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Abstract The observation of the Pcs(4459) by the LHCb
collaboration adds a new member to the set of known hidden-
charm pentaquarks, which includes the Pc(4312), Pc(4440)

and Pc(4457). The Pcs(4459) is expected to have the light-
quark content of a � baryon (I = 0, S = −1), but its spin is
unknown. Its closeness to the D̄∗�c threshold – 4478 MeV in
the isospin-symmetric limit – suggests the molecular hypoth-
esis as a plausible explanation for the Pcs(4459). While in
the absence of coupled-channel dynamics heavy-quark spin
symmetry predicts the two spin-states of the D̄∗�c to be
degenerate, power counting arguments indicate that the cou-
pling with the nearby D̄�′

c and D̄�∗
c channels might be a

leading order effect. This generates a hyperfine splitting in
which the J = 3

2 D̄∗�c pentaquark will be lighter than the
J = 1

2 configuration, which we estimate to be of the order
of 5 − 15 MeV. We also point out an accidental symme-
try between the Pcs(4459) and Pc(4440/4457) potentials.
Finally, we argue that the spectroscopy and the J/ψ� decays
of the Pcs(4459) might suggest a marginal preference for
J = 3

2 over J = 1
2 .

1 Introduction

The discovery by the LHCb collaboration of three hidden-
charm pentaquarks [1] – the Pc(4312), Pc(4440) and
Pc(4457) – has triggered intense theoretical efforts to decode
their nature, in particular whether they are molecular [2–11]
or not [12–16]. Recently a new hidden-charm pentaquark
has been found [17] – the Pcs(4459)0 – which we will simply
denote as Pcs in this work. This pentaquark has been observed
in the J/ψ� channel, from which it can be deduced that its

a e-mail: mpavon@buaa.edu.cn (corresponding author)

quark content is cc̄sqq with q = u, d. Its mass and width are

MPcs = 4458.8 ± 2.9+4.7
−1.1 MeV

�Pcs = 17.3 ± 6.5+8.0
−5.7 MeV, (1)

but the statistical significance of the signal is merely 3.1 σ .
Besides, its spin and parity have not been determined yet.
It is also worth noticing that predictions of Pc and Pcs pen-
taquarks [18–20] have been there long before their eventual
observation.

The Pcs pentaquark lies a few MeV below the D̄∗�c

threshold – 4478.0 MeV in the isospin symmetric limit –
suggesting a strong molecular component [21–23]. However
there are at least other two nearby thresholds: the D̄�′

c and
D̄�∗

c ones at 4446.0 and 4513.2 MeV, respectively (i.e. 32.0
and 35.2 MeV away from the D̄∗�c threshold). If the spin
of the Pcs pentaquark is J = 1

2 ( 3
2 ), it will mix with the

D̄�′
c (D̄�∗

c ) channel, which will result into a molecular pic-
ture more complex than that of the Pc pentaquarks (i.e. that
of a single channel D̄�c or D̄∗�c molecule). Here we will
consider how the aforementioned coupled channel dynam-
ics affects the spectrum of a molecular Pcs . If we consider
the possible isoscalar D̄�′

c and D̄�∗
c molecular states, one

quickly realizes that owing to SU(3)-flavor and heavy quark
spin symmetry (HQSS) it is possible to make predictions
[24]. For the D̄∗� system this is not the case though and
we will have to resort to phenomenology to relate its inter-
action with the already known non-strange molecular pen-
taquarks. If this is done, the molecular description of the
Pc(4312/4440/4457) and Pcs(4459) pentaquarks turns out
to be coherent, as we will explain in the following lines.

The manuscript is organized as follows: in Sect. 2 we
briefly explain the non-relativistic effective field theory we
will use to describe the molecular pentaquarks. In Sect. 3
we discuss the symmetry constraints of the pentaquarks.
Section 4 is devoted to the power counting of the coupled
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channels affecting the Pcs . In Sect. 5 we explain how to
estimate the low energy constants of the effective field the-
ory from meson-exchange saturation. In Sect. 6 we will
show an accidental symmetry between the potentials of the
Pc(4440/4457) and Pcs pentaquarks. In Sect. 7 we discuss
the size of the hyperfine splitting between the J = 1

2 , 3
2

Pcs pentaquarks. In Sect. 8 we consider the decay of the
Pcs pentaquark into J/ψ� depending on its spin. Finally,
we summarize our conclusions in Sect. 9 and explain a few
technicalities in “Appendices A and B”.

2 Effective field theory description

Before explaining how symmetries inform the pentaquark
spectrum, first we will briefly explain the effective field the-
ory (EFT) formalism we follow. We will describe interactions
among heavy hadrons with a non-relativistic contact-range
potential of the type

〈p′|V |p〉 = C, (2)

with C an unknown coupling constant, where this coupling
can be further decomposed into a sum of irreducible com-
ponents C = ∑

R λRCR , with R denoting some quantum-
number / representation, λR some coefficient / operator and
CR the particular coupling that applies in each case. This
type of contact-range potential often appears in lowest- (or
leading-) order EFT descriptions of hadron-hadron interac-
tions (concrete examples with full derivations can be found
in Refs. [25–28] for antimeson-meson molecules and in
Ref. [29] for pentaquarks). Of course this is true provided
that the one-pion-exchange potential, which is the longest
range piece of the hadron-hadron interaction, is weak and
thus subleading [30,31] (otherwise it should be included at
lowest-order). The previous contact-range potential is singu-
lar though and has to be regularized, which we do by intro-
ducing a regulator function f (x) and a cutoff �, i.e.

〈p′|V |p〉 = C(�) f

(
p′

�

)

f
( p

�

)
, (3)

where the coupling now depends on the cutoff C = C(�).
For the regulator we will choose a Gaussian, f (x) = e−x2

,
and for the cutoff we will use the range � = 0.5 − 1.0 GeV.
Finally this potential is included in a dynamical equation,
such as Schrödinger or Lippmann–Schwinger, for obtain-
ing predictions. If we choose Lippmann–Schwinger and
are interested in poles of the scattering amplitude, i.e.
bound/virtual states or resonances, we can simply solve

φ(k)+
∫

d3 p

(2π)3 〈k|V |p〉 φ(p)

Mth + p2/(2μ) − Mmol
=0, (4)

where φ is the vertex function, which is defined as the the
wave function � times the propagator (φ(p) = [Mth +
p2/(2μ) − Mmol] �(p)), V the potential, Mth the mass of
the threshold (i.e. the sum of the masses of the two hadrons
comprising a molecular candidate), μ their reduced mass and
Mmol the mass of the hadronic molecule we want to predict.

3 Light-flavor and heavy-quark symmetries

Symmetry constrains the potential binding the molecular
pentaquarks. If we begin by considering the three known
Pc pentaquarks, in the molecular picture they are thought to
be D̄�c and D̄∗�c bound states. From the SU(3)-flavor per-
spective the Pc’s are composed of a triplet charmed antime-
son and a sextet charmed baryon, which together can cou-
ple into the octet and decuplet representations of SU(3), i.e.
3 ⊗ 6 = 8 ⊕ 10. The flavor structure of the potential is thus

V (H̄cSc) = λOCO + λDCD, (5)

with Hc = D, D∗ or Ds, D∗
s and Sc = �c, �

∗
c , �′

c, �
∗
c or

�c,�
∗
c representing an arbitrary charmed meson or baryon,

CO and CD the octet and decuplet couplings and λO and λD

a coefficient that depends on the particular antimeson-baryon
configuration considered (they are explained in detail in Ref
[24]).

From the HQSS perspective the potential between two
heavy hadrons can only depend on the spin of the light
quarks inside them. For the triplet charmed meson and sextet
charmed baryon the light-spins are SL = 1

2 and SL = 1,
respectively, which couple to 1

2 ⊗ 1 = 1
2 ⊕ 3

2 . However it is
more compact to express the light-quark spin structure of the
potential in terms of light-spin operators:

V (H̄cSc) = Ca + Cb σ L · SL , (6)

withCa andCb couplings that represent the spin-independent
and spin-dependent pieces of the potential, respectively, and
σ L and SL the spin-operators for the light-spin degrees of
freedom within the charmed meson and baryon (for the nota-
tion in terms of light-spin check for instance Ref. [32], while
the channel-by-channel potential can be found in Ref. [29]).

From the SU(3)-flavor and HQSS structure we have just
explained it is already possible to derive the existence of
D̄�′

c and D̄�∗
c molecular states [24]. First we notice that the

standard molecular interpretation of the Pc(4312)pentaquark
is that it is a I = 1

2 D̄�c bound state. Thus the decomposition
of the Pc(4312) potential is

V

(

D̄�c, I = 1

2

)

= CO
a , (7)

i.e. the octet SU(3)-representation and the HQSS part of the
potential that is independent of the spin of the light-quarks.
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Any other molecular pentaquark with the same decomposi-
tion will have the same potential as the Pc(4312) and con-
sequently, will be likely to have a similar binding energy.
Among these pentaquarks we have the I = 0 D̄�′

c and D̄�∗
c

systems, for which the potential reads

V (D̄�′
c, I = 0) = V (D̄�∗

c , I = 0) = CO
a , (8)

where again only the octet, spin-independent piece of the
contact-range potential (CO

a ) is involved. From now on we
will simply write Ca = CO

a , as the octet configuration is the
only one we are considering in this work.

If we determine this coupling from the Pc(4312), we can
predict the masses of the D̄�′

c and D̄�∗
c molecules, i.e. the

P ′
cs and P∗

cs pentaquarks, with the formalism we already
described. The result happens to be

M(P ′
cs) = 4436.7 (4436.1) MeV, (9)

M(P∗
cs) = 4503.6 (4502.7) MeV, (10)

for � = 0.5(1.0) GeV, where similar predictions can be
found in Refs. [24,33].

If we now consider the Pcs , its most natural molecular
interpretation is D̄∗�c. This two-body system is not con-
nected to D̄�′

c, D̄�∗
c and D̄�c neither by SU(3)-flavor

nor HQSS symmetries. From SU(3)-flavor symmetry, the
Pcs pentaquark contains a triplet charmed antimeson and
antitriplet charmed baryon and is a combination of a singlet
and an octet, i.e. 3⊗ 3̄ = 1⊕8. The concrete flavor structure
of the potential is unessential though, as we are only con-
sidering the I = 0, S = −1 sector (i.e. D̄∗�c). Regarding
HQSS, the antitriplet charmed baryon contains a diquark with
SL = 0, from which we expect a trivial light-spin structure
owing to 1

2 ⊗ 0 = 1
2 . The potential reads

V (H̄cTc) = Da, (11)

with no spin dependence whatsoever and Tc = �c, �c rep-
resenting a generic antitriplet charmed baryon. In addition to
this, the H̄cTc and H̄cSc systems can couple by means of a
transition potential of the type

V (H̄cTc − H̄cSc) = Eb σ L · εL , (12)

with Eb a coupling, σ L the spin-operator for the light-quark
within the charmed meson and εL the polarization vector
of the light-diquark in the sextet charmed baryon. The cou-
plings Da and Eb can be further decomposed in isospin and
flavor representations, but this is not necessary for the set of
molecules we are considering. Putting the pieces together for
the D̄∗�c, if we consider the coupled channel bases B(J =
1
2 ) = {D̄�′

c, D̄
∗�c} and B(J = 3

2 ) = {D̄∗�c, D̄�∗
c} we

will have the following potentials:

V

(

Pcs, J = 1

2

)

=
(
Ca Eb

Eb Da

)

, (13)

V

(

Pcs, J = 3

2

)

=
(
Da Eb

Eb Ca

)

. (14)

By including these potentials in a bound state equation such
as the coupled-channel extension of Eq. (4) we can calculate
the mass of the Pcs .

4 Power counting and coupled channel dynamics

EFTs are expected to be power series in terms of the expan-
sion parameter (Q/M), where Q and M represent the char-
acteristic low and high energy scales of the system, respec-
tively. For molecular pentaquarks Q is of the order of the
pion mass (mπ � 140 MeV) or the wave number of the
bound state (i.e. γ = √

2μB2 ∼ 206 MeV for the Pcs as a
D̄∗�c molecule), while M will be of the order of the vector
meson mass (mρ � 770 MeV). This suggests the expansion
parameter

Q

M
∼

√
2μB2

mρ

∼ 0.27, (15)

where we have identified the wave number γ with the light
scale Q. We will now compare this number with the expected
size of coupled channel effects.

If we are interested in the mass difference between the
J = 1

2 and 3
2 D̄∗�c bound states, i.e. the hyperfine splitting,

the relevant coupled channels are of the H̄cTc-H̄cSc type,
i.e. Eq. (12), which can break the spin degeneracy. There are
H̄cTc-H̄cTc coupled channel effects too (e.g. D̄∗

s �c-D̄∗�c),
but they do not generate a dependence on the light spin. For
the coupled channel dynamics relevant to the D̄∗�c system
(independently of whether they generate spin dependence),
their expected size with respect to the diagonal interaction is
[30,31]

(
Q

�CC

)2

∼ B2

�CC
∼ 0.60, 0.54, 0.24, 0.14, 0.11,

for D̄�′
c, D̄�∗

c , D̄∗
s �c, D̄�c, D̄∗�∗

c , (16)

respectively, where B2 = 19.2 MeV is the binding energy
of a molecular Pcs and �CC the mass gap of the listed cou-
pled channels. This indicates that only the D̄�′

c and D̄�∗
c

channels are expected to be larger than the size of subleading
corrections. The next channel in importance, D̄∗

s �c, does not
break spin degeneracy, as previously mentioned, and in addi-
tion its size is subleading. Finally, though the D̄∗�∗ channel
will indeed contribute to the hyperfine splitting, its size is
strongly suppressed with respect to D̄�′

c and D̄�∗
c and thus

we will not take it into account.
For analyzing the possible impact of the coupled channel

dynamics, we will do the following calculation
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(i) Consider the Pcs pentaquark to be a J = 1
2 or 3

2 molecule,
which in analogy with Ref. [5] we will call scenarios A
and B, respectively.

(ii) Consider different Eb/Da coupling ratios: with this ratio
fixed, the Da coupling can be determined from the Pcs
pentaquark (and the Ca from the Pc(4312) one). Then
we check how the hyperfine splitting changes with this
ratio.

The result of these calculations is shown in Fig. 1 for sce-
narios A and B and a cutoff � = 0.5 − 1.0 GeV. The hyper-
fine splitting grows quickly with the Eb/Da ratio and it is
sizable even for small ratios. This can be understood from
the power counting of contact-range theories [34], in which
a coupling generating a bound state near threshold is fine-
tuned, thus explaining how the effect of a comparatively
small Eb is amplified by the fact that Da can generate a
molecular Pcs . We also notice that the for the same Eb/Da

ratio the hyperfine splitting will be considerably larger in
scenario A, which has to do with the fact that Da is also
larger in this scenario: coupled-channel dynamics require
M(J = 1

2 ) > M(J = 3
2 ), which in turn forces Da to be

larger in scenario A if Eb �= 0.
However, without being able to estimate the Eb/Da cou-

pling it will be not possible to know the hyperfine splitting.
From power counting arguments the size of each of these
couplings will be [34]

|D(R)
a | ∝ 2π

μ
√

2μB2
and |E (R)

b | ∝ 2π

μM
, (17)

where the superscript (R) refers to a renormalized coupling
(we elaborate below): D(R)

a is said to be enhanced (i.e. its
size is larger than expected owing to the existence of a bound
state close to threshold), while E (R)

b is natural (i.e. its size
can be determined from standard or naive dimensional anal-
ysis arguments). The renormalized couplings D(R)

a and E (R)
b

(which is the type of couplings for which the arguments of
Ref. [34] were originally developed) refer loosely speaking
to the parts of the couplings that do not depend on the cutoff.
But here we are working instead with the bare (or running)
couplings Da = Da(�) and Eb = Eb(�), which explic-
itly depend on the cutoff. Nonetheless the previous power
counting estimates apply to the bare couplings for specific
cutoff ranges: (i) for couplings of natural size (e.g. Eb), this
will be the case irrespectively of whether the cutoff is soft
(� ∼ Q) or hard (� ∼ M), while (ii) for couplings of
unnatural size (e.g. Da) the enhancement ideally requires a
soft cutoff � ∼ Q, with the size of the coupling reverting to
its natural size as the cutoff becomes harder [35,36].

However, in the molecular pentaquarks the separation of
scales is far from perfect: as explained in “Appendix A” for
the Pcs pentaquark and the Gaussian regulator we use here,
Da(�) coincides with its power counting estimation for � ∼

0.9 GeV (i.e. within the cutoff range we use). We thus expect
that in a first approximation the previous relations will hold
in the � = (0.5 − 1.0) GeV range, i.e.

Eb(�)

Da(�)
� E (R)

b

D(R)
a

, (18)

from which we get Eb/Da ∼ Q/M ∼ 0.27, yielding
an estimated hyperfine splitting of �MA ∼ 12 − 35 and
�MB ∼ 7 − 15 MeV in scenarios A and B, respectively,
where there is still a noticeable cutoff dependence. It is
nonetheless possible to improve over the previous picture
by including a renormalization factor to better connect the
bare and running couplings:

Eb(�)

Da(�)
� F

(
Q

�

)
E (R)
b

D(R)
a

, (19)

where we discuss the derivation of the factorF in “Appendix A”.
Concrete calculations show that F = (1.47 − 0.91) in
the � = 0.5 − 1.0 GeV cutoff window used in this work,
leading to the hyperfine splittings �MA ∼ 27 − 40 and
�MB ∼ 12 − 13 MeV in scenarios A and B, respectively,
which happen to display less cutoff dependence (though they
are still of the same order as our original estimation).

It is worth noticing that the reason behind these elabo-
rations is that we are applying power counting arguments
to non-observable quantities (which are allowed to have a
strong dependence on the cutoff).

Actually, besides the standard Pcs(4459) single peak
found in the J/ψ� invariant mass distribution, the LHCb
collaboration also reports a second possible two-peak solu-
tion [17] involving two Pcs pentaquarks with masses

M(Pcs1) = 4454.9 ± 2.7 MeV, (20)

M(Pcs2) = 4467.8 ± 3.7 MeV, (21)

which, if they are both to be interpreted primarily as D̄∗�c

bound states, will result in the hyperfine splitting �M =
12.9±4.6 MeV. In principle this is compatible with scenario
B. But both scenarios A and B use the standard single peak
solution as the reference input. Had we determined the Da

and Eb couplings from the two-peak solution instead, then
the Eb/Da ratio would have been

Eb

Da
= (0.37 − 0.22), (22)

for the cutoff range � = 0.5 − 1.0 GeV. This ratio is
in fact compatible with the power counting estimation of
Q/M ∼ 0.27. In the following lines we will resort to
phenomenological information for further elucidating the
Eb/Da ratio.
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Fig. 1 Masses and hyperfine splitting of the J = 1
2 and 3

2 molecular
Pcs pentaquarks. For J = 1

2 ( 3
2 ) we include the coupled channel dynam-

ics D̄�′
c-D̄∗�c (D̄∗�c-D̄�∗

c ), which are expected to be LO effects in
the EFT description. This description contains three independent cou-
plings Ca , Da , Eb, where the first one (Ca) is determined from the

Pc(4312) pentaquark and SU(3)-flavor symmetry. For the other two
couplings we do as follows: scenario A (B) assumes that the observed
Pcs pentaquark is the J = 1

2 ( 3
2 ) configuration; then for a given Eb/Da

ratio we determine Da from the Pcs mass. Finally, we show the hyper-
fine splitting �M(Pcs) = M(Pcs , J = 1

2 ) − M(Pcs , J = 3
2 ) in both

scenarios

5 Meson exchange saturation

The problem we have is that there are three couplings (Ca ,
Da , Eb) of which we can only determine two (Ca from the
Pc(4312) and Da or Eb from the Pcs(4459)). Yet, if we use
phenomenology it might be possible to find relations among
these couplings and thus determine the three of them. In par-
ticular we will focus on light-meson saturation, i.e. the idea
that the contact-range couplings of a given EFT are saturated
by the exchange of light mesons [37,38]. Here we choose the
novel saturation procedure of Ref. [39], which we explain
below.

Standard saturation maps the finite-range S-wave potential
generated by the exchange of a light-meson, VM (q2) (with
q = p ′− p the exchanged momentum, where for S-wave we
can express the potential as a function of q 2), into a contact-
range coupling Csat by taking the limit

Csat (standard)(� ∼ m) ∝ lim
q2→0

VM (q2), (23)

which is expected to work for � close to the mass m of the
exchanged meson. However, if the potential vanishes in this
limit, we will obtain Csat = 0. For instance, the potentials

VM = −g2
Y

1

m2 + q2 and V ′
M = +g2

Y
q2

m2

1

m2 + q2 , (24)

generate exactly the same finite-range potential in r-space,
namely the Yukawa potential

V (′)
M (r) = −g2

Y
e−mr

4πr
for r �= 0, (25)

where the difference between the two is a distribution

V ′
M (r) − VM (r) = g2

Y m δ(3)(m r) . (26)

Of course, at this point we have to discuss the impact of form-
factors, which modify the light-meson exchange potentials
as follows

V (′)
M (q;�M ) = V (′)

M (q)F2
M (q,�M ), (27)

where FM is the aforementioned form-factor (with the most
used parametrizations being of the multipolar type) while
�M is the form-factor cutoff, which should not be confused
with the EFT cutoff �.

For a local form-factor the resulting r-space potentials will
be also local, and the Dirac-delta will acquire a finite-size:

δ(3)(m r) → δ
(3)
F

(

m r; m

�M

)

, (28)

where δ
(3)
F represents a Dirac-delta that has been already

smeared out by the form-factor. Yet, the characteristic scale
�M of these finite-range effects is expected to be larger than
the mass of the exchanged meson, i.e. �M > m (otherwise
the effect of said exchanged light-meson will be washed out
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by the form factors). For instance, for the Bonn-B poten-
tial [40] �σ = 1.9 − 2.0 GeV and �ρ/ω = 1.85 GeV for the
M = σ and ρ/ω mesons, respectively, while for the CD-Bonn
potential [41] we have �σ = 2.5 GeV, �ρ = 1.31 GeV and
�ω = 1.5 GeV.

Thus for the range of cutoffs in which saturation is
expected to work we have (� ∼ m) < �F , which implies
that the previous Dirac-delta is unimportant: independently
of whether the potential is derived from derivative interac-
tions (V ′

M ) or not (VM ), the potentials at mr ∼ 1 will be
similar and thus the saturation of the couplings should fol-
low suit. That is, if the renormalization scale is similar to
the exchanged meson mass, the potentials VM and V ′

M are
expected to lead to approximately the same saturated cou-
pling. This is achieved with the convention

Csat (new)(� ∼ m) ∝ 1

m2 Res
q2→−m2

V (′)
M (q2), (29)

i.e. by extracting the residue of the potential at q2 = −m2,
which effectively recovers the expectations from the mr ∼
1 behavior of the potential. Ref. [39] explicitly checked
this method with the one-pion-exchange potential (with
an arbitrary coupling strength) as a specific example. In
“Appendix B” we include a detailed comparison between
the standard saturation procedure of Ref. [38] and the one
presented here for the particular case of the nucleon-nucleon
system, which indicates that both saturation methods yield
comparable results.

Now, if we consider the scalar meson σ , in the non-
relativistic limit it generates a spin-independent potential
which can contribute to the saturation of Ca and Da (but
not Cb or Eb):

VS(q) = − gσ i gσ j

m2
S + q 2

, (30)

where mS the mass of the sigma meson and gσ i its coupling,

and the indices i, j = 1, 2, 3 referring to the D̄(∗), �(′/∗)
c and

�c, respectively. Independently of the saturation method we
will obtain

F sat(S)
a (� ∼ mS) ∝ −gσ i gσ j

m2
S

, (31)

with Fa = Ca, Da the generic name for the spin-independent
couplings. The proportionality constant is in principle unknown,
but we will assume it to be similar for all the couplings. We
remind that saturation is expected to work for cutoffs close
to the mass of the meson being exchanged, � ∼ mS in this
case.

The vector mesons (ρ and ω) generate a more complex
potential which can be expanded in a multipole expansion
similar to the one we have for electromagnetic interactions.
There are electric- and magnetic-type components (indicated

by the subscripts a and b)

VV = VVa + VVb, (32)

with

VVa = +(1 + τ 1 · τ 2)
gV i gV j

m2
V + q 2

, (33)

VVb = −(1+τ 1 · τ 2)
fV i fV j

6M2 OL12
q 2

m2
V +q 2

+ · · · , (34)

and OL12 = 0, σ L · εL or σ L · SL for H̄cT , H̄cTc-H̄cSc
and H̄cSc, respectively, where the dots represent S-to-D-
wave components (we assume they will not appreciably
contribute to the saturation of the EFT couplings). In the
vector-exchange potential the i, j indices refer to the dif-
ferent hadrons involved, gV i to the electric-type couplings,
fV i to the magnetic-like ones, mV to the vector meson mass
and M a typical hadronic mass scale. The VVa component
contribute to the Ca and Da couplings as

F sat(V)
a (� ∼ mV ) ∝ (1 + τ 1 · τ 2)

gV i gV j

m2
V

, (35)

where Fa = Ca , Da , with no difference between the stan-
dard and modified saturation procedures, i.e. Eqs. (23) and
(29). For the VVb component to contribute to the Cb and Eb

couplings in a non-trivial way we have to use the modified
saturation procedure of Ref. [39] (i.e. Eq. (29)) in which case
we obtain

F sat(V)
b (� ∼ mV ) ∝ (1 + τ 1 · τ 2)

fV i fV j

6M2 , (36)

where Fb = Cb, Eb. Here we notice that with the standard
saturation method we would have arrived to Cb = Eb = 0.
This is what happens for instance in Refs. [8,33], which in
principle consider the complete set of LO interactions we
have here, i.e. Eqs. (6), (11) and (12), but set the Fb-type
couplings to zero leading to pentaquark predictions without
sizable hyperfine splittings. Yet, as we will see, from the
point of view of phenomenology the choice of Refs. [8,33]
is completely justified: the size of the Fb-type of coupling is
expected to be considerably smaller than the Fa-type, which
prompts the approximation Fb = 0. In contrast from the EFT
point of view the inclusion of the Fb couplings is justified in
terms of power counting.

The only thing left is to determine the couplings: for the σ

we will use the linear-sigma model [42] and the quark model
(as used in Ref. [43]), from which we get that the coupling of
the sigma to the nucleon is gσNN = √

2MN/ fπ ∼ 10.2 (for
the fπ � 132 MeV normalization). For the charmed mesons
with only one light-quark we end up with gσ1 = gσNN/3 �
3.4, while for the charmed baryons with two light-quarks
we have gσ2 = gσ3 = 2 gσNN/3 � 6.8. We note that here
we have assumed the same coupling of the sigma with the
q = u, d, s quarks, as happens for instance in the quark
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model of Ref. [44], where we notice that this pattern can
either arise from a singlet sigma (not necessarily a realistic
assumption) or alternatively from a negligible coupling of
the octet component of the sigma to the light quarks, see for
instance Ref. [45] for a more detailed discussion.

In either case, this runs counter to the standard expectation
that the strange and non-strange components of light mesons
would decouple (owing to the OZI rule), leading in the case
of the sigma to a vanishing coupling to the strange quark.
However it has been argued that the OZI rule does not work
so well in the 0++ sector [46–49], i.e. a non-singlet sigma
might potentially have a non-negligible coupling with the
strange quark. Besides, the singlet and octet mixing angle of
the sigma might very well be far away from the angle decou-
pling strange and non-strange components [50]. Yet, even
though the sigma coupling to the strange quark might not be
necessarily suppressed, it might not be as strong as with the
light-quarks. This can generate SU(3)-flavor breaking effects
which we will discuss later, where the naive expectation will
be that the contribution of the sigma to the contact-range cou-
plings will be weaker in the D̄�

′
c and D̄∗�c molecules than

in the D̄�c one. For further details we refer to the discussion
around Eq. 73, where we notice that the previous expecta-
tion seems to be challenged by the experimental information
currently available.1

For the vector mesons, we have electric- and magnetic-like
couplings, for which we will resort to Sakurai’s universal-
ity and vector meson dominance [51–53], i.e. the mixing of
the neutral vector mesons with the electromagnetic current,
which can be encapsulated in the substitution rules [54,55]

ρ3
μ → 1

β

e

2g
Aμ and ωμ → 1

β

e

6g
Aμ, (37)

where e is the proton charge, g = mV /2 fπ � 2.9 the univer-
sal rho coupling constant (with mV the vector meson mass
and fπ � 132 MeV the pion weak decay constant), Aμ the
photon field, ρ3

μ the neutral rho field (the superscript refers to
the isospin index, a = 3 for the neutral component), ωμ the
omega field and μ a Lorentz index. The parameter β indicates
the degree of vector meson dominance: if the electromagnetic
couplings of the heavy hadrons were to be completely domi-
nated by the vector mesons, we will have β = 1. Otherwise it
will be β < 1. Usually β � 0.9 is estimated [56–58] (which
can be traced back to the ratio of the couplings required for
the ρ → γ γ and ρ → ππ processes, i.e.

√
2 fπ/ fρ ∼ 0.9).

By applying these substitution rules to the interaction of the
heavy hadrons with the vector mesons, we will get the elec-
tromagnetic interaction for the light quarks within the heavy

1 In particular Da (as obtained from the Pcs(4459)) seems to be more
attractive than Ca (as obtained from the Pc(4312)), see Eq. (77), which
runs counter with the expectation that sigma exchange should be weaker
in the former case. Yet more accurate experimental measurements are
needed to confirm whether this is really the case.

hadrons and from this, we can determine the gV i and fV i

couplings. In practical terms this means that gV i and fV i are
proportional to the light-quark contribution of the electric
charge and magnetic moments of the heavy hadrons, respec-
tively. For the E0 couplings we get gV1 = gV2 = gV3 = βg.
For the M1 couplings, we will first make the decomposi-
tion fV = κV gV and use the choice M = mN for the mass
scale with mN � 940 MeV the nucleon mass. From this
κV = 3

2 (μu/μn.m.), with μu/μn.m. the magnetic moment of

the u-quark within light-diquark pair inside the �+
c /�(′/∗)+

c

charmed baryon expressed in units of the nuclear magne-
ton (μn.m.). If we make use of the quark model a second
time, we obtain κV 1 = κV 2 = 3

2μu/μn.m. � 2.9 for the
charmed antimeson and sextet strange charmed baryon. For
the antitriplet charmed baryon we have instead κV 3 = 0,
which is a consequence of the two light-quarks within the
�c baryon being in a spin-0 configuration. The Eb cou-
pling involves a M1 antitriplet to sextet transition for which
κV (3̄ → 6) = 3

2 μ(3̄ → 6)/μn.m. = 3
2 (μu/μn.m.) � 2.9,

where μ(3̄ → 6) refers to the u-quark magnetic moment in

the 3̄ → 6 light-diquark transition 2 within �+
c → �

(′,∗)+
c .

With the previous couplings and setting mS � 550 MeV
and mV = (mρ + mmω)/2 � 775 MeV, we arrive to the
ratios:

Csat
b

Csat
a

∣
∣
∣
�∼(mS−mV )

∼ 0.20, (38)

Dsat
a

Csat
a

∣
∣
∣
�∼(mS−mV )

∼ 1.00, (39)

E sat
b

Dsat
a

∣
∣
∣
�∼(mS−mV )

∼ 0.20 . (40)

The first one of these ratios was checked in Ref. [54], where
it was respected at the 30% level. If we determine Ca and Cb

as in Ref. [5], we obtain |Cb/Ca | = 0.16 for � = 0.75 GeV,
which reproduces the absolute magnitude of Eq. (38) at the
25% level. However we note that in Ref. [5] the sign of Cb

depends on which are the spin of the Pc(4440) and Pc(4457)

pentaquarks: the sign is correctly reproduced if the Pc(4457)

is J = 1
2 . The second one (Ca = Da) appears for instance in

Ref. [18], which predicted the Pcs , and Refs. [19,33,59] as a
consequence of the universality of the vector meson coupling.
The recent work of Ref. [60] uses the chiral quark model to
guess the contact-range couplings, leading to Ca � Da too.
The third relation has not been previously used, as Eb is
usually set to zero (e.g. Ref. [33], where their Eb equivalent

2 For translating the magnetic moment of the light-diquark into the
one for the heavy baryons we can use the relations μq (�

′
c) = 2

3 μq (6)

and μq (�c → �′
c) = ±μq (3̄ → 6)/

√
3, with μq (X) the magnetic

moment of a particular light-quark q within “X” (X being a baryon or a
light-diquark in the antitriplet or sextet configuration) and with the sign
of the 3̄ → 6 transition depending on the ordering of the light quarks
in the 3̄ flavor wavefunction (which is flavor antisymmetric).
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is called μ̂24). Finally it is worth noticing the following

Csat
b

Csat
a

∼ E sat
b

Dsat
a

, (41)

where this relation actually does not depend so much on
saturation being correct or accurate, but rather on the fact
that the light-meson exchange potentials are identical under
the approximations we have made. In the following lines we
will explore the consequences of this relation.

6 Accidental symmetry in the pentaquark potential

Light-meson exchange actually suggests a very interesting
relation between the Pc(4440), Pc(4457) and the two spin
states of D̄∗�c. The S-wave light-meson exchange potential
in the H̄cSc system is

VOBE(H̄cSc) = Va + Vb σ L · SL , (42)

which for the J = 1
2 , 3

2 D̄∗�c systems reads

VOBE
(
D̄∗�c,

1
2

) = Va − 4

3
Vb, (43)

VOBE
(
D̄∗�c,

3
2

) = Va + 2

3
Vb, (44)

from which we expect the hyperfine splitting to be propor-
tional to

M
(
D̄∗�c,

3
2

) − M(D̄∗�c,
1
2 ) ∝ 2Vb . (45)

In comparison for the coupled H̄cTc-H̄cSc system, the cor-
responding potential reads

VOBE(H̄cTc, H̄cSc) =
(

Wa Wb σ L · εL
Wb σ L · εL Va + Vb σ L · SL

)

(46)

where if we consider vector meson exchange, vector meson
dominance, the quark model relations for the charmed baryon
magnetic moments and SU(3) symmetric sigma exchange,
we will have

Va � Wa and Vb � Wb . (47)

This will receive small corrections from η-exchange (that
work in the direction of making |Wb| > |Vb|), which we will
ignore as they are small. Now, in the limit where the D̄�′

c-
D̄�c and D̄�∗

c -D̄∗�c thresholds are degenerate and have the
same mass, there will be two eigenvalues for this potential,
which correspond to the linear combinations

|D̄∗�c(J = 1
2 )(±)〉 = 1√

2

[|D̄�′
c〉 ± |D̄∗�c〉

]
, (48)

|D̄∗�c(J = 3
2 )(±)〉 = 1√

2

[|D̄∗�c〉 ± |D̄�∗
c〉

]
, (49)

with potential eigenvalues

VOBE
(
J = 1

2 , 3
2 ,±) = 1

2
(Wa + Va) ± Wb � Va ± Vb.

(50)

In particular, in this limit the hyperfine splitting between the
“± states” will be

M(D̄∗�c,+) − M(D̄∗�c,−) ∝ 2Wb � 2Vb, (51)

that is, expected to be similar to the hyperfine splitting
between the J = 1

2 and 3
2 D̄∗�c states.

Of course, this accidental symmetry in the potential will
be broken by the fact that there is a mass gap between the
involved coupled channels. The effect of this mass gap will be
to decrease the hyperfine splitting and to force the “±” sign
in Eq. (50) as to make the state corresponding to the lower
threshold the most attractive configuration. If we compare
the characteristic momentum scale of the coupled channel
exchange potential (i.e. the vector meson mass mV ) and the
momentum scale of the coupled channel dynamics (�CC =√

2μ�CC � 266 and 279 MeV), the ratio is 0.34 and 0.36
for the D̄�′

c and D̄�∗
c channels, respectively. Together they

add to 0.70, i.e. we expect the hyperfine splittings to be about
30% of the expected value were not to be a mass gap. For
the J = 1

2 ( 3
2 ) configuration, the D̄∗�c threshold is heavier

(lighter) than the D̄�′
c (D̄�∗

c ) one, which forces the most
repulsive (attractive) sign configuration in Eq. (51).

M
(
D̄∗�c,

1
2

)
− M

(
D̄∗�c,

3
2

)
∝ 2|Wb|

⎛

⎝1 −
∑

CC

O
(

�CC

m

)
⎞

⎠

� 2|Vb|
⎛

⎝1 −
∑

CC

O
(

�CC

m

)
⎞

⎠ . (52)

As a consequence, if the previous approximations hold, the
hyperfine splitting of the two D̄∗�c pentaquarks will be sim-
ilar to the one of the two D̄∗�c pentaquarks, i.e.
∣
∣M

(
D̄∗�c,

1
2

) − M
(
D̄∗�c,

3
2

)∣
∣ � 17 MeV . (53)

However if the effect is to be reduced by a 70%, as suggested
by the scale comparison, we will end up with a 5.1 MeV
splitting. Though the sign of the hyperfine splitting might
be protected owing to power counting and the nature of the
coupled channel dynamics, its size will be diminished owing
to the finite mass gaps between the channels. Besides, the
uncertainties in the couplings of the light-meson exchange
potential are also large. In the following we will see how this
expected effect holds when compared with different error
sources.

For doing the explicit calculations we first obtain the
Ca and Cb couplings from the masses of the Pc(4440)

and Pc(4457) pentaquarks, i.e. the calculation of Ref. [5],
where we notice that for the hyperfine splitting it does
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not matter which spin is each pentaquark 3, resulting in
Ca = −2.52 (−0.85) fm2, Cb = ±0.54 (0.11) fm2 for
� = 0.5 (1.0) GeV. Then we consider the phenomenological
potential symmetry of Eq. (47) as applied to the contact-range
couplings (i.e. Ca = Da , Cb = Eb), from which we get:

M
(
Pcs,

1
2

) = 4464.5 − 1.1i (4464.4 − 1.3i) MeV, (54)

M
(
Pcs,

3
2

) = 4459.9(4459.7) MeV, (55)

for � = 0.5 (1.0) GeV, with the hyperfine splitting

�M(Pcs) = 4.6 (4.7) MeV, (56)

which indeed indicates a reduction of the coupled channel
effects owing to the finite mass gap between the channels,
and where from now on we define

�M(Pcs) = M( 1
2 ) − M( 3

2 ) . (57)

Yet, even if this accidental symmetry is greatly reduced in
the hyperfine splittings, it is worth noticing that the predic-
tions we obtain from using the effective Ca andCb couplings
describing the Pc(4440) and Pc(4457) pentaquarks are basi-
cally compatible with the experimental mass of the observed
Pcs pentaquark.

7 The hyperfine splitting

Now we will analyze the possible size of the hyper-
fine splittings with the (admittedly approximate) information
we have derived from light-meson exchange saturation. We
begin with the simplest of the relations, that is:

Da

Ca
∼ 1, (58)

and determine Ca from reproducing the Pc(4312) pen-
taquark, which yields Ca = −1.19 (−(2.17 − 0.80)) fm2

for � = 0.75 (0.5 − 1.0) GeV, where we will use a cen-
tral value of the cutoff close to the expected scale at which
saturation works (i.e. � ∼ mV ), while we will still consider
the 0.5 − 1.0 GeV cutoff range for estimating the regulator
uncertainties. If we set Eb = 0, it will lead to

M(Pcs, J = 1
2 , 3

2 ) = 4467.5 (4466.9 − 4468.1) MeV, (59)

that is, we obtain two degenerate Pcs pentaquarks. If we allow
for Eb �= 0 we can effectively fit one of the pentaquarks to

3 This merely changes the sign of Cb, which is later identified with Eb,
but the coupled channel effects do not depend on the sign of the later
coupling.

the experimental mass. We obtain 4.:

M(Pcs,
1
2 ) = 4473.1(4471.1 − 4475.3) MeV, (60)

M(Pcs,
3
2 ) = 4458.8 MeV, (61)

where it should be noticed that scenario B is automatically
chosen, as for Ca/Da ∼ 1 the mass of the Pcs pentaquark
can only be reproduced if J = 3

2 . The hyperfine splitting will
be

�M(Pcs) = 14.3 (12.7 − 16.5) MeV, (62)

which is definitely larger than the estimation from the phe-
nomenological symmetry in the pentaquark potential. The
ratio Eb/Db = 0.34 (0.24 − 0.53) will also be larger than
the expectation from saturation, Eq. (40).

Alternatively we can assume that the saturation relations
in Eqs. (39) and (40) both hold, in which case the masses of
the two Pcs’s are

M(Pcs,
1
2 ) = 4469.6 (4469.2 − 4470.1) MeV, (63)

M(Pcs,
3
2 ) = 4464.3 (4461.3 − 4466.6) MeV, (64)

and the hyperfine splitting is

�M(Pcs) = 5.3 (3.4 − 8.8) MeV, (65)

which is closer to the one we derived from the phenomeno-
logical symmetry, i.e. Eq. (56).

Now there are a series of (potentially large) uncertainties
related to the previous relations. The most obvious one is the
existence of SU(3)-breaking corrections between the cou-
pling in the D̄�c (strangeness S = 0) and the D̄�′

c, D̄�∗
c

(strangeness S = −1) systems, i.e. between the Pc(4312)

and P ′
cs , P

∗
cs pentaquarks. Their couplings, which are identi-

cal if SU(3)-flavor symmetry is exactly preserved, will differ
by a correction

Ca(P
(′/∗)
cs ) = Ca(Pc) + δC /F

a . (66)

where δC /F
a indicates the correction to theCa coupling. From

a comparison with the pion and kaon weak decay constants,
fπ � 130 MeV and fK � 160 MeV, we expect the size of
the SU(3)-breaking effects to be of the order of

δC /F
a

Ca
∼

(
fK − fπ

fπ

)

∼ 0.23 . (67)

Alternatively, we can consider this problem from the point
of view of chiral symmetry 5, in which the Ca coupling

4 Notice that the J = 1
2 state will acquire a small finite width as it can

decay into D̄�′
c.

For convenience we will ignore this width from now on, as it is usually
of the order of a few MeV, see Eq. (54), and not representative of the
full width of the Pcs , which comprises more decay channels.
5 Notice that the EFT we are using here is not a pionless EFT, but rather
a pionful EFT for which pion (and pseudoscalar meson) exchanges
are considered to be subleading and thus not explicitly included in the
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Table 1 Expected masses and hyperfine splitting (in units of MeV)
of the J = 1

2 D̄�′
c-D̄∗�c and J = 3

2 D̄∗�c-D̄�∗
c pentaquarks with

the different assumptions considered in this work They include power
counting estimations from EFT (“EFT A & B”), the RG-improved EFT
(“EFT+RGA A&B”, where RG stands for “renormalization group”), the
accidental symmetry of the scalar and vector meson exchange poten-
tials between the Pc(4440/4457) and the new Pcs(4459) (“Acciden-

tal”), and the saturation relations Eqs. (39) and (40) (“Saturation I &
II”). The central values correspond to � = 0.75 GeV, while the spread
to � = 0.5 − 1.0 GeV. At the end (“Two-peak solution”) we compare
with the two-peak fit of Ref. [17], from which an hyperfine splitting of
12.9±4.6 MeV is expected. If this figure turns out to be confirmed by
future experimental studies, this will discard the “EFT A”, “EFT+RGA
A”, “Accidental” and “Saturation II” estimations

Assumptions J M(J ) M(J = 1/2) − M(J = 3/2)

EFT A: Eb/Da ∼ Q/M and 1/2 4458.8 (Input) 21.5 (11.6 − 35.4)

Da from Pcs(4459) as J = 1
2 3/2 4437.3 (4423.3 − 4447.2)

EFT B: Eb/Da ∼ Q/M and 1/2 4469.5 (4465.7 − 4473.4) 10.7 (6.9 − 14.6)

Da from Pcs(4459) as J = 3
2 3/2 4458.8 (Input)

EFT+RG A: Eb/Da ∼ F(Q/�) Q/M 1/2 4458.8 (Input) 30.6 (27.4 − 40.4)

And Da from Pcs(4459) as J = 1
2 3/2 4428.1 (4417.7 − 4431.5)

EFT+RG B: Eb/Da ∼ F(Q/�) Q/M 1/2 4471.4 (4470.7 − 4471.7) 12.6 (11.9 − 12.9)

And Da from Pcs(4459) as J = 3
2 3/2 4458.8 (Input)

Accidental: Ca ∼ Da , Cb ∼ Eb 1/2 4464.5 (4464.40 − 4464.5) 4.7 (4.6 − 4.7)

And Ca , Cb from Pc(4440/4457) 3/2 4459.8 (4459.7 − 4459.9)

Saturation I: Ca ∼ Da and 1/2 4473.1 (4471.1 − 4475.3) 14.3 (12.7 − 16.5)

Eb from Pcs(4459) as J = 3
2 3/2 4458.8 (Input)

Saturation II: 1/2 4469.6 (4469.2 − 4470.1) 5.3 (3.4 − 8.8)

Ca ∼ Da and Eb ∼ 0.2Da 3/2 4464.3 (4461.3 − 4466.6)

Two-peak solution: 1/2 4467.8 (Input) 12.9 (Input)

Ca = 0.90Da and Eb = 0.28Da 3/2 4454.9 (Input)

can be decomposed into quark-mass independent and quark-
mass dependent pieces [61]: the quark-mass dependent piece
comes from terms in the Lagrangian where the quark-mass
matrix is inserted between the hadron fields, with these terms
expected to be subleading (as in this case we are expanding
around the massless quark limit). This quark-mass depen-
dence can be translated into a quadratic dependence on the
mass of the pseudoscalar Nambu-Goldstone bosons, which
can be schematically written as

Ca(Pc) = C [0,0]
a + C [1,0]

a
m2

π

�2
χ

+ C [0,1]
a

m2
π

�2
χ

+ . . . , (68)

Ca(P
(′/∗)
cs ) = C [0,0]

a + C [1,0]
a

m2
π

�2
χ

+ C [0,1]
a

m2
K

�2
χ

+ · · · , (69)

where C [n,m] indicates n (m) insertions of the quark mass
matrix between the charmed antimeson (baryon) fields, mπ

and mK are the pion and kaon masses and �χ ∼ 1 GeV is
the chiral symmetry breaking scale. Rearranging the terms,
the difference can be rewritten in terms of a chiral symmetry
breaking (χ SB) correction, which takes the form

Ca(P
(′/∗)
cs ) = Ca(Pc) + δCχ SB

a . (70)

leading order description. Thus chiral symmetry considerations can play
an explicit role.

From the arguments about quark-mass dependence shown
above, the size of this correction is expected to be of the
order

δCχ SB
a

Ca
∼

(
m2

K − m2
π

�2
χ

)

∼ 0.23, (71)

where it is interesting to notice that its size is identical to
the previous estimation based on fπ and fK . The experience
in the light-baryon sector suggests breakings larger than the
previous estimation [62], where repulsion increases with the
number of strange quarks. The recent discovery of the Zcs

[63] allows for a comparison of the couplings required to
reproduce the Zc/Z∗

c [64] and Zcs [65] as virtual states, with
attraction apparently increasing with the strange quark con-
tent (though the uncertainties are large).

Independently of the derivation, if SU(3)-breaking correc-
tions reach a certain level they would lead to unbound D̄�′

c
and D̄�∗

c systems. In particular this will happen for

|Ca(P
′
cs)| ≤ 0.65 (0.52 − 0.70) |Ca(Pc)|, (72)

for � = 0.75(0.5 − 1.0) GeV, where we indicate which
pentaquark we are referring to in the parentheses. In this
regard the previous 20% estimations indicate that the SU(3)-
symmetry partner of the Pc(4312) pentaquark is still likely
to bind. The eventual observation of a D̄�′

c molecular pen-
taquark could bring light to this issue.
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A significant effect which might influence the size of
SU(3)-flavor breaking corrections is the nature of sigma
meson exchange: if the sigma were not to couple with the
strange meson, saturation will suggest

Csat
a (P ′

cs)

Csat
a (Pc)

∼ 0.62, (73)

which is in the limit between binding and not binding for P ′
cs

(though in the no-binding case, the P ′
cs pentaquark might still

survive as a virtual state). Additionally, in this scenario from
saturation we will expect

Da

Ca(P ′
cs)

∼ 1.0 and
Eb

Da
∼ 0.33, (74)

which would imply that the Pcs could also very well be close
to not binding (except for the increase in the relative strength
of Eb, which would help in the J = 3

2 configuration). With
these coupling ratios, the masses of the molecular Pcs pen-
taquarks would be

M(Pcs,
1
2 ) = 4478.0 (4476.4 − 4478.1) MeV, (75)

M(Pcs,
3
2 ) = 4477.7 (4476.7 − 4478.0) MeV, (76)

with the J = 1
2 state in the second Riemann sheet with

respect to the D∗�c threshold (i.e. it is a shallow virtual state
/ resonance). That is, only the J = 3

2 state is an actual bound
state. In this later case the hyperfine splitting is compatible
with zero and can even change signs as the J = 1

2 is allowed
to be a virtual state. However this large SU(3)-breaking in the
direction of making the D̄∗�c less bound does not reproduce
the experimental mass of the Pcs pentaquark (unless we allow
for Eb/Da ∼ 1.23, which is a considerable deviation from
the saturation relations and would lead to a hyperfine splitting
of 50.2 MeV). Thus it is unlikely that SU(3)-breaking would
be as large as in Eq. (73), at least if its effect is to reduce
attraction in the D̄�′ system.

Finally, it is possible to make a comparison with the
two-peak fit included in Ref. [17], which leads to two Pcs
pentaquarks with masses 4454.9 ± 2.7 MeV and 4467.8 ±
3.7 MeV, respectively. Concrete calculations assuming that
the lighter (heavier) Pcs is a J = 3

2 ( 1
2 ) D̄∗�c molecule

yield Da = −1.31 (−(2.59 − 0.86)) fm2 and |Eb| = 0.36
(0.95 − 0.19) fm2 for � = 0.75(0.5 − 1.0) GeV. This deter-
mination of the couplings, together with the previous deter-
mination of Ca from the Pc(4312), provide the ratios

Da

Ca
= 1.11 (1.19 − 1.07), (77)

Eb

Da
= 0.28 (0.37 − 0.22), (78)

where the central value and the spreads correspond to � =
0.75 (0.5 − 1.0) GeV, as usual.

If the two-peak fit ends up being confirmed in future stud-
ies, the previous indicates a bit more attraction than expected

for the Da coupling (but compatible with the errors we would
expect for a phenomenological determination of the Da/Ca

ratio) and that the size of Eb seems to be underestimated by
the phenomenological arguments we provide (yet compatible
with the power counting estimates we proposed).

We summarize the different estimations we have consid-
ered along this work in Table 1. These indicate that, though
it is not possible to determine the hyperfine splitting accu-
rately from theory alone, power counting arguments and phe-
nomenological approximations suggest it might be in the
5−15 MeV range (i.e. compatible with the two-peak fit in
[17]), with the J = 3/2 pentaquark being the lighter state.
For comparison, Refs. [18,19] predict degenerate Pcs pen-
taquarks. Meanwhile, a recent calculation in the one-boson-
exchange model generates a �M(Pcs) = (2.4 − 20.0) MeV
splitting, which also comes from the D̄�′

c-D̄
∗�c and D̄∗�c-

D̄�∗
c coupled channel dynamics [66]. In contrast Ref. [60]

obtains �M(Pcs) = −6.0 MeV from two-pion-exchange
(TPE). This is interesting as the naive expectation would be
that TPE is of order (Q/M)2 in the EFT expansion and we
might expect it to play a minor role. Thus, the role of TPE
might indeed deserve further attention in the future. However
there is the practical limitation that this calculation will also
require (Q/M)2 corrections to the contact-range potential,
i.e. more unknown parameters.

Regarding which is the spin of the Pcs pentaquark, from
the different predictions in Table 1 it seems that the J =
3
2 D̄�∗

c configuration might provide a better match to its
experimental mass, though uncertainties are too large to
draw definite conclusions. It is also important to stress that
the experimental determination of resonance masses usu-
ally relies in using the Breit-Wigner parametrization. Other
parametrizations might yield different masses, as happened
with the Pc(4312) [9], the Zc(3900) / Zc(4020) [64], and the
Zcs(3985) [65]. Thus the mass of a molecular Pcs might not
coincide with the experimental determination of Ref. [17].

8 Decay into J/ψ�

It is interesting to notice that the observation of the Pcs(4459)

in the J/ψ� channel might provide further circumstantial
evidence of its spin. If we decompose the J = 1

2 , 3
2 D̄∗�c sys-

tem into its heavy- and light-quark spin components, we find

|D̄∗�c(J = 1
2 )〉 =

(√
3

2
0H + 1

2
1H

)

⊗ 1

2 L
, (79)

|D̄∗�c(J = 3
2 )〉 = 1H ⊗ 1

2 L
, (80)

which is to be compared with

|J/ψ�〉 = 1H ⊗ 1

2 L
, (81)
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where SH and SL refer to the heavy- and light-quarks spin.
If the decay preserves HQSS [67] the expect the following
relation between matrix elements:

〈J/ψ�|H |D̄∗�c(J = 1
2 )〉 = 1

2
〈J/ψ�|H |D̄∗�c(J = 3

2 )〉,
(82)

which for degenerate D̄∗�c states implies that the partial
decay widths of the J = 1

2 and 3
2 configurations will show

a 1:4 ratio. In fact phenomenological calculations seems to
support these ratios, with Ref. [33] giving a 1:1.78 ratio for
the amplitudes/couplings and Ref. [68] yielding 1:4.35 for
the partial decay widths. Of course, this does not determine
the spin of the Pcs(4459), but nonetheless indicates that,
ceteris paribus, the probability of discovering the J = 3

2
molecule in the J/ψ� invariant mass distribution might be
larger than for its J = 1

2 partner. But this conclusion is depen-
dent on the production rates from the �b decays, which have
been recently investigated in Ref. [69], suggesting that the
production rate of a J = 3

2 D̄∗�c pentaquark would be 4.9
times the one for its J = 1

2 partner. Ideally, it would be possi-
ble to adapt the methods of Refs. [70,71] (originally formu-
lated for the three Pc pentaquarks) to analyze the invariant
mass distribution data of the new Pcs .

9 Conclusions

The Pcs(4459) is the latest piece of the pentaquark puzzle.
Its closeness to the D̄∗�c threshold suggests that it might
be a bound state of these hadrons. Then the question is
what is the connection of the Pcs(4459) with the well-known
Pc(4312), Pc(4440) and Pc(4457) in the molecular hypoth-
esis. At first sight the answer is unclear: the D̄∗�c system
is not directly connected by SU(3)-flavor and HQSS with
the D̄�c and D̄�∗

c systems, which are the usual molecular
interpretations of the three Pc pentaquarks. However if we
resort to phenomenological arguments then we can bridge
the gap between the new Pcs and the previous Pc’s, resulting
in a coherent description of these four pentaquarks. From
vector meson dominance and the quark model, we point out
a possible accidental symmetry between the potentials in the
Pc and Pcs sectors, though owing to its phenomenological
nature large deviations are to be expected.

There are two possible spin configurations for a molec-
ular Pcs , which in principle should be degenerate. In this
regard the explicit inclusion of the D̄�′

c-D̄
∗�c and D̄∗�c-

D̄�∗
c coupled channel dynamics, which is required by power

counting arguments, breaks this degeneracy and thus might
have important implications for spectroscopy. This mecha-
nism generates a sizable hyperfine splitting which we esti-
mate to be in the 5−15 MeV range. Incidentally, this estima-
tion is in line with the proposed two-peak solution in [17].

In general the predicted mass of the J = 3
2 Pcs pen-

taquark are closer to its experimental value than its J = 1
2

partner, which might be interpreted as favoring the former
spin assignment. But theoretical errors in the masses make
it unpractical to determine the spin of the new pentaquark
from spectroscopy alone. In this regard, the partial decay
widths of the two spin configurations to J/ψ�, where the
Pcs have been discovered, approximately differ by a factor
of four, making the J = 3

2 configuration considerably easier
to detect in this channel. Of course this is only true provided
all other effects are similar. Independently of their spin, the
existence of two possible D̄∗�c molecules tends to hold up
well within the expected uncertainties of a phenomenologi-
cal approach. As happened with the original Pc(4450), future
experiments could further determine whether there are really
two D̄∗�c states and which is their mass difference.
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APower counting arguments with running coupling con-
stants

In this work we have made use of power counting estima-
tions of the size of the contact-range couplings appearing
in the EFT description of the molecular pentaquarks. How-
ever the contact-range couplings are cutoff dependent and
the aforementioned estimations were originally formulated
for the renormalized couplings [34], the definition of which
is scheme dependent. Yet, it has been argued that these esti-
mations do indeed apply to running couplings if the cutoff
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is sufficiently soft [35,36]. But the previous arguments are
qualitative in nature: here we will see how to modify dimen-
sional estimations in a quantitative manner for their use with
running couplings. This will be particularly useful for the
dimensional estimation of the ratio of the Da and Eb cou-
pling constant employed in Sect. 4 (check Eq. (17)).

The easiest example will be a contact-range theory with
only one channel, in which we determine the coupling from
the condition of reproducing the two-body scattering ampli-
tude. For instance, if we consider the scattering of a D̄∗
antimeson and a �c baryon, the T-matrix can be written as

〈p′|T (k)|p〉 = f (
p′

�
)

1
1

Da(�)
− I0(k,�)

f (
p

�
) , (83)

where f (x) is the regulator we use for the contact-range
potential and with I0(k,�) the loop function:

I0(k,�) =
∫

d3q

(2π)3

f 2(
q
�

)

k2

2μ
− q2

2μ

, (84)

the exact evaluation of which depends on the details of the
regulator. If we want the T-matrix to be (exactly) cutoff inde-
pendent at a given reference momentum kR , this will lead to
the condition

1

Da(�1)
− I0(kR,�1) = 1

Da(�2)
− I0(kR,�2), (85)

where �1 and �2 are two different cutoffs. If we choose to
renormalize the scattering amplitude at the bound state pole,
i.e. at kR = iγR = i

√
2μB2, the Da coupling will be given

by

Da(�) = 1

I0(iγR,�)
. (86)

This coupling will exactly reproduce its power counting esti-
mation for a privileged cutoff �∗

Da(�
∗) = − 2π

μ
√

2μB2
= DR

a , (87)

where for a Gaussian regulator �∗ � 4.3
√

2μB2, which for
the particular case of the Pcs(4459) yields �∗ � 886 MeV.
However, if the cutoff is different from this privileged value,
the dimensional estimations will have to be corrected as fol-
lows

DR
a

Da(�)
= I0(iγR,�∗)

I0(iγR,�)
. (88)

It happens that�∗ ∼ 0.9 GeV, which implies that corrections
will be small for the range of cutoffs considered in this work
(i.e. � = 0.5 − 1.0 GeV). We notice that, in contrast with
what is expected in Refs. [35,36], the estimation of �∗ in the
Pcs pentaquark is rather large and can be hardly considered
to be a soft scale. However Refs. [35,36] deal with the two-
nucleon system and the deuteron happens to be considerably

more shallow than the Pcs . Indeed, repeating the previous
arguments for the deuteron yields �∗ � 196 MeV, which
is of the order of the pion mass and more in line with the
expectations of Refs. [35,36].

The inclusion of coupled channel effects can be taken into
account by considering the matrix version of the previous
renormalization group equation

(
Da(�1) Eb(�1)

Eb(�1) Ca(�1)

)−1

−
(
I (kR,�1) 0

0 I (k′
R,�1)

)

=
(
Da(�2) Eb(�2)

Eb(�2) Ca(�2)

)−1

−
(
I (kR,�2) 0

0 I (k′
R,�2)

)

,

(89)

which ensures that the T-matrix is cutoff-independent at the
renormalization point k = kR and where k′

R refers to the
reference momentum in the second channel. If we write the
previous equations in coefficients, we end up with

Ca(�1)

det (VC (�1))
− I (kR,�1) = Ca(�2)

det (VC (�2))
− I (kR,�2),

(90)
Eb(�1)

det (VC (�1))
= Eb(�2)

det (VC (�2))
, (91)

Da(�1)

det (VC (�1))
− I (k′

R,�1) = Da(�2)

det (VC (�2))
− I (k′

R,�2),

(92)

where det (VC ) = CaDa − E2
b is the determinant of the

contact-range potential. Combining the last two equations,
we end up with

Eb(�)

Da(�)
= 1

1 + det (V R)

DR
a

(
I
(
k′
R,�

) − I
(
k′
R,�∗))

ER
b

DR
a

,

(93)

If for simplicity we assume the same �∗ as in the uncoupled
channel case and that for �∗ all the power counting estima-
tions are followed as expected (i.e. |Da | = 2π

μγR
, |Ca | = 2π

μγ ′
R

and |Eb| = 2π
μM , with γR , γ ′

R the wave number in each of
the coupled channels and M = mρ), we will end up with a
correction factor of

Eb(�)

Da(�)
= (1.47 − 0.91)

ER
b

DR
a

, (94)

for � = 0.5−1.0 GeV, which happens to be close to the orig-
inal estimation. However this small change reduces the cutoff
dependence of the hyperfine splitting (which is now a renor-
malizable quantity), yielding 27−40 and 12−13 MeV in sce-
narios A and B respectively (check the discussion around
Eq. (19) in the main text).
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B Standard and novel saturation procedures in the two-
nucleon system

In this appendix we compare the standard and modified sat-
uration procedures for the particular case of the S-wave two-
nucleon contact-range interactions. Standard saturation is
known to work well when comparing the EFT contact-range
couplings with a series of OBE potentials [38]. Thus the nat-
ural question at this point is whether this is still the case with
the novel saturation method of Ref. [39].

However nucleons are not as heavy as the charmed mesons
and baryons, which means that relativistic corrections are
often included in the light-meson exchange potentials. This
implies that the saturation formulas we have to use are some-
what more involved than the ones we obtained in Sect. 4.
Actually, the corresponding formulas for the standard satura-
tion method (which also include form factors) can be found in
Ref. [38]. It happens that the novel saturation method merely
generates and additive factor in the standard saturation rela-
tions of Ref. [38]:

Csat(novel) = Csat(standard) + δCsat . (95)

Here we notice that, for potentials of the q2/(m2 + q2) type,
the novel saturation procedure can be encapsulated in the
following substitution rule

q2

q2 + m2 → q2

q2 + m2 − 1, (96)

which merely amounts to the inclusion of an additive term
in the potential to manually remove the Dirac-delta term,
thus justifying the rule in Eq. (95). Now in the two-nucleon
system we also find relativistic corrections that follow the
general form

k2

q2 + m2 = −1

4

q2

q2 + m2 + 1

4

p2 + p′2

q2 + m2 , (97)

which we have rewritten as the sum of a purely local and non-
local terms (i.e. the terms proportional to q2 and ( p2 + p′2),
respectively). For the saturation of the local term we will use
again the substitution rule of Eq. (96).

From the previous, the modifications for a scalar, pseu-
doscalar and vector meson are

δVS = g2
S

4M2
N

F2
S (q2), (98)

δVP = g2
P

12M2
N

σ 1 · σ 2 F
2
P (q2), (99)

δVV =
[gV (gV + fV )

2M2
N

+ 2

3

(
gV + fV

2MN

)2

σ 1 · σ 2

]
F2
V (q2),

(100)

where MN is the nucleon mass, gS (gP ) the coupling con-
stant for the scalar (pseudoscalar) meson, gV and fV the

electric- and magnetic-like couplings for the vector meson,
σ 1(2) the spin operators for nucleons 1(2) and FM (q2) the
form-factors, which accept the expansion

FM (q2) = α1 + α2
q2

�2
M

+ · · · (101)

with �M the form-factor cutoff for the particular meson M
under consideration. If the exchanged meson is an isovec-
tor (e.g. the ρ), the isospin operator τ 1 · τ 2 will have to be
included in the previous expressions.

If we consider the momentum expansion of the S-wave
contact-range potential

〈p′|VC |p〉 = C0 + C2 (p′2 + p2) + · · · , (102)

the novel saturation procedure generates the following mod-
ifications for the 1S0 and 3S1 partial waves in the two-
nucleon system (where we have used the spectroscopic nota-
tion 2S+1L J with S, L , J the intrinsic, orbital and total spin,
respectively). For a scalar meson, we have to add the terms

δC
1S0
0S = g2

S

4M2
N

α2
1, (103)

δC
1S0
2S = g2

S

2M2
N

α1α2

�2
S

, (104)

δC
3S1
0S = δC

1S0
0S , (105)

δC
3S1
2S = δC

1S0
2S , (106)

while for a pseudoscalar meson we will have

δC
1S0
0P = − g2

P

4M2
N

α2
1, (107)

δC
1S0
2P = − g2

P

2M2
N

α1α2

�2
P

, (108)

δC
3S1
0P = −1

3
δC

1S0
0P , (109)

δC
3S1
2P = −1

3
δC

1S0
2P . (110)

For vector meson exchange we add the terms

δC
1S0
0P = − fV (gV + fV )

2M2
N

α2
1, (111)

δC
1S0
2P = − fV (gV + fV )

M2
N

α1α2

�2
V

, (112)

δC
3S1
0P = 1

6 M2
N

(
4g2

V + 5gV fV + f 2
V

)
α2

1, (113)

δC
3S1
2P = 1

3 M2
N

(
4g2

V + 5gV fV + f 2
V

) α1α2

�2
V

. (114)

Finally, Ref. [38] uses the following definition for the cou-
pling constants

Ĉ = 4π C0 and C = 4π C2, (115)
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which we will also use in what follows for a more convenient
comparison.

Putting all the pieces together, for the particular case of
the Bonn B potential [40] we obtain

Ĉnovel
1S0

= Ĉstd
1S0

+ δĈ1S0

= (−0.117 − 0.134) · 104 GeV−2

= −0.251 · 104 GeV−2, (116)

Cnovel
1S0

= Cstd
1S0

+ δC1S0

= (1.276 + 0.178) · 104 GeV−4

= 1.454 · 104 GeV−4, (117)

for the singlet, to be compared with ĈN2LO
1S0

= {−0.160,−0.158 ·
104 GeV−2 and CN2LO

1S0
= {1.134, 1.135} · 104 GeV−4 (i.e.

the results for the EFT couplings in the two-nucleon system at
next-to-next-to-leading (N2LO) as determined in Ref. [38],
where the brackets indicate their expected variation within
the formalism of the aforementioned reference), while for
the triplet we get

Ĉnovel
3S1

= Ĉstd
1S0

+ δĈ1S0

= (−0.101 − 0.091) · 104 GeV−2

= −0.192 · 104 GeV−2, (118)

Cnovel
3S1

= Cstd
1S0

+ δC1S0

= (0.660 + 0.178) · 104 GeV−4

= 0.838 · 104 GeV−4, (119)

to be compared with ĈN2LO
3S1

= {−0.159,−0.134}·104 GeV−2

andCN2LO
3S1

= {0.637, 0.587}·104 GeV−4 for EFT. From this,
in the case of the singlet channel with the Bonn-B poten-
tial, the novel saturation method underperforms the standard
one, while for the triplet channel their deviations with respect
the EFT couplings are similar. However this comparison is
potential-dependent: Ref. [38] considers a total of six phe-
nomenological potentials, while here we limit ourselves to
Bonn-B, i.e. the easiest one on which to apply saturation.
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