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We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the
generalization of the Taub-NUT/bolt and Eguchi-Hanson solutions of Einstein gravity to conformal
gravity. These solutions include non-Einstein spaces which are either asymptotically locally flat spacetimes
or asymptotically locally anti–de Sitter (AlAdS). Nevertheless, solutions with different asymptotic
conditions exist: we find geometries that present a weakened AlAdS asymptotia, exhibiting the typical
low decaying mode of conformal gravity. This permits us to identify the simple Neumann boundary
condition that, as it happens in the asymptotically AdS sector, selects the Einstein solution out of the
solutions of conformal gravity. All the geometries present nonvanishing Hirzebruch signature and Euler
characteristic, being single-centered instantons. We compute the topological charges as well as the Noether
charges of the Taub-NUT/bolt and Eguchi-Hanson spacetimes, which happen to be finite. This enables us
to study the thermodynamic properties of these geometries.
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I. INTRODUCTION

Conformal gravity is a very interesting theory which has
been considered in many different contexts. In four dimen-
sions, the theory is defined by the action whose Lagrangian
is the squared Weyl tensor—see Eq. (1) below—while in
other dimensions polynomial actions with conformal sym-
metry acquire more involved forms. In eight dimensions,
for example, a particular model of conformal gravity can
be achieved by simply squaring the four-dimensional
Lagrangian, but other eight-dimensional conformal
Lagrangians involving specific contractions of four
Riemann tensors are possible.1 In six dimensions, there
exist three independent conformal invariant Lagrangians,
and in three dimensions, which is another case of interest,

a conformal model is possible in terms of the Chern-Simons
action for the affine connection.
Among all the contexts in which four-dimensional con-

formal gravity has been considered, we find that it has been
studied as an ultraviolet completion of Einstein gravity [2],
although the theory is anomalous as its gauge symmetry gets
broken by loop corrections. Conformal gravity has also
been shown to appear as counterterms in the context of
holographic renormalization [3–6], and applications of
AdS=CFT in which conformal gravity represents the bulk
theory itself have been considered. Conformal gravity also
admits supergravity extensions [7–12], as well as extensions
to higher-spin theories [9,13–18], and topological theories
[19,20]. In Ref. [21], Berkovits and Witten have shown that
conformal gravity appears in the context of string theory on
twistor spaces; see also [22–26]. In Ref. [27],Maldacena has
observed a remarkable connection between classical four-
dimensional conformal gravity and Einstein gravity and
used it to show that the former theory, when supplemented
with an appropriate boundary condition, led to obtain the
semiclassical wave function of the Universe of asymptoti-
cally de Sitter spacetime. This is achieved by removing the
ghost mode that conformal gravity exhibits by imposing the
mentioned boundary condition. This observation gave rise
to an unfathomable series of research articles revisiting
conformal gravity and its extensions. An incomplete list of
recent developments is [28–52]; see also references therein.
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1For a complete classification of conformal invariants in eight
dimensions, see [1].
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Not many bona fide interesting solutions to conformal
gravity field equations are known. Among the most
remarkable ones, there are non-Einstein spaces that include
static and stationary black holes [49,53,54] with different
asymptotics, and gravitational waves [55,56]. The theory,
however, contains a richer variety of inequivalent sectors.
Here, we will study gravitational instanton solutions to
four-dimensional conformal gravity. More precisely, we
will discuss a generalization of the Euclidean Taub-NUT
[57,58] and Taub-bolt [59] solutions to the case of
conformal gravity.2 This family of solutions presents
self-dual geometries and includes the most general static,
spherically symmetric black hole solutions as particular
cases. This comprehends both asymptotically locally flat
and asymptotically locally AdS geometries, and so it
extends previous studies of Bach-flat spaces with NUT
charge. We compute the mass and entropy of the solutions
using the Noether-Wald formalism [62,63] showing that
they are finite without any reference to counterterms. The
Euclidean on-shell action is also obtained and we show that
the thermodynamic variables satisfy the Gibbs-Duhem
relation and the first law. The solutions also have non-
vanishing topological charges.
The paper is organized as follows: In Sec. II, we review

conformal gravity in four dimensions. The generalization
of Taub-NUT and Taub-bolt solutions is discussed in
Sec. III. We compute the conserved charges of the solutions
in Sec. IV. In Sec. V, we compare the solutions with other
instantons found in the literature [64–66]. In Sec. VI, we
make some comments about other self-dual Bach-flat
solutions that can be constructed, presenting Bach-flat
generalizations of the Eguchi-Hanson gravitational instan-
ton. Finally, in Sec. VII we present our conclusions.

II. CONFORMAL GRAVITY IN
FOUR DIMENSIONS

The action principle of conformal gravity in four
spacetime dimensions is constructed out of the simplest
nontopological conformal invariant in such dimensionality:
the Weyl squared term. Thus, it can be expressed as

ICG½gμν� ¼ αCG

Z
M

d4x
ffiffiffiffiffiffi
−g

p
Wλρ

μνW
μν
λρ; ð1Þ

where αCG is the coupling constant of the theory and the
Weyl tensor is defined as

Wμν
λρ ¼

1

4

�
δμνστδ

γδ
λρ − 8δ½δ½λδ

½μ
ρ�δ

ν�
½σδ

γ�
τ� þ

1

3
δμνλρδ

γδ
στ

�
Rστ
γδ

≡ ðΞμν
λρÞγδστRστ

γδ: ð2Þ

Written in this way, it becomes clear that Ξ projects the
Riemann tensor onto their completely traceless irreducible
component. Indeed, since the Weyl tensor is already
traceless in any of their indices, their contraction with Ξ
projects the latter onto itself, and it is therefore straightfor-
ward to show the idempotency of Ξ.
The field equations are obtained by performing sta-

tionary variations of the action (1) with respect to the
metric, giving (see for example [45])

δICG ¼ αCG

Z
M

d4x
ffiffiffiffiffiffi
−g

p
δgμνBμν

þ αCG

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇μΘμ; ð3Þ

where Bμν and Θμ are the Bach tensor and the boundary
term arising from the variation, respectively; explicitly,

Bμν ¼ ∇λCμνλ − SλρWλμνρ; ð4Þ

Θμ ¼ 4δΓλ
νρWλ

ρμν − 4δgνσ∇ρWνμρσ

¼ −4∇ρδgνσWρσμν þ 4δgνσ∇ρWρσμν: ð5Þ

Here, Bμν ¼ 0 represents the field equations with Cμνλ and
Sμν being the Cotton and Schouten tensors, defined through

Cμνλ ¼ 2∇½λSν�μ and Sμν ¼
1

2

�
Rμν −

1

6
gμνR

�
; ð6Þ

respectively, where antisymmetrization is normalized as
A½μν� ¼ 1

2
ðAμν − AνμÞ. In fact, notice that any Einstein

spacetime with Rμ
ν ¼ − 3

l2 δ
μ
ν is the solution of conformal

gravity, since the Schouten tensor becomes Sμν ¼ − 1
2l2 δ

μ
ν

while the Cotton tensor vanishes identically. These two
identities imply that the Bach tensor is identically zero for
Einstein spaces.
There are, however, Bach-flat solutions which are not

Einstein spacetimes. In the next section, we find an explicit
Taub-NUT/bolt solution with these properties.

III. BACH-FLAT TAUB-NUT/BOLT SOLUTION

In order to solve the field equations (4) analytically, we
assume the inhomogeneous Euclidean family of metrics
proposed in Ref. [67]. In particular, we focus on the Uð1Þ
fibration of S2 described by the line element

ds2 ¼ fðrÞðdτ þ 2n cos θ dϕÞ2 þ dr2

fðrÞ
þ ðr2 − n2Þðdθ2 þ sin2θ dϕ2Þ; ð7Þ

where τ is the Euclidean time and n is known as the NUT
charge, which is related to the first Chern number at infinity
[68]. Indeed, the magnetic part of the Weyl tensor is

2In presence of nonminimally coupled scalar fields respecting
conformal invariance, some Taub-NUT solutions have been
found in Refs. [60,61].
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sensitive to the presence of n; the latter is usually
interpreted as the magnetic mass of the spacetime (see
for instance [69–71] and references therein).
We find that the metric function that solves the field

equations of conformal gravity is

fðrÞ ¼ 2n2

3ðr2 − n2Þ −
mð3r2 þ n2Þ

r2 − n2
þ prðr2 þ 3n2Þ

r2 − n2

þ qrð3r2 þ n2Þ
r2 − n2

þ λr2ðr2 þ 3n2Þ
r2 − n2

; ð8Þ

wherem, p, q, and λ are integration constants subject to the
condition

9λ2n4 − 30λmn2 − 9n2p2 − 30n2pq − 9n2q2

− 8λn2 þ 9m2 − 1 ¼ 0; ð9Þ

which generalizes the Taub-NUT solution of general
relativity [57,58,72]. These solutions can likely be included
in a Plebanski-Demianski type ansatz [49]. It might be
convenient to rewrite the expression (8) above as follows:

fðrÞ ¼ r2 þ n2 − 2m̂rþ l−2ðr4 − 6n2r2 − 3n4Þ þ aðr2 þ n2=3Þ þ br3

r2 − n2
; ð10Þ

where m̂¼−ðn2=2Þð3pþqÞ, l2¼1=λ, a¼9λn2−3m−1,
and b ¼ pþ 3q. Written in this way, the condition on the
parameters in Eq. (9) becomes

a2l2 þ 6bl2m̂þ 2al2 − 8an2 ¼ 0: ð11Þ

The asymptotic behavior of the metric function as r → ∞ is

fðrÞ¼ r2

l2
þbrþ1−

5n2

l2
þaþbn2−2m̂

r
þOðr−2Þ: ð12Þ

As it happens with the spherically symmetric solution in
conformal gravity, the constraint b ¼ 0 has to be imposed
for the asymptotic behavior of Einstein gravity to be
recovered. This suffices to eliminate the OðrÞ term in (12).
Although all Einstein spaces are Bach flat, the reciprocal

assertion is not true: there are Bach flat metrics which are
non-Einstein. Indeed, the solution of Eq. (10) has the latter
property as it can be seen from their nonconstant Ricci
scalar, that is

R ¼ −
12

l2
−
2ðaþ 3brÞ
r2 − n2

: ð13Þ

This shows that this is a 1-parameter deformation of the
Einstein space since, recall, a and b are related through
Eq. (11). Additionally, since the traceless Ricci tensor
Hμν ¼ Rμν − 1

4
gμνR is identically zero for Einstein spaces,

it can be used as an additional test of the non-Einstein
nature the solution presented here. Their traceless Ricci
squared is

HμνHμν ¼
�
brðr2 þ 3n2Þ þ aðr2 þ n2=3Þ

ðr2 − n2Þ2
�
2

: ð14Þ

The form for the metric function in Eq. (10) permits one
to analyze the properties of the solution in a simple way.
For example, one observes from there that the case
a ¼ b ¼ 0 corresponds to an Einstein manifold; more

precisely, it corresponds to the (A)dS-Schwarzschild-
Taub-NUT solution to cosmological Einstein equations
with mass m̂, NUT charge n, and (A)dS radius l. The
non-Einstein parameter b is associated with a new mode of
conformal gravity, to which we will refer to as the b-mode.
Indeed, the parameter b ¼ pþ 3q is the one that controls
in (12) the linear mode OðrÞ, which is a characteristic
feature of non-Einstein solutions of conformal gravity. This
is the mode studied in Ref. [27] to derive Einstein theory
from the conformal gravity by imposing a Neumann
boundary condition. The latter precisely realizes the freez-
ing of the linearly growing mode by setting b ¼ 0. Such
linear mode can also be seen to appear in the general static,
asymptotically flat black hole solutions of conformal
gravity [53]; see (17) below. By taking n ¼ 0 and keeping
all other parameters fixed, the solution above reduces to

fðrÞ ¼ 1þ brþ λr2; ð15Þ

where we used Eq. (9). This is one of the static solutions
studied by Riegert in [53]. We see from Eq. (15) that the
solutions with b ≠ 0 and λ < 0 exhibit a weakened version
of AdS asymptotic conditions. As said, the Neumann
boundary conditions considered in Ref. [27] correspond
to eliminate the b-mode, which is a feature of conformal
gravity. The same feature can be found, for example, in
three-dimensional massive gravity, three-dimensional con-
formal gravity, and in models of conformal gravity in
higher dimensions.
Another special case of the Riegert solution is found

when performing a different limit: Consider p¼−3k=ð2n2Þ
and q ¼ k=ð2n2Þ, and then take the limit n → 0. This yields

fðrÞ ¼ 1 −
4k
r
þ λr2; ð16Þ

where, again, we used Eq. (9). This is nothing but the
(A)dS-Schwarzschild black hole solution, for which
a ¼ b ¼ 0. This is, of course, one of the branches of the
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spherically symmetric Bach-flat solution. The most general
spherically symmetric case is obtained by considering
p ¼ −b=2 − 3k=ð2n2Þ, q ¼ b=2þ k=ð2n2Þ, which in the
limit n → 0 yields

fðrÞ ¼ −3mþ br −
4k
r
þ λr2; ð17Þ

where the constants are related by

9m2 − 1þ 12bk ¼ 0: ð18Þ

Indeed, Eqs. (17) and (18) turn out to be the most general
static, spherically symmetric solution to conformal gravity
field equations [53,73]. In other words, the gravitational
instanton with symmetry SOð3Þ × R that is obtained by
considering (17) with n ¼ 0 in (7) is nothing but the
Euclidean version of the Riegert black hole of conformal
gravity.

A. Nuts and bolts

Regularity of Euclidean hypersurfaces with either zero or
two-dimensional fixed points defines the conditions for
nuts and bolts, respectively; they are

NUT∶ fðnÞ ¼ 0 and f0ðrÞjr¼n ¼
4π

βnut
; ð19Þ

bolt∶ fðrbÞ ¼ 0 and f0ðrÞjr¼rb ¼
4π

βbolt
: ð20Þ

Here, βnut and βbolt is the period of the Euclidean time to
avoid the presence of conical singularities in each case, and
rb > n is the bolt radius as defined below [see Eq. (22)].
For Taub-NUT, Eq. (19) implies

m̂ ¼ nþ 2an
3

þ bn2

2
−
4n3

l2
≡ m̂nut and

a ¼ −3bn≡ anut; ð21Þ

which solves automatically the relation (11). For Taub-bolt,
on the other hand, condition (20) fixes

m̂ ¼ r2b þ n2

2rb
þ að3r2b þ n2Þ

6rb
þ br2b

2
þ r4b − 6n2r2b − 3n4

2rbl2

≡ m̂bolt: ð22Þ

This polynomial equation of degree four defines implicitly
the bolt radius rb. Using these relations, the explicit form of
the metric functions are

fnutðrÞ ¼
r − n
rþ n

þ bðr − nÞ2
rþ n

þ ðr − nÞ2ðrþ 3nÞ
l2ðrþ nÞ ; ð23Þ

fboltðrÞ ¼
ðr − rbÞðrrb − n2Þ

rbðr2 − n2Þ þ aðr − rbÞð3rrb − n2Þ
3rbðr2 − n2Þ

þ brðr2 − r2bÞ
r2 − n2

þ ðr − rbÞð3n4 − 6n2rrb þ r3rb þ r2r2b þ rr3bÞ
rbl2ðr2 − n2Þ :

ð24Þ

Thus, for the Bach-flat Taub-NUT and Taub-bolt metrics
presented above, the curvature invariants become finite and
the manifold is completely regular, provided that the
Euclidean time is periodically identified. In particular,
the Ricci scalar for Taub-NUT [see Eq. (23)] becomes

R ¼ −
12

l2
−

6b
rþ n

; ð25Þ

while, for Taub-bolt, the Ricci scalar remains as in Eq. (13)
with the condition r ≥ rb > n guaranteeing regularity.
The period of the Euclidean time for Taub-NUT can be

obtained from the second condition in Eq. (19) giving
βnut ¼ 8πn. For Taub-bolt, on the other hand, the period of
the Euclidean time is found to be

βbolt ¼
12πrbðr2b − n2Þ

6br3b þ að3r2b − n2Þ þ 3ðr2b − n2Þ þ 9
l2 ðr2b − n2Þ2 :

ð26Þ

Additionally, unobservability of the position of the Misner
string imposes that the period of the Euclidean time for
Taub-bolt must be equal to the one of Taub-NUT, i.e.,
βbolt ¼ 8πn. This condition, in turn, implies that both
solutions have the same temperature. Indeed, for
Einstein spaces, the unobservability of the Misner string
leaves only one free parameter: the NUT charge. For the
Bach-flat solutions studied here, however, the NUT charge
and the b-mode remain free; up to Neumann boundary
conditions that picks up the former as the only independent
parameter.

B. Euclidean on-shell action and
topological invariants

It is worth noticing that, for NUT, the Weyl tensor
becomes globally (anti-)self-dual, i.e.,

Wμν
λρ ¼ � 1

2
ελρστWμνστ ≡�W̃μν

λρ; ð27Þ

where εμνλρ is the Levi-Civita tensor. Indeed, using the off-
shell identity

εμνλρWστλρWστ
μν ¼ εμνλρRστλρRστ

μν; ð28Þ
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the Euclidean on-shell action for Taub-NUT can be
computed directly in terms of a topological invariant,
namely,

Inut ¼ � αCG
2

Z
M

d4x
ffiffiffi
g

p
εμνλρWστλρWστ

μν

¼ �16π2αCGc; ð29Þ

where the Chern-Pontryagin index is defined as

c ¼ 1

32π2

Z
M

d4x
ffiffiffi
g

p
εμνλρRστλρRστ

μν

¼ 2 −
16n2

l2

�
1 −

2n2

l2

�
þ 4b2n2; ð30Þ

and it enters in the topological invariant that measures the
difference between harmonic self-dual and anti-self-dual
forms on the manifold, i.e., the Hirzebruch signature (see,
for instance, Ref. [74]). The solution becomes anti-self-
dual for n < 0 and the right-hand side of Eq. (30) picks a
global minus sign. Thus, the Euclidean on-shell action of
conformal gravity evaluated on the Taub-NUT solution
(23) saturates the Bogomol’nyi-Prasad-Sommerfield (BPS)
bound and it is proportional to the Chern-Pontryagin index,
similar to instantons in Yang-Mills theory. The latter is
related to the index of the Dirac operator and it is related to
the axial anomaly in the quantum theory [75,76].
Additionally, notice that the massive mode contributes to
the Chern-Pontryagin index, as it can be checked from the
last term in Eq. (30).
One could add topological invariants to the conformal

gravity action (1) without affecting the bulk dynamics.
Introducing the Chern-Pontryagin invariant, for instance,
yields

ICGP ¼ αCG

Z
M

d4x
ffiffiffi
g

p
Wμν

λρW
λρ
μν

þ ϑ

32π2

Z
M

d4x
ffiffiffi
g

p
εμνλρRστλρRστ

μν: ð31Þ

The tensor W̃ν
μ λρ is invariant under Weyl transformations

and so the Chern-Pontryagin index. Indeed, by setting

ϑ ¼ �16π2αCG; ð32Þ

and using the off-shell identity (28), the action principle
(31) can be written as

ICGP ¼
αCG
2

Z
M

d4x
ffiffiffi
g

p ðWμν
λρ � W̃μν

λρÞðWλρ
μν � W̃λρ

μνÞ: ð33Þ

The Euclidean action of conformal gravity, augmented by
the topological invariant of Eq. (30), becomes identically
zero when evaluated at the (anti-)self-dual Taub-NUT.
Thus, the role of the Chern-Pontryagin invariant in
Eq. (31) is to set the whole family of (anti-)self-dual
Taub-NUT solutions as the ground state of conformal
gravity, similar to what happens in four-dimensional gen-
eral relativity enhanced by the presence of topological
terms (see Refs. [70,77,78]).
The other topological invariant is given by the Euler

characteristic, χ, namely

χ ¼ 1

32π2

�Z
M

d4xGþ
Z
∂M

d3xB
�
¼ 1; ð34Þ

where

G ¼ ffiffiffi
g

p ðRλρστRλρστ − 4RλρRλρ þ R2Þ; ð35Þ

B ¼ 4
ffiffiffi
h

p
δαβγμνλK

μ
α

�
1

2
Rνλ

βγðhÞ −
1

3
Kν

βK
λ
γ

�
ð36Þ

are the Gauss–Bonnet and second Chern form, respectively.
Here, hμν ¼ gμν − nμnν is the induced metric on the
asymptotic boundary with h being its determinant, nμ

denotes its normal unit vector, Rμν
λρðhÞ is the intrinsic

Riemann curvature associated with hμν, and Kμν ¼
hλμ∇λnν is the extrinsic curvature. This is consistent with
the indices of the gravitational instantons of type Ak
[79,80], which describe multi-Taub-NUT solutions with
kþ 1 centers. The Euler characteristic for these solutions is
kþ 1, yielding χ ¼ 1 for the Taub-NUT metric, which
corresponds to k ¼ 0. Notice that the Euler characteristic
(34) does not depend on the value of the additional
parameters such as b.
The Taub-bolt solution is no longer globally self-dual as

Taub-NUT was. However, the Euclidean on-shell action is
finite without need of adding counterterms. Explicitly, the
Bach-flat Taub-bolt solution in Eq. (24) yields

Ibolt ¼ 128π2αCGn

�
aðn2 − 3r2bÞ
9ðr2b − n2Þ

�
arb þ 3bðr2b þ n2Þ

r2b − n2
þ 3ðr2b − n2 þ l2Þ

l2rb

�

−
b2r3bðr2b þ n2Þ
ðr2b − n2Þ2 −

2br2bðr2b − n2 þ l2Þ
l2ðr2b − n2Þ −

r4b þ 3n4 þ l4 − 4l2n2 þ 2l2r2b
l4rb

�
: ð37Þ

SELF-DUAL GRAVITATIONAL INSTANTONS IN CONFORMAL … PHYS. REV. D 104, 064026 (2021)

064026-5



From a holographic viewpoint, conformal gravity, as a
higher-derivative theory it is, brings in new boundary
sources along with correlators associated with them [40].
It would be important to provide a more formal proof on the
finiteness of the action for non-Einstein solutions, at least,
in the weakly decaying, asymptotically AdS sector. As a
matter of fact, taking the standard asymptotic falloff of the
curvature substantially restricts the type of subleading
deformations in the metric, with respect to the Einstein
branch of the theory [81,82].

IV. CONSERVED NOETHER CHARGES
AND WALD’S FORMULA

In this section, we use the Noether-Wald formalism
[62,63] to compute the conserved charges associated with
the Bach-flat Taub-NUT/bolt solutions. This can be used to
obtain the mass and entropy of the solution as shown next.
Diffeomorphism invariance of the action (1) leads to the

identity

∇μJμ ¼ −LξgμνBμν; ð38Þ

where Lξ is the Lie derivative along the vector field
ξ ¼ ξμ∂μ that generates the diffeomorphism invariance,
and the Noether current is defined through

Jμ ¼ −4αCG∇νðWμνρσ∇ρξσ þ 2ξρCρμνÞ: ð39Þ

We expressed the last term in terms of the Cotton tensor
through Cμνλ ¼ −∇σWσ

μνλ. Clearly, Eq. (38) becomes a
conservation law for the Noether current when the field
equations hold, namely, when Bμν ¼ 0. The Poincaré
lemma, in turn, allows us to express the Noether current
as Jμ ¼ ∇νqμν, where qμν ¼ −qνμ is the 2-form Noether
prepotential given by

qμν ¼ −4αCGðWμνρσ∇ρξσ þ 2ξρCρμνÞ: ð40Þ

If ξ is a Killing vector, the conserved Noether charge is
obtained by integrating the Noether prepotential (40) over a
codimension-2 hypersurface Σ, that is

Q½ξ� ¼ 1

2

Z
Σ
ϵμνλρqμνdxλ ∧ dxρ ≡

Z
Σ
Qμνdxμ ∧ dxν ¼

Z
Σ
Q:

ð41Þ

Let us focus first on the Killing vector ξ ¼ ∂τ that
generates the Euclidean time isometry. In this case, the
relevant components of Qμν to compute the conserved
charges are

Qθϕ ¼ 2αCG
3

�
2ðr2 − n2Þf000f − ½ðr2 − n2Þf0 − 2fr�f00 þ 2rf02

−
2½17fn2 þ 3fr2 − ðr2 − n2Þ�f0

r2 − n2
þ 4fr½17fn2 þ fr2 − ðr2 − n2Þ�

ðr2 − n2Þ2
�
sin θ; ð42Þ

Qrϕ ¼ −
8αCGn2

3ðr2 − n2Þ
�
2f00f − 3f02 þ 8f0fr

r2 − n2
−
4f½7fn2 þ 2fr2 − 2ðr2 − n2Þ�

ðr2 − n2Þ2
�
cos θ; ð43Þ

where prime denotes derivative with respect to the radial
coordinate.
The mass of the solution (8) is obtained by evaluating the

Noether-Wald charge generated by ξ ¼ ∂τ at the boundary
located at radial infinity; that is

M¼ lim
r→∞

Z
2π

0

Z
π

0

dθdϕQθϕ

¼−16παCG
�
λn2ðp−13qÞþ

�
mþ1

3

�
ðpþ3qÞ

�
: ð44Þ

This yields

M ¼ 16αCGπ

3l2
ðabl2 þ 6bn2 þ 12m̂Þ; ð45Þ

without need of boundary counterterms.

The particular mass value for Taub-NUT is obtained by
replacing m̂ ¼ m̂nut and a ¼ anut, while for Taub-bolt by
only replacing m̂ ¼ m̂bolt. Explicitly, we find

Mnut ¼ 16πnαCG

�
4ð1 − bnÞ

l2
−
16n2

l4
− b2

�
; ð46Þ

Mbolt ¼
16παCG

3

�
abþ 6

rbl4

�
r4b − 6n2r2b − 3n4

þ l2½r2b þ n2 þ aðr2b þ n2=3Þ

þ brbðr2b þ n2Þ�
��

: ð47Þ

The entropy, on the other hand, arises from different
types of obstruction to foliation with hypersurfaces of
constant time that the geometry might have [78,83,84]. For
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black holes, for instance, the entropy is obtained by
evaluating the Noether charge at the horizon [62]. In the
case of Taub-NUT/bolt, there is an additional contribution
coming from the Misner string, giving

S ¼ β

�Z
2π

0

Z
π

0

dθdϕQθϕ

			
r¼rb

þ
Z

2π

0

Z
∞

rb

drdϕQrϕ

			
θ¼π

−
Z

2π

0

Z
∞

rb

drdϕQrϕ

			
θ¼0

�
: ð48Þ

For Taub-NUT, the first term on the right-hand side of
Eq. (48) vanishes identically since there is no horizon. Thus,
the entropy comes purely from the Misner string, giving

Snut¼ 32π2αCG

�
1−2b2n2þ8n2ð1−2bnÞ

l2
−
48n4

l4

�
: ð49Þ

The relevant thermodynamic variables for Taub-NUT sat-
isfy the Gibbs-Duhem relation

Snut ¼ 8πnMnut − Inut; ð50Þ
and therefore the first law of thermodynamics is satisfied.
Additionally, when the Chern-Pontryagin invariant is

added to the conformal gravity action with fixed coupling
ϑ ¼ �16π2αCG [cf. Eq. (31)], the Noether prepotential is
modified according to

qμνCGP ¼ −4αCG½ðWμν
ρσ � W̃μν

ρσÞ∇ρξσ þ 2ξρ∇σðWμν
ρσ � W̃μν

ρσÞ�:
ð51Þ

Thus, it is manifest that not only the Euclidean on-shell
action vanishes when evaluated at the (anti-)self-dual Taub-
NUT solution, but their variations as well. This implies that
introducing the Chern-Pontryagin topological term with
fixed coupling constant to the conformal gravity action
induce the triviality of conserved charges.
In Euclidean Einstein gravity, the thermodynamics of

Taub-NUT/bolt-AdS has been studied through different
methods [68,78,85–90]. In all cases, it has been observed

that the Misner string not only contribute to the entropy but
it diverges in AdS. This fact has motivated different
renormalization schemes, ranging from background sub-
traction [68] to intrinsic boundary counterterms [85,86].
Indeed, the addition of the Gauss-Bonnet term with fixed
coupling renders the Misner string entropy finite [78] and it
yields the action equivalent to the one proposed by
MacDowell-Mansouri [91]. For Einstein spaces, the latter
reduces to Eq. (1), giving a consistent embedding of
general relativity into conformal gravity modulo
Neumann boundary conditions. Remarkably, the entropy
of the Bach-flat Taub-NUT solution in Eq. (49) coincides
with the one obtained in Ref. [78] in the limit b → 0,
provided a proper identification of the conformal gravity
coupling, namely, αCG ¼ l2

64πG. This, in turn, coincides with
previous findings in the literature up to a thermodynami-
cally irrelevant constant related to the Euler characteristic.

V. COMPARISON WITH GENERALIZED
TAUB-NUT METRICS

In this section, we compare the Bach-flat solution
presented in Eq. (10) with the metrics proposed in
Refs. [65,66]. To do so, we first compare a particular
curvature invariant between solutions to obtain the function
that relates the radial coordinates of both spaces. Then, we
compute a second curvature to test the equivalence of
metrics. In particular, the line element used in Ref. [65] is

ds2¼FðρÞðdρ2þρ2dΩ2ÞþGðρÞðdψþ cosθdϕÞ2; ð52Þ
where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and the metric functions are

FðρÞ ¼ α

ρ
þ β and GðρÞ ¼ βρ2 þ αρ

δρ2 þ γρþ 1
; ð53Þ

where α, β, γ, δ describe a four-parameter family of metrics.
The relevant curvature invariants associated with this

solution are

R ¼ 1

2ðβρþ αÞ3ðδρ2 þ γρþ 1Þ2 ½6αðαγ − 2βÞ þ ½3α2δ2 þ 3αβγδ − 3β2ðγ2 − δÞ�ρ3

þ ½9α2γδ − 3βðγ2 − 4δÞα − 9β2γ�ρ2 þ ½ð3γ2 þ 15δÞα2 − 9βγα − 9β2�ρ�; ð54Þ

HμνHμν ¼ 3ρ2

16ðβρþαÞ6ðδρ2þ γρþ 1Þ4 ½8β
2δ2ð2αδ− βγÞ2ρ6þ 8βδð2αδ− βγÞð2α2δ2þ 4αβγδ− β2γ2− 6β2δÞρ5

þð9α4δ4þ 62α3βγδ3þ 43α2β2γ2δ2− 34αβ3γ3δþ 3β4γ4 − 118α2β2δ3− 122αβ3γδ2þ 50β4γ2δþ 81β4δ2Þρ4
þð18α4γδ3þ 64α3βγ2δ2þ 16α2β2γ3δ− 6αβ3γ4− 80α3βδ3− 116α2β2γδ2− 120αβ3γ2δþ 18β4γ3þ 112αβ3δ2

þ 106β4γδÞρ3þð19α4γ2δ2þ 32α3βγ3δþ 7α2β2γ4 − 22α4δ3− 76α3βγδ2− 104α2β2γ2δ− 32αβ3γ3

þ 148α2β2δ2þ 20αβ3γδþ 43β4γ2þ 42β4δÞρ2þð10α4γ3δþ 10α3βγ4− 22α4γδ2− 56α3βγ2δ− 16α2β2γ3

þ 80α3βδ2þ 28α2β2γδ− 16αβ3γ2þ 16αβ3δþ 34β4γÞρþ 3α4γ4− 14α4γ2δ− 2α3βγ3þ 17α4δ2þ 6α3βγδ

− 5α2β2γ2þ 10α2β2δ− 2αβ3γþ 9β4�: ð55Þ
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On the other hand, the metric ansatz used in Ref. [66] is

ds2¼FðρÞ½ðdρ2þρ2dΩ2ÞþGðρÞðdψþ cosθdϕÞ2�; ð56Þ

and it is sufficient for us to compare only with metrics of
[66] that are non-Einstein, since the solution presented in
Sec. III are of that sort. The first type of non-Einstein space
of [66] is

FðρÞ ¼ 1þ βρ and GðρÞ ¼
�

ρ

1þ βρ

�
2

; ð57Þ

where β is constant. The Ricci scalar and traceless Ricci
squared associated with the latter are, respectively,

R ¼ −
9

2ρ2ð1þ βρÞ ; ð58Þ

HμνHμν ¼ 67β2ρ2 þ 78βρþ 27

16ρ4ð1þ βρÞ4 : ð59Þ

The second non-Einstein space is given by

FðρÞ¼ðγ−ρ2Þðγþ2βρþρ2Þ and GðρÞ¼
�

ρðγ−ρ2Þ
γþ2βρþρ2

�
2

;

ð60Þ
where β and γ are constants defining a two-parameter
family of metrics. Their curvature invariants are

R ¼ −
3ð35ρ4 − 34γρ2 þ 3γ2Þ

2ρ2ðγ − ρ2Þ3ðγ þ 2βρþ ρ2Þ ; ð61Þ

HμνHμν ¼ 1

16ρ4ðγ − ρ2Þ6ðγ þ 2βρþ ρ2Þ4 ½3675ρ
12 þ 10780βρ11 þ ð9996β2 − 2030γÞρ10

− 3444βγρ9 − γð10640β2 − 4757γÞρ8 − 1384βγ2ρ7 þ 12γ2ð422β2 − 379γÞρ6
þ 408βγ3ρ5 − γ3ð1424β2 − 1365γÞρ4 þ 12βγ4ρ3 þ 2γ4ð134β2 þ 9γÞρ2 þ 156βγ5ρþ 27γ6�: ð62Þ

In order to differentiate among solutions, we first
compare Eq. (13) with Eqs. (54), (58), and (61). This
leads to a quadratic relation for r in terms of ρ, that it can be
solved analytically to find r ¼ r�ðρÞ in all the cases. We do
not include the explicit solutions here because they are
cumbersome and not very illuminating. Afterward, we
replace r ¼ r�ðρÞ into Eq. (14) and compare with
Eqs. (55), (59), and (62). By doing so, we make sure that
the radial coordinates among solutions are equivalent.
Then, in the asymptotic region, the difference between
solutions becomes manifest since, as ρ → ∞, we find

HμνHμνjr¼r�ðρÞ ¼ ϖ þOðρ−3Þ; ð63Þ

for the solution in Eq. (10), where ϖ is a nonvanishing
constant that depends on the parameters of the solutions
and whose explicit form is cumbersome and unimportant.
In contrast, the traceless Ricci squared of Eqs. (55), (59),
and (62) behaves as Oðρ−νÞ with ν ≥ 6 in all cases, as
ρ → ∞. This proves that the solution (10) is actually
different from the ones in Refs. [65,66].

VI. GENERALIZED EGUCHI-HANSON
INSTANTONS

So far, we have studied non-Einstein generalization of
Taub-NUT/bolt gravitational instanton solutions in con-
formal gravity. These are given by Bach-flat geometries
that asymptote to locally maximally symmetric spacetimes,

with falloff conditions that are in general weaker than those
in Einstein gravity. This analysis can be easily extended to
other solutions. In fact, other self-dual gravitational instan-
tons in conformal gravity can be constructed: Consider, for
example, the ansatz

ds2 ¼ r2fðrÞ
4

ðdτ þ cos θ dϕÞ2 þ dr2

fðrÞ

þ r2

4
ðdθ2 þ sin2θdϕ2Þ; ð64Þ

which is Bach-flat provided the function fðrÞ is of the form

fðrÞ ¼ 1 −
a4

r4
þ r2

l2
þ b
r2

þ pr4; ð65Þ

where a, b, p, l are integration constants subject to the
condition

b ¼ −4a4pl2: ð66Þ

The line element (64) with (65) is a generalization of the
Eguchi-Hanson solution of Einstein gravity [92,93]. The
latter corresponds to the particular case b ¼ p ¼ 0. In fact,
the metric above can be written in the usual form [92,93];
namely
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ds2 ¼ dr2

fðrÞ þ r2ðσ21 þ σ22 þ fðrÞσ23Þ ð67Þ

with theMaurer-Cartan formsofSUð2Þ beingdefined as σ1¼
1
2
ðsinτdθ−sinθcosτdϕÞ, σ2 ¼ 1

2
ð− cos τdθ− sinθ sin τdϕÞ,

and σ3 ¼ 1
2
ðdτ þ cos θdϕÞ. Its scalar curvature is

R ¼ −
24

l2
− 48pr2; ð68Þ

and it diverges as r → ∞. To cure this, one could set p ¼ 0

that, provided l2, fixes b ¼ 0. As in the case of asymp-
totically locally AdS sectors, the form of (65) permits one
to identify the Neumann boundary condition that selects the
Eguchi-Hanson solution of general relativity out of the
solutions of conformal gravity.
The (anti-)self-duality condition, i.e., Wμν

λρ ¼ �W̃μν
λρ , of

the generalized Eguchi-Hanson metric is achieved for
particular values of the parameters. Specifically, we find
that, once the condition (66) is imposed, the solution
becomes self-dual when b ¼ p ¼ 0 and l → ∞, reducing
to the standard asymptotically locally flat Eguchi-Hanson
metric of general relativity with c ¼ −3 and χ ¼ 2 as
defined in Eqs. (30) and (34), respectively.
There is another interesting possibility: first take l → ∞

in Eq. (65) and then obtain the condition on the parameters
imposed by the field equations Bμν ¼ 0. The latter yields
p ¼ 0 and thus the metric becomes

fðrÞ ¼ 1 −
a4

r4
þ b
r2

: ð69Þ

This metric has been studied in Refs. [94,95] and it is,
indeed, (anti-)self-dual, Bach-flat, and its Ricci scalar
vanishes. However, it is non-Einstein as it can be seen
from their traceless Ricci tensor squared

HμνHμν ¼ 12b2

r8
: ð70Þ

This curvature invariant measures the deviation from
solutions of general relativity since, recall, it vanishes
identically for Einstein spaces. Therefore, it becomes clear
that the b-mode renders the solutions non-Einstein.
Reciprocally, this permits one to identify the Newmann
boundary condition that is necessary to impose on the
conformal gravity solution to recover the Einstein solution
in the Eguchi-Hanson sector with vanishing cosmological
constant.
The absence of conical singularities at the bolt demands

periodicity on the Euclidean time coordinate, namely
τ ∼ τ þ βτ, where

βτ ¼
2π

1þ b
2r2b

; ð71Þ

where the bolt radius is defined as fðrbÞ ¼ 1 − a4=r4b þ
b=r2b ¼ 0. The Chern-Pontryagin index and Euler charac-
teristic of the solution (69) are

c ¼ −
�
3þ 2b

r2b
þ b2

2r4b

��
1þ b

2r2b

�
−1
; ð72Þ

χ ¼ 2: ð73Þ

In the limit b → 0 these topological invariants reduce to
those of the original Eguchi-Hanson metric, namely
c ¼ −3 and χ ¼ 2. These results for the topological
numbers take into account the right periodicity of the
angular variables, cf. [92], and the normalization in (30).
Other special cases are worth mentioning: When a ¼ 0 ≠ b
the Chern-Pontryagin index is c ¼ −3 and χ ¼ 2, which
are equivalent to the invariants of the original Eguchi-
Hanson metric.
The Euclidean on-shell action of conformal gravity

evaluated on the self-dual Bach-flat generalization of the
Eguchi-Hanson solution (64) with metric function (69)
gives

I ¼ �16π2αCGc; ð74Þ

with c given in Eq. (72). On the other hand, the Noether-
Wald formalism can be used to compute the conserved
charges. We find that the mass of the solution vanishes
while the entropy, as defined in Eq. (48), gives

S ¼ −8παCGβτ
�
3þ 2b

r2b
þ b2

2r4b

�
¼ −I: ð75Þ

This is consistent with the Gibbs-Duhem relation for a
massless solution. Finally, we notice that adding the Chern-
Pontryagin invariant with fixed coupling as given in
Eq. (32) renders the Euclidean on-shell action and entropy
of the generalized Eguchi-Hanson metric (69) equal to zero.
Thus, we conclude that this solution is part of the family of
self-dual ground states of conformal gravity once topo-
logical terms are included.

VII. CONCLUSIONS

Here, we have studied non-Einstein Bach-flat geometries
that can be regarded as the generalization of single-centered
gravitational instantons of Einstein gravity to conformal
gravity. This includes generalizations of the Taub-NUT-
Schwarzchild solution, the Euclidean version of the Riegert
static black hole, and extensions of the Eguchi-Hanson
metric. Both Taub-NUT and Taub-bolt geometries were
analyzed in detail. By computing the Chern-Pontryagin
index and the Weil-Chern-Gauss-Bonnet integrals, we
showed that the Bach-flat version of Taub-NUT/bolt
presents both nonvanishing Hirzebruch signature and
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Euler characteristic. The same holds for the generalizations
of the Eguchi-Hanson metric.
For an arbitrary choice of the parameters, all the

solutions we found generically present a curvature singu-
larity at the origin, while at large distances they exhibit
asymptotically locally flat or AlAdS asymptotics.
Nevertheless, it is worth pointing out that the falloff
behavior of the most general AlAdS solutions turns out
to be weaker than the standard AdS4 Henneaux-Teitelboim
boundary conditions [96]. This is associated with the
presence of a low decaying mode of conformal gravity.
In fact, our analysis permits one to identify the simple
Neumann boundary condition that, as observed by
Maldacena in the asymptotically AdS sector [27], selects
the Einstein solution out of the solutions of conformal
gravity.
When regularity at hypersurfaces of constant time is

imposed, the existence of zero and two-dimensional fixed
points—also referred to as nuts and bolts, respectively—
yields to everywhere regular geometries; the former being a
(anti-)self-dual configuration that saturates the BPS bound
of the Euclidean on-shell action. Indeed, we explicitly
showed that, by adding the Chern-Pontryagin invariant to
the conformal gravity action with fixed coupling constant,
all (anti-)self-dual configurations become the ground state
of the theory, yielding vanishing free energy and conserved
charges.
For the whole family of AlAdS Taub-NUT/bolt and

Eguchi-Hanson spaces, we computed the Noether charges,
which, as usual in conformal gravity, happen to be finite
without the need of introducing counterterms. Also the
entropy, the Euclidean action, and all the relevant quantities
derived from it turn out to be finite. This enables us to study
the thermodynamic properties of these geometries as well
as it provides the necessary tools to perform semiclassical

computations. We showed that the Gibbs-Duhem relation
and the first law of thermodynamics are satisfied in all
cases. This automatically guarantees the identity between
the entropy obtained through the Noether-Wald formalism
and the Euclidean methods.
Interesting questions remain open. For instance, the

presence of additional gravitational hairs in conformal
gravity portrays a richer scenario to study Hawking-Page
phase transitions. Another question regarding the
Euclidean approach is that of the finiteness of the conserved
charges. Indeed, a detailed analysis of the relation between
the conformal invariance and the finiteness of the Euclidean
action in different sectors is worth pursuing. It would also
be interesting to investigate the possible holographic
interpretation of the massive b-mode of the AlAdS instan-
tons studied here and their relation to the linear response in
the conformal field theory at the boundary (see for instance
Ref. [81]). The interpretation of low decaying modes,
although in a different context, was discussed in [97].
Last, it would be interesting to analyze the importance of
the solutions we studied here in the context of topological
gravity.
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