (3.73)

As an exercise, an interested reader can compute KDT for the quartic (resp. sextic) and
find that it is indeed matching the matrix provided in (3.40) (resp. (3.42)). We wrote a
program that is computing the exact matrices of kernels K and KDT for arbitrary d. We
were able to prove a symbolic and exact equality for d ∈ {3, . . . , 14}. We also computed
systematically their numerical differences

∣∣∣K(θ)−KDT(θ)
∣∣∣. Taking the maximum of this

numerical difference ∀θ and ∀ matrices entries, we were able to verify that it is at most
of the order 10−1000 for d ∈ {1, . . . , 230}. In order to achieve the general proof, the only
remaining step is to demonstrate the identity, K[k],[l];d(θ) = KDT

[k],[l];d(θ) which we will not
provide in the present work. This identity is purely mathematical at this point, and we
know the l.h.s. and r.h.s. for arbitrary parameters l, k and d.

3.9 Computing the WKB periods using the ε-functions

The pseudo-energies are encoding the all order WKB periods. Thus, one should in principle
be able to extract the quantum corrections to the classical periods Π(n) for any n from the
pseudo-energies. For simplicity, let us start working in the minimal chamber, in the mass
representation. We know that the asymptotic behavior of the ε-functions at large θ is given
in this case by ε(a)(θ) ∼ m(a) exp(θ). In fact, the all-orders expansion of (2.36) at large θ
yields

ε(a)(θ) ∼ m(a)e
θ +

∑
n≥1

m
(n)
(a)e

(1−2n)θ (3.74)

where the coefficients m(n)
(a) are

m
(n)
(a) = (−1)n

π

∫
R
e(2n−1)θ̄

(
L(a−1)(θ̄) + L(a+1)(θ̄)

)
dθ̄ (3.75)

and are related to the periods through relations similar to (2.30):

m
(n)
2k−1,2k = (−1)nΠ(n)

2k−1,2k

m
(n)
2k,2k+1 = i Π(n)

2k,2k+1

(3.76)

This is due to the large θ identity
1

cosh
(
θ − θ̄

) = 2e−θeθ̄
∑
n∈N

(−1)ne−2nθe2nθ̄ (3.77)

The same derivation can be reproduced mutatis mutandis for any given TBA system. In the
general form (3.26) with kernel (3.17), a similar computation yields the following quantum
correction to the periods:

Π(n)
(a) = i

∑
(b)∈Sd

〈(a), (b)〉ei(1−2n)ϕ(b)
(−1)n

π

∫
R
e(2n−1)θ̄L̃(b)(θ̄)dθ̄ (3.78)
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4 Examples

In the following, we apply the TBA machinery developed in the previous sections in order to
solve the Schrödinger spectral problem (1.1) for various potentials, computing numerically
their WKB periods at arbitrary order and Voros spectra.

The two first examples (cubic and quartic potentials) are already covered in [15] with an
important and interesting exception: we computed resonant (thus complex) Voros’ spectra
for cubic potentials when only the periods are computed in [15]. Anyway, these examples
are to be thought of as warm-up exercises and trivial checks for the analytical continuation
procedure described above. The next example, a general complex quintic potential, is an
application going beyond genus one. We compute all the WKB periods for this generic
unphysical potential in order to check if our method still holds with this complicated and
non-symmetric case. In the sextic example, we are solving the triple well problem for
energies below (resp. above) the wells, corresponding to a sextic potential in the minimal
(resp. maximal) chamber configuration.

4.1 The cubic potential

The first natural example beyond the harmonic oscillator is the cubic oscillator of the form

V (q) = q2

2 − gq
3 (4.1)

which has been extensively studied for this precise reason. However, because the potential
is odd, a lot of subtleties are arising. Let us study them in the point of view of the TBA
equations and resurgence.

As long as 0 < E < 1
54g2 , we are in the minimal chamber (i.e. we are in presence of

three real turning points). A particular cases of which will be studied in the next section.
In the last section dedicated to cubic potentials, we will basically promote the coupling
constant g to a complex number, hence forcing the turning points to rotate in the complex
plane, outside the real line. In fact, we will focus on PT-symmetric cubic potential, since it
is a beautiful and interesting example, well studied in the literature and relatively easy to
study in the context of TBA equations and resurgence. Of course, the methods developed
here can accommodate more general cubic polynomials.

This particular exercise was already covered (partially16) in [15]. In the recent [31],
they are covering the cubic case from the point of view of abelianization.

4.1.1 The cubic oscillator in the minimal chamber

The cubic oscillator (4.1) with g and E ∈ R respecting 0 < E < 1
54g2 seems to be the

simplest non-trivial example of a polynomial potential in the minimal chamber, with its

16In the minimal chamber, they found the correct periods but did not compute the resonant Voros
spectrum.
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only two very simple TBA equations:

ε1,2(θ) = |Π1,2| exp(θ)− 1
2π

∫
R

L2,3(θ̄) dθ̄
cosh

(
θ − θ̄

)
ε2,3(θ) = |Π2,3| exp(θ)− 1

2π

∫
R

L1,2(θ̄) dθ̄
cosh

(
θ − θ̄

) (4.2)

However, the Hamiltonian of the cubic oscillator (4.1) for g real is clearly unbounded and
the resulting spectrum is resonant (see appendix D.2 for a brief description). Let us focus
on two examples: g = 1 with E = 1/200, in order to connect with the results of [15], and
g = 1/10 with E = 1, because in this case the non-perturbative effects are stronger and it
will be easier to show, within our precision, that the corresponding level En of the standard
spectrum (i.e. spectrum evaluated at ~n = exp(−θn)) is purely real, even if the spectrum
of such resonant state is a priori complex, as discussed in D.2.

Solving the TBA system (4.2) numerically, using the results of appendix A, one can
then compute the WKB periods using (3.78). Our results can be found in the table 1 and is
compared with the WKB periods computed with standard quantum mechanical techniques
described in appendix C.

Using Voros-Silverstone connection formulae, developped in appendix B, one can ex-
tract the exact quantization conditions associated to this problem. Depending on the choice
of lateral Borel resummation, one finds

1 + e±
i
~B±(Π1,2)(θ) + 1

2(1± 1)e−
i
~B(Π2,3)(θ) = 0 (4.3)

where the B± are the lateral borel resumations defined in (2.16) (the sign ± is encoding
the choice of lateral resummation). We can go from one EQC to the other by the use
of the Stockes automorphism, using Delabaere-Pham formula, as explained in section 2.1.
In that case, it is very easy to show, so let’s do it explicitly as an exercise. Rewriting
V± = e±

i
~B±(Π1,2)(θ) and Vnp = e−

i
~B(Π2,3)(θ), the EQCs are given by

1 + V± + 1
2(1± 1)Vnp = 0 (4.4)

In this notation, Delabaere-Pham formula takes the form

V+
V−

= 1 + Vnp (4.5)

such that

0 = 1 +V+ +Vnp 7→ 1 +V−(1 +Vnp) +Vnp = (1 +Vnp)(1 +V−) ⇔ 1 +V− = 0

0 = 1 +V− 7→ 1 + V−
1 +Vnp

= 1
1 +Vnp

(1 +V+ +Vnp) ⇔ 1 +V+ +Vnp = 0

This general procedure provides a non-trivial check that our EQC are working.
In order to relate the all order resummed periods involved in the EQC (4.3) with

the ε-functions, we simply use (2.33). The analytical structure of the inverse of the EQS

– 43 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

WKB curve parameters: g = 1, E = 1/200
γ Π(1)

γ (TBA) Π(2)
γ (TBA) Π(3)

γ (TBA)
(1, 2) 3.657475832644622 948.7944867184156 1.368408366637427× 106

(2, 3) −9.193962022855980 i 19138.83173033597 i −2.280904640847162× 108 i

γ Π(1)
γ (Diff. Op.) Π(2)

γ (Diff. Op.) Π(3)
γ (Diff. Op.)

(1, 2) 3.657475832642637 948.7944867169863 1.368408366655313× 106

(2, 3) −9.193962022850793 i 19138.83173030450 i −2.280904640893138× 108 i

WKB curve parameters: g = 1/10, E = 1
γ Π(1)

γ (TBA) Π(2)
γ (TBA) Π(3)

γ (TBA)
(1, 2) 0.05591075945249572 0.003835061419185378 0.001501382556091332
(2, 3) −0.04821582740725232 i 0.002362302662884354 i −0.0006569433399559175 i
γ Π(1)

γ (Diff. Op.) Π(2)
γ (Diff. Op.) Π(3)

γ (Diff. Op.)
(1, 2) 0.05591075945221964 0.003835061419129100 0.001501382556077192
(2, 3) −0.04821582740701447 i 0.002362302662849769 i −0.0006569433399535173 i

Table 1. The three first quantum corrections to the periods for the two examples of cubic poten-
tial (4.1) in the minimal chamber, i.e. with g = 1, E = 1/200 and with g = 1/10, E = 1 respectively,
computed using the ε-functions obtained by solving the appropriate TBA system numerically using
the iterative integration method with 16000 and 8000 Gaussian distributed points respectively, and
cutoff ∈ [−75, 22] and ∈ [−75, 18] respectively, as described in appendix A (TBA). These values
are compared with exact values obtained using the differential operator method described in ap-
pendix C (Diff. Op.).

can be observed in figure 12, the poles of which are corresponding to the zeroes of the
EQC. Solving (4.3) using the appropriate lateral Borel resummation prescription yields the
Voros spectrum, which can be checked numerically with great accuracy using the complex
dilatation method described in appendix D. The result are summarized in the table 2.

4.1.2 The PT cubic potential

The next example is the maximal chamber extension of the potential (4.1). Let us focus
on the interesting PT cubic potentials. For concreteness, let us chose

V (q) = iq3 − iq , E = 1 (4.6)

Of course, (4.6) can always be linked back to (4.1) by the appropriate rescalings and shifts
in the energy and q, and by promoting the coupling constant g to a complex number.

This potential is an interesting one to study since it is the special case of V (q) =
iq3−iλq (with λ = 1), which has a been a rich playground for investigating spontaneous PT-
symmetry breaking caused by non-perturbative effect arising in that case for λ positive and
sufficiently large, producing intricate patterns of coalescing levels at the so-called Bender-
Wu branch-points (see [2, 32–35]).
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WKB curve parameters: g = 1, E = 1/200
θ1 = 4.5720059951096 + 0.0000262355612 i θ2 = 5.68181569531799− 1.31× 10−13 i

E1 1.0000000000000072− 1.87× 10−16 i 0.3374194868285303 + 4.38× 10−14 i

E2 2.836066671194304 + 0.008972793092311 i 1.0000000000000007 + 0× 10−17 i

E3 4.308166892233317 + 0.253226263150458 i 1.640969751176588− 1.08768× 10−10 i

E4 5.785710072491928 + 0.973307366723122 i 2.255952635641602− 5.0473565× 10−8 i

θ3 = 6.193492295534587 + 0× 10−19 i θ4 = 6.530198014144337 + 0× 10−25 i

E1 0.2030946908164711 + 0× 10−17 i 0.1452772223687511 + 0× 10−17 i

E2 0.6050732019463855 + 0× 10−17 i 0.4337227134778471 + 0× 10−17 i

E3 1.0000000000000002 + 0× 10−17 i 0.7187015508690309 + 0× 10−17 i

E4 1.3872112810554597 + 0× 10−17 i 1.0000000000000001 + 0× 10−17 i

WKB curve parameters: g = 1/10, E = 1
θ1 = −0.7833886178219 + 0.0142637449697 i θ2 = 0.3544576265167 + 0.0000199830828 i

E1 1.0000000000001637− 1.574× 10−13 i 0.3434099852474118− 6.6763296857× 10−6 i

E2 2.688483613229089 + 0.341756680360593 i 1.0000000000000234 + 0× 10−17 i

E3 4.451648618080736 + 1.283188377158743 i 1.586043124901770 + 0.003705584739338 i
E4 6.432370193567029 + 2.450993751714253 i 2.062600732900113 + 0.083831268728741 i

θ3 = 0.8681208139536 + 5.74677× 10−8 i θ4 = 1.2053409964720− 2.008× 10−10 i

E1 0.2073287370633492− 1.17610749× 10−8 i 0.1485189632836222 + 2.95560× 10−11 i

E2 0.6124169659248588− 3.40110555× 10−8 i 0.4408849681561786 + 8.66967× 10−11 i

E3 1.0000000000000076 + 1× 10−16 i 0.7251525764412156 + 1.398999× 10−10 i

E4 1.3646723729078898 + 0.0000165285082619 i 0.9999999999999799 + 8.5× 10−15 i

Table 2. Voros Spectrum of the θn for n ≤ 4 solving the EQC (4.3) for the potential q2/2 − gx3

with g = 1 and g = 1/10 respectively, together with the — normalized to one — control spectrum of
energies obtained for these values of ~n = exp(−θn) using the complex dilatation method described
in the appendix D (using dilatation angles slightly above or below the real positive axis with the
appropriate ± prescription for the EQC). The ε-functions involved are obtained numerically using
the iterative integration method with 16000 and 8000 Gaussian distributed points, with cutoffs
∈ [−75, 22] and ∈ [−75, 18] respectively. Since the energy (as a WKB curve parameter) was chosen
too be E = 1/200 and E = 1, the diagonal elements of this table should be 200E = 1 and E = 1,
according to (2.26). For g = 1 and E = 1/200, the non-perturbatively small imaginary part is
inaccessible with our precision for the third and forth levels of the Voros spectrum (the two first
levels are well within our precision though). This is why we are providing a second example with
g = 1/10 and E = 1, for which the non-perturbative effects are stronger.
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Figure 12. Inverse of the EQC (4.3) plotted in the complex θ-plane for g = 1 with E = 1/200 (left)
and g = 1/10 with E = 1 (right) respectively. The color is encoding the argument of this function,
the poles of which are the zeroes of the EQC, thus are selecting the resonant Voros spectrum for
the associated WKB curve parameters. The imaginary part of the zeroes are non-perturbatively
close to ikπ. When k is even, they are related to the same ~, with positive real part and non-
perturbatively suppressed imaginary part. When k is odd, it corresponds to the same ~ than in
the previous case except it has a negative real part. However, one can recover the appropriate
control spectrum in table 2 by changing the dilatation angle appropriately (taking it close to the
real negative axis instead of the real positive axis).

The TBA system for this cubic in the maximal chamber is consisting of 3 TBA equa-
tions, encoded in the intersection matrix

〈(a), (b)〉 =

0 −1 −1
1 0 1
1 −1 0

 (4.7)

through (3.26) — with kernel (3.17) — as can be read from figure 7 (in that case, (a), (b) ∈
S3 with S3 = {(1, 2), (2, 3), (1, 3)}). Explicitly:

ε̃1,2(θ) =
∣∣∣Π(0)

1,2

∣∣∣ exp(θ)− 1
2πi

∫
R

L̃2,3(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(1,2),(2,3)

) − 1
2πi

∫
R

L̃1,3(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(1,2),(1,3)

)
ε̃2,3(θ) =

∣∣∣Π(0)
2,3

∣∣∣ exp(θ) + 1
2πi

∫
R

L̃1,2(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(2,3),(1,2)

) + 1
2πi

∫
R

L̃1,3(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(2,3),(1,3)

)
ε̃1,3(θ) =

∣∣∣Π(0)
1,3

∣∣∣ exp(θ) + 1
2πi

∫
R

L̃1,2(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(1,3),(1,2)

) − 1
2πi

∫
R

L̃2,3(θ̄) dθ̄
sinh

(
θ− θ̄+ iϕ(1,3),(2,3)

)
This TBA system can be read from the d = 3 maximal TBA graph in figure 7.

Once the ε-functions are extracted from the TBA system above, one can compute the
quantum corrections to the periods using (3.78). Our results can be found in the table 3
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and is compared with the WKB periods computed with standard quantum mechanical
techniques described in the appendix C.

Ultimately, we want to find the Voros spectrum for this Hamiltonian. In order to
compute this spectrum, we need to find the θn = exp(−~n) that are solving the exact
quantization condition found using the techniques in the appendix B:

2 cos
(1
~

Πp(θ)
)

+ exp
(
−1
~

Πnp(θ)
)

= 0 (4.8)

where 1
~Πp and 1

~Πnp are respectively the real and imaginary part of the all order resummed
period 1

~B (Π1,2), obtained using (2.33). In that case, it is Borel summable and we can
compute it without using the median resummation. Explicitly,

1
~
B (Π1,2) (θ) = −iε1,2

(
θ + iπ

2

)
= −iε̃1,2

(
θ + iπ

2 + iϕ1,2

)

=
∣∣∣Π(0)

1,2

∣∣∣ exp(θ − iϕ1,2)− i

2π

∫
R

L2,3(θ̄) dθ̄
cosh

(
θ − θ̄ + iϕ1,2

) − i

2π

∫
R

L1,3(θ̄) dθ̄
cosh

(
θ − θ̄

)
where we used ϕ1,2 = −ϕ2,3 and ϕ1,3 = 0. This function (thus the functions Πp and
Πnp) can be computed provided the pseudo-energies ε2,3(θ) and ε1,3(θ). We compute them
numerically solving the TBA system above using the methods in appendix A.

The Voros spectrum of the θn resulting from the solutions of (4.8) can be found in the
table 4, together with the control energies obtained using appendix D, which is providing
a numerical check of the theory developed in the previous sections.

4.2 The quartic potential

Our next example is the double well corresponding to the potential

V (q) = 1
2q

4 − 1
4q

2 (4.9)

which was already analyzed in [15]. When −1/32 < E < 0, we are in the minimal chamber
regime since we have 4 distinct and real turning points (energy below the wells). When the
energy increase beyond E > 0, we are left with only two real turning points, corresponding
to the maximal chamber regime (energy above the wells). We chose E = −1/64 and E = 1
in the examples below.

4.2.1 Symmetric quartic in the minimal chamber
The TBA system for a symmetric quartic potential in the minimal chamber is simply

ε1,2(θ) = |Π1,2| exp(θ)−K ? L2,3(θ)
ε2,3(θ) = |Π2,3| exp(θ)− 2K ? L1,2(θ)

(4.10)

where the convolution with the kernel K is defined in (2.37) and where we used the sym-
metry (3.34). The corresponding (bi)chromatic TBA graph is

1 2

3 4
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γ Π(1)
γ (TBA) Π(2)

γ (TBA)
(1, 2) −0.0254496388280 + 0.0858852570741 i 0.01178213058270− 0.00323811512906 i
(2, 3) −0.0254496388280− 0.0858852570741 i 0.01178213058270 + 0.00323811512906 i
(1, 3) −0.0508992776559 0.0235642611654
γ Π(3)

γ (TBA) Π(4)
γ (TBA)

(1, 2) −0.00697694900501− 0.00887243467638 i −0.0111043012723 + 0.0254040465020 i
(2, 3) −0.00697694900501 + 0.00887243467638 i −0.0111043012723− 0.0254040465020 i
(1, 3) −0.0139538980100 −0.0222086025445
γ Π(1)

γ (Diff. Op.) Π(2)
γ (Diff. Op.)

(1, 2) −0.0254496388279 + 0.0858852570738 i 0.01178213058258− 0.00323811512903 i
(2, 3) −0.0254496388279− 0.0858852570738 i 0.01178213058258 + 0.00323811512903 i
(1, 3) −0.0508992776557 0.0235642611652
γ Π(3)

γ (Diff. Op.) Π(4)
γ (Diff. Op.)

(1, 2) −0.00697694900495− 0.00887243467629 i −0.0111043012761 + 0.0254040465099 i
(2, 3) −0.00697694900495 + 0.00887243467629 i −0.0111043012761− 0.0254040465099 i
(1, 3) −0.0139538980099 −0.0222086025523

Table 3. WKB periods for the PT-cubic potential (4.6), computed using the ε-functions in turn
obtained by solving the appropriate TBA system numerically. We used the iterative integration
method with 7000 Gaussian distributed points and cutoff ∈ [−75, 17] described in appendix A
(TBA). We compare our results with the exact values obtained using the differential operator
method described in appendix C (Diff. Op.).

After solving this TBA system, one can compute the WKB periods using (3.78). Our
results can be found in the table 5 together with standard quantum mechanical results
(described in the appendix C) for comparison.

The relevant EQC for this system is obtained using the techniques in the appendix B
and we find

e−
i
~B(Π2,3)(θ) +

(
1 + e±

i
~B±(Π1,2)(θ)

)2
= 0 (4.11)

The pseudo-energies obtained from the TBA system above are encoding the median resum-
mation Bmed defined in (2.17). Therefore, we still have to extract this quantity from (4.11).
Solving the EQC for B± (Π1,2), one finds

V±1,2 =
(
−1− iσ±

√
V2,3

)±1
(4.12)

where V±1,2 = exp
(
− i

~B± (Π1,2)
)
, V2,3 = exp

(
− i

~B (Π2,3)
)

and the σ± ∈ {1,−1} are
encoding the choice of square root. In fact, one can show that σ± = ±p where p is the
parity. Using (2.17), it follows that

V2
med = exp

(
2 i
~
Bmed(Π1,2)

)
= V+

1,2V
−
1,2 =

1 + iσ+
√
V2,3

1 + iσ−
√
V2,3

(4.13)
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θ1 = −0.579094293628 θ2 = 0.402954599488 θ3 = 0.919905483211
E1 0.9999999999997 0.24129916905739 0.27497315649894− 0.09697464892851i
E2 4.4029261713438 0.9999999999933 0.27497315649894 + 0.09697464892851i
E3 8.7160417651226 2.2443924820007 0.9999999999992
E4 13.479530478517 3.6352172068964 1.7090585088940
E5 18.572772223641 5.1401027548585 2.4860951506208

θ4 = 1.25497406313 θ5 = 1.50614755426
E1 0.1780573134710 + 0.1988974382848i 0.1396122721567 + 0.2382926559611i
E2 0.1780573134710− 0.1988974382848i 0.1396122721567− 0.2382926559611i
E3 0.5551089608920 0.3615952688865
E4 0.999999999999 0.6406923442807
E5 1.500747102596 0.999999999997

Table 4. Voros Spectrum of the θn solving the EQC (4.8), together with the control spectrum of
energies obtained for these values of ~n = exp(−θn) using the complex dilatation method described
in the appendix D. The ε-functions involved are obtained numerically using the iterative integration
method with 7000 Gaussian distributed points and cutoff ∈ [−75, 17]. Since the energy (as a WKB
curve parameter) was chosen too be E = 1, the diagonal elements of this table should be E = 1
according to (2.26). Increasing θ, one can observe the aforementioned coalescing of levels and
spontaneous breaking of the PT symmetry.

γ Π(1)
γ (TBA FD) Π(2)

γ (TBA FD) Π(3)
γ (TBA FD)

(1, 2) 2.730837607957584 246.8391875779934 131821.5581804492
(2, 3) −6.213720604370592 i 1187.382247975386 i −1.323232764659763× 106 i

γ Π(1)
γ (TBA II) Π(2)

γ (TBA II) Π(3)
γ (TBA II)

(1, 2) 2.730837608311631 246.8391875790927 131821.5581790699
(2, 3) −6.213720604930958 i 1187.382247979388 i −1.323232764649346× 106 i

γ Π(1)
γ (Diff. Op.) Π(2)

γ (Diff. Op.) Π(3)
γ (Diff. Op.)

(1, 2) 2.730837608310337 246.8391875787170 131821.5581806956
(2, 3) −6.213720604927630 i 1187.382247977231 i −1.323232764661000× 106 i

Table 5. WKB periods for the symmetric quartic potential (4.9) with E = −1/64 computed using
the ε-functions obtained by solving the appropriate TBA system numerically using the Fourier
discretization method with 214 points and cutoff ∈ [−21, 21] (TBA FD), the iterative integration
method with 14000 Gaussian distributed points and cutoff ∈ [−75, 22] (TBA II) — both described
in appendix A — compared with exact values obtained using the differential operator method
described in appendix C (Diff. Op.).
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thus,

1
~
Bmed(Π1,2) = πk − i

2 log
(

1 + iσ+
√
V2,3

1 + iσ−
√
V2,3

)
= πk + p arctan

(√
V2,3

)
(4.14)

with k ∈ Z and p ∈ {−1, 1} the parity, such that

cos
(1
~
Bmed(Π1,2)

)
= (−1)k√

1 + V2,3
(4.15)

The all order Bohr-Sommerfeld quantization approximation dictates the perturbative be-
havior and fix the parity of k. Indeed, when we set V2,3 → 0 (effectively neglecting expo-
nentially suppressed terms), one finds

lim
V2,3→0

cos
(1
~
Bmed(Π1,2)

)
= (−1)k = cos (π(2n+ 1)) = −1 (4.16)

(because n ∈ N) and k must be an odd number. Then, (4.15) yields the Zinn-Justin’s EQC:

cos
(1
~
Bmed(Π1,2)

)
+ 1√

1 + exp
(
− i

~B (Π2,3)
) = 0 (4.17)

where the all order resummed periods involved in the EQC above are obtained using (2.33):

1
~
Bmed (Π1,2) (θ) =− i

2 lim
δ→0

(
ε1,2

(
θ + iπ

2 + iδ

)
+ ε1,2

(
θ + iπ

2 − iδ
))

i

~
B (Π2,3) (θ) = ε2,3 (θ)

(4.18)

Using the TBA system (4.10), we can rewrite the median resummation as

1
~
Bmed (Π1,2) (θ) = |Π1,2| exp(θ) + 1

2πP

∫
R

L2,3(θ̄)dθ̄
sinh

(
θ − θ̄

)
 (4.19)

where P (
∫
R) = limδ→0

(∫−δ
−∞+

∫∞
δ

)
is the Cauchy principal value.

In conclusion, the rusummed WKB periods can be computed provided the ε-functions,
which can be done numerically as explained in appendix A. The Voros spectrum of the
quantum mechanical system of interest can then be extracted form the all-orders WKB
periods by solving (4.17). This is what has been done numerically in table 6, and we found
a precise numerical check — by using a standard technique in QM described in appendix D
together with (2.26) — of the methods described in the present paper.

4.2.2 Symmetric quartic in the maximal chamber

We already figured out the explicit TBA system associated to a symmetric quartic potential
in the maximal chamber with (3.35) (where the tildes have been omitted). Alternatively,
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θ1 = 3.3247808343910237030 θ2 = 3.4138911118682158018
E1 0.9999999999998636 0.936971570538917
E2 1.0977171436197144 0.999999999999831
E3 2.4436026336522710 2.272417879374312
E4 3.3059489687350466 2.964197286216196

θ3 = 4.5039585292309019509 θ4 = 4.5042465001441240264
E1 0.34580527442056 0.34570823839933
E2 0.34580730798057 0.34571026291026
E3 0.99999999999999 0.99973326612985
E4 1.00026781752251 1.00000000000000

Table 6. Voros Spectrum of the θn solving the EQC (4.17), together with the — normalized to
one — control spectrum of energies obtained for these values of ~n = exp(−θn) using the complex
dilatation method described in the appendix D on the shifted potential q4/2 − q2/4 + 1/32. The
ε-functions involved are obtained numerically using the iterative integration method with 12000
Gaussian distributed points and cutoff ∈ [−75, 22]. Since the energy (as a WKB curve parameter)
was chosen too be E = −1/64, the shifted potential has an energy E = 1/64 and the diagonal
elements of this table should be 64E = 1 according to (2.26). We can observe that the purely
non-perturbative splitting of levels is correctly reproduced.

one could look at the following TBA graph with four colors,

1

2

3

4

where the matching colors are parallel lines, as it is typically the case because of the
symmetry (3.34).

The quantum corrections to the periods we found using this TBA system together
with (3.78) are found in table 7, and is compared with values obtained using standard
quantum mechanical computations presented in appendix C.

As usual, the starting point is the EQC for the lateral resummed WKB periods. Using
the theory developed in the appendix B, one can find

e
i

2~B±(Π1,4)(θ) + e−
i

2~B±(Π1,4)(θ) + e±
i

2~B±(Π1,4)(θ)+ i
~B(Π2,3)(θ) + 2e

i
2~B(Π2,3)(θ) = 0 (4.20)

where the B± are the lateral Borel resummations defined in (2.16) (the sign ± is encoding
the choice of lateral resummation). We denote V±1,4 = e

i
2~B±(Π1,4) and V2,3 = e

i
2~B(Π2,3) such
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γ Π(1)
γ (TBA) Π(2)

γ (TBA)
(1, 2) −0.0819566304122− 0.0927891470157 i 0.00922113508254− 0.00383952256644 i
(2, 3) 0.185578294031 i 0.00767904513289 i
(1, 3) −0.0819566304122 + 0.0927891470157 i 0.00922113508254 + 0.00383952256644 i
(1, 4) −0.163913260824 0.0184422701651
γ Π(3)

γ (TBA) Π(4)
γ (TBA)

(1, 2) 0.00011483490925 + 0.00927329580341 i −0.0189708755177− 0.0008042208294 i
(2, 3) −0.0185465916068 i 0.00160844165886 i
(1, 3) 0.00011483490925− 0.00927329580341 i −0.0189708755177 + 0.0008042208294 i
(1, 4) 0.000229669818505 −0.0379417510353

γ Π(1)
γ (TBA Diff. Op.) Π(2)

γ (TBA Diff. Op.)
(1, 2) −0.0819566304085− 0.0927891470118 i 0.00922113508228− 0.00383952256633 i
(2, 3) 0.185578294024 i 0.00767904513265 i
(1, 3) −0.0819566304085 + 0.0927891470118 i 0.00922113508228 + 0.00383952256633 i
(1, 4) −0.163913260817 0.0184422701646
γ Π(3)

γ (TBA Diff. Op.) Π(4)
γ (TBA Diff. Op.)

(1, 2) 0.00011483490920 + 0.00927329580314 i −0.0189708755226− 0.0008042208295 i
(2, 3) −0.0185465916063 i 0.00160844165909 i
(1, 3) 0.00011483490920− 0.00927329580314 i −0.0189708755226 + 0.0008042208295I i
(1, 4) 0.000229669818406 −0.0379417510451

Table 7. WKB periods for the symmetric quartic potential (4.9) with E = 1 computed using
the ε-functions obtained by solving the appropriate TBA system numerically using the iterative
integration method with 6000 Gaussian distributed points and cutoff ∈ [−75, 18] (TBA) described
in appendix A and compared with the exact digits obtained using the differential operator method
described in appendix C (Diff. Op.).

that the EQC takes the compact form

V±1,4 + (V±1,4)−1 + V2
2,3(V±1,4)±1 + 2V2,3 = 0 (4.21)

and resolves to
V±1,4 = (−σ±i− V2,3)∓1 (4.22)

Where σ± ∈ {1,−1} encodes the choice of the square root. This allows us to extract V2
med:

V2
med = exp

(
i

~
Bmed(Π1,4)

)
= (V+

1,4V
−
1,4)2 =

(
σ−i+ V2,3
σ+i+ V2,3

)2

(4.23)

thus, taking into account the perturbative behaviour at large V2,3,

1
~
Bmed(Π1,4) = πk − i log

(
σ−i+ V2,3
σ+i+ V2,3

)
= π(2n+ 1) + 2σ arctan

(
V−1

2,3

)
(4.24)
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where σ ∈ {1,−1} is related to the parity of the state and n ∈ N. Applying f(x) = cos(x/2)
on each side yields

cos
( 1

2~Bmed(Π1,4)
)

= −σ(−1)n√
1 + V2

2,3
(4.25)

Finally, since σ(−1)n = p2 where p is the parity, one can write the following EQC:

cos
( 1

2~Bmed(Π1,4)
)

+ 1√
1 + e

i
~B(Π2,3)

= 0 (4.26)

where the all order resummed periods involved in the EQC above are obtained using (2.33)
on the TBA system (3.35) and are given as

1
~
Bmed (Π1,4) (θ) = |Π1,4| exp(θ)− i

π

∫
R

L1,2(θ̄)dθ̄
cosh

(
θ − θ̄ + iϕ1,2

)
+ i

π

∫
R

L1,3(θ̄)dθ̄
cosh

(
θ − θ̄ − iϕ1,2

) − 1
π
P

∫
R

L2,3(θ̄)dθ̄
sinh

(
θ − θ̄

)


i

~
B (Π2,3) (θ) = ε2,3 (θ)

(4.27)

where we used ϕ1,2 = −ϕ1,3, ϕ1,4 = 0 (which implies that the shifted functions along the
cycle (1, 4) are equal to the unshifted ones), the identity

Kreg
(a),(b)(θ) = − i2 lim

δ→0

(
K(a),(b)

(
θ+ i

(
ϕ(a),(b) + π

2 + δ

))
+K(a),(b)

(
θ+ i

(
ϕ(a),(b) + π

2 − δ
)))

= i

2π
1

cosh
(
θ+ iϕ(a),(b)

)
(4.28)

for the two first kernels of (3.35) and (4.19) for the last term of (3.35).
The Voros spectrum obtained solving (4.26) with the ε-functions (4.27) can be found in

table 8 and provides a high precision check of the theory developed in the previous sections.

4.3 The quintic potential

For the quintic example, we purposefully choose a generic potential with no simplifying
symmetries, i.e.

V (q) = iq5 + 1
2q

2 − 1
10q , E = 1 (4.29)

in order to check if our TBA machinery is accommodating for this difficult example. In
this case we are in the maximal chamber and there are 10 TBA equations, encoded in the
TBA graph or equivalently the intersection matrix of figure 7. The results for the first
four quantum correction to the periods can be found in the table 9 and compared to the
exact digits in table 10. We did not compute the EQC and Voros spectrum for this highly
unphysical example.
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θ1 = −0.57225864053120 θ2 = 0.35356561525223
E1 0.9999999999938 0.25462266336339
E2 3.7371023450083 0.9999999999995
E3 7.5336347645547 2.0748925796367
E4 11.911068138176 3.3201614161345

θ3 = 0.86207899679463 θ4 = 1.1962025160788
E1 0.11204126359296 0.061626521076274
E2 0.46717617140001 0.27594762108696
E3 0.9999999999997 0.61040199466660
E4 1.6193800753561 0.9999999999999

Table 8. Voros Spectrum of the θn solving the EQC (4.26), together with the control spectrum of
energies obtained for these values of ~n = exp(−θn) using the complex dilatation method described
in the appendix D. The ε-functions involved are obtained numerically using the iterative integration
method with 6000 Gaussian distributed points and cutoff ∈ [−75, 18]. Since the energy (as a WKB
curve parameter) was chosen too be E = 1, the diagonal elements of this table should be E = 1
according to (2.26).

4.4 The sextic potential

For the next example, we will be looking at the triple well potential

V (q) = q2 − 2q4 + q6 (4.30)

For 0 < E < 4/27, we are in the minimal chamber regime since we have 6 real turning
points (energy below the wells). When E > 4/27, we have two real turning points (the
other four are complex and responsible for complex instantons) and we are in the maximal
chamber (energy above the wells). We chose E = 1/16 and E = 1 in the examples below.

4.4.1 Symmetric sextixc in the minimal chamber

The (tri)chromatic TBA graph encoding the TBA system for the symmetric sextic poten-
tial is

1 2

3 4

5 6

furthermore, because of our choice of potential, we can add the additional symmetry
2ε1,2 = ε3,4 (red = 2 black in the TBA graph) such that we only have two independent
ε-functions to compute.

As in the previous examples, one can use (3.78) and compute the WKB periods. We
found they are matching with the exact results, found for the sextic potential in C. We
compared the quantum corrections to the periods to the order O(~12) and the results are
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γ Π(1)
γ Π(2)

γ

(1, 2) −0.063331399371 + 0.158332153661 i 0.00263596614100 + 0.00300064152677 i
(2, 3) −0.114195904636− 0.247868478439 i −0.0378946345086− 0.0190247965603 i
(3, 4) −0.108813639853 + 0.253065980340 i −0.0283897195873 + 0.0210123204610 i
(4, 5) −0.062412272993− 0.161508879916 i 0.00883111672216 + 0.00173626896725 i
(1, 3) −0.177527304007− 0.089536324778 i −0.0352586683676− 0.0160241550335 i
(2, 4) −0.223009544489 + 0.005197501901 i −0.0662843540959 + 0.0019875239008 i
(3, 5) −0.171225912845 + 0.091557100425 i −0.0195586028651 + 0.0227485894283 i
(1, 4) −0.286340943860 + 0.163529655562 i −0.0636483879549 + 0.0049881654275 i
(2, 5) −0.285421817482− 0.156311378015 i −0.0574532373738 + 0.0037237928680 i
(1, 5) −0.348753216853 + 0.002020775646 i −0.0548172712328 + 0.0067244343948 i
γ Π(3)

γ Π(4)
γ

(1, 2) 0.0215449471635 + 0.0061879789899 i 0.0001022445395− 0.0779436678457 i
(2, 3) −0.1188590024120− 0.0485822988532 i −0.624697423577− 0.326466722045 i
(3, 4) −0.0323241469577 + 0.0404502847208 i −0.089863922798 + 0.137565588891 i
(4, 5) 0.00984641379283 + 0.00085651279493 i −0.0199211857295 + 0.0491073059654 i
(1, 3) −0.0973140552485− 0.0423943198633 i −0.624595179038− 0.404410389891 i
(2, 4) −0.151183149370− 0.008132014132 i −0.714561346376− 0.188901133154 i
(3, 5) −0.0224777331649 + 0.0413067975157 i −0.109785108528 + 0.186672894857 i
(1, 4) −0.1296382022063− 0.0019440351425 i −0.714459101836− 0.266844800999 i
(2, 5) −0.141336735577− 0.007275501337 i −0.734482532105− 0.139793827188 i
(1, 5) −0.1197917884134− 0.0010875223476 i −0.734380287566− 0.217737495034 i

Table 9. WKB periods for the quintic potential (4.29) computed using the ε-functions obtained by
solving the appropriate TBA system numerically using the iterative integration method with 3000
Gaussian distributed points and cutoff ∈ [−75, 15].

matching within approximately 9 digits when using the iterative integration method with
12000 Gaussian distributed points and cutoff ∈ [−75, 19]. In order to not overcharge the
present paper and because we already shown similar results, we do not provide the table
of the WKB periods, the ultimate goal being the Voros spectrum.

As in the quartic case, the periods corresponding to cycles along the classically allowed
regions i.e. (1, 2) and (3, 4), are not Borel summable and must therefore be resummed using
the same procedure as before. Using the results of the appendix B, the EQC in terms of
the lateral resummed periods is(

1 + V±1
p

)2 (
1 + V±2

p

)
+ 2

(
1 + V±1

p

)
Vnp + V2

np = 0 (4.31)

where V±p = V±1,2 = V±5,6, (V±p )2 = V3,4, Vnp = V2,3 = V4,5 and V(±)
a,b = e

i
~B

(±)(Πa,b).
Proceeding as usual, i.e. solving for V±p then rewriting an EQC for the median-resummed

– 55 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

γ Π(1)
γ Π(2)

γ

(1, 2) −0.063331399367 + 0.158332153648 i 0.00263596614060 + 0.00300064152624 i
(2, 3) −0.114195904626− 0.247868478417 i −0.0378946345010− 0.0190247965564 i
(3, 4) −0.108813639847 + 0.253065980320 i −0.0283897195813 + 0.0210123204569 i
(4, 5) −0.062412272985− 0.161508879901 i 0.00883111672023 + 0.00173626896691 i
(1, 3) −0.177527303993− 0.089536324769 i −0.0352586683604− 0.0160241550301 i
(2, 4) −0.223009544473 + 0.005197501903 i −0.0662843540822 + 0.0019875239005 i
(3, 5) −0.171225912833 + 0.091557100418 i −0.0195586028611 + 0.0227485894238 i
(1, 4) −0.286340943840 + 0.163529655551 i −0.0636483879416 + 0.0049881654267 i
(2, 5) −0.285421817458− 0.156311377999 i −0.0574532373620 + 0.0037237928674 i
(1, 5) −0.348753216825 + 0.002020775650 i −0.0548172712214 + 0.0067244343936 i
γ Π(3)

γ Π(4)
γ

(1, 2) 0.0215449471560 + 0.0061879789883 i 0.0001022445458− 0.0779436677730 i
(2, 3) −0.1188590023681− 0.0485822988357 i −0.624697423623− 0.326466722149 i
(3, 4) −0.0323241469479 + 0.0404502847087 i −0.089863922924 + 0.137565589266 i
(4, 5) 0.00984641378954 + 0.00085651279437 i −0.0199211857393 + 0.0491073059514 i
(1, 3) −0.0973140552121− 0.0423943198474 i −0.624595179077− 0.404410389922 i
(2, 4) −0.151183149316− 0.008132014127 i −0.714561346547− 0.188901132883 i
(3, 5) −0.0224777331583 + 0.0413067975031 i −0.109785108663 + 0.186672895218 i
(1, 4) −0.1296382021600− 0.0019440351387 i −0.714459102001− 0.266844800656 i
(2, 5) −0.141336735526− 0.007275501333 i −0.734482532286− 0.139793826931 i
(1, 5) −0.1197917883704− 0.0010875223443 i −0.734380287740− 0.217737494704 i

Table 10. WKB periods for the quintic potential (4.29) computed using the differential operator
method described in C. All the presented digits are exact.

period, one finds the “Zinn-Justin”-type EQC:cos
(1
~
Bmed(Π1,2)

)
+ 1√

1 +
(
e
i
~B(Π2,3)

(√
1 + 2e−

i
~B(Π2,3) − 1

)
− 1

)2


cos

(1
~
Bmed(Π1,2)

)
− e−

i
~B(Π2,3)√

2
(
1 + e−

i
~B(Π2,3)

)(
1 + e−

i
~B(Π2,3) +

√
1 + 2e−

i
~B(Π2,3)

)
 = 0

(4.32)

Where the zeroes of the two factors are selecting the levels localized in the outer or in-
ner wells. As in our previous examples, we can relate the Borel resummed periods to
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θ1 = 2.2550882179631 θ2 = 3.0440517343238
E1 0.99999999998162 0.50911268535197
E2 1.8538029210438 0.99999999999583
E3 2.0241786738382 1.0001945622010
E4 3.0907877329610 1.4538807749127

θ3 = 3.0442659923975 θ4 = 3.4612023941484
E1 0.50901079803411 0.34265110005140
E2 0.99980601394390 0.67835953623940
E3 0.99999999999504 0.67835966437968
E4 1.4536124515081 0.99999999999840

Table 11. Voros Spectrum of the θn solving the EQC (4.32), together with the — normalized
to one — control spectrum of energies obtained for these values of ~n = exp(−θn) using the
method described in the appendix D on the potential (4.30). The ε-functions involved are obtained
numerically using the iterative integration method with 12000 Gaussian distributed points and
cutoff ∈ [−75, 19]. Since the energy (as a WKB curve parameter) was chosen too be E = 1/16, the
diagonal elements of this table should be 16E = 1 according to (2.26). One can observe the non-
perturbative spliting of the levels 2 and 3 mod 4, corresponding to the energies of states localized
in the outer wells, as one can observe from the degeneracies of the EQC (4.32) when neglecting the
non-perturbative contribution, or from the analysis in [36, 37].

our ε-functions using the Delabaere-Pham formula (2.33), which leads to relations of the
type (4.18).

Solving the EQC (4.32) numerically yields the Voros spectrum presented in table 11,
together with the energies computed with the associated value of ~ using a standard tech-
nique in QM.

4.4.2 Symmetric sextic in the maximal chamber
The TBA system for the symmetric sextic in the maximal chamber can be read from the
figure 8.

As usual, one can use (3.78) and compute the WKB periods. For the same reasons as
in our precedent examples, we will not provide such big tables in the present paper. The
quantum corrections obtained using the TBA procedure are reproducing the exact WKB
periods of appendix C to approximately 10 digits of precision when using the iterative
integration method with 4000 Gaussian distributed points and cutoff ∈ [−75, 16] and up
to order O(~12).

As in the maximal quartic case, the period Π1,6 is not Borel summable. We must
therefore follow the same procedure we went through before. Using the results of the
appendix B, one can find the EQC for the sextic potential in the maximal chamber as a
function of the lateral resummed periods. For compactness, we express the EQC in term
of the Voros multiplier-like quantities V±p and Vnp:(

V±1
p + Vnp

)2 (
V±2

p + V2
np

)
+ 2

(
V±1

p + Vnp
)
Vnp + 1 = 0 (4.33)

– 57 –



J
H
E
P
0
7
(
2
0
2
1
)
1
7
1

where V±p = (V±1,2)
1
4 = (V±5,6)

1
4 = (V±3,4)

1
4 , Vnp = V

1
2
2,3 = V

1
2
4,5 and V(±)

a,b = e
i
~B

(±)(Πa,b).
Proceeding as usual, i.e. solving for V±p then rewriting an EQC for the median-resummed
period, one finds the “Zinn-Justin”-type EQC for the sextic potential in the maximal
chamber:

cos
(1
~
Bmed(Π1,6)

)
+ 1− 2e−

i
~B(Π2,3) − e−

2i
~ B(Π2,3)(

1 + e−
i
~B(Π2,3)

)2 = 0 (4.34)

One can relate the resummed periods in the EQC (4.34) and our ε-functions similarly to the
quartic potential in the maximal chamber case, except it is involving a more complicated
TBA system. Explicitly, we get

1
~
Bmed (Π1,4) (θ) = |Π1,6| exp(θ)

− i

π

∫
R

L1,2(θ̄) + L3,4(θ̄)
cosh

(
θ − θ̄ − iϕ1,2

)dθ̄ + i

π

∫
R

L1,3(θ̄) + L2,5(θ̄)
cosh

(
θ − θ̄ + iϕ1,2

)dθ̄
− i

π

∫
R

L1,4(θ̄)dθ̄
cosh

(
θ − θ̄ − iϕ1,4

) + i

π

∫
R

L1,5(θ̄)dθ̄
cosh

(
θ − θ̄ + iϕ1,4

)
− 2
π
P

∫
R

L2,3(θ̄)dθ̄
sinh

(
θ − θ̄

)


i

~
B (Π2,3) (θ) = ε2,3 (θ)

(4.35)

where we used ϕ1,2 = ϕ3,4 = −ϕ1,3 = −ϕ2,5, ϕ1,4 = −ϕ1,5, ϕ2,4 = ϕ1,6 = 0. Solving the
EQC (4.34) numerically yields the Voros spectrum presented in table 12.

5 Conclusion and outlook

After reviewing briefly the theory underlying the present work in section 2, we presented in
section 3.5 a very useful diagrammatic method that is allowing us to analytically continue
a TBA system into a more complicated one (wall-crossing), inspired by Toledo’s thesis [27]
in the context of minimal surfaces in AdS. In the next couple of sections, we used this
diagramatic method in order to obtain some general results, especially for maximal cham-
ber configurations for which we cannot wall-cross anymore. Indeed, in this section, we
uncovered the general structure of TBA systems in the maximal chamber and explicitly
computed the associated intersection matrix (encoding the TBA equations) for arbitrary
degree polynomial potentials. In section 3.6 and 3.7, we simplified the general TBA system
using the symmetries of the potential. In particular, in 3.7, we are putting an emphasis
on pure polynomial potential of the form V (q) = aqd, preparing for the section 3.8, where
we are giving some very strong arguments indicating that Dorey and Tateo TBA equa-
tions, appearing in the seminal paper [12], are indeed a special case of the TBA equations
in [15]. In section 4, we applied the theory developed previously to interesting Quantum
Mechanical problems (from the cubic oscillator to the sextic triple well). We were able
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θ1 = −0.44704899967438 θ2 = 0.28554431921498
E1 0.99999999996147 0.30434860059971
E2 3.7248850413244 0.99999999998805
E3 8.0432344259844 2.0812165495837
E4 13.782680825803 3.6165604373697

θ3 = 0.83651755572084 θ4 = 1.1554539882629
E1 0.17975871852441 0.13025425612694
E2 0.51313989900212 0.32321423269094
E3 0.99999999999801 0.57486198218456
E4 1.7447971706055 0.99999999999894

Table 12. Voros Spectrum of the θn solving the EQC (4.34), together with the control spectrum of
energies obtained for these values of ~n = exp(−θn) using the complex dilatation method described
in the appendix D on the potential (4.30). The ε-functions involved are obtained numerically using
the iterative integration method with 4000 Gaussian distributed points and cutoff ∈ [−75, 16]. Since
the energy (as a WKB curve parameter) was chosen too be E = 1, the diagonal elements of this
table should be E = 1 according to (2.26).

to verify numerically it was matching with alternative technique to a great accuracy for
every examples, demonstrating that the TBA equations are not only a powerful and exact
analytic tool, but are also providing useful computational techniques. We derived the exact
quantification conditions in term of the (lateral then, when imposed by the lack of Borel
summability, median) Borel resummed periods, and together with the TBA results, we
were able to solve very subtle spectral problems.

Of course, the techniques we presented in this paper can be used in the context of
Quantum Mechanics in order to solve a large class of spectral problems. But, as a side
effect, they can also be useful in holography. Indeed, one can reverse the conformal limit
in figure 1 by substituting exp(θ) 7→ 2 cosh(θ) in the mass/period term, hence obtaining
TBA equations of the form

ε̃(a)(θ) = 2
∣∣∣Z(a)

∣∣∣ cosh(θ) +
∑

(b)∈Sd

K(a),(b) ? L̃(b)(θ) (5.1)

which is the TBA system governing the area of minimal surfaces in AdS3 delimited by a
polygonal closed contour (with 2d+ 4 sides) as described in [22, 23, 26, 27].

Concerning the unresolved issues, there is still at least a small one in this paper. We
found the exact TBA system for pure polynomial potentials of arbitrary degree, and it
should in principle be equivalent to the Dorey and Tateo TBA system in [12]. We made
a lot of progress in order to make that equivalence clear by boiling it down to a pure
mathematical identity. We provided strong evidence that the conjecture of equivalence
was holding, by systematically testing it up to large degrees; but there is still a lack of a
definitive proof that the identity K[k],[l];d(θ) = KDT

[k],[l];d(θ) holds in order to close this matter
definitively.
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An obvious amelioration we could bring to the method described in this paper would be
to extend its validity outside polynomial potentials. The original ODE/IM correspondence
in [12, 14] was already accommodating for an angular momentum term ∝ 1/q2 for example.
Accommodating this particular centrifugal term in the context of the quantum mechanical
generalized ODE/IM correspondence was done recently in [38]. In [31], they are using
the integral equation in [16] (that can be interpreted as a generalization of the ODE/IM
correspondence) in order to accomodate for the Mathieu (and modified Mathieu) equation
(i.e. with V (q) ∝ cos(q) and V (q) ∝ cosh(q) respectively) in the context of abelianization.
A related analysis was carried out in [39], where they are explicitly deriving TBA equa-
tions for the modified Mathieu operator, notably in the resurgent framework presented in
this paper. Each time we are extending the generalized ODE/IM correspondence to even
more complicated potentials, we are getting closer to the exact resolution of the general
Schrödinger equation (1.1).
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A Solving the TBA equations numerically

In this section, we will discuss the two main methods we used in order to solve the TBA
integral equations numerically and extract the ε-functions. The basic idea in both of the
methods is to start from the asymptotic exponential behavior at θ →∞,

ε(0)
a (θ) = |Πa| exp(θ) (A.1)

and integrate the functions iteratively according to the recurrence relation

ε(n)
a (θ) = |Πa| exp(θ) +

∑
b

Ka,b ? L
(n−1)
b (θ) (A.2)

where L
(n)
a (θ) = log

(
1 + exp

(
−ε(n)

a (θ)
))

. For d ≤ 4, i.e. potentials defining a WKB
curve (2.9) the Riemann surface of which has genus 0 or 1, the ε(n)-functions are converging
to the exact ε-functions in the n→∞ limit. For genus > 1 however, (A.2) is converging to
2 different values according to the parity of n. Thus, one can use the modified recurrence
relation

ε(n)
a (θ) = 1

2

(
ε(n−1)
a (θ) + |Πa| exp(θ) +

∑
b

Ka,b ? L
(n−1)
b (θ)

)
(A.3)

in order to mix even and odd parity and make the ε(n)-functions converge to the appropriate
ε-functions in the n→∞ limit. Note that (A.3) is converging more slowly than (A.2).
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A.1 Fourier discretization

A convenient way to compute convolutions numerically is to use the discrete Fourier trans-
form as in [15]. For this purpose, we discretize our functions and kernels into finite di-
mensional vectors in an interval (defined by a cutoff) then Fourier transform the resulting
vectors, knowing that convolutions are transforming into products under Fourier transfor-
mation according to the convolution theorem, i.e.

F(f ? g) = F(f) · F(g) (A.4)

We get back the discretized version of the convolution function by inverse Fourier transform.
In the limit where the number of points and cutoff go to infinity, we recover the exact
functions.

However, this method has some shortcomings. Indeed, the discrete convolutions are
forced to be periodic functions, which is introducing errors around the cutoff. Also, in our
implementation of the algorithm, we need a power of 2 number of uniformly distributed
sampling points to get the correct phase. There surely are some fancy ways to circumvent
these problems. For example, it is possible to fix the behavior at θ → −∞ by adding to
the TBA equation of the form

ε(θ) = f0(θ)− 1
2π

∫
R

L0(θ̄)dθ̄
cosh

(
θ̄ − θ

) (A.5)

the (by construction) null term

0 = f1(θ)− 1
2π

∫
R

L1(θ̄)dθ̄
cosh

(
θ̄ − θ

) (A.6)

Solving (A.6) yields the condition L1(θ) = (f1(θ + iπ/2) + f1(θ − iπ/2))/2. Furthermore,
we want to impose the asymptotic behavior f0(θ) + f1(θ) = ε? at large negative θ, where
ε? is the know value of the ε-function at θ → −∞,17 and f0(θ) + f1(θ) = |Π| exp(θ) at
large positive θ. Since f0(θ) = |Π| exp(θ) already, we must have f1(θ → ∞) → 0 and
f1(θ → −∞) → ε?. In other words, we can chose any “step”-like function we please for
f1 as long as it is going to 0 at positive infinity and ε? at negative infinity. For example,
if we chose the sigmoid function f1(θ) = ε?/(1 + c exp(θ)), it implies that the appropriate
kernel is L1(θ) = 2ε?/(1 + c2 exp(2θ)).

A.2 Numeric integration and interpolation

Another way to solve the TBA equations numerically and efficiently is to sample the convo-
lution (K ?L)(θ) at some discrete set of points by integrating numerically, then interpolate
the resulting values in order to build the ε-function. This can be easily implemented in
Mathematica using the NIntegrate and Interpolation build-in functions. Just like the

17It is easy to show that the Y -functions are obeying a functional equation at large negative θ which
solves to Y ?a = sin(πa/(d+2)) sin(π(a+2)/(d+2))

sin2(π/(d+2)) , and ε?a = − log(Y ?a ), where d is the degree of the polynomial.
See [15, 23].
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previous example, we can introduce a cutoff and a number of points, and the numerical
ε-function are converging to the exact ones in the large cutoff and number of points limit.
See for [23, 40] for examples. In this paper, we used similar code, but with two little twists.
First, because of the exponential behavior of the ε-function at large θ: it is very time
consuming to extend the cutoff in the positive theta direction. In order to optimize the
algorithm, it is then interesting to have two different cutoff, in the negative and positive
direction. Extending the cutoff in the negative direction does not cost too much additional
time. Finally, we can distribute our sample points anyway we want with this method.
Since the extremities (near the cutoff) are contributing less than the center (near θ = 0),
we decided to distribute our points according to a Gaussian distribution. In the main text,
we will refer to this method as the Iterative Integration or II method.

A.3 ε-functions in the complex plane

Using the methods mentioned above, one gets a function interpolated on the real line. For
some computations, it is useful to have access to complex arguments, analytically continuing
these data in the full complex plane. A brute force solution would be to interpolate the
ε-functions on a grid, but this is very costly. Fortunately, it is unecessary and quite easy
to analytically continue these data in the complex θ plane by simply using the associated
TBA equation and integrate at shifted kernels. This is in fact what we are doing in the
main text when we are evaluating ε(θ + iπ/2) when we want to relate the ε-functions and
the resummed WKB periods. Explicitly,

ε(a)(θR + iθI) =
∣∣∣Π(a)

∣∣∣ exp(θR + iθI) +
∑
(b)

∫
R
K(a),(b)(θR + iθI)L(b)(θ ∈ R)dθ (A.7)

such that we only need the knowledge of the function L(b) = log
(
1 + exp

(
−ε(b)

))
on the

real line, at the cost of an integration. For some values of θI , one can encounter singularities.
It is possible to avoid them using the Cauchy principal value.

The typical form of these analytically continued ε-functions are drawn in figure 13.

B Deriving the exact quantization conditions

Using connection formulae — arising from the necessity of having recessive or dominant
WKB functions in different regions of the complex q-plane, together with the need to
connect these regions in a coherent way — it is possible to derive powerful and exact
quantization conditions. One viable road for deriving EQC is to use Voros’ matrix approach,
known as the Knoll-Schaeffer connection method, later refined by Delabaere, Dillinger and
Pham [6, 9–11], looking at the Stokes lines (i.e. the codimension one loci on the complex
q-plane defined by Re(p) = 0) in order to find the EQC of interest. However, in this paper,
we used an equivalent method: the Voros-Silverstone connection formula described in [28],
which we are going to summarize (with much less detail) in the following section.
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Figure 13. Typical form of the ε-functions in the complex plane.

B.1 The Voros-Silverstone connection formula

Near a turning point qtp (defined by p(qtp) = 0 or equivalently V (qtp) = E), the potential
appearing in the Schrödinger equation can be approximated as

V (q)− E = −k(q − qtp) (B.1)

and qtp is a first order turning point if k 6= 0, which will be assuming to be the case in
the following. Also, we will assume that the classicaly allowed region (where V (q) < E) is
to the right of the turning point (i.e. q > qtp) when the classically forbidden region is to
the left, such that k is positive. Locally, the Schrödinger equation is corresponding to a
linear potential problem. This problem has an exact solution: the wavefunction is a linear
combination of the Airy functions

ψ(q) = ãAi
(
−~−

2
3φ(q)

)
+ b̃Bi

(
−~−

2
3φ(q)

)
(B.2)

where φ(q) = p(q)2 = 3√2mk(q − qtp). Of course, since φ(q) is linear, we can also write

ψ(q) = 1√
φ′(q)

(
aAi

(
−~−

2
3φ(q)

)
+ bBi

(
−~−

2
3φ(q)

))
(B.3)

in order to prepare the wavefunction for the following. Also, doing so, we are taking this
problem in the more general context of the uniform WKB method, where we use the ansatz

ψ(q) = 1√
φ′(q)

f (φ(q)) (B.4)
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with f and φ are constrained by a second order differential equation and a non-linear
differential equation respectively instead of the standard and less flexible WKB ansatz (2.8).
See [28] for the detail. In the classically allowed region, E > V (q) such that φ(q) > 0 and
the argument of the Airy functions in (B.3) is negative. The asymptotic expansion of (B.3)
is in that case, up to an overall constant,

ψ(q) ∼ 1√
φ′(q)φ(q)

1
4

(
(b− ia)e

iπ
4 β

( 2i
3~φ

3
2 (q)

)
+ (b+ ia)e−

iπ
4 β

(
− 2i

3~φ
3
2 (q)

))
(B.5)

where

β(x) = ex
∑
k≥0

ckx
−k and ck = 1

2π
Γ
(
k + 1

6

)
Γ
(
k + 5

6

)
2kk!

as shown in [28]. We can proceed mutatis mutandis in the classically forbidden region,
where E < V (q) and the asymptotic expansion reads

ψ(q) ∼ 1√
φ′(q)(−φ(q))

1
4

(
2bβ

( 2
3~(−φ

3
2 (q))

)
+ (a± ib)β

(
− 2

3~(−φ
3
2 (q))

))
(B.6)

where the choice of ± is corresponding to the choice of lateral Borel resummation as ex-
plained in [28]. Noticing that

1√
φ′(q)φ(q)

1
4
β

(
± 2i

3~φ
3
2 (q)

)
= 1√

P (q)
exp

(
± i
~

∫ q

qtp
P (q̄)dq̄

)
= 1√

P (q)
exp

(
± i
~

Πqtp,q

)
with P (q) defined in the WKB context presented in the section 2.1, defined as a formal
power series in (2.6), one can restate the two previous asymptotic expansions in a WKB
friendly manner. In the classically allowed region,

ψ(q) ∼ 1√
P (q)

(
(b− ia)e

i
~Πqtp,q+

iπ
4 + (b+ ia)e−

i
~Πqtp,q−

iπ
4
)

(B.7)

In the classically forbidden region, one has to be careful with the choice of signs and branch
cut implementation. The resulting asymptotic expansion is

ψ(q) ∼ 1√
P̃ (q)

(
2b e

1
~ Π̃q,qtp + (a± ib)e−

1
~ Π̃q,qtp

)
(B.8)

where P̃ (q) is obtained from P (q) by a multiplication of ±i (it is of the form P̃ (q) =
p̃(q) + O(~2) with p̃(q) =

√
2m(V (q)− E) when the standard momentum is p(q) =√

2m(E − V (q)) as in the main text) and Π̃a,b =
∫ b
a P̃ (q)dq. Putting (B.7) and (B.8)

together, we get the Voros-Silverstone connection formula

1√
P (q)

(
(b− ia)e

i
~Πqtp,q+

iπ
4 + (b+ ia)e−

i
~Πqtp,q−

iπ
4
)

q>qtp←−−− ψ(q) q<qtp−−−→
1√
P̃ (q)

(
2b e

1
~ Π̃q,qtp + (a± ib)e−

1
~ Π̃q,qtp

) (B.9)
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that is allowing us to connect the wavefunction before and after the crossing of a turning
point in the case where we are going from the classically forbidden region to the classically
allowed region when increasing q, as assumed earlier. We can repeat this analysis verbatim
in the case we are going from the classically allowed region to the classically forbidden
region, and one finds a similar formula:

1√
P (q)

(
(b− ia)e

i
~Πq,qtp+ iπ

4 + (b+ ia)e−
i
~Πq,qtp−

iπ
4
)

q<qtp←−−− ψ(q) q>qtp−−−→
1√
P̃ (q)

(
2b e

1
~ Π̃qtp,q + (a± ib)e−

1
~ Π̃qtp,q

) (B.10)

B.2 Worked out example: the quartic potential

Let us illustrate the general method for deriving the EQC used in the present paper by
explicitly finding the EQC for the quartic case in the minimal chamber (double well with
energy bellow the wells). Then, we will extend this result to the maximal chamber config-
uration (double well with energy above the wells and, also, pure quartic) by deforming the
path of the cycles, transforming the periods in order to accommodate the EQC obtained
using the Voros-Silverstone formula. The method presented below for the quartic example
can of course be generalized without too much effort to more complicated potentials.

B.2.1 Minimal chamber

In the minimal chamber, we can order the turning points that are all along the real line by
q1 < q2 < q3 < q4. This is defining five regions, I =] −∞, q1[, II =]q1, q2[, III =]q2, q3[,
IV =]q3, q4[ and V =]q4,∞[. The wavefunction must decay at infinity. It fix the behavior
of ψ(q) in the region I and V:

ψI(q) = A√
P̃ (q)

e−
1
~ Π̃q,q1 (B.11)

ψV (q) = B√
P̃ (q)

e−
1
~ Π̃q4,q (B.12)

where A and B are normalization constants. (B.11) and (B.12) are simply the wavefunction
in the classically forbidden region described in (B.9) and (B.10) respectively, qtp = q1 and
q4 respectively, a = A and B respectively, and b = 0 in both cases. Now, our goal is clear:
we want to connect (B.11) and (B.12) together by the repeated use of (B.9) and (B.10),
alternating between classically allowed and forbidden region until we have two expression
for the same wavefunction. We have multiple possible equivalent way to do that. We could
straightforwardly alternate between (B.9) and (B.10) and get (B.11) from the region I to
the region V for example (which also yields the EQC (B.20), as it should be). In this notes,
we chose to go from I to III and from V to III for (B.11) and (B.12) respectively, meeting
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in the middle. Using (B.9), we are going from I to II and we find

ψII(q) = iA√
P (q)

(
e−

i
~Πq1,q−

iπ
4 − e

i
~Πq1,q+

iπ
4
)

(B.13)

= iA√
P (q)

(
e
i
~Πq,q2−

i
~Πq1,q2−

iπ
4 − e−

i
~Πq,q2+ i

~Πq1,q2+ iπ
4
)

(B.14)

In the last step, using Πa,c = Πa,b + Πb,c, we made the exponentiated period Π1,2 = Πq1,q2

appear explicitly, which we could rewrite as a Voros multiplier (2.21). It is a general fact
that these EQC are in general functions of these exponentiated periods, as stated in (2.25).
Now, we are in the classically allowed region II and we want to cross q2 ending up in
the classicaally forbidedn region III. The appropriate connection formula is (B.9); setting
a = A sin

(
1
~Π1,2

)
and b = A cos

(
1
~Π1,2

)
yields

ψIII(q) = A√
P̃ (q)

(
2 cos

(1
~

Π1,2

)
e

1
~ Π̃q2,q ± ie∓

i
~Π1,2e−

1
~ Π̃q2,q

)
(B.15)

= A√
P̃ (q)

(
2 cos

(1
~

Π1,2

)
e

1
~ Π̃2,3e−

1
~ Π̃q,q3 ± ie∓

i
~Π1,2− 1

~ Π̃2,3e
1
~ Π̃q,q3

)
(B.16)

Repeating mutatis mutandis the steps detailed above for (B.12), going this time from V to
III, we find

ψ̃III(q) = B√
P̃ (q)

(
2 cos

(1
~

Π3,4

)
e

1
~ Π̃q,q3 ± ie∓

i
~Π3,4e−

1
~ Π̃q,q3

)
(B.17)

Identifying the coefficients of the dominant and recessive part in (B.16) and (B.17), i.e. the
coefficients of the exponentially growing and decaying exponential, one gets the following
system of two equations

2A cos
(1
~

Π1,2

)
e

1
~ Π̃2,3 = ±iBe∓

i
~Π3,4 (B.18)

±iAe∓
i
~Π1,2− 1

~ Π̃2,3 = 2B cos
(1
~

Π3,4

)
(B.19)

By dividing them together and simplifying, we get the EQC for this class of problems

e−
i
~Π2,3 +

(
1 + e±

i
~Π1,2

) (
1 + e±

i
~Π3,4

)
= 0 (B.20)

which is (4.11) indeed in the symmetric case, i.e. when Π1,2 = Π3,4.

B.2.2 Maximal chamber
We can easily deform our minimal chamber problem into a maximal chamber one by ana-
lytical continuation. By increasing the energy above the wells such that the turning points
are no longer close to the real line or by sending the coupling constant in front of the
quadratic term to zero, we are deforming the problem into the maximal chamber. Doing
so, the periods in the symmetric case are transforming as

Π2,3 7→ −Π2,3 , Π±1,2 7→
1
2Π±1,4 ∓

i

2Π2,3 (B.21)

which yields (4.20) when applied to (4.11).
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C Computation of the quantum periods and differential operators

In section 4, we compare the quantum corrections to the WKB periods obtained from the
TBA side to standard QM results. The goal of this appendix is to present the standard
QM computation we used: the differential operators approach. We must note there are
alternative methods one could have used in order to obtain the all-order WKB periods
and check with the TBA results. Namely, the Holomorphic Anomaly equation [41–43],
originating from topological strings.

C.1 Classical periods

The basic ingredients for finding the quantum corrections to the periods Π(n)
(a) are the

classical periods Π(0)
(a). Even if one does not knows how to compute the exact classical

periods in closed form for a given polynomial, one can still use the differential operators
technique shown below numerically. However, it is always nice to have closed form results,
so let us explicitly write the classical periods for the quartic and sextic potentials. In those
cases, one can use Ramanujan’s theory of elliptic functions in order to express our classical
periods as the hypergeometric function 2F1 through the identity

2F1

(1
p
, 1− 1

p
, 1; z

)
= 2
π

∫ arcsin(√z)
0

cos
((

2
p − 1

)
θ
)

√
z − sin2 (θ)

dθ (C.1)

as shown in [36]. We also are providing the exact classical periods in closed form for pure
potential in section 3.7.2.

C.1.1 Quartic
For the quartic of the form V (q) = gq4 − q2 and energy E, we found

Π(0)
p (g,E) = π(4Eg + 1)

4g 2F1

(1
4 ,

3
4; 2; 4Eg + 1

)
(C.2)

Π(0)
np (g,E) = i

√
2πE 2F1

(1
4 ,

3
4; 2;−4Eg

)
(C.3)

C.1.2 Sextic
For the sextic of the form V (q) = q2 (g2

2q
2 − g2

1
)2 and energy E, we found

Π(0)
p (g1, g2, E) = πE√

2g2
1

2F1

(
1
3 ,

2
3; 2; 27g2

2E

4g6
1

)
(C.4)

Π(0)
np (g1, g2, E) = iπg4

1
9
√

6g2
2

(
4− 27g2

2E

g6
1

)
2
F1

(
1
3 ,

2
3; 2; 1− 27g2

2E

4g6
1

)
(C.5)

C.2 Quantum corrections to the periods

TheWKBmethod allows us to express the quantum corrections as derivative of the classical
periods. For any polynomial potential of degree d, we can define

p̃2(q, u) = V (q)− E =
d∑

k=0
ukq

k (C.6)
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where u is the vector of the uk. It is easy to show that

∂uk p̃(q, u) = qk

2p̃(q, u) (C.7)

where we will be omitting the dependency on the moduli from now on. As a result, one
can write the p(n) obtained using the WKB expansion in (2.6) (where they are denoted as
pn) as an ansatz plus a total derivative:

p(n)(q) =
d∑

k=0
b
(n)
k

qk

2p̃(q) + ∂q

(
P(n)(q)
p̃6n−3(q)

)
(C.8)

with P(n)(q) =
∑d(3n−1)+1
k=0 ckq

k a degree (3n− 1)d+ 1 polynomial. By solving for the b(n)
k

and ck, one finds the differential operators that one needs in order to express the quantum
corrections to the periods through

Π(n) =
d∑

k=0
b
(n)
k ∂ukΠ(0) (C.9)

Notice that the system we solve for the b(n)
k and ck does not contain enough equation in

order to fix every b(n)
k . For example, in the following, we are expressing all the coefficients

as functions of the free parameter b(n)
0 . Of course, we are free kill this symmetry by setting

the remaining coefficient to the most convenient value for our purpose (often setting it to
a value that is nullifying itself or another coefficient). In fact, it is always possible to put
the Schrödinger equation in the simpler form (2.39), by shifting and rescaling, taking care
of the spurious degree of freedom that is ud−1 in this context, which in turn is effectively
setting b0 to some set value. One could argue it would have been cleaner to work with
ud−1 = 0 such that the b(n)

k coefficient are functions of the moduli only and that one can
go back to any desired potential by a new scaling and shift; we preferred working with a
general ud−1 though, since the previous analysis is not harder to work out doing so and the
resulting parameter allows us to put the b(n)

k coefficient we want to zero very easily.
As we said previously, it is not necessary to work out the classical periods in closed form

in order to compute the quantum corrections: Π(0) is a function of the moduli (including
the energy) uk which can be computed numerically as the integral of the momentum (2.11),
such that the derivative of the classical period can in turn be computed numerically using
the definition of the derivative

∂ukΠ(0) = lim
h→0

Π(0)(. . . , uk + h, . . .)−Π(0)(. . . , uk, . . .)
h

then choosing a finite but small h, thus obtaining thousands of stable digits in seconds
for the quantum corrections to the periods of any potentials, once the coefficients b(n)

k are
computed.
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C.2.1 Quartic
Let’s give a concrete example for the quartic V (q) = gq4− q2 with energy E. The first b(n)

k

coefficients are

b
(1)
2 =

8b(1)
0 −

g(4Eg+3)
4Eg+1

4E , b
(1)
4 =

g
(

g
4Eg+1 − 3b(1)

0

)
E

b
(2)
2 = 2b(2)

0
E

+ g2(40Eg(6Eg+ 89)− 21)
1920E2(4Eg+ 1)3 , b

(2)
4 = g2(15Eg(8Eg(22Eg− 27)− 9)− 14)

960E3(4Eg+ 1)3 − 3b(2)
0 g

E

b
(3)
2 = 2b(3)

0
E

+ g2(7Eg(8Eg(16Eg(Eg(9394Eg+ 11345)− 7305)− 3433)− 3841)− 1488)
215040E4(4Eg+ 1)5

b
(3)
4 = −3b(3)

0 g

E
− g

2(Eg(7Eg(4Eg(4Eg(70836Eg− 14465) + 10235) + 10413) + 9479) + 496)
53760E5(4Eg+ 1)5

and so on. The unspecified (odd in that example) coefficients are zero, with the exception
of the b(n)

0 that are free parameters. Now, let’s write explicitly and in closed form the
first correction to the perturbative quantum period Π(1)

p . Since we made the choice to put
the coupling constant on the degree four term, it will be easier to chose b(n)

0 by imposing
b
(n)
2 = 0, such that the derivative with respect to E and g (modulo signs) will get us the
correct corrections to the periods.

Π(1)
p (g,E) =

π
(
(8Eg − 2) 2F1

(
1
4 ,

3
4 ; 2; 4Eg + 1

)
+ 3Eg(4Eg + 1) 2F1

(
5
4 ,

7
4 ; 3; 4Eg + 1

))
128E

One can use the b(n)
k coefficients computed above in order to compute the next corrections,

or the non perturbative period in closed form. One can repeat this computation mutatis
mutandis for the sextic potential and obtain a closed form result for an arbitrary number
of quantum corrections. We computed them up to the order O(~12), but the expressions
are becoming too involved too quickly to be contained in a readable manner in the present
pages.

D Numerical method in standard quantum mechanics

There is a plethora of numerical techniques in standard Quantum Mechanics we can use
in order to solve the spectral problem described by (1.1). In the present work, we focus on
bounded and resonant states in the context of polynomial potentials, for which expressing
the Hamiltonian in the harmonic oscillator basis is easy and for which the truncation to
a finite size Hamiltonian and diagonalization yield a good numerical approximation to the
spectra and eigenvectors. This technique will be described in detail during the next section.
The second section of this appendix extend this numerical method to resonant or Gamov
states using the complex dilatation method.

D.1 Bounded states and sprectra obtained by diagonalizing the Hamiltonian
in the harmonic oscillator basis

Anyone who has studied Quantum Mechanics knows that the eigenfunctions of the
Schrödinger equation (1.1), when the potential is of the form V (q) = 1

2mω
2q2, amount
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to the Hermite functions

ψn(x) = 1√
2n n!

(
mω

π~

)1/4
e−

mωx2
2~ Hn

(√
mω

~
x

)
, n = 0, 1, 2, . . . (D.1)

where
Hn(z) = (−1)n ez2 dn

dzn

(
e−z

2) (D.2)

are the Hermite polynomials. In this basis, one can easily write the matrix elements of
the Hamiltonian H = H free + H int = − ~2

2m∂
2
q + V (q̂) with arbitrary polynomial potential

V (q) =
∑d
k=0 akq

k. The free part is

H free
ij = ~mω

4

2i+ 1 i = j

−
√

(i+ 1)(i+ 2) |i− j| = 2
(D.3)

and interaction part is

H int
ij =

d∑
k=0

ak〈ψi|qk|ψj〉 (D.4)

where 〈ψi|qk|ψj〉 = 0 if |i− j| > k or if i− j + k is odd,

〈ψi|qk|ψj〉 =
√
i!j!

(
mω
~
)−k/2

√
2i+j

Lijk∑
l=0

2
1
2 (j−i−k+2l)+i−lk!(i− j + k − 2l − 1)!!
l!(i− l)!(j − i+ l)!(i− j + k − 2l)! (D.5)

otherwise, Lijk = min
(
i,
[

1
2(i− j + k)

])
and [x] the integer part of x. In order to get the

exact spectrum, one must in principle diagonalize the infinite dimensional operator with
elements Hij , i, j ∈ N. However, if only a numerical approximation is needed, it is sufficient
to compute the Hamiltonian truncated to a finite dimension N , i.e. the N2 elements H(N)

ij

with i, j ∈ 0, . . . , N . Since we are recovering the appropriate eigenvalue problem in the large
N limit, i.e. limN→∞H

(N) = H, the numerical approximation for an eigenvalue En�N is
getting closer and closer to the exact value as N increase. Furthermore, since the matrix
elements are mostly zeroes for N � d,18 it is possible to use sparse matrix technique in
order to solve the eigenvalue problem with algorithms that are a lot faster than their dense
counterpart. As a result, we were able to compute hundreds of eigenvalues En(~) with a
thousand of stable digits within minutes, given a fixed polynomial potential with reasonable
maximum degree d.

D.2 Resonant states and the complex dilatation method

We can accommodate the method described in the previous section for potentials that are no
longer bounded but have resonances. In QuantumMechanics, we are typically sorting states
into two distinguished classes: the scattering states and the bounded states. However, in
many situations, we encounter scattering states that happen to be long lived; for example,

18To be precise, the truncated Hamiltonian is a symmetric band matrix with a bandwith of d + 1 such
that the number of a priori nonzero elements are increasing linearly with N (as (3 + 2d)N − (1 + d)(2 + d)
in fact), which loses to N2 eventually such that the matrix density goes to zero in the large N limit.
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a particle localized around a local minima of an unbounded potential: classically, the
particle is confined in the well, but ultimately tunneling effects allow the particle to escape
after a sufficiently long time. The spectrum resulting of such a problem is resonant i.e.
its levels has a nonzero imaginary part and are described by wave functions called Gamov
states. The physical interpretation being that, provided an energy in the form E = ER ±
iΓ/2 with Γ small enough, the Gamov state can be considered as a “quasi-bound state”,
exponentially decaying because of the factor exp (−Γt/2~) arising when we are considering
its time evolution. In other words, the exponential decay law of a resonant state — arising
because of the imaginary part of the energy associated with it — is identifiable with the
exponential decay law of a metastable state with lifetime τ = 1/Γ. One can interpret the
resonances as the poles of the resolvent G = (H −E)−1, that can be written as a function
of the wave vector k through the Jost functions, arising when k is analytically continued
in the lower complex plane Im k < 0. For the full story, see [28].

In order to extend the numerical method described above to resonant states, let’s first
describe the action of the group of dilatation on Rn with element Uθ on a wavefunction ψ:

(Uθψ)(q) = eθn/2ψ(eθq) (D.6)

Since we are interested in the one dimensional case, we will chose n = 1 in the flowing. Uθ
is a unitary transformation, acting on the Heisenberg operators q̂ et p̂ as

Uθ q̂U
−1
θ = eθ q̂ and Uθp̂U

−1
θ = e−θp̂ (D.7)

which implies that its action on the Hamiltonian, if of the standard form H = p̂2

2m +V (q̂), is

H(θ) = UθHU
−1
θ = e−2θ p̂

2

2m + V (eθ q̂) (D.8)

This can be easily realized in the previous method since it is equivalent to the very simple
transformation H(~,mω) 7→ H(~, e−2θmω), such that our previous formulae still hold.
Now, let’s promote θ to a complex number. As a result, Uθ |ψ〉 may not be in L2(R)
anymore. At the condition that cos (2 Im θ) > 0 however, the dilated wavefunction of
the form

(Uθψ)(q) = eθnP(eθq) exp
(
−αe2θq2

)
(D.9)

with P a polynomial stays in L2(R). Physically, we can interpret this rotation of the
Hamiltonian in term of the analytical continuation of the wave vector k = |k|e− Im θ. As a
result, the complex dilated resolvent G(θ) = (H(θ)−E)−1 provide an analytical continua-
tion of the resolvent in the complex band 0 > k > Im−θ, whose poles are the resonances.
It is equivalent to diagonalize the complex dilated Hamiltonian H(θ), which can be done
numerically using the previously described method. For example, in table 4, we are us-
ing the method described in the previous section with the Hamiltonian rotated by the
transformation ω 7→ e

iπ
16ω.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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