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We investigate general properties of the eigenvalue spectrum for improved staggered quarks. We
introduce a new chirality operator [ys ® 1] and a new shift operator [I ® &5], which respect the same
recursion relation as the ys operator in the continuum. Then we show that matrix elements of the chirality
operator sandwiched between two eigenstates of the staggered Dirac operator are related to those of the
shift operator by the Ward identity of the conserved U(1), symmetry of staggered fermion actions. We
perform a numerical study in quenched QCD using HYP staggered quarks to demonstrate the Ward
identity. We introduce a new concept of leakage patterns which collectively represent the matrix elements
of the chirality operator and the shift operator sandwiched between two eigenstates of the staggered Dirac
operator. The leakage pattern provides a new method to identify zero modes and nonzero modes in the
Dirac eigenvalue spectrum. This method is as robust as the spectral flow method but requires much less
computing power. Analysis using a machine learning technique confirms that the leakage pattern is
universal, since the staggered Dirac eigenmodes on normal gauge configurations respect it. In addition, the
leakage pattern can be used to determine a ratio of renormalization factors as a by-product. We conclude
that it might be possible and realistic to measure the topological charge Q using the Atiya-Singer index

theorem and the leakage pattern of the chirality operator in the staggered fermion formalism.

DOI: 10.1103/PhysRevD.104.014508

I. INTRODUCTION

It is important to understand the low-lying eigenvalue
spectrum of the Dirac operator, which exhibits the topo-
logical Ward identity of the Atiya-Singer index theorem
[1], the Banks-Casher relationship [2], and the universality
of the distribution of the near-zero modes for fixed
topological charge sectors [3,4]. Study on the eigenvalue
spectrum of the Dirac operator is, by nature, highly non-
perturbative. Hence, numerical tools available in lattice
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gauge theory provide a perfect playground to study diverse
properties of the Dirac eigenvalue spectrum.

In lattice QCD, there are a number of popular methods to
implement a discrete version of the continuum Dirac
operator. We are interested in one particular class of lattice
fermions that are widely used in the lattice QCD commu-
nity: improved staggered quarks [5—7]. Here we study the
eigenvalue spectrum of staggered Dirac operators in
quenched QCD to show that the small eigenvalues near
zero modes of the staggered Dirac operators reproduce the
continuum properties very closely, which was originally
noticed in Refs. [8—10]. To reach this conclusion, the
authors of Refs. [8,9] performed a number of tests,
verifying consistency of lattice data with (1) the Atiya-
Singer index theorem that describes the chiral Ward identity
relating the zero modes to the topological charge; (2) the
Banks-Casher relationship that relates the chiral condensate

Published by the American Physical Society
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to the density of eigenvalues at the zero modes; and (3) the
universality of the small eigenvalue spectrum in the
e-regime predicted by random matrix theory. In addition,
the authors of Refs. [11,12] used the spectral flow method
of Adams [13] to identify the zero modes from a mixture
with nonzero modes. The spectral flow method is robust but
highly expensive in a computational sense.

Here, we introduce a new, advanced chirality operator
[rs ® 1], which respects the continuum algebra of y5. We
show that matrix elements of this chirality operator between
eigenstates are related to those of the shift operator [1 ® &
through the Ward identity of the conserved U(1), sym-
metry of staggered fermions. In addition, we introduce a
new concept of leakage patterns to distinguish zero modes
from nonzero modes. Using the leakage pattern of the
chirality and shift operators, we show that one can measure
the zero modes as reliably as when using the spectral flow
method. Hence, one could determine the topological charge
Q using the leakage pattern with much smaller computa-
tional cost than by using the spectral flow. We also show
that it is possible to determine the ratio of renormalization
constants Zp,s/Zpyp using the leakage pattern.

In Sec. II, we briefly review the continuum theory of the
eigenvalue spectrum and its relation to the quark condensate
(py). We also review the Atiya-Singer index theorem in
brief. In Sec. III, we briefly review the eigenvalue spectrum
of staggered Dirac operators that is obtained using the
Lanczos algorithm. In Sec. IV, we briefly review the
conserved U(1), symmetry in the staggered fermion for-
malism and explain its role in the eigenvalue spectrum of
staggered Dirac operators. We also present numerical
examples to help readers to understand basic concepts
and notation. In Sec. V, we define the chirality operator
[rs ® 1] and the shift operator [1 ® &;]. We show that they
respect the continuum recursion relation of ys. Then we
derive the chiral Ward identity of the U(1), symmetry to
show that the matrix elements of the chirality operator are
related to those of the shift operator through the Ward
identity. We discuss the eigenvalue spectrum in the con-
tinuum limit and introduce a new notation of quartet indices.
Then we introduce the concept of leakage patterns for the
chirality operator and the shift operator. We also present
numerical examples to demonstrate that the leakage patterns
of zero modes are completely different from those of nonzero
modes. In Sec. VI, we review a machine learning technique
and describe how to apply it to extract efficiently the quartet
structure of nonzero modes using leakage patterns. In
Sec. VII, we explain how the leakage pattern of the zero
modes can be used to determine the ratio of the renormal-
ization factors nonperturbatively. In Sec. VIII, we conclude.
The appendixes contain technical details on Lanczos algo-
rithms and mathematical proofs, and more plots of leakage
patterns for diverse topological charge values.

Preliminary results of this paper are published in
Refs. [14-16].

II. QUARK CONDENSATE IN THE CONTINUUM

In the continuum the quark condensate is given by

() = (Ol sy /0) (1)
Ny
7
= _V—Nf d4xTr(D n ), (2)

where D is the Dirac operator, m is the quark mass, x is the
space-time coordinate, V is the volume, and N is the
number of flavors with the same mass m. The trace is a sum
over spin and color. Let us think of the eigenvalues of the
Dirac operator. D is anti-Hermitian, so its eigenvalues are
purely imaginary or zero.

D' =-D 3)

Duy(x) = i2ut;(x) 4)

where / is a real eigenvalue, and u;(x) is the corresponding
eigenvector.
By spectral decomposition [4],

1 Il
u
iA+m

Sy, y) = (wy )iy () = Y

A

) ==X 5 | ETEEW) (6)

A

1 1
=—= 7
V;M—l-m ()

where we adopt the normalization convention

(alup) = / dal () =60 (8)

Thanks to the chiral symmetry,

ysD = =Dys 9)
Dys|u;) = —idys|uy). (10)
Let us define u_,; = ysu,, so that Du_, = —ilu_;. Hence, if

there exists u; for 1 # 0, then the parity partner eigenstate
u_,; with negative eigenvalue —iA must also exist.

Now let us separate the zero mode contribution from the
spectral decomposition.
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2m ng+n_

ny) = —— . 11
) ==y (1

Here, n, (n_) is the number of right-handed (left-handed)
zero modes per flavor. Let us define the subtracted quark
condensate () -

ng+n_ 1 2

o = )+ == =5 > s (1)
>0
:—%;ﬁiimmz with 4, > 0 (13)
— [Ty, (14)
where the spectral density p (1) is
po(d) = 3350~ ). (15)

Here, p, is a spectral density on a single gauge configu-
ration with volume V. Now let us average over a full
ensemble of gauge field configurations and take the limit of
infinite volume (V — o0). Then, in that limit, the spectral
density p(4) = (ps(4)) has a well defined (smooth and
continuous) value as 4 — 0. We can define the chiral
condensate as

L= _<0|l/_/l//‘0>sub(m = O)

. +oo m
). P

p(A) = mp(0).  (16)
which is the Banks-Casher relation. The subtracted quark
condensate (), is expected to behave well in the chiral
limit, even though the contribution from the zero modes is
divergent as a simple pole in the chiral limit. Hence, in the
numerical study on the lattice, it is important to identify the
would-be zero modes which correspond to the zero modes
in the continuum limit, and to remove them in the
calculation of the quark condensate.

Before proceeding, let us briefly go through the index
theorem. In the continuum theory in Euclidean space, the
axial Ward identity [17] is

0,A,(x) =2mP(x) — 2N ;q(x). (17)

Here A, = wy,ysy is the axial vector current in the flavor
singlet representation, P = yysy is the corresponding
pseudo-scalar operator, and g = ﬁTr[F /wF w] s the
topological charge density (=winding number density).
Now the topological charge Q is

0= [ dixla) (18)
= —211/)0/ d*x(9,A,(x) — 2mP(x)) (19)
=Nﬂf / d*x(Fysy). (20)

Using the spectral decomposition, we can rewrite Q as
follows,

0=-mY i [ dliWrnwl. @)

A

Noting that ysu,(x) = u_;(x) for A # 0,

[ i) = oy =0 22)

Hence, only zero modes contribute to Q. For the
zero modes, it is convenient to choose the helicity eigen-
states as the basis vectors so that (u§|ys|ul) =—1 and
(uB|ys|ul) = +1, where the superscripts L, R represent
left-handed and right-handed helicity, respectively. Then
deriving the index theorem is straightforward [1]:

Q=n_—ny, (23)

where n, (n_) is the number of the right-handed (left-
handed) zero modes.

III. SPECTRAL DECOMPOSITION WITH
STAGGERED FERMIONS

A number of improved versions of staggered fermions
exist, such as HYP-smeared staggered fermions [5], asqtad
improved staggered fermions [18], and highly improved
staggered quarks (HISQ) [7]. Here we refer to all of them
collectively as “staggered fermions.” Staggered fermions
have four tastes per flavor by construction [19]. Hence, the
quark condensate for staggered fermions is defined as

--glolat))y o

where y represents a staggered quark field, D, is the
staggered Dirac operator for a single valence flavor, V is the
lattice volume, and N, is the number of tastes. We measure
the quark condensate using a stochastic method.

(D, + m), ) = £ (25)
1) = 5| (26)
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1
o <Ds + m> im N4 Z Z Ex(y). (27)

where x, y are representative indices which represent the
space-time coordinates, taste, and color indices collectively.
Here £(x) represents either Gaussian random numbers or
U(1) noise random numbers which satisfy a simple
identity:

lim — "' (x)&(y) = by,
¢

where N is the number of random vector samples.

Staggered fermions have a taste symmetry SU(4), ®

U4)r ® U(1)y in the continuum limit at @ = 0 [20].
However, this symmetry breaks down to a subgroup
U(l), ® U(1), on the lattice with a # 0 [19,20]. The
remaining axial symmetry U(1), plays an important role in
protecting the quark mass from receiving an additive
renormalization. In addition, it does not have any axial
anomaly.

The Dirac operator (Dy) of staggered fermions is anti-
Hermitian: DI =
imaginary:

—D,. Hence, its eigenvalues are purely

Dy|f3) = ilfy), (28)
where A is real. Here, the subscript s and superscript s
represent staggered quarks.

In practice, when we obtain eigenvalues of D, numeri-
cally, we use the following relationship instead of Eq. (28):

D;rDS|g‘;2> = /12|g;;z> (29)

where the [g},) state is a mixture of the two eigenvectors
|f%,) and |f*,). In other words,

|9,s12> = Cl|fi/1> + C2|fs_/1> (30)

where the c; are complex numbers that satisfy the nor-
malization condition

le? + o> = 1. (31)

The numerical algorithm is a variation of a Lanczos
algorithm adapted for lattice QCD [21]. Details on the
numerical algorithms as well as comprehensive references
are given in Appendix A.

Why do we obtain A? instead of iA? The first reason is
that doing so allows us to use even-odd preconditioning
[22], which makes Lanczos run on only even or odd sites on
the lattice. This leads to two benefits: One is that there is a
substantial gain in the speed of the code, and the other is
that the code uses only half the memory otherwise required.

Details on even-odd preconditioning are described in
Appendix B. The second reason is that obtaining A% instead
of iA allows us to implement polynomial acceleration
algorithms [23] into Lanczos more easily, since the
eigenvalues of D} D, are positive definite and have a lower
bound 4> > 0. Note that staggered fermions have would-be
zero modes whose eigenvalues are small and positive
(42> > 0) on rough gauge configurations. There are no exact
zero modes (4 = 0) with staggered fermions on rough
gauge configurations [24]. Details of our implementation of
polynomial acceleration are described in Appendix A.

Hence, we use the Lanczos algorithm to solve Eq. (29)
for the eigenvector |g‘;2) as well as the corresponding
eigenvalue A%. We obtain |[f%,) and |f%,) by using
projection operators defined as

P, = (Ds + M) (32)

— (D, - iA), (33)

where P is the projection operator that selects only the
|f%.,) component and removes the |f*,) component. Then

lrs) :P+|9jz> (34)

=) = P_lg;) (35)

and the orthonormal eigenvectors are

i) = \/5% (36)
[ER - (37)

Vir-le-)

IV. CHIRAL SYMMETRY OF
STAGGERED FERMIONS

The two vectors |f*, ;) are related to each other through a
chiral Ward identity of staggered fermions. Here we
address this issue of the chiral symmetry of staggered
fermions and its consequences.

A. Notation and definitions

Let us begin with notation and definitions. For staggered
fermions, there are two independent methods to transcribe
operators to the lattice: One is the Golterman method
[19,25,26], and the other is the Kluberg-Stern method
[27-30]. In Appendix D, we explain how to construct
chirality operators using both the Golterman method and
the Kluberg-Stern method, and we compare the two
methods. The comparison is summarized in Table XI of
Appendix D. Since the Kluberg-Stern method respects the
recursion relationship, uniqueness of chirality, and the
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Ward identity while the Golterman method does not, we
adopt the former method to construct bilinear operators.
Accordingly we define staggered bilinear operators as

Ogur(x Z)( xa)[rs @ Erlapx (xp)

= Da (x4) (rs ® E1)apU (xa- X5 ) s (x5)  (38)
AB

where y, are staggered quark fields, and a, b are color
indices. Here the coordinate x4, = 2x + A, x is a coordinate
of the hypercube, and A, B are hypercubic vectors with
A, B, € {0, 1}. The spin-taste matrices are

- 1 .
(rs ®&ér)ap = ZTr(}/IlySVByT) (39)

where y g represents the Dirac spin matrix, and &7 represents
the 4 x 4 taste matrix. In addition,

U(xa. xp) = Psy(s) |:ZV(XA’XP1>V(XP1’)CP2)
peC

Vi )] (40)

where Pgy3) represents the SU(3) projection, and C
represents the complete set of shortest paths from x, to
xp. V(x,y) represents the HYP-smeared fat link [5,6] for
HYP staggered fermions, the Fat7 fat link [6,31-33] for
asqtad staggered fermions or HISQ, and the thin gauge link
for unimproved staggered fermions.

The conserved U(1), axial symmetry transformation is

['.(A,B,a.b) =[ys ® &slap.ap

= (75 ® &5)ap * Ous
=¢€(A) - Sap  Oup (41)

where I',. is often called “distance parity,” and

e(A) = (—1)% (42)

Under the U(1), transformation, the staggered Dirac
operator transforms as follows,

I.D,I, = D! =-D, (44)
I.D, = -D,T.. (45)

Therefore,

Dy|f%5)
D F |f+/1>

= +i/1|ffm>
—iAle| 1), (46)

and f*, can be obtained from f%, through I'. trans-
formation as follows,

1—~€|sz> = e+i9|f‘i/1>
Celf2,) = e |- (47)

In general, there is no constraint for the real phase 0, so we
expect its probability distribution to be random. In practice,
however, we make use of even-odd preconditioning, and
we obtain the odd site fermion fields (|g,)) from the even
site fermion fields (|g,)) with the relation |g,) = nD,.|g.),
where D, is a sector of D, that connects even site fields to
odd site fields, and 5 is a random complex number. Hence
the distribution of € depends on our choice of #. In our
numerical study, we set n = 1. Then @ is given by

0=r+2p, B = arctan(2). (48)
Details on the even-odd preconditioning and the derivation
of Eq. (48) are explained in Appendix B.

We expect that if there exists an eigenvector |f* ), there
must be a corresponding parity partner |f*;) due to the
exact chiral symmetry I',. In other words, the Ward identity
of Eq. (47) comes directly from the conserved U(1), axial
symmetry.

B. Numerical examples

We now use numerical examples to demonstrate how the
above theory works in quenched QCD. In Table I, details of
the gauge configurations are presented.

We measure the topological charge Q using gauge links.
We use the Q(5Li) operator defined in Refs. [40,41] after
10 ~ 30 iterations of APE smearing with @ = 0.45 [42-44].
We show an example of the eigenvalue spectrum for Q = 0
in Fig. 1. Since Q = 0, we do not expect to find any zero

TABLE 1. Input parameters for numerical study in quenched
QCD. For more details, refer to Ref. [9]. The relationship
between sample sizes in our study and the number of the gauge
configurations is nontrivial and discussed later.

Parameters Values

Gluon action Tree level Symanzik [34-36]
Tadpole improvement Yes

p 5.0

Geometry 204

a 0.077(1) fm [37]

1/a 2.6 GeV

Valence quarks HYP staggered fermions [6,38,39]
Ny Ny = 0 (quenched QCD)
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FIG. 1. Eigenvalue spectrum of staggered Dirac operator on a

Q = 0 gauge configuration. (a) 47 and (b) 4;.

modes for this gauge configuration. In Fig. 1(a), we show
eigenvalues A? for the eigenvectors | g;») defined in Eq. (29).
Here we observe eight-fold degeneracy for nonzero
eigenmodes due to the conserved U(1), axial symmetry.
Here 4, = —1, and, in general, 4,, = —1,,_; for integer
n > 0. In other words, 4,,, is the parity partner of 4,,_;. For
each /;, there exists four-fold degeneracy due to approxi-
mate SU(4) taste symmetry. For each of these four-fold
degenerate eigenvalues [for example 4;, 43, 45, 4; in
Fig. 1(a)], there exists a parity partner eigenvalue due to
the U(1), symmetry: A, = —4;, 44 = —43, 46 = —15, and
Ay = —Ay [refer to Fig. 1(b)].

Let us turn to an example with Q = —1. Since Q = —1,
we expect to observe four-fold would-be zero modes. The
gauge configurations are so rough that we expect to observe
not exact zero modes but would-be zero modes. In Fig. 2,
we demonstrate how the would-be zero modes behave on a
gauge configuration with Q = —1. As one can see in
Figs. 2(a) and 2(b), we find four-fold degenerate would-
be zero modes: 4y, 45, 43, 44. Thanks to the U(1), chiral
Ward identity in Eq. (47), we find that 4, = —1; and
Ay = —43. As in the case with Q =0, we find that the
nonzero eigenmodes are eight-fold degenerate. This pattern
of four-fold degeneracy for would-be zero modes and eight-
fold degeneracy for nonzero modes is also observed in the
cases with QO = -2 and Q = —3, which are presented in
Appendix C.

At this point, the reader may have already concluded that
we can distinguish would-be zero modes of staggered
quarks from nonzero modes by counting the degeneracy of
the eigenvalues [8,9,45]. This conclusion is true but can

o

0,005:—|"'|"'|"':|"'|"':|"'|"
0.004 F ' X X X X X XXX
0.003 F
L E
<0.002 F
0.001 E

Oooo:xxxxxxxxxxxx: :
N | PR T ST ST T ST TR S N ST ST S S N ST ST S S S S

XX X X XX XX

cotdordordord

1 5 9 13 17 21 25

[T T T T T T T T
0.06 | . oox o X X g
[ X X X X !
0.03 | ' ' b
[ X X X X . ]
< 0.00 [ : :
: X X x X' . N
-0.03 F : l J( , "
[ ' X X, b
-0.06 . . X X X
| YU A [N ST S [T ST T S [N SN T SR NN ST ST S S NN S SO S NS '
1 5 9 13 17 21 25
i
(b)

FIG. 2. Eigenvalue spectrum of staggered Dirac operator on a
Q = —1 gauge configuration. (a) 2 and (b) 4;.

lead to wrong answers in practice. The reason is that, on
large lattices, the eigenvalues are so dense that visually
distinguishing between 4-fold and 8-fold degeneracies is
typically impossible. Hence, we need a practical and robust
method to identify would-be zero modes and nonzero
modes of staggered fermions. The introduction of such
a method is the main subject of the next section, Sec. V.

Using the chiral Ward identity of Eq. (47), we can
measure the phase 6 numerically. In Fig. 3, we show
numerical results (red circles) for 6. Here, the blue line
represents the theoretical prediction given in Eq. (48). We
find the results are consistent with the prediction within
numerical precision.

I I I I
Lin b ]
[e>]
[ 0 = 1 + 2 arctan(A) —
1.0n® . I I I
0 0.05 0.1 0.15 0.2
A
FIG. 3. The phase 6 as a function of A. Red circles represent

numerical results for 6. The blue line represents the prediction
from the theory. Here we use a gauge configuration with Q = —1
for the measurement.
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V. CHIRALITY MEASUREMENT

To simplify the notation, we introduce the following
convention for eigenvalue indices,

Dilf;) = iAjlf;), (49)

where |f;) = |[f5) is defined in Eq. (28). Using the
Kluberg-Stern method explained in Appendix D, we define
the chirality operator and abbreviations as follows.

U's(4i,45) = (fillrs ® 111f))
= ZZ[fi (x)]'lrs ® l]x;ABffmj (xB), (50)

x A.B

(I's)j = Ts(4i. 4)), (51)

ey
sl = |Ts(4;, 47)], (52)

where x4, xg and [ys ® 1] are defined in Egs. (38)—(40) in
Sec. IVA, and 4; and 4; represent eigenvalues of D. The
chirality operator [ys ® 1] satisfies the same relationships
as the continuum chirality operator ys.

rs @ 1" =[rs ® 1]. (53)

rs@ 1 =[1e1], (54)

. el (5)

[1(1iY5)® lrz {2

su+me|[u-mei] <o o

where n is a non-negative integer. A rigorous proof of
Egs. (53)-(56) is given in Appendix E.

Our definition of the chirality operator [ys ® 1] uses the
Kluberg-Stern method, and is different from that used in
Refs. [8,13,24], which adopt the Golterman method. The
old chirality operator (the Golterman method) of
Refs. [8,13,24] does not satisfy the recursion relations of
Egs. (53)—(56). In addition, it does not satisfy the chiral
Ward identities of Eqgs. (62)-(64). This difference is
addressed in Appendices D and E. The bottom line is that
the conventional chirality operator (the Golterman method)
does not satisfy the recursion relationships in Eqgs. (53)—
(56), even though it is classified according to the true
irreducible representations of the lattice rotational sym-
metry group [25,26,28].

For further discussion we define another operator
[1 ® &), which we call the “(maximal) shift operator,”

Es(4i4;) = (filll ® &If )
S ® &sleasf3, (xp). (57

x AB
(Bs)% = Es(4i, 4)), (58)

|2s]% = 1254, 4))]- (59)

where x,, xp and [1 ® &s] are defined in Egs. (38)—(40) in
Sec. IVA, and 4; and /; represent eigenvalues of D,. This
shift operator satisfies the following recursion relations:

1@ &P =[1® &), (60)
[1® &) =[1®1]. (61)

where n is a non-negative integer. The conserved U(1),
symmetry transformation can be expressed in terms of the
chirality operator and the shift operator as follows,

Lo=[rs ® &)
=[rs ® 1][1 ® &]
=[1®&|lrs ®1]. (62)

A rigorous proof of Eq. (62) is given in Appendix E. In
addition, the chirality and shift operators satisfy the
following relations:

Celys @ 1] = [rs @ 1[I, = [1 ® &s], (63)
F1®&]=[1Q®&I = [rs ®1]. (64)

A rigorous proof of Eqs. (63)-(64) is also given in
Appendix E. Therefore, we obtain the Ward identities:

e lys @ 1)/ = [1 ® &|f )
e Plys @ 1|f i) = [1 ® &]If ). (65)

where

|fzi) = |f§a,->- (66)

Hence, we define the spectral decomposition by

s ® 1If;) = > (Ts)ilf) (67)

1

where we use Egs. (50) and (51). Similarly,

1R &IIf) =D (Es)ilfi) (68)

1

where we use Egs. (57) and (58). Thanks to the Ward
identities of Eq. (65), we obtain
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¢Ts(&i, +4;) = Es(4i, —4;)
e (Ts),; = (8s)L;

ITsl; = [=s]5 5 (69)

Similarly,

etTs(4;, —4;) = Bs(A;, +4;)
e™(Ts).; = (Bs)%,

ITs|"; = |Es], . (70)

Applying I', to both sides of Eq. (67), we obtain

1@&If) =D (Ts)fe|f_p) (71)
4
= _E)ilf)- (72)

Hence, we obtain another Ward identity:
e i
ITs|;" = |5s];. (73)
Similarly, we can obtain the Ward identities:

ICs| 2 = |57 (74)

_j’
U5 = |25 (75)

We can summarize all the results of Egs. (69)—(75) in the
following form:

Ts|i = |Es]5" = |Bs|"; = [Ts|2h, (76)

& |Fs5(4i, 4))] = [Es(=4i. )| = [Es (i, —4;)]
= [Ts(=4i. —4;)I. (77)
In addition, Hermiticity ensures that we can interchange 4,

and 4, which gives the final form of the chiral Ward
identities.

sl = |2s[;" = |Bs]L; = [Ts|2 = |Tsff =[]

= |E‘5|£i = ‘F5|:{ (78)

& |Is(4;.4))| = [Es (=i 4;)| = |Bs(4i. =)
= |F5(—/1i,—/1j)| = |F5(/1j,/1i)| = |ES(_A.f’ii)|
= [Es(4;.—4)| = [Ts(=4;. =4 (79)
The quantity (|Ts|%)* for i # j represents the leakage
probability of the chirality operator. We call |F5|; the

leakage parameter for the chirality operator. Similarly,
the quantity (|Es|§)2 for i # j represents the leakage

probability of the shift operator, and we call |Es; the

leakage parameter for the shift operator. By examining
the leakage pattern, we can distinguish zero modes and
nonzero modes, which is the main subject of the next
subsections.

A. Eigenvalue spectrum of D, in the continuum

Here we consider staggered quark actions at a = 0. We
define a general form of the shift operator corresponding to
a generator of the SU(4) taste symmetry:

Er = [l ® &rl, (80)

51’ € {55#5;4’5/4575;”} for H ?é v, (81)

where &, respects the Clifford algebra {&,.&,} = 26, in
Euclidean space.

Let us consider the following quantity W, in the
continuum:

Wl = <ff|E‘FDs|fn> (82)
Di|fn) = idnlfn)- (83)

Since the SU(4) taste symmetry is exactly conserved in the
continuum, we know that

Er.DJ =0 (84)

Hence, we find the following Ward identity:
Wi = {fe|BrDs\f ) = idy(fe|Bplf ) (85)
= (fe|DEp|fu) = ide(f BRI ) (86)

and therefore

i(’lt’ - /1n> ) <ff|EF|fn> =0. (87)

Hence, in the continuum, we find the following properties
of the eigenvalue spectrum:

() If Ay # Ay, (ER)S = (f/|2F|f0) = 0. In other words,
if the eigenvalues are different, there is no leakage
((Ep)4 = 0) between the two eigenmodes.

(ii) If A, = Ay = A,, (Ef); # 0 is possible. In this case,
the eigenvalues are degenerate and belong to a
quartet such that

Ds|fj,m> = M‘j‘f}m> (88)
|f)f’>’ fn> € {|fjm> withm = 1v2’3’4}’ (89)

where m is a taste index which represents the four-
fold degeneracy for the eigenvalue 4;, |f,) and |f,)
are linear combinations of the quartet {|f;,,)}, and
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the eigenvectors for different m are orthogonal to
each other by construction due to the Lanczos
algorithm.

(iii) We know that the staggered fermion field y¢(x4) is
mapped into the continuum fermion field yg.,(x),
where a represents a Dirac spinor index, ¢ represents
a color index, and ¢ = 1, 2, 3, 4 represents a taste
index. Hence, for a given eigenvalue 4;, there remain
four degrees of freedom which come from the
taste index. Accordingly, for a given eigenvalue
A;, there are four degenerate eigenstates |f,,) with
m=1,2,3, 4.

(iv) If we know all four eigenstates {|f,,)} for a certain
eigenvalue 4;, we find that

4
Tr(Ep) = Z(EF)j:Z

—_

4

=S (fimlEelfim) =0 (90)

=1

This is because the SU(4) group generators are
traceless in the fundamental representation.
However, on the lattice at a # 0, the taste symmetry is
broken by terms of order a’a’ with n > 1, which is
explained in Ref. [20]. In addition, for a # O,

Ds|fj,m> = Mj,m|fj,m> (91)

and 4;,, # 4;,, in general for m # m', which reflects the
taste symmetry breaking effect at a # 0. We know that
Ajm = Aj e for all m, m' in the continuum (a = 0) due to
the exact taste symmetry. Hence, on the finite lattice,
we expect a small deviation from the above continuum
properties. A good barometer to measure this effect is to

monitor T'’s
1 1 ;
— = _ = _\/J.m
Ts= ZTr(us) =7 Em (Bs)im (92)

and measure how much it deviates from zero (the con-
tinuum value). Another direct barometer to measure effects
of taste symmetry breaking is the leakage S5 from one
quartet (4,) to another quartet (4;) with 4, # 4;.

— 1 = | Zm __ 1 —
S5 =16 LBl = 1 LN emZslf) - (93)

m,m

The size of the leakage S5 indicates directly how much the
taste symmetry is broken at a # 0, since S5 =0 in the
continuum. We present numerical results for 7's and S5 in
the next subsection.

B. Numerical study on chirality and leakage

Here we use dual notations for the eigenmodes: One is
the serial index i for 4; and the other is the quartet index j
with taste index m for ;. The serial index is convenient
for the plots, tables, and leakage patterns such as |I's|f,
while the quartet index is convenient to explain the
eigenstates classified by the taste symmetry group. The
one-to-one mapping from the serial index i to the quartet
indices j, m is given in Table II for the quartet index
j=0,£1 when Q = +£1. The mapping for the quartet
index j = 42 (nonzero modes) is similar.

In Fig. 4, we present the leakage pattern of the zero mode
of A, and its parity partner 4, = —4;. Since Q = —1 in
Fig. 4, we expect to observe four-fold degenerate would-be
zero modes within a single quartet (quartet index j = 0).

liml; =0 fori=1.2.3.4 (94)

In the continuum limit (a = 0), the SU(4) taste symmetry
becomes exactly conserved and so would-be zero modes
become exact zero modes. However, at finite lattice spacing
a # 0, the gauge configuration is sufficiently rough that
would-be zero modes have nonzero eigenvalues: 1, = —4,,
Ay = =3, and A # A3 for 4,43 > 0.

In Fig. 4(a), we show the leakage pattern of
ITsli = [Ts(4:. A1) = [(filTs|f1)]. We find that there is,
in practice, no leakage, and so the only nonzero component
is |s|} = |[s(4;,4,)|. The other components are practi-
cally zero. In Figs. 4(b), 4(c), and 4(d), we find that the
Ward identity of Egs. (78) and (79) is well-respected by the
numerical results. In other words, the Ward identity |['s|1 =
|Z5|3 = |25|} = |['s|3 is satisfied within the numerical
precision of the computer. Please refer to Table III for
numerical details. This confirms that the theoretical

TABLE 1II. One-to-one mapping of serial index i of the 4;
eigenstate into a quartet index j and taste index m for 4; ,, = 4;.

Here 4, = —4y,-; and A_;, = —4,;,. Here we assume
Q0 ==+l1.

Ai Ajm i j m Mode
A 1 /’{0’ 1 1 0 1 Zero

).2 10,2 2 0 2 Zero

A'; /10, 3 3 0 3 Zero

14 10‘4 4 0 4 Zero

As Aiia 5 +1 1 Nonzero
A Aiip 7 +1 2 Nonzero
Ay Ag13 9 +1 3 Nonzero
An Ai1a 11 +1 4 nonzero
Ag A1 6 -1 1 Nonzero
Ag Ain 8 -1 2 Nonzero
Ao Ai; 10 -1 3 Nonzero
Ala Aot 12 -1 4 Nonzero
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FIG. 4. Leakage pattern for would-be zero modes at Q = —1.
Here, the red bar represents leakage to 4;_,,_; > 0 with 7 odd,
and the blue bar represents leakage to its parity partner 4;_,, =
—Aa,—1 With i even.

prediction from the Ward identity in Egs. (78) and (79) is
correct.

In Fig. 4(a), we find that there is small leakage into other
quartets (j = 41, +2). The typical size of leakage between
off-diagonal elements of the would-be zero modes, the
j = 0 quartet, (e.g., |T's|3) is of order 1073. We also observe
small leakage patterns of order 1072~ 107 from the
would-be zero modes, the j = 0 quartet, to the nonzero
modes, the j = +1, 42 quartets (e.g., [I's[}).

Now let us consider nonzero modes in the j= +1
quartet. In Fig. 5, we present the leakage pattern for the
nonzero modes of A5 and its parity partner 4, = —15. Even
in the continuum limit (a =0), 45 #0, and so it is a
nonzero mode. Thanks to the approximate SU(4) taste
symmetry and the exact U(1), axial symmetry, there will

TABLE III. Numerical values for leakage patterns from the 4,
eigenstate to the /; eigenstate in Fig. 4. Here, j represents a
quartet index for the 4; eigenstate. The leakage represents |0} =
|0, 4)| = [(fi|OIf1)] for O =Ts. Es.

j Leakage Value Ward identity
0 |Ts|! 0.82382566818582 =|8s3
0 =Rk 0.82382566818581 =[5/}
0 =54 0.82382566818580 =|Ts|3
0 53 0.82382566818579 =[Ts|!
0 Ts|3 6.67 x 107

0 ITs )3 1.34 x 1073

0 |Ts |4 1.79 x 1073

+1 ITs3 2.56 x 1072

-1 s 2.54 x 1072

+2 T |13 577 x 1073

-2 s |14 1.18 x 1072

be eight-fold degeneracy in the family of eight eigenstates
composed of the j = +1 quartet, to which 45 belongs, and
the j = —1 quartet (the parity partners). These eight-fold
degenerate modes are designated together as j = 41
quartets in Fig. 5, where they are a set of {4;} with
5<iLlI2

Let us scrutinize the leakage pattern of the nonzero mode
As = Aj—y 1 m=1- In Fig. 5(a), first note that there is practi-
cally no leakage in the I's chirality measurement from
A5 into Ay,_; with n>0. In other words, |[s|2"~! =
ITs(42,—1, 45)| = 0. This implies that the chirality operator
on the nonzero mode with 4 > 0 leaks into only the parity
partner modes with 4 < 0. Second, note that the nontrivial
leakage goes to those eigenstates in the j = —1 quartet
such as {ié,ﬂg,ﬂ]o,/{]z} = {j'jm|.] = —1, m = 1, 2, 3, 4}
In addition, we find that the Ward identity of Eqgs. (78)
and (79) is well-respected within the numerical precision in
Figs. 5(a), 5(b), 5(c), and 5(d). In Table IV, we present
numerical values of the |['s|: shown in Fig. 5(a).

Let us examine the I's = [ys ® 1] leakage pattern of the
J = +1 quartet of the nonzero modes {15,17,49,4;;}. In
Fig. 6, we find that the chirality measurement vanishes;
(T's)i =T5(4;,4;) =0 for 4; in the j=+1 quartet of
nonzero modes. We also find that the I's leakage of
Ai1m > 0 of the j = +1 quartet goes to the parity partners
with A_; ,» < 0 of the j = —1 quartet, and the leakage to
other quartets such as j = £2 is negligibly small compared
to the leakage to the j = —1 quartet. The numerical values
of |F5|;11ﬁ, are summarized in Table V.

Let us examine the Z5 = [1 ® &5| leakage pattern of the
Jj = +1 quartet of the nonzero modes {As, A7, 49,41, }. In
Fig. 7, we find that the E5 leakage from the j = +1 quartet
to the j = —1 quartet (parity partners) vanishes in practice.
Since the leakage pattern of Es is related to the leakage
pattern of I's by the Ward identity
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FIG. 5. Leakage pattern for nonzero modes at Q = —1. FIG. 6.

TABLE IV. Numerical values for data in Fig. 5.

i
(d) ITsl}; = IT5 (i, Arn)]

[rs ® 1] leakage pattern for nonzero modes at Q = —1.

J Leakage Value Ward identities

-1 s [$ 0.110 =[8s[3 = |Es]¢ = ITs 3

-1 ‘F5|§ 0.452 :\Es‘g = ‘55‘2 = |F5‘g = |F5‘§ = |Es|§ = |55|§ = |F5|?

-1 s %0 0.334 :‘55@ = ‘ES‘éO = |F5‘2 = ‘Fs‘?o = ‘ESB = |Es\?0 = |F5‘8
-1 IES 0.601 =|8s[5! = |Bs|§> = ITslg' = ITs3, = |5s13; = 1851, = 151§,
+1 ITs 3 2.05 x 107 =[Es$ = |E5]3 = ITs 8

+1 ‘F5|Z 16.7 x 107 :\Es‘g = ‘Es‘g = |F5‘§ = |Fs‘§ = |Es|§ = |Es|$ = |F5|§

+1 ITs[3 25.6 107 =[E5]1" = |Esfg = ITsls> = |Ts[3 = |Zs[3p = |Es1§ = ITs[,
+1 |Ts3! 7.32 %107 =[B5]4* = |Eslg' = ITsg> = |Ts3; = 18513, = 18518, = ITs[5,
0 ITs3 2.52 x 1072

0 \1“5|‘51 343 x 1072

+2 |Ts |2 1.02 x 1072

-2 Ts|1* 1.38 x 1072
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TABLE V. |I's|7}", values in Fig. 6.
4i

A As Ay Ao iy
A 0.110 0.452 0.334 0.601
A4 0.452 0.161 0.582 0.349
Ao 0.334 0.582 0.323 0.366
Atz 0.601 0.349 0.366 0.271

1Es]5 0 = 1Ts |0 (95)

Fig. 7 can be obtained from Fig. 6 using the Ward identity.
We find that the Es leakage from the j = +1 quartet to
other quartets such as j = +2 quartets is negligibly small
compared to leakage to itself (the j = 41 quartet). Leakage

L0 Foe ™ s

205 |

0.0 L

1.0
. = [
0.5
0.0 L
1 5 9 13 17
i
(b) [E51% = 125(Xi, A7)
1o fFi=0 =21 T 7
o [
0.5 4
0.0 b
1 5 9 13 17
i
(c) 12515 = IZ5(Xi, A9)|
g o e R
0.5 F I ; h
i _ !
00'_|__._+_ N B R .
1 5 9 13 17
i
(d) |Bs5li; = 1E5(Ai, Ad11)]
FIG.7. [l ® &) leakage pattern for nonzero modes at Q = —1.

patterns of the I'5 chirality and Z5 shift operators for diverse
topological charges are shown in Appendix G.

Let us summarize the leakage pattern for would-be zero
modes and that for nonzero modes. We first begin with the
leakage pattern for the zero modes.

1. A zero mode of staggered fermions appears as a
four-fold degenerate quartet. In other words, for the
topological charge Q, the number of zero modes is
4x(ny+n_), and Q =n_—n, (Atiyah-Singer
index theorem), where n, (n_) is the number of
right-handed (left-handed) zero mode quartets.

2. In the chirality I's = [ys ® 1] measurement, the zero
mode has practically no leakage to other eigenstates.

3. In the shift 25 = [1 @ &5] measurement, the zero
mode with eigenvalue A has a full (100%) leakage
into its parity partner mode with eigenvalue —4, and
no leakage into any other eigenmodes.

The leakage pattern for nonzero modes is

1. A nonzero mode of staggered fermions appears as an
eight-fold degeneracy composed of a quartet (4
quartet) and its parity partner quartet (—j quartet). In
other words, nonzero eigenmodes can be grouped
into sets with eight elements in each set. This is due
to the approximate SU(4) taste symmetry and the
conserved U(1), axial symmetry.

2. In the chirality I's = [ys ® 1] measurement, the
nonzero mode with eigenvalue 4;,, has no leakage
to its own quartet (j quartet), but has leakage only to
the parity partner (—j quartet) with 4_; ,,,. It has no
leakage to any eigenmode which belongs to other
quartets with £ # 4.

3. Inthe shift 25 = [1 ® &s| measurement, the nonzero
mode with 4;,, has no leakage to its parity partner
(—J quartet) at all. But it has leakage only to the
eigenstates in its own (+j) quartet. This pattern
comes directly from the Ward identity. In other
words, the Es leakage pattern is a mirror image
reflecting I'5 through the mirror of the Ward identity.
Hs has no leakage to any eigenmode which belongs
to other quartets with £ # =4j.

4. Thanks to the Ward identity of the conserved U(1),

symmetry, the leakage pattern of |I's| " is identical

to that of |E5|;f;;ﬁ".

In Appendix F, we provide more examples to demon-
strate our claim that the leakage pattern for zero modes
holds in general. In Appendix G, we give more examples
to demonstrate our claim that the leakage pattern for
nonzero modes is valid in general. We have repeated
numerical tests over hundreds of zero modes and tens of
thousands of nonzero modes. We performed the numerical
study on hundreds of gauge configurations and find that
the above leakage pattern is valid for all of them except
for those gauge configurations with unstable topological
charge.
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TABLE VI. Numerical results for 7's. To obtain the results, we
use 292 gauge configurations with the input parameters in Table 1.
N, represents the number of quartets used to obtain the statistical
error. Here j = 0 represents would-be zero modes, and j > 0
represents nonzero modes.

J |Re(7's)|

i=0 7.2(130) x 1074
j>0 6.2(120) x 1073

[Im(75)| N,

5.9(46) x 10712 490
3.3(25) x 10712 7034

1. We find a number of gauge configurations which do
not have a stable topological charge.

2. We find about 10 gauge configurations with unstable
topological charge among 100 gauge configurations
with 12* lattice geometry at = 4.6.

3. We find about 8 gauge configurations with unstable
topological charge among 300 gauge configurations
with 20* lattice geometry at f = 5.0.

In Table VI, we present results for 75 defined in Eq. (92),
which is a direct barometer to estimate the effect of taste
symmetry breaking. If the taste symmetry is exactly
conserved, then 7’5 must vanish. Hence, a nontrivial value
of T'5 indicates the size of taste symmetry breaking. In
Table VI, we find that |[Re(Ts)| is of order 1073, while
[Im(7's)| is essentially zero. This indicates that the effect of
taste symmetry breaking is very small (in the subpercent
level within each quartet).

In Fig. 8, we present S5 defined in Eq. (93) as a function
of |£ — j| with ¢, j > 0. Here |£ — j| = 1 represents a pair
of nearest neighbor quartets, |£ — j| = 2 represents a pair
of next-to-nearest neighbor quartets, and so on. The values
of S5 are the same size as the statistical errors. This
indicates that the taste symmetry breaking results in simply
random noise added to the physical signal (S5 = 0). For
|¢ — j| = 1, the noise is ~#7%, and for |£ — j| = 2, the noise
is ~3%. We find that the noise decreases as |£ — j|
increases. The numerical values of S5 in Fig. 8 are
presented in Table VII.

10 F ]

S5 [x102]
¢

[2-J1

FIG. 8. S5 as a function of | — j|. Numerical values are given
in Table VIL

TABLE VII. Numerical results for Ss. Here, we measure S;
between two different quartets (£ # j and ¢, j > 0). N, repre-
sents the number of (¢, j) pairs with £ # j.

£ — jl Ss N,
1 6.6(52) x 1072 7185
2 3.0(18) x 102 6893
3 1.9(10) x 1072 6601
4 1.5(7) x 102 6309
5 1.2(5) x 102 6017

VI. MACHINE LEARNING

In previous sections, we have shown that the U(1),
symmetry of staggered fermions induces the chiral Ward
identities in Eq. (78), and we have also noted that the
approximate SU(4) taste symmetry brings in the quartet
behavior of the eigenvalue spectrum. Furthermore, a
combined effect of those symmetries gives us distinctive
leakage patterns for the chirality operator I's and the shift
operator Es. In this section, we apply a machine learning
technique to the following tasks.

1. We want to know how much the nonzero modes
respect the quartet classification rules, which come
from the SU(4) taste symmetry.

2. We want to know how efficiently we can measure
the topological charge Q using the index theorem
from the quartet structure of the nonzero modes.

3. We want to detect any anomalous behavior of the
eigenvalue spectrum, which does not follow the
standard leakage pattern of the nonzero modes.

4. We want to figure out what causes the anomalous
behavior of the eigenvalue spectrum.

Let us explain our sampling method for the machine
learning. In Fig. 9, we show matrix elements |F5|; on a
gauge configuration with Q = 2. Figure 9(a) is for the 200
lowest eigenmodes, and Fig. 9(b) is a zoomed-in version of
Fig. 9(a) for the 32 lowest eigenmodes. Here the depth of
the blue color represents the size of the matrix element
s | ;, and i, j run from zero to 199. We identify two zero
mode quartets (red boxes) by looking at the magnitude of
the diagonal components. These two quartets have the same
chirality (n_ = 2), which is consistent with the topological
charge O = 2. Excluding the would-be zero modes, we
randomly choose a 15 x 15 sub-matrix of |T's|% along the
diagonal line of |I's|% matrix elements. This 15 x 15 sub-
matrix is the smallest square sub-matrix of |['s| which
contains all elements of only one quartet of nonzero modes
and its parity partner quartet.

In Fig. 10, we present 8 different classes for arbitrary
samples. Our purpose for the machine learning is to find
borders (black lines) of the nonzero mode quartets (or
octets when the parity partners are included) in each
sample. We classify arbitrary samples into eight different

014508-13



HWANCHEOL JEONG et al.

PHYS. REV. D 104, 014508 (2021)

0 - 0.9
20 11 0.8
40 0.7
60 |
L 06
80
L 105
100
L 104
120
L 103
140 -
160 L 0.2
180 — L o1
200 . : . . T — 0
0 20 40 60 80 100 120 140 160 180 200
(a) 200 x 200
0 0.9
| |
| :
5 .
... 0.7
||
_ [ |
10 o L 1 06
||
u
15 .. 0.5
L 404
20 -
L 103
25 r02
L 101
30 -
T T T T T T B 0
0 5 10 15 20 25 30
(b) 32 x 32

FIG. 9. Matrix elements of |I's| for 200 and 32 of the lowest
eigenmodes on a gauge configuration with Q = 2. Here, indices
on both axes are the eigenvalue index. The color of each square
represents the magnitude of the corresponding matrix element.
Black lines indicate borders of nonzero mode quartets, and red
lines are those of zero mode quartets.

classes according to the location of the border lines. Each
class is labeled as in Fig. 10.

We use a deep learning model which combines the
multilayer perceptron (MLP) [46] and the convolutional
neural network (CNN) [46]. In Table VIII, we present our
basic setup for the machine learning. We use the gauge
configuration ensemble described in Table I. The data
measured over 292 gauge configurations are distributed
over a training set, validation set, and test set as in
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FIG. 10. Examples for our samples. Every sample contains only
one nonzero mode quartet. There are eight kinds of classes
according to the location of the borders of the quartet.

Table VIII. For each gauge configuration, we generate
around ten 15 x 15 matrix samples from the 200 lowest
eigenmodes without overlapping. We make popular and
suitable choices for the loss function [47], optimization
method [48], and activation functions [50] relevant to our
purpose, which are summarized in Table VIII. The best
hyperparameters such as the number of layers and the
number of units for each layer are determined by using the
Keras Tuner [51].

The accuracy of classification per gauge configuration is
obtained by averaging the accuracies of the machine
learning (ML) prediction for all the samples on a single
gauge configuration. Our best model achieves an average
accuracy of 96.5(156)% for 142 test gauge configurations.
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TABLE VIII. Parameters for machine learning. TABLE X. Numerical results for «p.
Parameters Values Topological charge Number of samples Kp
Number of training configurations 120 0] =1 72 1.26(13)
Number of training samples 1223 0] =2 68 1.22(3)
Number of validation configurations 30 0] =3 45 1.23(2)
Number of validation samples 308 Weighted average 241 1.232)
Number of test configurations 142
Number of test samples 1448
. Categorical _ s s
Loss function Cross-entropy [46.51] 4x Q= —kp X ;(fﬂ[% ® 1]|13) (96)
Optimization method Adam [49] &0
Activation function for hidden layers ReLl.U [46] 40
Activation function for output layer Softmax [46] Kp = — C_ (97)
0

Co= > I's(4.2) (98)

TABLE IX. Hyper-parameters for neural networks. Here, we 25,

show one of the examples of best performance, in which we use
only MLP but not CNN.

Layer Type Number of units Activation
Input . 225 o
Hidden #1 MLP 160 ReLU
Hidden #2 MLP 1210 ReLU
Hidden #3 MLP 1490 ReLU
Output MLP 8 Softmax

The hyperparameters which represent the structure of the
neural network model are given in Table IX. Among the test
set, we find five gauge configurations on which the
average accuracy per gauge configuration is lower than
50%. Data show that some ghost (unphysical) eigenvectors
are present in the eigenvalue spectrum on these gauge
configurations, so that the ML prediction gives a wrong
answer not due to failure of the ML algorithm but due to
human mistakes in labeling quartet samples based on the
eigenvalue index. Excluding these five gauge configura-
tions, we achieve the average accuracy of 99.4(23)%.
Considering that all samples generated on the same gauge
configuration are connected by the eigenvalue index (or
quartet index), this average accuracy of 99.4% implies that
one can in the end find completely correct quartet groups
for all the normal gauge configurations of the test set. It also
demonstrates our claim that the leakage pattern is universal
over all normal gauge configuration ensembles. Details of
the results of this ML research will be reported separately
in Ref. [52].

VII. ZERO MODES AND RENORMALIZATION

As explained in Sec. V, we know that there is practically
no leakage for the zero modes in the chirality measurement.
Hence, it is possible to determine the renormalization
factor kp by imposing the index theorem as follows. For

Q #0,

where S is the entire set of zero modes, and

o=, (99)
where
Os =ilrs ® 1y (100)
Op =¥lrs ® &slx (101)
[Os]r(1) = Zpxs(1)[Os]p (102)
[0p]r(1) = Zpxp(u)[Op]p. (103)
and the subscript [ -] ([--]) represents a renormalized

(bare) operator. The Zp, g and Zp, p are the renormalization
factors for the bilinear operators Og and Op, respectively.
One advantage of this scheme is that xp is independent of
valence quark masses, even though we perform the meas-
urement with arbitrary masses for valence quarks.
Numerical results for xp are summarized in Table X.

There are a few key issues in the physical interpretation

of x p-

(1) Since the topological charge Q and sum C, are
independent of renormalization scale, kp must be
independent of the renormalization scale p.

(ii) This means that the scale dependence of Zp, (1)
must cancel off that of Zp,p(u).

(iii) It would be nice to cross-check this property of kp in
the RI-MOM scheme [53] and in the RI-SMOM
scheme [54].

VIII. CONCLUSION

We study general properties of the eigenvalue spectrum
of Dirac operators in the staggered fermion formalism. As
an example, we use the Dirac operator for HYP staggered
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quarks. In Sec. V, we introduce a new chirality operator I's
and a new shift operator Z5 and prove that they respect the
continuum recursion relationships, as given in Egs. (53)—
(56) and Egs. (60)—(61). Using these operators with nice

chiral properties, we find that the leakage pattern of |I's |;’m',"

is related to that of [Es|}" through the Ward identity of the
conserved U(1), symmetry.

We find that the leakage pattern of I'5 and E5 for the zero
modes is quite different from that for the nonzero modes.
This difference in leakage pattern allows us to distinguish
the zero modes from the nonzero modes even though we do
not know a priori about the topological charge. We find
that using the leakage pattern of I's and Zs, one can
determine the topological charge as reliably as when using
standard field theoretical methods such as the cooling
method.

We use a machine learning (ML) technique to check the
universality of this leakage pattern over the entire ensemble
of gauge configurations (refer to Table I). Our best-trained
deep learning model identifies the quartet of nonzero
modes with 98.7(34)% accuracy using a single normal
gauge configuration. Choosing the highest probability
prediction of the ML and comparing the prediction with
the known answer, we find that the ML can identify all
quartet groups on an eigenvalue spectrum correctly. In
addition, the ML technique detects wrong answers resulting
from human input mistakes since the ML prediction
disagrees with a wrong answer by giving the prediction
with low accuracy (< 50%). This reassures us that the ML
technique is highly reliable at identifying anomalous gauge
configurations with defects such as violation of the index
theorem and ghost eigenmodes.

Once we identify the zero modes, it is also possible to
determine the ratio of renormalization factors kp =
Zpys(i)/Zpyp(p) from the chirality measurement of I's.

The leakage pattern is a new concept introduced in this
paper. It can be used to study the low lying eigenvalue
spectrum of staggered Dirac operators systematically. It
helps us understand how to extract the taste symmetry and
chiral symmetry from the staggered eigenvalue spectrum.
The leakage pattern will help us to dig out related physics
more efficiently, such as topological charge, index theorem,
Banks-Casher relation, and nonperturbative renormalization.
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APPENDIX A: LANCZOS ALGORITHM

Lanczos is a numerical algorithm for calculating eigen-
values and eigenvectors of a Hermitian matrix [21]. It
transforms an n x n Hermitian matrix H to a tridiagonal
matrix 7 through a unitary transformation Q, which is
represented by

T=Q'HQ. (A1)
Here columns of Q are composed of basis vectors of the nth
Krylov subspace K, (H, b) generated by H and a starting
vector b of our choice. Each iteration of Lanczos computes
acolumn of Q and T in sequence. At the end, diagonalizing
the tridiagonal matrix T yields eigenvalues and eigenvec-
tors of H.

In principle, Lanczos is a direct method that takes n
iterations to construct the n x n tridiagonal matrix 7.
However, since these columns of 7" are computed in order,
a sequence of m < n iterations also constructs an m X m
tridiagonal matrix 77 which is a submatrix of T In practice,
the real benefit of Lanczos is that eigenvalues of 7’
approximate eigenvalues of 7. As iteration continues,
and the size of the submatrix 7’ increases, eigenvalues
of T" converge to eigenvalues of 7. The convergence
behavior is somewhat complicated. The eigenvalues con-
verge to the largest, the smallest, or the most sparse
eigenvalue first. The speed of convergence depends on
the density of eigenvalues. The less dense, the faster the
convergence.

In this paper, we make use of two popular improvement
techniques of Lanczos: (1) implicit restart [55], and
(2) polynomial acceleration with Chebyshev polynomials
[56]. The implicit restart method gets rid of converged
eigenvalues in the middle of the Lanczos iteration. It takes
effect as if we restarted the Lanczos with a shifted matrix H’
given by

H'=H-) AT (A2)

where A; are eigenvalues we want to remove. Then A’ is still
Hermitian but does not have such eigenvalues 4;. Hence,
Lanczos with H' converges to remaining eigenvalues faster.
The implicit restarting procedure gives us a new submatrix,
which has a dimension ((m — r) x (m — r)) reduced by the
number of eigenvalues we have removed (r). Then we

014508-16



CHIRAL SYMMETRY AND TASTE SYMMETRY FROM THE ...

PHYS. REV. D 104, 014508 (2021)

iterate Lanczos r times to refill the submatrix and restore the
structure of the m x m matrix. We repeat the implicit restart
to obtain a new submatrix of dimension (m — r) x (m —r),
and so on. This procedure allows us to control the size of the
submatrix, the computational cost, and the memory usage,
while the submatrix 7’ contains (m — r) eigenmodes that
are more precise (much closer to the true eigenmodes of the
full matrix H) for each iteration.

A polynomial operation on a matrix changes the eigen-
value spectrum accordingly while retaining the eigenvec-
tors. Since the polynomial of a Hermitian matrix is also
Hermitian, Lanczos is still available to calculate its eigen-
values and eigenvectors. By choosing a proper polynomial,
one can manipulate the density of the eigenvalue spectrum
so that the convergence to the desired eigenvalues is
accelerated. A Chebyshev polynomial is a popular choice
for this purpose. Using the Chebyshev polynomial, we
want to map the first region of eigenmodes of no interest to
[-1,1] and map the second region of eigenmodes of our
interest to [—oo, —1]. In the interval [—1, 1], the eigenvalues
are dense enough that Lanczos does not converge. In
addition, the Chebyshev polynomial rapidly changes in
the second region so that the density of eigenmodes is low
enough to more quickly accelerate the convergence of
Lanczos. Here we apply the Chebyshev polynomial for

D:DS, whose eigenvalues are 22> 0. We set the lower
bound of the first region to a value somewhat greater than
the largest eigenvalue of interest. This strategy will not only
suppress high unwanted eigenmodes, but also accelerate
the speed of Lanczos for the low eigenmodes of interest.

Numerical stability is essential for the Lanczos algorithm.
Each Lanczos iteration generates Lanczos vectors, which are
column vectors of the unitary matrix Q in Eq. (Al). After
several iterations, however, Lanczos vectors lose their
orthogonality due to gradual loss of numerical precision.
If not addressed, this loss would induce spurious ghost
eigenvalues [57]. A straightforward prescription to solve the
problem is performing a reorthogonalization for every
calculation of Lanczos vectors. There are also alternative
approaches to eliminate the ghost eigenvalues without
reorthogonalization, such as the Cullum-Willoughby
method [58,59]. Here we choose the first solution and
perform the full reorthogonalization for each Lanczos
iteration.

For a large scale simulation using Lanczos, multigrid
Lanczos [60] and block Lanczos [61] are available.
Multigrid Lanczos is also based on the implicit restart
and Chebyshev acceleration. In addition, multigrid Lanczos
reduces the memory requirement significantly by com-
pressing the eigenvectors using their local coherence [62].
A spatially-blocked deflation subspace is constructed from
some of the lowest eigenvectors of the Dirac operator. Then
the coherence of eigenvectors allows us to represent other
eigenvectors on this subspace and to run Lanczos with
much less memory. Meanwhile, block Lanczos utilizes the

split grid method [61]. This algorithm deals with multiple
starting vectors for Lanczos, where the split grid method
divides the domain of the Dirac operator application into
multiple smaller domains so that each partial domain runs
in parallel on a partial grid (lattice) with a lower surface to
volume ratio than that of the full grid. Hence, one can
optimize the off-node communication by adjusting the
block (grid) size. This approach would give a significant
speed-up compared with our method. We plan to imple-
ment multigrid Lanczos and block Lanczos in the near
future.

APPENDIX B: EVEN-ODD PRECONDITIONING
AND PHASE AMBIGUITY

Even-odd preconditioning reorders a fermion field y(x)
so that even site fermion fields are obtained first, and odd
site fermion fields are obtained from them:

= ()

where y, (y,) is the fermion field collection on even (odd)
sites. On this basis, the massless staggered Dirac operator
D, can be represented as a block matrix:

( 0 Der))
D, = ,
D,, 0

where D,, (D,,) relates even (odd) site fermion fields to
odd (even) site fermion fields. Since D} = —D,, we also
find that D}, = —-D,, and D}, = —D,,.

On this basis, DiDs is expressed as

T 0 _Deo 0 Deo
PP={p, o N\p, o)

_ < _DeaD()e 0 )
0 _DoeDeo

Hence, the eigenvalue equation of DIDS [Eq. (29)] can be
divided into two eigenvalue equations as follows,

(B1)

(B2)

(B4)

_DeuD()e|ge> = j’z‘ge% (BS)

_DoeDeo|g()> = 12‘9()% (B6)

where [g,(,)) is the collection of even (odd) site compo-
nents of |g},). Here we omit the superscript s and the
subscript A2 for notational simplicity. Now let us multiply

D,, from the left on both sides of Eq. (B5). Then we
find that

_DOKDGO(D0€|g€>) = j'2(D0€|.g€>)’ (B7)
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which is identical to Eq. (B6). Hence, we find that
|9,) = nD,.|g.) where n = re'® is an arbitrary complex
number with » > 0 and 0 < a < 2z. Here r represents the
scaling behavior and a represents a random phase. Since
-D,,D,,(= D}.D,,) is Hermitian and positive semidefin-
ite, one can solve Eq. (B5) using the Lanczos algorithm
introduced in Appendix A. From the result for |g,), it is
straightforward to obtain the eigenvector |g},) of Eq. (29)

since
|ge)
l95.) = ( .
+ 1D ge|ge)

Now we apply the projection operator P, defined in
Eq. (32), to |gj12>. Using Eq. (B5), we find that

i™ D, |9e)
=P |¢,) =
|)(+> +|g/12> <Doe il ) <77Doe|ge>>

—(1+ mz)( Hge) )

Dae|ge>

(B8)

(B9)

Similarly, for the projection operator P_, defined in
Eq. (33), we find that

_M|ge>

lr-) = P_|g}) = (1 —ind) (D 0.)

>. (B10)

Since # only appears in the overall factor for both cases, it
gives only the relative phase difference between the nor-
malized eigenvectors |f*_ ;) defined in Eqs. (36) and (37).

We can proceed further to obtain the eigenvectors |f*,,).
The norm of |y ) is given by

(relzs) = (1 =i (1 + ind)] - 222(gclge). - (B11)
Hence, [f*,) is
11 +ind ( idlg.)
gy L B12
|f+ﬂ> NV 1- iﬂ*l<Doe|ge> ’ ( )
where
N = /220 10). (B13)
Similarly,
L [T —M|ge>>
SN _ B14
|f—/1> Nm(D(;e|ge> ( )

These results for |f*,) indicate that the phase difference 0
for the I, transformation defined in Eq. (47) depends on the
value of #.

In our numerical study, we set  to n = re’* = 1: r = 1
and a = 0. Hence, the relative random phase between
|f?.,) states is removed by hand. Therefore, our value of 0
defined in Eq. (47) includes a bias from our choice
of n=1.

For # = 1 (our choice), I';|f,,) is

1 1+ir/ ilg.)
r|f,) =— , B15
€|f+i> N 1- i/1<_Doe|ge> ( )
while [f*,) is

. 1 [1—id/ —ilg.)
|f_,1> =5 X ( .

N 1 —"_ lﬂ D()€|g€>
Then we obtain ¢’ from the following matrix element,

N I T T e
<f—/1|re|f+i>_N2¢<l+l/1) 1-il ( N)

14k
1-il
= (i) — it

(B16)

(B17)

where f§ = arctan(1). From Eqgs. (47) and (B17), we find
that

0 =n+2p. (B18)
In Fig. 3, we show the measurements of the phase 6 for
hundreds of eigenvectors on a gauge configuration
with Q = —1. The results for 6 are consistent with

our theoretical prediction Eq. (B18) within numerical
precision.

APPENDIX C: EIGENVALUE SPECTRUM
FOR Q= -2 AND Q= -3

In Figs. 11 and 12, we present examples of the
eigenvalue spectrum for Q = —2 and Q = -3, respectively.
Figures 11(a) and 12(a) show eigenvalues A*> for the
eigenvectors |g},) defined in Eq. (29). In Fig. 11, we find
two sets of four-fold degenerate eigenstates, corresponding
to {A,42, 43,44} and {4s,4¢,47,43}. Each set of four
eigenvalues indicates a quartet of would-be zero modes.
The number of quartets is related to the topological charge
Q = -2 by the index theorem of Eq. (23) when all would-
be zero modes have the same chirality (n_ =0 and
n, = 2). Apart from the would-be zero modes, we observe
that nonzero modes are eight-fold degenerate, as in the
cases Q =0 (Fig. 1) and Q = —1 (Fig. 2).
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FIG. 11. The same as Fig. 1 except for Q = —2.
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FIG. 12. The same as Fig. 1 except for Q = 3.

Similarly, in Fig. 12, we find three quartets of would-be
zero modes with n_.=0 and n, =3 (Q=-3):
{4120, 43, 44}, {45, 46,47, 48}, and - {9, d10, 411, A1}
Because the number of quartets equals the absolute value
of the topological charge |Q| = 3, it is possible to deduce
that all the would-be zero modes have the same chirality in
accordance with the index theorem of Eq. (23). For nonzero
modes, we observe the pattern of eight-fold degeneracy as

in other examples for Q = 0 in Fig. 1, Q = —1 in Fig. 2,
and Q = -2 in Fig. 11.

APPENDIX D: COMPARISON OF THE
GOLTERMAN AND KLUBERG-STERN
METHODS

Using the Golterman method, the chirality operator is
defined as follows.

Opa (x) = ZJ?(XA)[}’S ® 1]%(x,)

= > 200 P (AM@lz(xa) (D)
A

where the coordinate x, = 2x + A, x is a coordinate of the
hypercube, and A is a hypercubic vector with A, € {0, 1}
with u =1, 2, 3, 4. M, g, is defined as

1 Y o o~ o~
M75®1)((XA) = E Z DP4DP3DP2DP1)(<XA)
“{pa}EP

(D2)

where p; # p, # p3 # p4, and P is the set of all permu-
tations of {1,2,3,4}. The symmetric shift operator DM is
defined as

A A

V.0 + )+ Vily - x(y — )] (D3)

N =

Dx(y) =

where ji is a unit vector in the y direction of Euclidean
space. V,(y) is a (smeared) gauge link used in Eq. (40).
Py is defined as
1
Priei(A) = Tr(rarsra) = (1) (D4)
where Aﬂ = (A, +1) mod2. In the Golterman method,
the chirality operator [ys ® 1]9°! connects a site A =

(0,0,0,0) of 7 to the 16 sites B=(1,1,1,1),
(-1,1,1,1),....,(=1,=1,=1,—1) of y. As a consequence,

([rs ® 1% # 1 (D5)

unlike the continuum chirality operator which satisfies
rs@1IP=[1®l1]=1

Using the definition of bilinear operators in Eq. (38),
obtained with the Kluberg-Stern method, we define the
chirality operator as

Ok (1) = 37 xa)lrs ® 1<y (x3)
A

= E?a (xa)(rs ® 1) 4z U (xa.X4)apxs (x3). (D)
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Using the definition in Eq. (39) with yg = y5 and &7 = 1,
we find

— 1

(75 ® Dz =5 Tr(rarsval’)

— prei(4) = (<1 (D7)
Hence, the phase of the Kluberg-Stern operator is identical
to that of the Golterman operator, which is in general true
for the whole set of bilinear operators. We have freedom to
choose U(xy,x3),, to make the chirality operator gauge-
invariant. Here, we set U(x,, Xx3),, tO

Ula.x5) = Psyg) [Zv<xA,x,,l>v<x,,l,xm>
peC

Vg (D3)

where Pgy3) represents the SU(3) projection, and C
represents the complete set of shortest paths from x, to
xz. Here, the SU(3) projection is crucial to make the
chirality operator satisfy the continuum recursion relation:

(rs@1)P=ne1]=1 (D9)
A rigorous proof of Eq. (D9) is given in Appendix E,
Theorem E. 1. In the Kluberg-Stern method, the chirality
operator [ys ® 1]¥" connects a site A = (0,0,0,0) of y to a
single sitt A = (1,1,1,1), which makes it possible to
satisfy the recursion relation of Eq. (D9).

The Kluberg-Stern operator without the SU(3) projec-
tion Pgy(3) contains the Golterman operator as a leading
term:

OFl (x) = OGOI ()C) + Oirrel(x)

rsx1 ysx1

(D10)

where O, represents irrelevant operators of higher
dimension. For example, O, includes a 4-dimensional
operator:

Ol =" 70ea) Py, 06, (AM, gz, Jr(x4)  (DI1)
A
Prees(A) = 7T (Va7 ay,s) (D12)
1 L
Mm@éﬂs :E Z [DﬂDﬂlDﬂzDP,%
' {]70}67—)}4
+D1’1DHDP2DP3 +DP1D!’2D/4DP3
+DP1DP2DP3DI4] (D13)
1 ~ ~ A
Dy(y) =5 Va0l (v + ) = Vily = iy = )] (D14)

where p| # p, # p3 # p, and P, is the set of all permu-
tations of {p,|p. # p}- Technical details of the derivation
of a complete set of irrelevant operators are explained in
Ref. [63]. All the irrelevant operators have tastes different
from 1 ({7 # 1), and they contain at least one derivative D,
which leads to higher dimension operators. As a conse-
quence, their contribution to the chirality vanishes in the
continuum limit a — 0.

The recursion relation in Eq. (D9) is essential to define
the chirality value uniquely for the staggered fermion
formulation.

(Irs ® 192+ = [y @ 1 (DIS)
for all positive n € Z. Hence, in the case of the Kluberg-
Stern operators with the SU(3) projection, we can define
the chirality value uniquely without any ambiguity.
However, in the case of the Golterman operators, it is
not possible to define the chirality value uniquely due to the
following ambiguity:

O () =Y 2(ea)([rs ® 192" 1y (x)  (DI16)
A

[rs ® 1]9° # ([ys @ 1]9°)2n ! (D17)
O # OF0"if n# m. (D18)

In addition, the Golterman operator does not satisfy the
Ward identity, while the Kluberg-Stern operator respects it,

[rs ® 11%'[1 ® &]9 # [rs ® &5] =T (D19)

[rs ® 1M1 @ & = [rs ® &) =T (D20)
A rigorous proof is given in Theorem E. 3. However, in the
continuum limit, they converge to a unique value:

lin(l)(’)fsoxl']" = lir%OSSOXl’ll V positive n € Z

a— 3 a—

= limOK (D21)
a—0

ysx1

TABLE XI. Comparison between the Golterman and Kluberg-
Stern methods. Here Gol (Klu) represents the Golterman (Kluberg-
Stern) method. Recursion represents the recursion relationship.
Uniqueness represents the uniqueness of the chirality operator
value. The O (x) indicates that a given property is (is not) respected
by a specific transcription. Ref. represents key equations given for
reference.

Property Gol Klu Ref.
Recursion O Egs. (D5) and (D15)
Uniqueness x O Egs. (D18) and (D15)
Ward identity x O Egs. (D19) and (D20)
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since the contribution from all irrelevant operators vanishes
in the continuum. We summarize the differences between
the Golterman method and the Kluberg-Stern method in
Table XI.

APPENDIX E: RECURSION RELATIONSHIPS
FOR CHIRALITY OPERATORS

We define the chirality operator

(fallrs ® 1If})
= Z Z[f&(xA)]T(Vs ® 1)45U(xa,x5)f3(x5)  (El)

x AB

B
(rs ® &r)an = 3 Tr(virsvsry) (E2)

Ulra.x3) = Py [Zvumx,,l)vupl,xm)

peC
X V(xpz,xp3)V(xp3,xB)] (E3)
First let us prove the following theorem.
Theorem E.1.
rs®1rs®1]=[1®1] (E4)

Proof—Let us first rewrite [ys ® 1]% as follows,

rs®13c=> (rs® DapUlxaxp) - (75 ® 1)pcU(xp.xc)

= Z[(}’s ® 1),5(rs ®1)pc]
(U (xa,xp)U(x5.x¢)] (ES)

We know that

S 1
(rs ® 1)ap = ZTr(J’LVSJ’Bl)

= Opa[m (A)ma(A)nz (A)ny(A)]
= opans(A), (E6)
where A, = (A, + 1) mod2, and
n(A) = (=%, forp=1234,  (E7)

X, =Y A, (E8)

v<p

ns(A) = 1 (A)na(A)nz (A)ns(A) = (1) (E9)

Similarly, we find that

(vs ® 1)pc = Scpns(B). (E10)

Hence, we can rewrite Eq. (ES) as follows,

rs® 13c = _[65an5(A)Scans(B)]- [U(xa.x5)U(xp.xc)]

= 0acU(xa,x3) U (xz,%4)]; (E11)

where we use the helpful identity #5(A) = 55(A). Thanks
to the SU(3) projection in Eq. (E3), U(xz,x4) =
[U(x4,x3)]" € SU(3). Hence, [U(xa,x3)U(xz,x4)] = 1.
Therefore, we can rewrite Eq. (E11) as follows,

[rs ® 3¢ = 8ac = [1 ® 1]4¢- (E12)

Hence, we have just proven that [ys ® 1> =[1 ® 1].
(Q.E.D.) m

Using the results of Eq. (E4), we can prove the recursion
relationship as follows,

rs @ 17" = ([rs @ 112)" - [rs ® 1] (E13)
=([1®1)"-[rs®1] (E14)
=[1®1] el (E15)
=[rs®1]. (E16)

Using the results of Eq. (E4), we can prove another
recursion relationship as follows,

[rs ® 1" = ([rs ® 1]*)" (E17)
=(1e1) (E18)
=[1®1]. (E19)

Finally, we can prove the following theorem.
Theorem E.2.
[#@1] [#@1] - FZ—“@ 1} (E20)
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Proof.— Proof.—Using the results of Eq. (E6), we find that
1 2 1 —_—
{ —;75 ® 1} Z([l ® 1] +[rs ®1])° (75 ® 1)4p = dpans(A). (E25)
l([1 R 1 +2[rs® 1] +[rs ® 1) where A, = (A, + 1) mod 2. Let us rewrite (1 ® &), as
‘1‘ follows,
=@+ ®1)
T® &) = 2 Te(, 7))
{14—75@1} (E21) ( s)ap = A_BS_ o
= 05a[€1(A)82(A)L3(A) 4 (A)]
(QED.) . = 0pals5(A). (E26)
Using Eq. (E20), we can prove that for integer n > 0,
where A” = (A, + 1) mod 2, and
[1”5@1} - [1”5@1] (E22)
Cu(A) = (1), forpu=1,2,34, (E27)
by induction.
At this stage, it will be trivial to prove that Y, = Z A, (E28)
v>pu
{1 e 1] [ ] —0. (E23)
. C5(A) = £1(A)0a(A)E3(A)Ca(A) = (1), (E29)
The next two theorems concern the chiral Ward
identities. _
Theorem E.3. 5(A) = {s(A). (E30)
rs®&|=lrs NI =[1®&][rs ®1]  (E24)  Hepce, we find that
|
[rs ® 1][1 ® &slac = Z[}’s ® 1,51 ® &spc
B
= Z{<75 ® 1)4p(1 @ &s)pc U (x4, xp)U(xp. xc)]
= Z{5BA775 )8¢cCs5(C)HU (x4, x2)U(xz. x4)]
= dacns(A)5(A)
= dac€(A) = [rs ® &sac (E31)
This is a proof of the first part of the theorem. Similarly,
[1® &llys ® 1|ac = Z[l ® &slaplrs ® 1pe
B
= Z{ (1 ® &5)ap(rs @ 1)pctU(xa, x5)U(xp, xc)]
= Z{5BACS )8cans(C)HU (xa, x2)U(x7, X4)]
= dacns(A)5(A)
= Oxc€(A) = [rs ® &sac (E32)
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This is a proof of the second part of the theorem.
(Q.E.D) n
We prove the Ward identities in Eqgs. (63)-(64) as
follows.
Theorem E.4.

[rs®&]rs @1 =[rs @ 1][rs ® & =[1 ® &), (E33)

[rs @& @& =[1®&|lrs ®&s] =[rs ®1]. (E34)

Proof.—Using the results of Theorem E.3, we know the
following Ward identity:

lrs ® &) = [1 ® &llys @ 1]. (E35)

Let us multiply [ys ® 1] on both sides of Eq. (E35). Then,

rs ®&sllrs ® 1] = [1 ® &s]lys ® 117 = [1 ® &5]. (E36)
Here we use the recursion relationship in Theorem E.1.
Similarly, from the results of Theorem E.3, we know that

[rs ® &) = [rs ® 1][1 ® &s). (E37)

Let us multiply [ys ® 1] on both sides of Eq. (E37).

s ®1[rs ® &) =[rs @ 1P[1 ® &) = [1 ® &].  (E38)

Here, we use the recursion relation in Theorem E.1. This
completes a proof of the first part of Theorem E.4.
Let us multiply [1 ® &s] on both sides of Eq. (E37).

s ® &I ®&]=1lrs @ 1[I @& =[rs ®1]. (E39)

Similarly, let us multiply [1 ® &) on both sides of
Eq. (E35).

1®&]rs ®&]=1Q &P [rs ®1] =[rs @ 1]. (E40)

This completes a proof of the second part of Theorem E.4.
(Q.E.D.) (]

APPENDIX F: EXAMPLES FOR THE LEAKAGE
PATTERN OF ZERO MODES

Let us begin with the case Q = —2. In Fig. 13, we show
leakage patterns of the chirality operator for the first set of
zero modes at Q = —2. In Fig. 14, we present the leakage
patterns of the shift operator for the first set of zero modes
at O = —2. By comparing Fig. 13 with Fig. 14, we find that
the chiral Ward identities of Eqs. (78) and (79) are well
respected.

In Fig. 15, we show leakage patterns of the chirality
operator for the second set of zero modes at Q = —2. In
Fig. 16, we present the leakage patterns of the shift operator
for the second set of zero modes at Q = —2. By comparing

— T — T

10 ooty Tm03, [imet TS ]
0.5 .
0.0 P T I RO S o R R
1 5 9 13 17 21
i
(a) [Ts]7 = [T5(Ais A1)
g Y s 'yl | B S
™ [ '
05 F 4
0_0'| . P S I S S E RPN TR
1 5 9 13 17 21
i
(b) IT5]5 = [Ts(As, As)]
FIG. 13. [ys ® 1] leakage pattern for the first quartet of would-
be zero modes at Q = —2.

Fig. 15 with Fig. 16, we find that the chiral Ward identities
of Egs. (78) and (79) are well-preserved.

Now let us consider an example with Q = —3. The
leakage patterns for the first and second sets of zero modes
are similar to those at Q = —2. Hence, we choose the third
set of zero modes as our example. In Fig. 17, we show
leakage patterns of the chirality operator for the third set of
zero modes at Q = —3. In Fig. 18, we present the leakage
pattern of the shift operator for the third set of zero modes at
Q = —3. By comparing Fig. 17 with Fig. 18, we find
that the chiral Ward identities of Eqs. (78) and (79) are
well-preserved.

21
UL AL UL T
1.0 [ j=0-1g :j=0-2g |Jj=%1 j=%2 i
™ [ ' 1
W7 05 T E 5
00 : 1 1 ™ —— PR =y e IR | T
1 5 9 13 17 21
i
() 1Z51% = [E5(Xis A3)
FIG. 14. [l ® &s] leakage pattern for the first quartet of would-
be zero modes at Q = —2.
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1 5 9 13 17 21
i
(a) ITsl5 = [T5(Xi, As)|
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1.0 [ j=0-1g 'j=0-2g |j=%1 =22 7
o~ : e
205 F ]
0'0'| PR B T T PR R
1 5 9 13 17 21
i
(b) ITs]5 = Ts (A, A7)
FIG. 15. [ys ® 1] leakage pattern for the second quartet of
would-be zero modes at Q = —2.
10 Footy Tmoan [hmer 7 TR
o [ . ]
£0.5 | | ;
O'O-I R PR T SO R
1 5 9 13 17 21
i
(a) 12515 = IE5(Xi, Xs)]
1.0 Fi=0-1g ' j=0-2g |j=21 j=x2
- . ]
w05 ]
O'O-I RN R e ey o RSP S
1 5 9 13 17 21
i
(b) [Zs]% = [E5(Xi, A7)
FIG. 16. [l ® &) leakage pattern for the second quartet of
would-be zero modes at Q = —2.

APPENDIX G: EXAMPLES FOR THE LEAKAGE
PATTERN OF NONZERO MODES

Let us begin with an example with Q = 0. Since the
gauge configuration with Q = 0 usually has no zero
mode (n_=n, =0), it is relatively easy to study
nonzero modes. In Fig. 19, we present leakage patterns
of the chirality operator I's =[ys ® 1] for nonzero
modes {4;,43,45,47} = {/lj,m|j =+1,m=1,2,3,4} in
the j = +1 quartet when Q = 0. The results show that
the I's leakages for nonzero modes 4., mostly go
into their parity partners {4;,44.46. 43} ={4; u|j=—1.m=
1,2,3,4} in the j = —1 quartet. Meanwhile, the leakages

' j=02p ' j=0-3g | j=%1 ]
. e :
205 F ]

O'O-I N I T R S

1 5 9 13 17
i
(a) [Tl = [T5(Ais o)

1.0 | j=0-1x ' j=02p ' j=03g | j=%1 ' ]
505 | By
=

00 [ 1 L L L : | L L L : | L w

1 5 9 13 17
i
(b) T[4y = Ts(Xi, A1)
FIG. 17. [ys ® 1] leakage pattern for the third quartet of would-
be zero modes at Q = —3.
I' T T L I' T T L I' N T T T T O
1.0 j=0-1g ' j=0-2r ! j=0-3r j==1 7
. o [ . .
905 b

0.0 [ 1 Ll N mn - - ]

1 5 9 13 17
i
(a) 251§ = |E5(Ai, o)l
L B T 7]

1.0 1 j=0-1g ' j=0-2r ! j=0-3r j==1 7
05 F ]
i :

0.0'| | I [ S

1 5 9 13 17
i
(b) 2515, = 1Es(Xi, A11)]
FIG. 18. [l ® &s] leakage pattern for the third quartet of would-
be zero modes at Q = —3.

to other quartets such as j= 42,43 are negligibly

small compared to those of the j = —1 quartet elements.
This observation is consistent with that for Q = —1
in Fig. 6.

In Fig. 20, we present leakage patterns of the shift
operator Es =[1 ® &) for the nonzero modes
{A1.243.45, 47} of Ay, in the j=+1 quartet when
Q = 0. For the E5 operator, we find the great part of
leakages are from nonzero modes 4., to other elements
within the j = +1 quartet. Meanwhile, there are only
negligible leakages to parity partner quartet elements
(j = —1) and other quartets with j = 42, 3, and so on.
This observation corresponds to the case Q = —1 in Fig. 7.
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1 5 9 13 17 21
i
(a) IT5] = |T5(Ai, A1)

L B
Lj=%2

1 5 9 13 17 21
i
(b) [Tsl§ = [Ts(Ais A3)|

i
(d) [Tsl% = [Ts(Ais A7)

FIG. 19. [ys ® 1] leakage pattern for the first quartet of nonzero
modes at Q = 0.

We also find that the leakages of I's in Fig. 19 and Zs in
Fig. 20 are related to each other by the Ward identity
of Eq. (95).

In Figs. 21 and 22, we present leakage patterns of the I's
and ZEs operators, respectively, for nonzero modes
{19’1117/113’)“15} = {lj,m|‘] = +2,m = 1, 2, 3,4} in the
Jj = +2 quartet when Q = 0. Similar to the above cases
for j = 41, I's leakages for nonzero modes of j = +2
mostly go to their parity partner quartet elements of
Ji==2: {o:dizs hias diet = {Aj,m|j =-2,m=1,2,3,4},
and E5 leakages mostly go to members within the j = +2
quartet: {49, 411,43, 415}. There are only negligible leak-
ages to other quartets for both operators.

Now let us examine the leakage patterns when would-be
zero modes exist (Q # 0). In Figs. 23 and 24, we present
leakage patterns of the I's and E5 operators, respectively,
for nonzero modes {19, 1,1, 43,45} in the j = +1 quartet

1 5 9 13 17 21
i
() 251} = [25(Ai, A1)

1 5 9 13 17 21
i
(d) [E5]5 = |25 (N, Az)|

1 5 9 13 17 21
i
(c) 1E5]E = 1E5(Ni; As)|

i
(d) [E5]% = |25 (i, A7)

FIG.20. [l ® &s]leakage pattern for the first quartet of nonzero
modes at Q = 0.

when Q = —2. There are two quartets of right-handed
would-be zero modes where j = 0 — 1z and 0 — 2z, which
corresponds to n_ =0 and n, =2 with Q = -2 by the
index theorem (Q = n_ —n_).

As in the cases Q = —1 (Figs. 6 and 7) and Q =0
(Figs. 19 and 20), I'5 leakages from nonzero modes of j =
+1 mostly go to the parity partner j = —1 quartet, and =
leakages from nonzero modes of j = +1 mostly go within
the j = +1 quartet itself. Leakages to other nonzero mode
quartets and would-be zero mode quartets are negligibly
small. We also find that the Ward identity between the two
leakage patterns holds.

In Figs. 25 and 26, we present leakage patterns for the I's
and Es; operators, respectively, for nonzero modes
{113,}.]5,217,119} in the ]: +1 quartet when Q = -3
Their leakage patterns are also consistent with those for
Q0 =0,—1,-2 in our previous discussion.
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FIG. 21. [ys ® 1] leakage pattern for the second quartet
nonzero modes at Q = 0.

of FIG. 22.

[l ® &5] leakage pattern for the second quartet

9 13 17 21
i

(d) 1Z5]i5 = [25(As, A1s)|

of

nonzero modes at Q = 0.
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FIG.24. [l ® &s]leakage pattern for the first quartet of nonzero

modes at Q = —2.
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FIG.25. [ys ® 1] leakage pattern for the first quartet of nonzero

modes at Q = —3.
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