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We investigate general properties of the eigenvalue spectrum for improved staggered quarks. We
introduce a new chirality operator ½γ5 ⊗ 1� and a new shift operator ½1 ⊗ ξ5�, which respect the same
recursion relation as the γ5 operator in the continuum. Then we show that matrix elements of the chirality
operator sandwiched between two eigenstates of the staggered Dirac operator are related to those of the
shift operator by the Ward identity of the conserved Uð1ÞA symmetry of staggered fermion actions. We
perform a numerical study in quenched QCD using HYP staggered quarks to demonstrate the Ward
identity. We introduce a new concept of leakage patterns which collectively represent the matrix elements
of the chirality operator and the shift operator sandwiched between two eigenstates of the staggered Dirac
operator. The leakage pattern provides a new method to identify zero modes and nonzero modes in the
Dirac eigenvalue spectrum. This method is as robust as the spectral flow method but requires much less
computing power. Analysis using a machine learning technique confirms that the leakage pattern is
universal, since the staggered Dirac eigenmodes on normal gauge configurations respect it. In addition, the
leakage pattern can be used to determine a ratio of renormalization factors as a by-product. We conclude
that it might be possible and realistic to measure the topological charge Q using the Atiya-Singer index
theorem and the leakage pattern of the chirality operator in the staggered fermion formalism.

DOI: 10.1103/PhysRevD.104.014508

I. INTRODUCTION

It is important to understand the low-lying eigenvalue
spectrum of the Dirac operator, which exhibits the topo-
logical Ward identity of the Atiya-Singer index theorem
[1], the Banks-Casher relationship [2], and the universality
of the distribution of the near-zero modes for fixed
topological charge sectors [3,4]. Study on the eigenvalue
spectrum of the Dirac operator is, by nature, highly non-
perturbative. Hence, numerical tools available in lattice

gauge theory provide a perfect playground to study diverse
properties of the Dirac eigenvalue spectrum.
In lattice QCD, there are a number of popular methods to

implement a discrete version of the continuum Dirac
operator. We are interested in one particular class of lattice
fermions that are widely used in the lattice QCD commu-
nity: improved staggered quarks [5–7]. Here we study the
eigenvalue spectrum of staggered Dirac operators in
quenched QCD to show that the small eigenvalues near
zero modes of the staggered Dirac operators reproduce the
continuum properties very closely, which was originally
noticed in Refs. [8–10]. To reach this conclusion, the
authors of Refs. [8,9] performed a number of tests,
verifying consistency of lattice data with (1) the Atiya-
Singer index theorem that describes the chiral Ward identity
relating the zero modes to the topological charge; (2) the
Banks-Casher relationship that relates the chiral condensate
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to the density of eigenvalues at the zero modes; and (3) the
universality of the small eigenvalue spectrum in the
ε-regime predicted by random matrix theory. In addition,
the authors of Refs. [11,12] used the spectral flow method
of Adams [13] to identify the zero modes from a mixture
with nonzero modes. The spectral flow method is robust but
highly expensive in a computational sense.
Here, we introduce a new, advanced chirality operator

½γ5 ⊗ 1�, which respects the continuum algebra of γ5. We
show that matrix elements of this chirality operator between
eigenstates are related to those of the shift operator ½1 ⊗ ξ5�
through the Ward identity of the conserved Uð1ÞA sym-
metry of staggered fermions. In addition, we introduce a
new concept of leakage patterns to distinguish zero modes
from nonzero modes. Using the leakage pattern of the
chirality and shift operators, we show that one can measure
the zero modes as reliably as when using the spectral flow
method. Hence, one could determine the topological charge
Q using the leakage pattern with much smaller computa-
tional cost than by using the spectral flow. We also show
that it is possible to determine the ratio of renormalization
constants ZP×S=ZP×P using the leakage pattern.
In Sec. II, we briefly review the continuum theory of the

eigenvalue spectrum and its relation to the quark condensate
hψ̄ψi. We also review the Atiya-Singer index theorem in
brief. In Sec. III, we briefly review the eigenvalue spectrum
of staggered Dirac operators that is obtained using the
Lanczos algorithm. In Sec. IV, we briefly review the
conserved Uð1ÞA symmetry in the staggered fermion for-
malism and explain its role in the eigenvalue spectrum of
staggered Dirac operators. We also present numerical
examples to help readers to understand basic concepts
and notation. In Sec. V, we define the chirality operator
½γ5 ⊗ 1� and the shift operator ½1 ⊗ ξ5�. We show that they
respect the continuum recursion relation of γ5. Then we
derive the chiral Ward identity of the Uð1ÞA symmetry to
show that the matrix elements of the chirality operator are
related to those of the shift operator through the Ward
identity. We discuss the eigenvalue spectrum in the con-
tinuum limit and introduce a new notation of quartet indices.
Then we introduce the concept of leakage patterns for the
chirality operator and the shift operator. We also present
numerical examples to demonstrate that the leakage patterns
of zeromodes are completely different from those of nonzero
modes. In Sec. VI, we review a machine learning technique
and describe how to apply it to extract efficiently the quartet
structure of nonzero modes using leakage patterns. In
Sec. VII, we explain how the leakage pattern of the zero
modes can be used to determine the ratio of the renormal-
ization factors nonperturbatively. In Sec. VIII, we conclude.
The appendixes contain technical details on Lanczos algo-
rithms and mathematical proofs, and more plots of leakage
patterns for diverse topological charge values.
Preliminary results of this paper are published in

Refs. [14–16].

II. QUARK CONDENSATE IN THE CONTINUUM

In the continuum the quark condensate is given by

hψ̄ψi ¼ 1

Nf

X
f

h0jψ̄fψfj0i ð1Þ

¼ −
1

VNf

Z
d4xTr

�
1

Dþm

�
; ð2Þ

where D is the Dirac operator, m is the quark mass, x is the
space-time coordinate, V is the volume, and Nf is the
number of flavors with the same massm. The trace is a sum
over spin and color. Let us think of the eigenvalues of the
Dirac operator. D is anti-Hermitian, so its eigenvalues are
purely imaginary or zero.

D† ¼ −D ð3Þ

DuλðxÞ ¼ iλuλðxÞ ð4Þ

where λ is a real eigenvalue, and uλðxÞ is the corresponding
eigenvector.
By spectral decomposition [4],

Sfðx; yÞ ¼ hψfðxÞψ̄fðyÞi ¼
X
λ

1

iλþm
uλðxÞu†λðyÞ ð5Þ

hψ̄ψi ¼ −
1

V

X
λ

1

iλþm

Z
d4xTrðuλðxÞu†λðxÞÞ ð6Þ

¼ −
1

V

X
λ

1

iλþm
ð7Þ

where we adopt the normalization convention

huajubi ¼
Z

d4xu†aðxÞubðxÞ ¼ δab: ð8Þ

Thanks to the chiral symmetry,

γ5D ¼ −Dγ5 ð9Þ

Dγ5juλi ¼ −iλγ5juλi: ð10Þ

Let us define u−λ ≡ γ5uλ, so thatDu−λ ¼ −iλu−λ. Hence, if
there exists uλ for λ ≠ 0, then the parity partner eigenstate
u−λ with negative eigenvalue −iλ must also exist.
Now let us separate the zero mode contribution from the

spectral decomposition.
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hψ̄ψi ¼ −
1

V

X
λ>0

2m
λ2 þm2

−
nþ þ n−
mV

: ð11Þ

Here, nþ (n−) is the number of right-handed (left-handed)
zero modes per flavor. Let us define the subtracted quark
condensate hψ̄ψisub:

hψ̄ψisub ¼ hψ̄ψi þ nþ þ n−
mV

¼ −
1

V

X
λ>0

2m
λ2 þm2

: ð12Þ

¼ −
1

V

X
n

2m
λ2n þm2

with λn > 0 ð13Þ

¼ −
Z þ∞

−∞
dλ

m
λ2 þm2

ρsðλÞ; ð14Þ

where the spectral density ρsðλÞ is

ρsðλÞ ¼
1

V

X
n

δðλ − λnÞ: ð15Þ

Here, ρs is a spectral density on a single gauge configu-
ration with volume V. Now let us average over a full
ensemble of gauge field configurations and take the limit of
infinite volume (V → ∞). Then, in that limit, the spectral
density ρðλÞ ¼ hρsðλÞi has a well defined (smooth and
continuous) value as λ → 0. We can define the chiral
condensate as

Σ ¼ −h0jψ̄ψ j0isubðm ¼ 0Þ

¼ lim
m→0

Z þ∞

−∞
dλ

m
λ2 þm2

ρðλÞ ¼ πρð0Þ; ð16Þ

which is the Banks-Casher relation. The subtracted quark
condensate hψ̄ψisub is expected to behave well in the chiral
limit, even though the contribution from the zero modes is
divergent as a simple pole in the chiral limit. Hence, in the
numerical study on the lattice, it is important to identify the
would-be zero modes which correspond to the zero modes
in the continuum limit, and to remove them in the
calculation of the quark condensate.
Before proceeding, let us briefly go through the index

theorem. In the continuum theory in Euclidean space, the
axial Ward identity [17] is

∂μAμðxÞ ¼ 2mPðxÞ − 2NfqðxÞ: ð17Þ

Here Aμ ≡ ψ̄γμγ5ψ is the axial vector current in the flavor
singlet representation, P≡ ψ̄γ5ψ is the corresponding
pseudo-scalar operator, and q≡ 1

32π2
Tr½FμνF̃μν� is the

topological charge density (¼winding number density).
Now the topological charge Q is

Q≡
Z

d4xhqðxÞi ð18Þ

¼ −
1

2Nf

Z
d4xh∂μAμðxÞ − 2mPðxÞi ð19Þ

¼ m
Nf

Z
d4xhψ̄γ5ψi: ð20Þ

Using the spectral decomposition, we can rewrite Q as
follows,

Q ¼ −m
X
λ

1

iλþm

Z
d4x½u†λðxÞγ5uλðxÞ�: ð21Þ

Noting that γ5uλðxÞ ¼ u−λðxÞ for λ ≠ 0,Z
d4x½u†λðxÞγ5uλðxÞ� ¼ huλju−λi ¼ 0: ð22Þ

Hence, only zero modes contribute to Q. For the
zero modes, it is convenient to choose the helicity eigen-
states as the basis vectors so that huL0 jγ5juL0 i ¼ −1 and
huR0 jγ5juR0 i ¼ þ1, where the superscripts L, R represent
left-handed and right-handed helicity, respectively. Then
deriving the index theorem is straightforward [1]:

Q ¼ n− − nþ; ð23Þ

where nþ (n−) is the number of the right-handed (left-
handed) zero modes.

III. SPECTRAL DECOMPOSITION WITH
STAGGERED FERMIONS

A number of improved versions of staggered fermions
exist, such as HYP-smeared staggered fermions [5], asqtad
improved staggered fermions [18], and highly improved
staggered quarks (HISQ) [7]. Here we refer to all of them
collectively as “staggered fermions.” Staggered fermions
have four tastes per flavor by construction [19]. Hence, the
quark condensate for staggered fermions is defined as

hχ̄χi ¼ −
1

VNt

�
Tr

�
1

Ds þm

��
U
; ð24Þ

where χ represents a staggered quark field, Ds is the
staggered Dirac operator for a single valence flavor, V is the
lattice volume, and Nt is the number of tastes. We measure
the quark condensate using a stochastic method.

ðDs þmÞx;yχðyÞ ¼ ξðxÞ ð25Þ

χðxÞ ¼
�

1

Ds þm

�
x;y
ξðyÞ ð26Þ
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Tr

�
1

Ds þm

�
¼ lim

Nξ→∞

1

Nξ

X
ξ

X
y

ξ†ðyÞχðyÞ; ð27Þ

where x, y are representative indices which represent the
space-time coordinates, taste, and color indices collectively.
Here ξðxÞ represents either Gaussian random numbers or
Uð1Þ noise random numbers which satisfy a simple
identity:

lim
Nξ→∞

1

Nξ

X
ξ

ξ†ðxÞξðyÞ ¼ δxy;

where Nξ is the number of random vector samples.
Staggered fermions have a taste symmetry SUð4ÞL ⊗

SUð4ÞR ⊗ Uð1ÞV in the continuum limit at a ¼ 0 [20].
However, this symmetry breaks down to a subgroup
Uð1ÞV ⊗ Uð1ÞA on the lattice with a ≠ 0 [19,20]. The
remaining axial symmetryUð1ÞA plays an important role in
protecting the quark mass from receiving an additive
renormalization. In addition, it does not have any axial
anomaly.
The Dirac operator (Ds) of staggered fermions is anti-

Hermitian: D†
s ¼ −Ds. Hence, its eigenvalues are purely

imaginary:

Dsjfsλi ¼ iλjfsλi; ð28Þ

where λ is real. Here, the subscript s and superscript s
represent staggered quarks.
In practice, when we obtain eigenvalues of Ds numeri-

cally, we use the following relationship instead of Eq. (28):

D†
sDsjgsλ2i ¼ λ2jgs

λ2
i ð29Þ

where the jgs
λ2
i state is a mixture of the two eigenvectors

jfsþλi and jfs−λi. In other words,

jgs
λ2
i ¼ c1jfsþλi þ c2jfs−λi ð30Þ

where the ci are complex numbers that satisfy the nor-
malization condition

jc1j2 þ jc2j2 ¼ 1: ð31Þ

The numerical algorithm is a variation of a Lanczos
algorithm adapted for lattice QCD [21]. Details on the
numerical algorithms as well as comprehensive references
are given in Appendix A.
Why do we obtain λ2 instead of iλ? The first reason is

that doing so allows us to use even-odd preconditioning
[22], which makes Lanczos run on only even or odd sites on
the lattice. This leads to two benefits: One is that there is a
substantial gain in the speed of the code, and the other is
that the code uses only half the memory otherwise required.

Details on even-odd preconditioning are described in
Appendix B. The second reason is that obtaining λ2 instead
of iλ allows us to implement polynomial acceleration
algorithms [23] into Lanczos more easily, since the
eigenvalues of D†

sDs are positive definite and have a lower
bound λ2 > 0. Note that staggered fermions have would-be
zero modes whose eigenvalues are small and positive
(λ2 > 0) on rough gauge configurations. There are no exact
zero modes (λ ¼ 0) with staggered fermions on rough
gauge configurations [24]. Details of our implementation of
polynomial acceleration are described in Appendix A.
Hence, we use the Lanczos algorithm to solve Eq. (29)

for the eigenvector jgs
λ2
i as well as the corresponding

eigenvalue λ2. We obtain jfsþλi and jfs−λi by using
projection operators defined as

Pþ ¼ ðDs þ iλÞ ð32Þ

P− ¼ ðDs − iλÞ; ð33Þ

where Pþ is the projection operator that selects only the
jfsþλi component and removes the jfs−λi component. Then

jχþi ¼ Pþjgsλ2i ð34Þ

jχ−i ¼ P−jgsλ2i ð35Þ

and the orthonormal eigenvectors are

jfsþλi ¼
jχþiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihχþjχþi

p ð36Þ

jfs−λi ¼
jχ−iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihχ−jχ−i

p : ð37Þ

IV. CHIRAL SYMMETRY OF
STAGGERED FERMIONS

The two vectors jfs�λi are related to each other through a
chiral Ward identity of staggered fermions. Here we
address this issue of the chiral symmetry of staggered
fermions and its consequences.

A. Notation and definitions

Let us begin with notation and definitions. For staggered
fermions, there are two independent methods to transcribe
operators to the lattice: One is the Golterman method
[19,25,26], and the other is the Kluberg-Stern method
[27–30]. In Appendix D, we explain how to construct
chirality operators using both the Golterman method and
the Kluberg-Stern method, and we compare the two
methods. The comparison is summarized in Table XI of
Appendix D. Since the Kluberg-Stern method respects the
recursion relationship, uniqueness of chirality, and the
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Ward identity while the Golterman method does not, we
adopt the former method to construct bilinear operators.
Accordingly we define staggered bilinear operators as

OS×TðxÞ≡
X
A;B

χ̄ðxAÞ½γS⊗ ξT �ABχðxBÞ

¼
X
A;B

χ̄aðxAÞðγS ⊗ ξTÞABUðxA;xBÞabχbðxBÞ ð38Þ

where χb are staggered quark fields, and a, b are color
indices. Here the coordinate xA ¼ 2xþ A, x is a coordinate
of the hypercube, and A, B are hypercubic vectors with
Aμ; Bμ ∈ f0; 1g. The spin-taste matrices are

ðγS ⊗ ξTÞAB ≡ 1

4
Trðγ†AγSγBγ†TÞ ð39Þ

where γS represents the Dirac spin matrix, and ξT represents
the 4 × 4 taste matrix. In addition,

UðxA; xBÞ≡ PSUð3Þ

�X
p∈C

VðxA; xp1
ÞVðxp1

; xp2
Þ

� � �Vðxpn
; xBÞ

�
ð40Þ

where PSUð3Þ represents the SUð3Þ projection, and C
represents the complete set of shortest paths from xA to
xB. Vðx; yÞ represents the HYP-smeared fat link [5,6] for
HYP staggered fermions, the Fat7 fat link [6,31–33] for
asqtad staggered fermions or HISQ, and the thin gauge link
for unimproved staggered fermions.
The conserved Uð1ÞA axial symmetry transformation is

ΓϵðA;B; a; bÞ≡ ½γ5 ⊗ ξ5�AB;ab
¼ ðγ5 ⊗ ξ5ÞAB · δab

¼ ϵðAÞ · δAB · δab ð41Þ

where Γϵ is often called “distance parity,” and

ϵðAÞ≡ ð−1ÞSA ð42Þ

SA ≡X4
μ¼1

Aμ: ð43Þ

Under the Uð1ÞA transformation, the staggered Dirac
operator transforms as follows,

ΓϵDsΓϵ ¼ D†
s ¼ −Ds ð44Þ

ΓϵDs ¼ −DsΓϵ: ð45Þ

Therefore,

Dsjfsþλi ¼ þiλjfsþλi
DsΓϵjfsþλi ¼ −iλΓϵjfsþλi; ð46Þ

and fs−λ can be obtained from fsþλ through Γϵ trans-
formation as follows,

Γϵjfsþλi ¼ eþiθjfs−λi
Γϵjfs−λi ¼ e−iθjfsþλi: ð47Þ

In general, there is no constraint for the real phase θ, so we
expect its probability distribution to be random. In practice,
however, we make use of even-odd preconditioning, and
we obtain the odd site fermion fields (jgoi) from the even
site fermion fields (jgei) with the relation jgoi ¼ ηDoejgei,
where Doe is a sector of Ds that connects even site fields to
odd site fields, and η is a random complex number. Hence
the distribution of θ depends on our choice of η. In our
numerical study, we set η ¼ 1. Then θ is given by

θ ¼ π þ 2β; β ¼ arctanðλÞ: ð48Þ

Details on the even-odd preconditioning and the derivation
of Eq. (48) are explained in Appendix B.
We expect that if there exists an eigenvector jfsþλi, there

must be a corresponding parity partner jfs−λi due to the
exact chiral symmetry Γϵ. In other words, the Ward identity
of Eq. (47) comes directly from the conserved Uð1ÞA axial
symmetry.

B. Numerical examples

We now use numerical examples to demonstrate how the
above theory works in quenched QCD. In Table I, details of
the gauge configurations are presented.
We measure the topological charge Q using gauge links.

We use the Qð5LiÞ operator defined in Refs. [40,41] after
10 ∼ 30 iterations of APE smearing with α ¼ 0.45 [42–44].
We show an example of the eigenvalue spectrum forQ ¼ 0
in Fig. 1. Since Q ¼ 0, we do not expect to find any zero

TABLE I. Input parameters for numerical study in quenched
QCD. For more details, refer to Ref. [9]. The relationship
between sample sizes in our study and the number of the gauge
configurations is nontrivial and discussed later.

Parameters Values

Gluon action Tree level Symanzik [34–36]
Tadpole improvement Yes
β 5.0
Geometry 204

a 0.077(1) fm [37]
1=a 2.6 GeV

Valence quarks HYP staggered fermions [6,38,39]
Nf Nf ¼ 0 (quenched QCD)
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modes for this gauge configuration. In Fig. 1(a), we show
eigenvalues λ2 for the eigenvectors jgs

λ2
i defined in Eq. (29).

Here we observe eight-fold degeneracy for nonzero
eigenmodes due to the conserved Uð1ÞA axial symmetry.
Here λ2 ¼ −λ1 and, in general, λ2n ¼ −λ2n−1 for integer
n > 0. In other words, λ2n is the parity partner of λ2n−1. For
each λi, there exists four-fold degeneracy due to approxi-
mate SUð4Þ taste symmetry. For each of these four-fold
degenerate eigenvalues [for example λ1, λ3, λ5, λ7 in
Fig. 1(a)], there exists a parity partner eigenvalue due to
the Uð1ÞA symmetry: λ2 ¼ −λ1, λ4 ¼ −λ3, λ6 ¼ −λ5, and
λ8 ¼ −λ7 [refer to Fig. 1(b)].
Let us turn to an example with Q ¼ −1. Since Q ¼ −1,

we expect to observe four-fold would-be zero modes. The
gauge configurations are so rough that we expect to observe
not exact zero modes but would-be zero modes. In Fig. 2,
we demonstrate how the would-be zero modes behave on a
gauge configuration with Q ¼ −1. As one can see in
Figs. 2(a) and 2(b), we find four-fold degenerate would-
be zero modes: λ1, λ2, λ3, λ4. Thanks to the Uð1ÞA chiral
Ward identity in Eq. (47), we find that λ2 ¼ −λ1 and
λ4 ¼ −λ3. As in the case with Q ¼ 0, we find that the
nonzero eigenmodes are eight-fold degenerate. This pattern
of four-fold degeneracy for would-be zero modes and eight-
fold degeneracy for nonzero modes is also observed in the
cases with Q ¼ −2 and Q ¼ −3, which are presented in
Appendix C.
At this point, the reader may have already concluded that

we can distinguish would-be zero modes of staggered
quarks from nonzero modes by counting the degeneracy of
the eigenvalues [8,9,45]. This conclusion is true but can

lead to wrong answers in practice. The reason is that, on
large lattices, the eigenvalues are so dense that visually
distinguishing between 4-fold and 8-fold degeneracies is
typically impossible. Hence, we need a practical and robust
method to identify would-be zero modes and nonzero
modes of staggered fermions. The introduction of such
a method is the main subject of the next section, Sec. V.
Using the chiral Ward identity of Eq. (47), we can

measure the phase θ numerically. In Fig. 3, we show
numerical results (red circles) for θ. Here, the blue line
represents the theoretical prediction given in Eq. (48). We
find the results are consistent with the prediction within
numerical precision.

FIG. 1. Eigenvalue spectrum of staggered Dirac operator on a
Q ¼ 0 gauge configuration. (a) λ2i and (b) λi.

FIG. 2. Eigenvalue spectrum of staggered Dirac operator on a
Q ¼ −1 gauge configuration. (a) λ2i and (b) λi.

FIG. 3. The phase θ as a function of λ. Red circles represent
numerical results for θ. The blue line represents the prediction
from the theory. Here we use a gauge configuration with Q ¼ −1
for the measurement.
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V. CHIRALITY MEASUREMENT

To simplify the notation, we introduce the following
convention for eigenvalue indices,

Dsjfji ¼ iλjjfji; ð49Þ

where jfji ¼ jfsλji is defined in Eq. (28). Using the
Kluberg-Stern method explained in Appendix D, we define
the chirality operator and abbreviations as follows.

Γ5ðλi; λjÞ≡ hfij½γ5 ⊗ 1�jfji
≡X

x

X
A;B

½fsλiðxAÞ�†½γ5 ⊗ 1�x;ABfsλjðxBÞ; ð50Þ

ðΓ5Þij ≡ Γ5ðλi; λjÞ; ð51Þ

jΓ5jij ≡ jΓ5ðλi; λjÞj; ð52Þ

where xA, xB and ½γ5 ⊗ 1� are defined in Eqs. (38)–(40) in
Sec. IVA, and λi and λj represent eigenvalues of Ds. The
chirality operator ½γ5 ⊗ 1� satisfies the same relationships
as the continuum chirality operator γ5.

½γ5 ⊗ 1�2nþ1 ¼ ½γ5 ⊗ 1�; ð53Þ

½γ5 ⊗ 1�2n ¼ ½1 ⊗ 1�; ð54Þ
�
1

2
ð1� γ5Þ ⊗ 1

�
n
¼

�
1

2
ð1� γ5Þ ⊗ 1

�
; ð55Þ

�
1

2
ð1þ γ5Þ ⊗ 1

��
1

2
ð1 − γ5Þ ⊗ 1

�
¼ 0; ð56Þ

where n is a non-negative integer. A rigorous proof of
Eqs. (53)–(56) is given in Appendix E.
Our definition of the chirality operator ½γ5 ⊗ 1� uses the

Kluberg-Stern method, and is different from that used in
Refs. [8,13,24], which adopt the Golterman method. The
old chirality operator (the Golterman method) of
Refs. [8,13,24] does not satisfy the recursion relations of
Eqs. (53)–(56). In addition, it does not satisfy the chiral
Ward identities of Eqs. (62)–(64). This difference is
addressed in Appendices D and E. The bottom line is that
the conventional chirality operator (the Golterman method)
does not satisfy the recursion relationships in Eqs. (53)–
(56), even though it is classified according to the true
irreducible representations of the lattice rotational sym-
metry group [25,26,28].
For further discussion we define another operator

½1 ⊗ ξ5�, which we call the “(maximal) shift operator,”

Ξ5ðλi; λjÞ≡ hfij½1 ⊗ ξ5�jfji
≡X

x

X
A;B

½fsλiðxAÞ�†½1 ⊗ ξ5�x;ABfsλjðxBÞ; ð57Þ

ðΞ5Þij ≡ Ξ5ðλi; λjÞ; ð58Þ

jΞ5jij ≡ jΞ5ðλi; λjÞj: ð59Þ

where xA, xB and ½1 ⊗ ξ5� are defined in Eqs. (38)–(40) in
Sec. IVA, and λi and λj represent eigenvalues of Ds. This
shift operator satisfies the following recursion relations:

½1 ⊗ ξ5�2nþ1 ¼ ½1 ⊗ ξ5�; ð60Þ

½1 ⊗ ξ5�2n ¼ ½1 ⊗ 1�; ð61Þ

where n is a non-negative integer. The conserved Uð1ÞA
symmetry transformation can be expressed in terms of the
chirality operator and the shift operator as follows,

Γϵ ≡ ½γ5 ⊗ ξ5�
¼ ½γ5 ⊗ 1�½1 ⊗ ξ5�
¼ ½1 ⊗ ξ5�½γ5 ⊗ 1�: ð62Þ

A rigorous proof of Eq. (62) is given in Appendix E. In
addition, the chirality and shift operators satisfy the
following relations:

Γϵ½γ5 ⊗ 1� ¼ ½γ5 ⊗ 1�Γϵ ¼ ½1 ⊗ ξ5�; ð63Þ

Γϵ½1 ⊗ ξ5� ¼ ½1 ⊗ ξ5�Γϵ ¼ ½γ5 ⊗ 1�: ð64Þ

A rigorous proof of Eqs. (63)–(64) is also given in
Appendix E. Therefore, we obtain the Ward identities:

eþiθ½γ5 ⊗ 1�jf−ii ¼ ½1 ⊗ ξ5�jfþii;
e−iθ½γ5 ⊗ 1�jfþii ¼ ½1 ⊗ ξ5�jf−ii; ð65Þ

where

jf�ii≡ jfs�λi
i: ð66Þ

Hence, we define the spectral decomposition by

½γ5 ⊗ 1�jfji ¼
X
i

ðΓ5Þijjfii ð67Þ

where we use Eqs. (50) and (51). Similarly,

½1 ⊗ ξ5�jfji ¼
X
i

ðΞ5Þijjfii ð68Þ

where we use Eqs. (57) and (58). Thanks to the Ward
identities of Eq. (65), we obtain
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e−iθΓ5ðλi;þλjÞ ¼ Ξ5ðλi;−λjÞ
e−iθðΓ5Þiþj ¼ ðΞ5Þi−j

jΓ5jiþj ¼ jΞ5ji−j: ð69Þ

Similarly,

eþiθΓ5ðλi;−λjÞ ¼ Ξ5ðλi;þλjÞ
eþiθðΓ5Þi−j ¼ ðΞ5Þiþj

jΓ5ji−j ¼ jΞ5jiþj: ð70Þ

Applying Γϵ to both sides of Eq. (67), we obtain

½1 ⊗ ξ5�jfji ¼
X
l

ðΓ5Þlj eiθl jf−li ð71Þ

¼
X
i

ðΞ5Þijjfii: ð72Þ

Hence, we obtain another Ward identity:

jΓ5j−ij ¼ jΞ5jþi
j : ð73Þ

Similarly, we can obtain the Ward identities:

jΓ5j−i−j ¼ jΞ5jþi
−j; ð74Þ

jΓ5jþi
j ¼ jΞ5j−ij : ð75Þ

We can summarize all the results of Eqs. (69)–(75) in the
following form:

jΓ5jij ¼ jΞ5j−ij ¼ jΞ5ji−j ¼ jΓ5j−i−j; ð76Þ

⇔ jΓ5ðλi; λjÞj ¼ jΞ5ð−λi; λjÞj ¼ jΞ5ðλi;−λjÞj
¼ jΓ5ð−λi;−λjÞj: ð77Þ

In addition, Hermiticity ensures that we can interchange λi
and λj, which gives the final form of the chiral Ward
identities.

jΓ5jij ¼ jΞ5j−ij ¼ jΞ5ji−j ¼ jΓ5j−i−j ¼ jΓ5jji ¼ jΞ5j−ji
¼ jΞ5jj−i ¼ jΓ5j−j−i ð78Þ

⇔ jΓ5ðλi;λjÞj ¼ jΞ5ð−λi;λjÞj ¼ jΞ5ðλi;−λjÞj
¼ jΓ5ð−λi;−λjÞj ¼ jΓ5ðλj;λiÞj ¼ jΞ5ð−λj;λiÞj
¼ jΞ5ðλj;−λiÞj ¼ jΓ5ð−λj;−λiÞj: ð79Þ

The quantity ðjΓ5jijÞ2 for i ≠ j represents the leakage
probability of the chirality operator. We call jΓ5jij the
leakage parameter for the chirality operator. Similarly,
the quantity ðjΞ5jijÞ2 for i ≠ j represents the leakage

probability of the shift operator, and we call jΞ5jij the
leakage parameter for the shift operator. By examining
the leakage pattern, we can distinguish zero modes and
nonzero modes, which is the main subject of the next
subsections.

A. Eigenvalue spectrum of Ds in the continuum

Here we consider staggered quark actions at a ¼ 0. We
define a general form of the shift operator corresponding to
a generator of the SUð4Þ taste symmetry:

ΞF ¼ ½1 ⊗ ξF�; ð80Þ

ξF ∈ fξ5; ξμ; ξμ5; ξμνg for μ ≠ ν; ð81Þ

where ξμ respects the Clifford algebra fξμ; ξνg ¼ 2δμν in
Euclidean space.
Let us consider the following quantity W1 in the

continuum:

W1 ≡ hfljΞFDsjfni ð82Þ

Dsjfni ¼ iλnjfni: ð83Þ

Since the SUð4Þ taste symmetry is exactly conserved in the
continuum, we know that

½ΞF;Ds� ¼ 0 ð84Þ

Hence, we find the following Ward identity:

W1 ¼ hfljΞFDsjfni ¼ iλnhfljΞFjfni ð85Þ

¼ hfljDsΞFjfni ¼ iλlhfljΞFjfni ð86Þ

and therefore

iðλl − λnÞ · hfljΞFjfni ¼ 0: ð87Þ

Hence, in the continuum, we find the following properties
of the eigenvalue spectrum:

(i) If λl ≠ λn, ðΞFÞln ¼ hfljΞFjfni ¼ 0. In other words,
if the eigenvalues are different, there is no leakage
(ðΞFÞln ¼ 0) between the two eigenmodes.

(ii) If λj ≡ λl ¼ λn, ðΞFÞln ≠ 0 is possible. In this case,
the eigenvalues are degenerate and belong to a
quartet such that

Dsjfj;mi ¼ iλjjfj;mi ð88Þ

jfli; jfni ∈ fjfj;miwithm ¼ 1; 2; 3; 4g; ð89Þ

where m is a taste index which represents the four-
fold degeneracy for the eigenvalue λj, jfli and jfni
are linear combinations of the quartet fjfj;mig, and
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the eigenvectors for different m are orthogonal to
each other by construction due to the Lanczos
algorithm.

(iii) We know that the staggered fermion field χcðxAÞ is
mapped into the continuum fermion field ψc

α;tðxÞ,
where α represents a Dirac spinor index, c represents
a color index, and t ¼ 1, 2, 3, 4 represents a taste
index. Hence, for a given eigenvalue λj, there remain
four degrees of freedom which come from the
taste index. Accordingly, for a given eigenvalue
λj, there are four degenerate eigenstates jfj;mi with
m ¼ 1, 2, 3, 4.

(iv) If we know all four eigenstates fjfj;mig for a certain
eigenvalue λj, we find that

TrðΞFÞ ¼
X4
m¼1

ðΞFÞj;mj;m

¼
X4
m¼1

hfj;mjΞFjfj;mi ¼ 0 ð90Þ

This is because the SUð4Þ group generators are
traceless in the fundamental representation.

However, on the lattice at a ≠ 0, the taste symmetry is
broken by terms of order a2αns with n ≥ 1, which is
explained in Ref. [20]. In addition, for a ≠ 0,

Dsjfj;mi ¼ iλj;mjfj;mi ð91Þ

and λj;m ≠ λj;m0 in general for m ≠ m0, which reflects the
taste symmetry breaking effect at a ≠ 0. We know that
λj;m ¼ λj;m0 for all m, m0 in the continuum (a ¼ 0) due to
the exact taste symmetry. Hence, on the finite lattice,
we expect a small deviation from the above continuum
properties. A good barometer to measure this effect is to
monitor T5

T5 ≡ 1

4
TrðΞ5Þ ¼

1

4

X
m

ðΞ5Þj;mj;m ð92Þ

and measure how much it deviates from zero (the con-
tinuum value). Another direct barometer to measure effects
of taste symmetry breaking is the leakage S5 from one
quartet (λl) to another quartet (λj) with λl ≠ λj.

S5 ≡ 1

16

X
m;m0

jΞ5jl;mj;m0 ¼ 1

16

X
m;m0

jhfl;mjΞ5jfj;m0 ij ð93Þ

The size of the leakage S5 indicates directly how much the
taste symmetry is broken at a ≠ 0, since S5 ¼ 0 in the
continuum. We present numerical results for T5 and S5 in
the next subsection.

B. Numerical study on chirality and leakage

Here we use dual notations for the eigenmodes: One is
the serial index i for λi and the other is the quartet index j
with taste index m for λj;m. The serial index is convenient
for the plots, tables, and leakage patterns such as jΓ5jab,
while the quartet index is convenient to explain the
eigenstates classified by the taste symmetry group. The
one-to-one mapping from the serial index i to the quartet
indices j, m is given in Table II for the quartet index
j ¼ 0;�1 when Q ¼ �1. The mapping for the quartet
index j ¼ �2 (nonzero modes) is similar.
In Fig. 4, we present the leakage pattern of the zero mode

of λ1 and its parity partner λ2 ¼ −λ1. Since Q ¼ −1 in
Fig. 4, we expect to observe four-fold degenerate would-be
zero modes within a single quartet (quartet index j ¼ 0).

lim
a→0

λi ¼ 0 for i ¼ 1; 2; 3; 4: ð94Þ

In the continuum limit (a ¼ 0), the SUð4Þ taste symmetry
becomes exactly conserved and so would-be zero modes
become exact zero modes. However, at finite lattice spacing
a ≠ 0, the gauge configuration is sufficiently rough that
would-be zero modes have nonzero eigenvalues: λ2 ¼ −λ1,
λ4 ¼ −λ3, and λ1 ≠ λ3 for λ1; λ3 > 0.
In Fig. 4(a), we show the leakage pattern of

jΓ5ji1 ¼ jΓ5ðλi; λ1Þj ¼ jhfijΓ5jf1ij. We find that there is,
in practice, no leakage, and so the only nonzero component
is jΓ5j11 ¼ jΓ5ðλ1; λ1Þj. The other components are practi-
cally zero. In Figs. 4(b), 4(c), and 4(d), we find that the
Ward identity of Eqs. (78) and (79) is well-respected by the
numerical results. In other words, the Ward identity jΓ5j11 ¼
jΞ5j21 ¼ jΞ5j12 ¼ jΓ5j22 is satisfied within the numerical
precision of the computer. Please refer to Table III for
numerical details. This confirms that the theoretical

TABLE II. One-to-one mapping of serial index i of the λi
eigenstate into a quartet index j and taste index m for λj;m ¼ λi.
Here λ2n ¼ −λ2n−1 and λ−j;m ¼ −λþj;m. Here we assume
Q ¼ �1.

λi λj;m i j m Mode

λ1 λ0;1 1 0 1 Zero
λ2 λ0;2 2 0 2 Zero
λ3 λ0;3 3 0 3 Zero
λ4 λ0;4 4 0 4 Zero

λ5 λþ1;1 5 þ1 1 Nonzero
λ7 λþ1;2 7 þ1 2 Nonzero
λ9 λþ1;3 9 þ1 3 Nonzero
λ11 λþ1;4 11 þ1 4 nonzero

λ6 λ−1;1 6 −1 1 Nonzero
λ8 λ−1;2 8 −1 2 Nonzero
λ10 λ−1;3 10 −1 3 Nonzero
λ12 λ−1;4 12 −1 4 Nonzero
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prediction from the Ward identity in Eqs. (78) and (79) is
correct.
In Fig. 4(a), we find that there is small leakage into other

quartets (j ¼ �1;�2). The typical size of leakage between
off-diagonal elements of the would-be zero modes, the
j ¼ 0 quartet, (e.g., jΓ5j31) is of order 10−3. We also observe
small leakage patterns of order 10−2 ∼ 10−3 from the
would-be zero modes, the j ¼ 0 quartet, to the nonzero
modes, the j ¼ �1;�2 quartets (e.g., jΓ5j51).
Now let us consider nonzero modes in the j ¼ þ1

quartet. In Fig. 5, we present the leakage pattern for the
nonzero modes of λ5 and its parity partner λ6 ¼ −λ5. Even
in the continuum limit (a ¼ 0), λ5 ≠ 0, and so it is a
nonzero mode. Thanks to the approximate SUð4Þ taste
symmetry and the exact Uð1ÞA axial symmetry, there will

be eight-fold degeneracy in the family of eight eigenstates
composed of the j ¼ þ1 quartet, to which λ5 belongs, and
the j ¼ −1 quartet (the parity partners). These eight-fold
degenerate modes are designated together as j ¼ �1
quartets in Fig. 5, where they are a set of fλig with
5 ≤ i ≤ 12.
Let us scrutinize the leakage pattern of the nonzero mode

λ5 ¼ λj¼þ1;m¼1. In Fig. 5(a), first note that there is practi-
cally no leakage in the Γ5 chirality measurement from
λ5 into λ2n−1 with n > 0. In other words, jΓ5j2n−15 ¼
jΓ5ðλ2n−1; λ5Þj ≅ 0. This implies that the chirality operator
on the nonzero mode with λ > 0 leaks into only the parity
partner modes with λ < 0. Second, note that the nontrivial
leakage goes to those eigenstates in the j ¼ −1 quartet
such as fλ6; λ8; λ10; λ12g ¼ fλj;mjj ¼ −1; m ¼ 1; 2; 3; 4g.
In addition, we find that the Ward identity of Eqs. (78)
and (79) is well-respected within the numerical precision in
Figs. 5(a), 5(b), 5(c), and 5(d). In Table IV, we present
numerical values of the jΓ5ji5 shown in Fig. 5(a).
Let us examine the Γ5 ¼ ½γ5 ⊗ 1� leakage pattern of the

j ¼ þ1 quartet of the nonzero modes fλ5; λ7; λ9; λ11g. In
Fig. 6, we find that the chirality measurement vanishes;
ðΓ5Þii ¼ Γ5ðλi; λiÞ ¼ 0 for λi in the j ¼ þ1 quartet of
nonzero modes. We also find that the Γ5 leakage of
λþ1;m > 0 of the j ¼ þ1 quartet goes to the parity partners
with λ−1;m0 < 0 of the j ¼ −1 quartet, and the leakage to
other quartets such as j ¼ �2 is negligibly small compared
to the leakage to the j ¼ −1 quartet. The numerical values
of jΓ5j−1;mþ1;m0 are summarized in Table V.
Let us examine the Ξ5 ¼ ½1 ⊗ ξ5� leakage pattern of the

j ¼ þ1 quartet of the nonzero modes fλ5; λ7; λ9; λ11g. In
Fig. 7, we find that the Ξ5 leakage from the j ¼ þ1 quartet
to the j ¼ −1 quartet (parity partners) vanishes in practice.
Since the leakage pattern of Ξ5 is related to the leakage
pattern of Γ5 by the Ward identity

FIG. 4. Leakage pattern for would-be zero modes at Q ¼ −1.
Here, the red bar represents leakage to λi¼2n−1 > 0 with i odd,
and the blue bar represents leakage to its parity partner λi¼2n ¼
−λ2n−1 with i even.

TABLE III. Numerical values for leakage patterns from the λ1
eigenstate to the λi eigenstate in Fig. 4. Here, j represents a
quartet index for the λi eigenstate. The leakage represents jOji1 ¼
jOðλi; λ1Þj ¼ jhfijOjf1ij for O ¼ Γ5;Ξ5.

j Leakage Value Ward identity

0 jΓ5j11 0.82382566818582 ¼jΞ5j21
0 jΞ5j21 0.82382566818581 ¼jΞ5j12
0 jΞ5j12 0.82382566818580 ¼jΓ5j22
0 jΓ5j22 0.82382566818579 ¼jΓ5j11
0 jΓ5j21 6.67 × 10−4

0 jΓ5j31 1.34 × 10−3

0 jΓ5j41 1.79 × 10−3

þ1 jΓ5j51 2.56 × 10−2

−1 jΓ5j61 2.54 × 10−2

þ2 jΓ5j131 5.77 × 10−3

−2 jΓ5j141 1.18 × 10−2
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FIG. 5. Leakage pattern for nonzero modes at Q ¼ −1.

TABLE IV. Numerical values for data in Fig. 5.

j Leakage Value Ward identities

−1 jΓ5j65 0.110 ¼jΞ5j55 ¼ jΞ5j66 ¼ jΓ5j56
−1 jΓ5j85 0.452 ¼jΞ5j75 ¼ jΞ5j86 ¼ jΓ5j76 ¼ jΓ5j58 ¼ jΞ5j57 ¼ jΞ5j68 ¼ jΓ5j67
−1 jΓ5j105 0.334 ¼jΞ5j95 ¼ jΞ5j106 ¼ jΓ5j96 ¼ jΓ5j510 ¼ jΞ5j59 ¼ jΞ5j610 ¼ jΓ5j69
−1 jΓ5j125 0.601 ¼jΞ5j115 ¼ jΞ5j126 ¼ jΓ5j116 ¼ jΓ5j512 ¼ jΞ5j511 ¼ jΞ5j612 ¼ jΓ5j611
þ1 jΓ5j55 2.05 × 10−3 ¼jΞ5j65 ¼ jΞ5j56 ¼ jΓ5j66
þ1 jΓ5j75 16.7 × 10−3 ¼jΞ5j85 ¼ jΞ5j76 ¼ jΓ5j86 ¼ jΓ5j57 ¼ jΞ5j58 ¼ jΞ5j67 ¼ jΓ5j68
þ1 jΓ5j95 25.6 × 10−3 ¼jΞ5j105 ¼ jΞ5j96 ¼ jΓ5j106 ¼ jΓ5j59 ¼ jΞ5j510 ¼ jΞ5j69 ¼ jΓ5j610
þ1 jΓ5j115 7.32 × 10−3 ¼jΞ5j125 ¼ jΞ5j116 ¼ jΓ5j126 ¼ jΓ5j511 ¼ jΞ5j512 ¼ jΞ5j611 ¼ jΓ5j612
0 jΓ5j35 2.52 × 10−2

0 jΓ5j45 3.43 × 10−2

þ2 jΓ5j135 1.02 × 10−2

−2 jΓ5j145 1.38 × 10−2

FIG. 6. ½γ5 ⊗ 1� leakage pattern for nonzero modes at Q ¼ −1.
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jΞ5jj;mj0;m0 ¼ jΓ5j−j;mj0;m0 ; ð95Þ

Fig. 7 can be obtained from Fig. 6 using the Ward identity.
We find that the Ξ5 leakage from the j ¼ þ1 quartet to
other quartets such as j ¼ �2 quartets is negligibly small
compared to leakage to itself (the j ¼ þ1 quartet). Leakage

patterns of the Γ5 chirality and Ξ5 shift operators for diverse
topological charges are shown in Appendix G.
Let us summarize the leakage pattern for would-be zero

modes and that for nonzero modes. We first begin with the
leakage pattern for the zero modes.

1. A zero mode of staggered fermions appears as a
four-fold degenerate quartet. In other words, for the
topological charge Q, the number of zero modes is
4 × ðnþ þ n−Þ, and Q ¼ n− − nþ (Atiyah-Singer
index theorem), where nþ (n−) is the number of
right-handed (left-handed) zero mode quartets.

2. In the chirality Γ5 ¼ ½γ5 ⊗ 1�measurement, the zero
mode has practically no leakage to other eigenstates.

3. In the shift Ξ5 ¼ ½1 ⊗ ξ5� measurement, the zero
mode with eigenvalue λ has a full (100%) leakage
into its parity partner mode with eigenvalue −λ, and
no leakage into any other eigenmodes.

The leakage pattern for nonzero modes is
1. A nonzero mode of staggered fermions appears as an

eight-fold degeneracy composed of a quartet (þj
quartet) and its parity partner quartet (−j quartet). In
other words, nonzero eigenmodes can be grouped
into sets with eight elements in each set. This is due
to the approximate SUð4Þ taste symmetry and the
conserved Uð1ÞA axial symmetry.

2. In the chirality Γ5 ¼ ½γ5 ⊗ 1� measurement, the
nonzero mode with eigenvalue λj;m has no leakage
to its own quartet (j quartet), but has leakage only to
the parity partner (−j quartet) with λ−j;m0 . It has no
leakage to any eigenmode which belongs to other
quartets with l ≠ �j.

3. In the shift Ξ5 ¼ ½1 ⊗ ξ5� measurement, the nonzero
mode with λj;m has no leakage to its parity partner
(−j quartet) at all. But it has leakage only to the
eigenstates in its own (þj) quartet. This pattern
comes directly from the Ward identity. In other
words, the Ξ5 leakage pattern is a mirror image
reflecting Γ5 through the mirror of the Ward identity.
Ξ5 has no leakage to any eigenmode which belongs
to other quartets with l ≠ �j.

4. Thanks to the Ward identity of the conserved Uð1ÞA
symmetry, the leakage pattern of jΓ5j−j;ml;m0 is identical

to that of jΞ5jþj;m
l;m0 .

In Appendix F, we provide more examples to demon-
strate our claim that the leakage pattern for zero modes
holds in general. In Appendix G, we give more examples
to demonstrate our claim that the leakage pattern for
nonzero modes is valid in general. We have repeated
numerical tests over hundreds of zero modes and tens of
thousands of nonzero modes. We performed the numerical
study on hundreds of gauge configurations and find that
the above leakage pattern is valid for all of them except
for those gauge configurations with unstable topological
charge.

TABLE V. jΓ5j−1;mþ1;m0 values in Fig. 6.

λi

λj λ5 λ7 λ9 λ11

λ6 0.110 0.452 0.334 0.601
λ8 0.452 0.161 0.582 0.349
λ10 0.334 0.582 0.323 0.366
λ12 0.601 0.349 0.366 0.271

FIG. 7. ½1 ⊗ ξ5� leakage pattern for nonzero modes at Q ¼ −1.
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1. We find a number of gauge configurations which do
not have a stable topological charge.

2. We find about 10 gauge configurations with unstable
topological charge among 100 gauge configurations
with 124 lattice geometry at β ¼ 4.6.

3. We find about 8 gauge configurations with unstable
topological charge among 300 gauge configurations
with 204 lattice geometry at β ¼ 5.0.

In Table VI, we present results for T5 defined in Eq. (92),
which is a direct barometer to estimate the effect of taste
symmetry breaking. If the taste symmetry is exactly
conserved, then T5 must vanish. Hence, a nontrivial value
of T5 indicates the size of taste symmetry breaking. In
Table VI, we find that jReðT5Þj is of order 10−3, while
jImðT5Þj is essentially zero. This indicates that the effect of
taste symmetry breaking is very small (in the subpercent
level within each quartet).
In Fig. 8, we present S5 defined in Eq. (93) as a function

of jl − jj with l; j ≥ 0. Here jl − jj ¼ 1 represents a pair
of nearest neighbor quartets, jl − jj ¼ 2 represents a pair
of next-to-nearest neighbor quartets, and so on. The values
of S5 are the same size as the statistical errors. This
indicates that the taste symmetry breaking results in simply
random noise added to the physical signal (S5 ¼ 0). For
jl − jj ¼ 1, the noise is ≈7%, and for jl − jj ¼ 2, the noise
is ≈3%. We find that the noise decreases as jl − jj
increases. The numerical values of S5 in Fig. 8 are
presented in Table VII.

VI. MACHINE LEARNING

In previous sections, we have shown that the Uð1ÞA
symmetry of staggered fermions induces the chiral Ward
identities in Eq. (78), and we have also noted that the
approximate SUð4Þ taste symmetry brings in the quartet
behavior of the eigenvalue spectrum. Furthermore, a
combined effect of those symmetries gives us distinctive
leakage patterns for the chirality operator Γ5 and the shift
operator Ξ5. In this section, we apply a machine learning
technique to the following tasks.

1. We want to know how much the nonzero modes
respect the quartet classification rules, which come
from the SUð4Þ taste symmetry.

2. We want to know how efficiently we can measure
the topological charge Q using the index theorem
from the quartet structure of the nonzero modes.

3. We want to detect any anomalous behavior of the
eigenvalue spectrum, which does not follow the
standard leakage pattern of the nonzero modes.

4. We want to figure out what causes the anomalous
behavior of the eigenvalue spectrum.

Let us explain our sampling method for the machine
learning. In Fig. 9, we show matrix elements jΓ5jij on a
gauge configuration with Q ¼ 2. Figure 9(a) is for the 200
lowest eigenmodes, and Fig. 9(b) is a zoomed-in version of
Fig. 9(a) for the 32 lowest eigenmodes. Here the depth of
the blue color represents the size of the matrix element
jΓ5jij, and i, j run from zero to 199. We identify two zero
mode quartets (red boxes) by looking at the magnitude of
the diagonal components. These two quartets have the same
chirality (n− ¼ 2), which is consistent with the topological
charge Q ¼ 2. Excluding the would-be zero modes, we
randomly choose a 15 × 15 sub-matrix of jΓ5jij along the
diagonal line of jΓ5jij matrix elements. This 15 × 15 sub-
matrix is the smallest square sub-matrix of jΓ5j which
contains all elements of only one quartet of nonzero modes
and its parity partner quartet.
In Fig. 10, we present 8 different classes for arbitrary

samples. Our purpose for the machine learning is to find
borders (black lines) of the nonzero mode quartets (or
octets when the parity partners are included) in each
sample. We classify arbitrary samples into eight different

TABLE VI. Numerical results for T5. To obtain the results, we
use 292 gauge configurations with the input parameters in Table I.
Nq represents the number of quartets used to obtain the statistical
error. Here j ¼ 0 represents would-be zero modes, and j > 0
represents nonzero modes.

j jReðT5Þj jImðT5Þj Nq

j ¼ 0 7.2ð130Þ × 10−4 5.9ð46Þ × 10−12 490
j > 0 6.2ð120Þ × 10−3 3.3ð25Þ × 10−12 7034

FIG. 8. S5 as a function of jl − jj. Numerical values are given
in Table VII.

TABLE VII. Numerical results for S5. Here, we measure S5
between two different quartets (l ≠ j and l; j ≥ 0). Np repre-
sents the number of (l, j) pairs with l ≠ j.

jl − jj S5 Np

1 6.6ð52Þ × 10−2 7185
2 3.0ð18Þ × 10−2 6893
3 1.9ð10Þ × 10−2 6601
4 1.5ð7Þ × 10−2 6309
5 1.2ð5Þ × 10−2 6017
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classes according to the location of the border lines. Each
class is labeled as in Fig. 10.
We use a deep learning model which combines the

multilayer perceptron (MLP) [46] and the convolutional
neural network (CNN) [46]. In Table VIII, we present our
basic setup for the machine learning. We use the gauge
configuration ensemble described in Table I. The data
measured over 292 gauge configurations are distributed
over a training set, validation set, and test set as in

Table VIII. For each gauge configuration, we generate
around ten 15 × 15 matrix samples from the 200 lowest
eigenmodes without overlapping. We make popular and
suitable choices for the loss function [47], optimization
method [48], and activation functions [50] relevant to our
purpose, which are summarized in Table VIII. The best
hyperparameters such as the number of layers and the
number of units for each layer are determined by using the
Keras Tuner [51].
The accuracy of classification per gauge configuration is

obtained by averaging the accuracies of the machine
learning (ML) prediction for all the samples on a single
gauge configuration. Our best model achieves an average
accuracy of 96.5(156)% for 142 test gauge configurations.

FIG. 9. Matrix elements of jΓ5j for 200 and 32 of the lowest
eigenmodes on a gauge configuration with Q ¼ 2. Here, indices
on both axes are the eigenvalue index. The color of each square
represents the magnitude of the corresponding matrix element.
Black lines indicate borders of nonzero mode quartets, and red
lines are those of zero mode quartets.

FIG. 10. Examples for our samples. Every sample contains only
one nonzero mode quartet. There are eight kinds of classes
according to the location of the borders of the quartet.
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The hyperparameters which represent the structure of the
neural network model are given in Table IX. Among the test
set, we find five gauge configurations on which the
average accuracy per gauge configuration is lower than
50%. Data show that some ghost (unphysical) eigenvectors
are present in the eigenvalue spectrum on these gauge
configurations, so that the ML prediction gives a wrong
answer not due to failure of the ML algorithm but due to
human mistakes in labeling quartet samples based on the
eigenvalue index. Excluding these five gauge configura-
tions, we achieve the average accuracy of 99.4(23)%.
Considering that all samples generated on the same gauge
configuration are connected by the eigenvalue index (or
quartet index), this average accuracy of 99.4% implies that
one can in the end find completely correct quartet groups
for all the normal gauge configurations of the test set. It also
demonstrates our claim that the leakage pattern is universal
over all normal gauge configuration ensembles. Details of
the results of this ML research will be reported separately
in Ref. [52].

VII. ZERO MODES AND RENORMALIZATION

As explained in Sec. V, we know that there is practically
no leakage for the zero modes in the chirality measurement.
Hence, it is possible to determine the renormalization
factor κP by imposing the index theorem as follows. For
Q ≠ 0,

4 ×Q ¼ −κP ×
X
λ∈S0

hfsλj½γ5 ⊗ 1�jfsλi ð96Þ

κP ¼ −
4Q
C0

ð97Þ

C0 ¼
X
λ∈S0

Γ5ðλ; λÞ ð98Þ

where S0 is the entire set of zero modes, and

κP ¼ ZP×SðμÞ
ZP×PðμÞ

; ð99Þ

where

OS ¼ χ̄½γ5 ⊗ 1�χ ð100Þ

OP ¼ χ̄½γ5 ⊗ ξ5�χ ð101Þ

½OS�RðμÞ ¼ ZP×SðμÞ½OS�B ð102Þ

½OP�RðμÞ ¼ ZP×PðμÞ½OP�B; ð103Þ

and the subscript ½� � ��R (½� � ��B) represents a renormalized
(bare) operator. The ZP×S and ZP×P are the renormalization
factors for the bilinear operators OS and OP, respectively.
One advantage of this scheme is that κP is independent of
valence quark masses, even though we perform the meas-
urement with arbitrary masses for valence quarks.
Numerical results for κP are summarized in Table X.
There are a few key issues in the physical interpretation

of κP.
(i) Since the topological charge Q and sum C0 are

independent of renormalization scale, κP must be
independent of the renormalization scale μ.

(ii) This means that the scale dependence of ZP×SðμÞ
must cancel off that of ZP×PðμÞ.

(iii) It would be nice to cross-check this property of κP in
the RI-MOM scheme [53] and in the RI-SMOM
scheme [54].

VIII. CONCLUSION

We study general properties of the eigenvalue spectrum
of Dirac operators in the staggered fermion formalism. As
an example, we use the Dirac operator for HYP staggered

TABLE VIII. Parameters for machine learning.

Parameters Values

Number of training configurations 120
Number of training samples 1223
Number of validation configurations 30
Number of validation samples 308
Number of test configurations 142
Number of test samples 1448

Loss function
Categorical

Cross-entropy [46,51]
Optimization method Adam [49]
Activation function for hidden layers ReLU [46]
Activation function for output layer Softmax [46]

TABLE IX. Hyper-parameters for neural networks. Here, we
show one of the examples of best performance, in which we use
only MLP but not CNN.

Layer Type Number of units Activation

Input � � � 225 � � �
Hidden #1 MLP 160 ReLU
Hidden #2 MLP 1210 ReLU
Hidden #3 MLP 1490 ReLU
Output MLP 8 Softmax

TABLE X. Numerical results for κP.

Topological charge Number of samples κP

jQj ¼ 1 72 1.26(13)
jQj ¼ 2 68 1.22(3)
jQj ¼ 3 45 1.23(2)

Weighted average 241 1.23(2)
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quarks. In Sec. V, we introduce a new chirality operator Γ5

and a new shift operator Ξ5 and prove that they respect the
continuum recursion relationships, as given in Eqs. (53)–
(56) and Eqs. (60)–(61). Using these operators with nice
chiral properties, we find that the leakage pattern of jΓ5j−j;ml;m0

is related to that of jΞ5jj;ml;m0 through the Ward identity of the
conserved Uð1ÞA symmetry.
We find that the leakage pattern of Γ5 and Ξ5 for the zero

modes is quite different from that for the nonzero modes.
This difference in leakage pattern allows us to distinguish
the zero modes from the nonzero modes even though we do
not know a priori about the topological charge. We find
that using the leakage pattern of Γ5 and Ξ5, one can
determine the topological charge as reliably as when using
standard field theoretical methods such as the cooling
method.
We use a machine learning (ML) technique to check the

universality of this leakage pattern over the entire ensemble
of gauge configurations (refer to Table I). Our best-trained
deep learning model identifies the quartet of nonzero
modes with 98.7(34)% accuracy using a single normal
gauge configuration. Choosing the highest probability
prediction of the ML and comparing the prediction with
the known answer, we find that the ML can identify all
quartet groups on an eigenvalue spectrum correctly. In
addition, the ML technique detects wrong answers resulting
from human input mistakes since the ML prediction
disagrees with a wrong answer by giving the prediction
with low accuracy (< 50%). This reassures us that the ML
technique is highly reliable at identifying anomalous gauge
configurations with defects such as violation of the index
theorem and ghost eigenmodes.
Once we identify the zero modes, it is also possible to

determine the ratio of renormalization factors κP ¼
ZP×SðμÞ=ZP×PðμÞ from the chirality measurement of Γ5.
The leakage pattern is a new concept introduced in this

paper. It can be used to study the low lying eigenvalue
spectrum of staggered Dirac operators systematically. It
helps us understand how to extract the taste symmetry and
chiral symmetry from the staggered eigenvalue spectrum.
The leakage pattern will help us to dig out related physics
more efficiently, such as topological charge, index theorem,
Banks-Casher relation, andnonperturbative renormalization.
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APPENDIX A: LANCZOS ALGORITHM

Lanczos is a numerical algorithm for calculating eigen-
values and eigenvectors of a Hermitian matrix [21]. It
transforms an n × n Hermitian matrix H to a tridiagonal
matrix T through a unitary transformation Q, which is
represented by

T ¼ Q†HQ: ðA1Þ

Here columns ofQ are composed of basis vectors of the nth
Krylov subspace KnðH; bÞ generated by H and a starting
vector b of our choice. Each iteration of Lanczos computes
a column ofQ and T in sequence. At the end, diagonalizing
the tridiagonal matrix T yields eigenvalues and eigenvec-
tors of H.
In principle, Lanczos is a direct method that takes n

iterations to construct the n × n tridiagonal matrix T.
However, since these columns of T are computed in order,
a sequence of m < n iterations also constructs an m ×m
tridiagonal matrix T 0 which is a submatrix of T. In practice,
the real benefit of Lanczos is that eigenvalues of T 0
approximate eigenvalues of T. As iteration continues,
and the size of the submatrix T 0 increases, eigenvalues
of T 0 converge to eigenvalues of T. The convergence
behavior is somewhat complicated. The eigenvalues con-
verge to the largest, the smallest, or the most sparse
eigenvalue first. The speed of convergence depends on
the density of eigenvalues. The less dense, the faster the
convergence.
In this paper, we make use of two popular improvement

techniques of Lanczos: (1) implicit restart [55], and
(2) polynomial acceleration with Chebyshev polynomials
[56]. The implicit restart method gets rid of converged
eigenvalues in the middle of the Lanczos iteration. It takes
effect as if we restarted the Lanczos with a shifted matrixH0
given by

H0 ≡H −
X
i

λiI ; ðA2Þ

where λi are eigenvalues wewant to remove. ThenH0 is still
Hermitian but does not have such eigenvalues λi. Hence,
Lanczos withH0 converges to remaining eigenvalues faster.
The implicit restarting procedure gives us a new submatrix,
which has a dimension (ðm − rÞ × ðm − rÞ) reduced by the
number of eigenvalues we have removed (r). Then we

HWANCHEOL JEONG et al. PHYS. REV. D 104, 014508 (2021)

014508-16



iterate Lanczos r times to refill the submatrix and restore the
structure of them ×mmatrix. We repeat the implicit restart
to obtain a new submatrix of dimension ðm − rÞ × ðm − rÞ,
and so on. This procedure allows us to control the size of the
submatrix, the computational cost, and the memory usage,
while the submatrix T 0 contains (m − r) eigenmodes that
are more precise (much closer to the true eigenmodes of the
full matrix H) for each iteration.
A polynomial operation on a matrix changes the eigen-

value spectrum accordingly while retaining the eigenvec-
tors. Since the polynomial of a Hermitian matrix is also
Hermitian, Lanczos is still available to calculate its eigen-
values and eigenvectors. By choosing a proper polynomial,
one can manipulate the density of the eigenvalue spectrum
so that the convergence to the desired eigenvalues is
accelerated. A Chebyshev polynomial is a popular choice
for this purpose. Using the Chebyshev polynomial, we
want to map the first region of eigenmodes of no interest to
½−1; 1� and map the second region of eigenmodes of our
interest to ½−∞;−1�. In the interval ½−1; 1�, the eigenvalues
are dense enough that Lanczos does not converge. In
addition, the Chebyshev polynomial rapidly changes in
the second region so that the density of eigenmodes is low
enough to more quickly accelerate the convergence of
Lanczos. Here we apply the Chebyshev polynomial for
D†

sDs, whose eigenvalues are λ2 ≥ 0. We set the lower
bound of the first region to a value somewhat greater than
the largest eigenvalue of interest. This strategy will not only
suppress high unwanted eigenmodes, but also accelerate
the speed of Lanczos for the low eigenmodes of interest.
Numerical stability is essential for the Lanczos algorithm.

EachLanczos iteration generates Lanczos vectors,which are
column vectors of the unitary matrix Q in Eq. (A1). After
several iterations, however, Lanczos vectors lose their
orthogonality due to gradual loss of numerical precision.
If not addressed, this loss would induce spurious ghost
eigenvalues [57]. A straightforward prescription to solve the
problem is performing a reorthogonalization for every
calculation of Lanczos vectors. There are also alternative
approaches to eliminate the ghost eigenvalues without
reorthogonalization, such as the Cullum-Willoughby
method [58,59]. Here we choose the first solution and
perform the full reorthogonalization for each Lanczos
iteration.
For a large scale simulation using Lanczos, multigrid

Lanczos [60] and block Lanczos [61] are available.
Multigrid Lanczos is also based on the implicit restart
and Chebyshev acceleration. In addition, multigrid Lanczos
reduces the memory requirement significantly by com-
pressing the eigenvectors using their local coherence [62].
A spatially-blocked deflation subspace is constructed from
some of the lowest eigenvectors of the Dirac operator. Then
the coherence of eigenvectors allows us to represent other
eigenvectors on this subspace and to run Lanczos with
much less memory. Meanwhile, block Lanczos utilizes the

split grid method [61]. This algorithm deals with multiple
starting vectors for Lanczos, where the split grid method
divides the domain of the Dirac operator application into
multiple smaller domains so that each partial domain runs
in parallel on a partial grid (lattice) with a lower surface to
volume ratio than that of the full grid. Hence, one can
optimize the off-node communication by adjusting the
block (grid) size. This approach would give a significant
speed-up compared with our method. We plan to imple-
ment multigrid Lanczos and block Lanczos in the near
future.

APPENDIX B: EVEN-ODD PRECONDITIONING
AND PHASE AMBIGUITY

Even-odd preconditioning reorders a fermion field χðxÞ
so that even site fermion fields are obtained first, and odd
site fermion fields are obtained from them:

χðxÞ ¼
�
χe

χo

�
; ðB1Þ

where χe (χo) is the fermion field collection on even (odd)
sites. On this basis, the massless staggered Dirac operator
Ds can be represented as a block matrix:

Ds ¼
�

0 Deo

Doe 0

�
; ðB2Þ

where Doe (Deo) relates even (odd) site fermion fields to
odd (even) site fermion fields. Since D†

s ¼ −Ds, we also
find that D†

oe ¼ −Deo and D†
eo ¼ −Doe.

On this basis, D†
sDs is expressed as

D†
sDs ¼

�
0 −Deo

−Doe 0

��
0 Deo

Doe 0

�
ðB3Þ

¼
�−DeoDoe 0

0 −DoeDeo

�
: ðB4Þ

Hence, the eigenvalue equation of D†
sDs [Eq. (29)] can be

divided into two eigenvalue equations as follows,

−DeoDoejgei ¼ λ2jgei; ðB5Þ

−DoeDeojgoi ¼ λ2jgoi; ðB6Þ

where jgeðoÞi is the collection of even (odd) site compo-
nents of jgs

λ2
i. Here we omit the superscript s and the

subscript λ2 for notational simplicity. Now let us multiply
Doe from the left on both sides of Eq. (B5). Then we
find that

−DoeDeoðDoejgeiÞ ¼ λ2ðDoejgeiÞ; ðB7Þ
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which is identical to Eq. (B6). Hence, we find that
jgoi ¼ ηDoejgei where η ¼ reiα is an arbitrary complex
number with r > 0 and 0 ≤ α < 2π. Here r represents the
scaling behavior and α represents a random phase. Since
−DeoDoeð¼ D†

oeDoeÞ is Hermitian and positive semidefin-
ite, one can solve Eq. (B5) using the Lanczos algorithm
introduced in Appendix A. From the result for jgei, it is
straightforward to obtain the eigenvector jgs

λ2
i of Eq. (29)

since

jgs
λ2
i ¼

� jgei
ηDoejgei

�
: ðB8Þ

Now we apply the projection operator Pþ, defined in
Eq. (32), to jgs

λ2
i. Using Eq. (B5), we find that

jχþi ¼ Pþjgsλ2i ¼
�

iλ Deo

Doe iλ

�� jgei
ηDoejgei

�

¼ ð1þ iηλÞ
�

iλjgei
Doejgei

�
: ðB9Þ

Similarly, for the projection operator P−, defined in
Eq. (33), we find that

jχ−i ¼ P−jgsλ2i ¼ ð1 − iηλÞ
� −iλjgei
Doejgei

�
: ðB10Þ

Since η only appears in the overall factor for both cases, it
gives only the relative phase difference between the nor-
malized eigenvectors jfs�λi defined in Eqs. (36) and (37).
We can proceed further to obtain the eigenvectors jfs�λi.

The norm of jχþi is given by

hχþjχþi ¼ ½ð1 − iη�λÞð1þ iηλÞ� · 2λ2hgejgei: ðB11Þ

Hence, jfsþλi is

jfsþλi ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iηλ
1 − iη�λ

s �
iλjgei
Doejgei

�
; ðB12Þ

where

N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2hgejgei

q
: ðB13Þ

Similarly,

jfs−λi ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − iηλ
1þ iη�λ

s � −iλjgei
Doejgei

�
: ðB14Þ

These results for jfs�λi indicate that the phase difference θ
for the Γϵ transformation defined in Eq. (47) depends on the
value of η.

In our numerical study, we set η to η ¼ reiα ¼ 1: r ¼ 1
and α ¼ 0. Hence, the relative random phase between
jfs�λi states is removed by hand. Therefore, our value of θ
defined in Eq. (47) includes a bias from our choice
of η ¼ 1.
For η ¼ 1 (our choice), Γϵjfsþλi is

Γϵjfsþλi ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ iλ
1 − iλ

r �
iλjgei

−Doejgei

�
; ðB15Þ

while jfs−λi is

jfs−λi ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − iλ
1þ iλ

r � −iλjgei
Doejgei

�
: ðB16Þ

Then we obtain eiθ from the following matrix element,

hfs−λjΓϵjfsþλi ¼
1

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − iλ
1þ iλ

�� 1þ iλ
1 − iλ

s
· ð−N2Þ

¼ −
1þ iλ
1 − iλ

¼ eiðπþ2βÞ ¼ eiθ; ðB17Þ

where β≡ arctanðλÞ. From Eqs. (47) and (B17), we find
that

θ ¼ π þ 2β: ðB18Þ

In Fig. 3, we show the measurements of the phase θ for
hundreds of eigenvectors on a gauge configuration
with Q ¼ −1. The results for θ are consistent with
our theoretical prediction Eq. (B18) within numerical
precision.

APPENDIX C: EIGENVALUE SPECTRUM
FOR Q= − 2 AND Q= − 3

In Figs. 11 and 12, we present examples of the
eigenvalue spectrum forQ ¼ −2 andQ ¼ −3, respectively.
Figures 11(a) and 12(a) show eigenvalues λ2 for the
eigenvectors jgs

λ2
i defined in Eq. (29). In Fig. 11, we find

two sets of four-fold degenerate eigenstates, corresponding
to fλ1; λ2; λ3; λ4g and fλ5; λ6; λ7; λ8g. Each set of four
eigenvalues indicates a quartet of would-be zero modes.
The number of quartets is related to the topological charge
Q ¼ −2 by the index theorem of Eq. (23) when all would-
be zero modes have the same chirality (n− ¼ 0 and
nþ ¼ 2). Apart from the would-be zero modes, we observe
that nonzero modes are eight-fold degenerate, as in the
cases Q ¼ 0 (Fig. 1) and Q ¼ −1 (Fig. 2).
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Similarly, in Fig. 12, we find three quartets of would-be
zero modes with n− ¼ 0 and nþ ¼ 3 (Q ¼ −3):
fλ1; λ2; λ3; λ4g, fλ5; λ6; λ7; λ8g, and fλ9; λ10; λ11; λ12g.
Because the number of quartets equals the absolute value
of the topological charge jQj ¼ 3, it is possible to deduce
that all the would-be zero modes have the same chirality in
accordance with the index theorem of Eq. (23). For nonzero
modes, we observe the pattern of eight-fold degeneracy as

in other examples for Q ¼ 0 in Fig. 1, Q ¼ −1 in Fig. 2,
and Q ¼ −2 in Fig. 11.

APPENDIX D: COMPARISON OF THE
GOLTERMAN AND KLUBERG-STERN

METHODS

Using the Golterman method, the chirality operator is
defined as follows.

OGol
γ5×1

ðxÞ ¼
X
A

χ̄ðxAÞ½γ5 ⊗ 1�GolχðxAÞ

¼
X
A

χ̄ðxAÞ½ργ5⊗1ðAÞMγ5⊗1�χðxAÞ ðD1Þ

where the coordinate xA ¼ 2xþ A, x is a coordinate of the
hypercube, and A is a hypercubic vector with Aμ ∈ f0; 1g
with μ ¼ 1, 2, 3, 4. Mγ5⊗1 is defined as

Mγ5⊗1χðxAÞ≡ 1

4!

X
fpag∈P

D̃p4
D̃p3

D̃p2
D̃p1

χðxAÞ ðD2Þ

where p1 ≠ p2 ≠ p3 ≠ p4, and P is the set of all permu-
tations of f1; 2; 3; 4g. The symmetric shift operator D̃μ is
defined as

D̃μχðyÞ ¼
1

2
½VμðyÞχðyþ μ̂Þ þ V†

μðy − μ̂Þχðy − μ̂Þ� ðD3Þ

where μ̂ is a unit vector in the μ direction of Euclidean
space. VμðyÞ is a (smeared) gauge link used in Eq. (40).
ργ5⊗1 is defined as

ργ5⊗1ðAÞ ¼
1

4
Trðγ†Aγ5γĀÞ ¼ ð−1ÞA1þA3 ðD4Þ

where Āμ ¼ ðAμ þ 1Þ mod 2. In the Golterman method,
the chirality operator ½γ5 ⊗ 1�Gol connects a site A ¼
ð0; 0; 0; 0Þ of χ̄ to the 16 sites B ¼ ð1; 1; 1; 1Þ;
ð−1; 1; 1; 1Þ; ...; ð−1;−1;−1;−1Þ of χ. As a consequence,

ð½γ5 ⊗ 1�GolÞ2 ≠ 1 ðD5Þ

unlike the continuum chirality operator which satisfies
½γ5 ⊗ 1�2 ¼ ½1 ⊗ 1� ¼ 1.
Using the definition of bilinear operators in Eq. (38),

obtained with the Kluberg-Stern method, we define the
chirality operator as

OKlu
γ5×1

ðxÞ≡X
A

χ̄ðxAÞ½γ5⊗ 1�KluAĀ χðxĀÞ

¼
X
A

χ̄aðxAÞðγ5 ⊗ 1ÞAĀUðxA;xĀÞabχbðxĀÞ: ðD6Þ

FIG. 11. The same as Fig. 1 except for Q ¼ −2.

FIG. 12. The same as Fig. 1 except for Q ¼ −3.
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Using the definition in Eq. (39) with γS ¼ γ5 and ξT ¼ 1,
we find

ðγ5 ⊗ 1ÞAĀ ≡ 1

4
Trðγ†Aγ5γĀ1†Þ

¼ ργ5⊗1ðAÞ ¼ ð−1ÞA1þA3 ðD7Þ

Hence, the phase of the Kluberg-Stern operator is identical
to that of the Golterman operator, which is in general true
for the whole set of bilinear operators. We have freedom to
choose UðxA; xĀÞab to make the chirality operator gauge-
invariant. Here, we set UðxA; xĀÞab to

UðxA; xĀÞ≡ PSUð3Þ

�X
p∈C

VðxA; xp1
ÞVðxp1

; xp2
Þ

� � �Vðxpn
; xĀÞ

�
ðD8Þ

where PSUð3Þ represents the SUð3Þ projection, and C
represents the complete set of shortest paths from xA to
xĀ. Here, the SUð3Þ projection is crucial to make the
chirality operator satisfy the continuum recursion relation:

ð½γ5 ⊗ 1�KluÞ2 ¼ ½1 ⊗ 1� ¼ 1 ðD9Þ

A rigorous proof of Eq. (D9) is given in Appendix E,
Theorem E. 1. In the Kluberg-Stern method, the chirality
operator ½γ5 ⊗ 1�Klu connects a site A ¼ ð0; 0; 0; 0Þ of χ̄ to a
single site Ā ¼ ð1; 1; 1; 1Þ, which makes it possible to
satisfy the recursion relation of Eq. (D9).
The Kluberg-Stern operator without the SUð3Þ projec-

tion PSUð3Þ contains the Golterman operator as a leading
term:

OKlu
γ5×1

ðxÞ ¼ OGol
γ5×1

ðxÞ þOirrelðxÞ ðD10Þ

where Oirrel represents irrelevant operators of higher
dimension. For example, Oirrel includes a 4-dimensional
operator:

Oirrel
γμ×ξμ5

¼
X
A

χ̄ðxAÞ½ργμ⊗ξμ5ðAÞMγμ⊗ξμ5 �χðxAÞ ðD11Þ

ργμ⊗ξμ5ðAÞ ¼
1

4
Trðγ†AγμγĀγ†μ5Þ ðD12Þ

Mγμ⊗ξμ5 ¼
1

4!

X
fpag∈Pμ

½DμD̃p1
D̃p2

D̃p3

þ D̃p1
DμD̃p2

D̃p3
þ D̃p1

D̃p2
DμD̃p3

þ D̃p1
D̃p2

D̃p3
Dμ� ðD13Þ

DμχðyÞ ¼
1

2
½VμðyÞχðyþ μ̂Þ − V†

μðy − μ̂Þχðy − μ̂Þ� ðD14Þ

where p1 ≠ p2 ≠ p3 ≠ μ, and Pμ is the set of all permu-
tations of fpajpa ≠ μg. Technical details of the derivation
of a complete set of irrelevant operators are explained in
Ref. [63]. All the irrelevant operators have tastes different
from 1 (ξT ≠ 1), and they contain at least one derivativeDμ,
which leads to higher dimension operators. As a conse-
quence, their contribution to the chirality vanishes in the
continuum limit a → 0.
The recursion relation in Eq. (D9) is essential to define

the chirality value uniquely for the staggered fermion
formulation.

ð½γ5 ⊗ 1�KluÞ2nþ1 ¼ ½γ5 ⊗ 1�Klu ðD15Þ

for all positive n ∈ Z. Hence, in the case of the Kluberg-
Stern operators with the SUð3Þ projection, we can define
the chirality value uniquely without any ambiguity.
However, in the case of the Golterman operators, it is
not possible to define the chirality value uniquely due to the
following ambiguity:

OGol;n
γ5×1

ðxÞ≡X
A

χ̄ðxAÞð½γ5 ⊗ 1�GolÞ2nþ1χðxAÞ ðD16Þ

½γ5 ⊗ 1�Gol ≠ ð½γ5 ⊗ 1�GolÞ2nþ1 ðD17Þ

OGol;n
γ5×1

≠ OGol;m
γ5×1

if n ≠ m: ðD18Þ

In addition, the Golterman operator does not satisfy the
Ward identity, while the Kluberg-Stern operator respects it,

½γ5 ⊗ 1�Gol½1 ⊗ ξ5�Gol ≠ ½γ5 ⊗ ξ5� ¼ Γϵ ðD19Þ

½γ5 ⊗ 1�Klu½1 ⊗ ξ5�Klu ¼ ½γ5 ⊗ ξ5� ¼ Γϵ ðD20Þ

A rigorous proof is given in Theorem E. 3. However, in the
continuum limit, they converge to a unique value:

lim
a→0

OGol;n
γ5×1

¼ lim
a→0

OGol;1
γ5×1

∀ positive n ∈ Z

¼ lim
a→0

OKlu
γ5×1

ðD21Þ

TABLE XI. Comparison between the Golterman and Kluberg-
Sternmethods. HereGol (Klu) represents theGolterman (Kluberg-
Stern) method. Recursion represents the recursion relationship.
Uniqueness represents the uniqueness of the chirality operator
value. The○ (⨯) indicates that a given property is (is not) respected
by a specific transcription. Ref. represents key equations given for
reference.

Property Gol Klu Ref.

Recursion ⨯ ○ Eqs. (D5) and (D15)
Uniqueness ⨯ ○ Eqs. (D18) and (D15)
Ward identity ⨯ ○ Eqs. (D19) and (D20)
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since the contribution from all irrelevant operators vanishes
in the continuum. We summarize the differences between
the Golterman method and the Kluberg-Stern method in
Table XI.

APPENDIX E: RECURSION RELATIONSHIPS
FOR CHIRALITY OPERATORS

We define the chirality operator

hfsαj½γ5 ⊗ 1�jfsβi
≡X

x

X
A;B

½fsαðxAÞ�†ðγ5 ⊗ 1ÞABUðxA; xBÞfsβðxBÞ ðE1Þ

ðγS ⊗ ξTÞAB ¼ 1

4
Trðγ†AγSγBγ†TÞ ðE2Þ

UðxA; xBÞ ¼ PSUð3Þ

�X
p∈C

VðxA; xp1
ÞVðxp1

; xp2
Þ

× Vðxp2
; xp3

ÞVðxp3
; xBÞ

�
ðE3Þ

First let us prove the following theorem.
Theorem E.1.

½γ5 ⊗ 1�½γ5 ⊗ 1� ¼ ½1 ⊗ 1� ðE4Þ

Proof.—Let us first rewrite ½γ5 ⊗ 1�2 as follows,

½γ5⊗ 1�2AC ¼
X
B

ðγ5⊗ 1ÞABUðxA;xBÞ · ðγ5 ⊗ 1ÞBCUðxB;xCÞ

¼
X
B

½ðγ5⊗ 1ÞABðγ5⊗ 1ÞBC�

· ½UðxA;xBÞUðxB;xCÞ� ðE5Þ

We know that

ðγ5 ⊗ 1ÞAB ¼ 1

4
Trðγ†Aγ5γB1Þ

¼ δBĀ½η1ðAÞη2ðAÞη3ðAÞη4ðAÞ�
¼ δBĀη5ðAÞ; ðE6Þ

where Āμ ¼ ðAμ þ 1Þ mod 2, and

ημðAÞ ¼ ð−1ÞXμ ; for μ ¼ 1; 2; 3; 4; ðE7Þ

Xμ ¼
X
ν<μ

Aν; ðE8Þ

η5ðAÞ ¼ η1ðAÞη2ðAÞη3ðAÞη4ðAÞ ¼ ð−1ÞA1þA3 : ðE9Þ

Similarly, we find that

ðγ5 ⊗ 1ÞBC ¼ δCB̄η5ðBÞ: ðE10Þ

Hence, we can rewrite Eq. (E5) as follows,

½γ5⊗ 1�2AC ¼
X
B

½δBĀη5ðAÞδCB̄η5ðBÞ� · ½UðxA;xBÞUðxB;xCÞ�

¼ δAC½UðxA;xĀÞUðxĀ;xAÞ�; ðE11Þ

where we use the helpful identity η5ðĀÞ ¼ η5ðAÞ. Thanks
to the SUð3Þ projection in Eq. (E3), UðxĀ; xAÞ ¼
½UðxA; xĀÞ�† ∈ SUð3Þ. Hence, ½UðxA; xĀÞUðxĀ; xAÞ� ¼ 1.
Therefore, we can rewrite Eq. (E11) as follows,

½γ5 ⊗ 1�2AC ¼ δAC ¼ ½1 ⊗ 1�AC: ðE12Þ

Hence, we have just proven that ½γ5 ⊗ 1�2 ¼ ½1 ⊗ 1�.
(Q.E.D.) ▪
Using the results of Eq. (E4), we can prove the recursion

relationship as follows,

½γ5 ⊗ 1�2nþ1 ¼ ð½γ5 ⊗ 1�2Þn · ½γ5 ⊗ 1� ðE13Þ

¼ ð½1 ⊗ 1�Þn · ½γ5 ⊗ 1� ðE14Þ

¼ ½1 ⊗ 1� · ½γ5 ⊗ 1� ðE15Þ

¼ ½γ5 ⊗ 1�: ðE16Þ

Using the results of Eq. (E4), we can prove another
recursion relationship as follows,

½γ5 ⊗ 1�2n ¼ ð½γ5 ⊗ 1�2Þn ðE17Þ

¼ ð½1 ⊗ 1�Þn ðE18Þ

¼ ½1 ⊗ 1�: ðE19Þ

Finally, we can prove the following theorem.
Theorem E.2.

�
1þ γ5

2
⊗ 1

��
1þ γ5

2
⊗ 1

�
¼

�
1þ γ5

2
⊗ 1

�
ðE20Þ
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Proof.—�
1þ γ5

2
⊗ 1

�
2

¼ 1

4
ð½1 ⊗ 1� þ ½γ5 ⊗ 1�Þ2

¼ 1

4
ð½1 ⊗ 1� þ 2½γ5 ⊗ 1� þ ½γ5 ⊗ 1�2Þ

¼ 1

2
ð½1 ⊗ 1� þ ½γ5 ⊗ 1�Þ

¼
�
1þ γ5

2
⊗ 1

�
: ðE21Þ

(Q.E.D.) ▪
Using Eq. (E20), we can prove that for integer n > 0,�

1þ γ5
2

⊗ 1

�
n
¼

�
1þ γ5

2
⊗ 1

�
ðE22Þ

by induction.
At this stage, it will be trivial to prove that�

1þ γ5
2

⊗ 1

��
1 − γ5
2

⊗ 1

�
¼ 0: ðE23Þ

The next two theorems concern the chiral Ward
identities.
Theorem E.3.

½γ5 ⊗ ξ5� ¼ ½γ5 ⊗ 1�½1 ⊗ ξ5� ¼ ½1 ⊗ ξ5�½γ5 ⊗ 1� ðE24Þ

Proof.—Using the results of Eq. (E6), we find that

ðγ5 ⊗ 1ÞAB ¼ δBĀη5ðAÞ; ðE25Þ

where Āμ ¼ ðAμ þ 1Þ mod 2. Let us rewrite ð1 ⊗ ξ5ÞAB as
follows,

ð1 ⊗ ξ5ÞAB ¼ 1

4
Trðγ†A1γBγ†5Þ

¼ δBĀ½ζ1ðĀÞζ2ðĀÞζ3ðĀÞζ4ðĀÞ�
¼ δBĀζ5ðAÞ; ðE26Þ

where Āμ ¼ ðAμ þ 1Þ mod 2, and

ζμðAÞ ¼ ð−1ÞYμ ; for μ ¼ 1; 2; 3; 4; ðE27Þ

Yμ ¼
X
ν>μ

Aν; ðE28Þ

ζ5ðAÞ ¼ ζ1ðAÞζ2ðAÞζ3ðAÞζ4ðAÞ ¼ ð−1ÞA2þA4 ; ðE29Þ

ζ5ðĀÞ ¼ ζ5ðAÞ: ðE30Þ

Hence, we find that

½γ5 ⊗ 1�½1 ⊗ ξ5�jAC ¼
X
B

½γ5 ⊗ 1�AB½1 ⊗ ξ5�BC

¼
X
B

fðγ5 ⊗ 1ÞABð1 ⊗ ξ5ÞBCg½UðxA; xBÞUðxB; xCÞ�

¼
X
B

fδBĀη5ðAÞδCB̄ζ5ðCÞg½UðxA; xĀÞUðxĀ; xAÞ�

¼ δACη5ðAÞζ5ðAÞ
¼ δACϵðAÞ ¼ ½γ5 ⊗ ξ5�AC ðE31Þ

This is a proof of the first part of the theorem. Similarly,

½1 ⊗ ξ5�½γ5 ⊗ 1�jAC ¼
X
B

½1 ⊗ ξ5�AB½γ5 ⊗ 1�BC

¼
X
B

fð1 ⊗ ξ5ÞABðγ5 ⊗ 1ÞBCg½UðxA; xBÞUðxB; xCÞ�

¼
X
B

fδBĀζ5ðAÞδCB̄η5ðCÞg½UðxA; xĀÞUðxĀ; xAÞ�

¼ δACη5ðAÞζ5ðAÞ
¼ δACϵðAÞ ¼ ½γ5 ⊗ ξ5�AC ðE32Þ
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This is a proof of the second part of the theorem.
(Q.E.D.) ▪
We prove the Ward identities in Eqs. (63)–(64) as

follows.
Theorem E.4.

½γ5 ⊗ ξ5�½γ5 ⊗ 1� ¼ ½γ5 ⊗ 1�½γ5 ⊗ ξ5� ¼ ½1 ⊗ ξ5�; ðE33Þ

½γ5 ⊗ ξ5�½1 ⊗ ξ5� ¼ ½1 ⊗ ξ5�½γ5 ⊗ ξ5� ¼ ½γ5 ⊗ 1�: ðE34Þ

Proof.—Using the results of Theorem E.3, we know the
following Ward identity:

½γ5 ⊗ ξ5� ¼ ½1 ⊗ ξ5�½γ5 ⊗ 1�: ðE35Þ

Let us multiply ½γ5 ⊗ 1� on both sides of Eq. (E35). Then,

½γ5 ⊗ ξ5�½γ5 ⊗ 1� ¼ ½1 ⊗ ξ5�½γ5 ⊗ 1�2 ¼ ½1 ⊗ ξ5�: ðE36Þ

Here we use the recursion relationship in Theorem E.1.
Similarly, from the results of Theorem E.3, we know that

½γ5 ⊗ ξ5� ¼ ½γ5 ⊗ 1�½1 ⊗ ξ5�: ðE37Þ

Let us multiply ½γ5 ⊗ 1� on both sides of Eq. (E37).

½γ5 ⊗ 1�½γ5 ⊗ ξ5� ¼ ½γ5 ⊗ 1�2½1 ⊗ ξ5� ¼ ½1 ⊗ ξ5�: ðE38Þ

Here, we use the recursion relation in Theorem E.1. This
completes a proof of the first part of Theorem E.4.
Let us multiply ½1 ⊗ ξ5� on both sides of Eq. (E37).

½γ5 ⊗ ξ5�½1 ⊗ ξ5� ¼ ½γ5 ⊗ 1�½1 ⊗ ξ5�2 ¼ ½γ5 ⊗ 1�: ðE39Þ

Similarly, let us multiply ½1 ⊗ ξ5� on both sides of
Eq. (E35).

½1 ⊗ ξ5�½γ5 ⊗ ξ5� ¼ ½1 ⊗ ξ5�2½γ5 ⊗ 1� ¼ ½γ5 ⊗ 1�: ðE40Þ

This completes a proof of the second part of Theorem E.4.
(Q.E.D.) ▪

APPENDIX F: EXAMPLES FOR THE LEAKAGE
PATTERN OF ZERO MODES

Let us begin with the case Q ¼ −2. In Fig. 13, we show
leakage patterns of the chirality operator for the first set of
zero modes at Q ¼ −2. In Fig. 14, we present the leakage
patterns of the shift operator for the first set of zero modes
atQ ¼ −2. By comparing Fig. 13 with Fig. 14, we find that
the chiral Ward identities of Eqs. (78) and (79) are well
respected.
In Fig. 15, we show leakage patterns of the chirality

operator for the second set of zero modes at Q ¼ −2. In
Fig. 16, we present the leakage patterns of the shift operator
for the second set of zero modes at Q ¼ −2. By comparing

Fig. 15 with Fig. 16, we find that the chiral Ward identities
of Eqs. (78) and (79) are well-preserved.
Now let us consider an example with Q ¼ −3. The

leakage patterns for the first and second sets of zero modes
are similar to those at Q ¼ −2. Hence, we choose the third
set of zero modes as our example. In Fig. 17, we show
leakage patterns of the chirality operator for the third set of
zero modes at Q ¼ −3. In Fig. 18, we present the leakage
pattern of the shift operator for the third set of zero modes at
Q ¼ −3. By comparing Fig. 17 with Fig. 18, we find
that the chiral Ward identities of Eqs. (78) and (79) are
well-preserved.

FIG. 13. ½γ5 ⊗ 1� leakage pattern for the first quartet of would-
be zero modes at Q ¼ −2.

FIG. 14. ½1 ⊗ ξ5� leakage pattern for the first quartet of would-
be zero modes at Q ¼ −2.
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APPENDIX G: EXAMPLES FOR THE LEAKAGE
PATTERN OF NONZERO MODES

Let us begin with an example with Q ¼ 0. Since the
gauge configuration with Q ¼ 0 usually has no zero
mode (n− ¼ nþ ¼ 0), it is relatively easy to study
nonzero modes. In Fig. 19, we present leakage patterns
of the chirality operator Γ5 ¼ ½γ5 ⊗ 1� for nonzero
modes fλ1; λ3; λ5; λ7g ¼ fλj;mjj ¼ þ1; m ¼ 1; 2; 3; 4g in
the j ¼ þ1 quartet when Q ¼ 0. The results show that
the Γ5 leakages for nonzero modes λþ1;m mostly go
into their parity partners fλ2;λ4;λ6;λ8g¼fλj;mjj¼−1;m¼
1;2;3;4g in the j ¼ −1 quartet. Meanwhile, the leakages

to other quartets such as j ¼ �2;�3 are negligibly
small compared to those of the j ¼ −1 quartet elements.
This observation is consistent with that for Q ¼ −1
in Fig. 6.
In Fig. 20, we present leakage patterns of the shift

operator Ξ5 ¼ ½1 ⊗ ξ5� for the nonzero modes
fλ1; λ3; λ5; λ7g of λþ1;m in the j ¼ þ1 quartet when
Q ¼ 0. For the Ξ5 operator, we find the great part of
leakages are from nonzero modes λþ1;m to other elements
within the j ¼ þ1 quartet. Meanwhile, there are only
negligible leakages to parity partner quartet elements
(j ¼ −1) and other quartets with j ¼ �2;�3, and so on.
This observation corresponds to the case Q ¼ −1 in Fig. 7.

FIG. 16. ½1 ⊗ ξ5� leakage pattern for the second quartet of
would-be zero modes at Q ¼ −2.

FIG. 17. ½γ5 ⊗ 1� leakage pattern for the third quartet of would-
be zero modes at Q ¼ −3.

FIG. 18. ½1 ⊗ ξ5� leakage pattern for the third quartet of would-
be zero modes at Q ¼ −3.

FIG. 15. ½γ5 ⊗ 1� leakage pattern for the second quartet of
would-be zero modes at Q ¼ −2.
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We also find that the leakages of Γ5 in Fig. 19 and Ξ5 in
Fig. 20 are related to each other by the Ward identity
of Eq. (95).
In Figs. 21 and 22, we present leakage patterns of the Γ5

and Ξ5 operators, respectively, for nonzero modes
fλ9; λ11; λ13; λ15g ¼ fλj;mjj ¼ þ2; m ¼ 1; 2; 3; 4g in the
j ¼ þ2 quartet when Q ¼ 0. Similar to the above cases
for j ¼ þ1, Γ5 leakages for nonzero modes of j ¼ þ2
mostly go to their parity partner quartet elements of
j ¼ −2: fλ10;λ12; λ14; λ16g ¼ fλj;mjj¼ −2;m¼ 1;2;3;4g,
and Ξ5 leakages mostly go to members within the j ¼ þ2
quartet: fλ9; λ11; λ13; λ15g. There are only negligible leak-
ages to other quartets for both operators.
Now let us examine the leakage patterns when would-be

zero modes exist (Q ≠ 0). In Figs. 23 and 24, we present
leakage patterns of the Γ5 and Ξ5 operators, respectively,
for nonzero modes fλ9; λ11; λ13; λ15g in the j ¼ þ1 quartet

when Q ¼ −2. There are two quartets of right-handed
would-be zero modes where j ¼ 0 − 1R and 0 − 2R, which
corresponds to n− ¼ 0 and nþ ¼ 2 with Q ¼ −2 by the
index theorem (Q ¼ n− − nþ).
As in the cases Q ¼ −1 (Figs. 6 and 7) and Q ¼ 0

(Figs. 19 and 20), Γ5 leakages from nonzero modes of j ¼
þ1 mostly go to the parity partner j ¼ −1 quartet, and Ξ5

leakages from nonzero modes of j ¼ þ1 mostly go within
the j ¼ þ1 quartet itself. Leakages to other nonzero mode
quartets and would-be zero mode quartets are negligibly
small. We also find that the Ward identity between the two
leakage patterns holds.
In Figs. 25 and 26, we present leakage patterns for the Γ5

and Ξ5 operators, respectively, for nonzero modes
fλ13; λ15; λ17; λ19g in the j ¼ þ1 quartet when Q ¼ −3.
Their leakage patterns are also consistent with those for
Q ¼ 0;−1;−2 in our previous discussion.

FIG. 20. ½1 ⊗ ξ5� leakage pattern for the first quartet of nonzero
modes at Q ¼ 0.

FIG. 19. ½γ5 ⊗ 1� leakage pattern for the first quartet of nonzero
modes at Q ¼ 0.
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FIG. 22. ½1 ⊗ ξ5� leakage pattern for the second quartet of
nonzero modes at Q ¼ 0.

FIG. 21. ½γ5 ⊗ 1� leakage pattern for the second quartet of
nonzero modes at Q ¼ 0.
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FIG. 23. ½γ5 ⊗ 1� leakage pattern for the first quartet of nonzero
modes at Q ¼ −2.

FIG. 24. ½1 ⊗ ξ5� leakage pattern for the first quartet of nonzero
modes at Q ¼ −2.
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