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A deep convolutional neural network (CNN) is developed to study symmetry energy (Esym(ρ)) effects by 
learning the mapping between the symmetry energy and the two-dimensional (transverse momentum 
and rapidity) distributions of protons and neutrons in heavy-ion collisions. Supervised training is 
performed with labeled data-set from the ultrarelativistic quantum molecular dynamics (UrQMD) model 
simulation. It is found that, by using proton spectra on event-by-event basis as input, the accuracy for 
classifying the soft and stiff Esym(ρ) is about 60% due to large event-by-event fluctuations, while by 
setting event-summed proton spectra as input, the classification accuracy increases to 98%. The accuracies 
for 5-label (5 different Esym(ρ)) classification task are about 58% and 72% by using proton and neutron 
spectra, respectively. For the regression task, the mean absolute errors (MAE) which measure the average 
magnitude of the absolute differences between the predicted and actual L (the slope parameter of 
Esym(ρ)) are about 20.4 and 14.8 MeV by using proton and neutron spectra, respectively. Fingerprints of 
the density-dependent nuclear symmetry energy on the transverse momentum and rapidity distributions 
of protons and neutrons can be identified by convolutional neural network algorithm.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The density-dependent nuclear symmetry energy Esym(ρ) has 
attracted considerable attention from both nuclear physics and nu-
clear astrophysics communities in the recent two decades, since its 
knowledge is crucial for our understanding of diverse phenomena 
observed in rare isotopes, nuclear reactions with exotic nuclei, as 
well as neutron star and its merger [1–9]. Constraints on Esym(ρ)

with various observations have been made. However, the whole 
picture of nuclear symmetry energy as a function of density is still 
indistinct, especially above the saturation density (ρ0). Simulations 
with transport model in combination with observables in heavy-
ion collisions is one of the important ways to constrain the high 
density behavior of Esym(ρ). Several sensitive observables have 
been presented, but it is still difficult to get a tight and consis-
tent constraint on Esym(ρ) at high densities [10–19].
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Deep learning has been proved useful for analyzing pattern 
from complex data in many branches of science, such as in physics 
[20–31]. In heavy-ion physics, neural network has been used to de-
termine the impact parameter in heavy-ion collisions since 1990s 
[32–38]. The convolutional neural network (CNN) which is suc-
cessful in Computer Vision has been shown promising in studying 
Quantum chromodynamics (QCD) properties from heavy-ion ob-
servables [39–43]. The marriage of heavy-ion physics and deep 
learning brought new effective paradigm for studying various de-
tails of the underlying physics. In this work we attempt to find 
fingerprints of the density-dependent nuclear symmetry energy in 
heavy-ion collisions by using a deep learning algorithm. This is 
a challenge task because symmetry energy is a sub-leading in-
gredient of transport model for studying heavy-ion collisions at 
intermediate energies. In addition, symmetry energy effects may 
be further washed out by the stochastic nucleon-nucleon interac-
tions.

2. Model and data description

It is known that deep learning algorithm relies on data heav-
ily for pattern recognition. For our purpose, the data can be either 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The nuclear symmetry energy Esym(ρ) as a function of density. The various 
lines show predictions for the selected 5 Skyrme interactions in Table 1.

from experiment or theoretical simulations. As data from theoreti-
cal simulations can be well controlled to perform supervised learn-
ing, in this work we apply the ultrarelativistic quantum molecular 
dynamics (UrQMD) model to generate training data. As a many-
body microscopic transport model, UrQMD has been widely em-
ployed for investigating HIC from the Fermi energy (40 MeV per 
nucleon) up to the CERN Large Hadron Collider energies (TeV). 
With further improvement on several ingredients in UrQMD simu-
lation, such as, the nuclear mean-field potential, the collision term, 
and the cluster recognition term, many experimental data within a 
wide energy range can be reproduced [15,16,44–47]. In presently 
used UrQMD model, the symmetry potential is derived from the 
Skyrme potential energy density functional in the same manner as 
the improved quantum molecular dynamics (ImQMD) model, see 
e.g., Refs. [48,49]. While the isoscalar components of the mean 
field potential inherit the widely used soft and momentum de-
pendent version of potential in QMD-like models [50,51]. As the 
high-density behavior of nuclear symmetry energy is still not well 
constrained, five different Skyrme interactions which yield very 
different Esym(ρ) are considered in the present work. The sym-
metry energy obtained with Skyrme interactions can be expressed 
as

Esym(ρ) = h̄2

6m
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3π2ρ

2

)2/3
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Here t0, t1, t2, t3 and x0, x1, x2, x3, σ are the well-known 
parameters of the Skyrme interactions [52]. Esym(ρ) as a func-
tion of density is plotted in Fig. 1, and its slope parameter 
L = 3ρ0

(
∂ Esym(ρ)

∂ρ

)
|ρ=ρ0 and curvature parameter Ksym =

9ρ2
0

(
∂2 Esym(ρ)

∂ρ2

)
|ρ=ρ0 are listed in Table 1. The value of L spans the 

range from 5 MeV up to 160 MeV, Ksym spans from -240 to 230 
MeV, covering wide ranges of various constraints on Esym(ρ). As 
the overall contributions of the isovector part in HICs are relatively
small compared to the isoscalar part of the nuclear potential, the 
subtle influence on various observables hard to be revealed. Usu-
ally, the difference or ratio of observables between isospin partners 
may provide some hints for the isovector part of the nuclear po-
tential.
2

Table 1
The nuclear symmetry energy coefficient Esym(ρ0), the slope 
L, and the curvature Ksym as obtained with the five Skyrme 
interactions used in this work.

Esym(ρ0) (MeV) L (MeV) Ksym (MeV)

Skz4 32.0 5.8 -240.9
SLy230a 32.0 44.3 -98.2
SV-sym34 34.1 81.2 -79.7
SkI2 33.9 106.4 73.2
SkI1 37.2 159.0 229.1

Fig. 2. Proton rapidity distribution calculated with Skz4 (solid lines) and SkI1 (dotted 
lines) interactions. In upper panels, results from five random events are displayed 
for each interaction. In lower panels, results from five random samples (which ob-
tained by combining 100 collision events) for each interaction are displayed.

For data generation, 800 000 Au+Au collision events with im-
pact parameter b=5 fm and beam energy E lab=0.4 GeV/nucleon for 
each symmetry energy are simulated, with the transverse momen-
tum pt and rapidity y0 of protons and neutrons all recorded. Due 
to initial fluctuations and the random nucleon-nucleon collisions, 
fluctuations on the rapidity and transverse momentum distribu-
tions are very large, consequently, the effects of symmetry en-
ergy on the distributions are hidden. As shown in Fig. 2 where 
the proton rapidity distribution in 0.10 ≤ pt ≤ 0.15 GeV/c and 
0.20 ≤ pt ≤ 0.25 GeV/c obtained from calculations with very soft 
(SKz4) and stiff (SkI1) symmetry energies are compared. Fluctua-
tion on the distributions can be reduced by combining results from 
different events, as displayed in the lower panel of Fig. 2, never-
theless, the differences in the proton distributions obtained from 
these two symmetry energies are still too faint to be distinguished 
by conventional analysis. Accordingly, we prepare input sample by 
combining proton spectra from 100 UrQMD events. Therefore, we 
have 8 000 samples for each symmetry energy to perform su-
pervised learning. We note here that, the training accuracy will 
increase if we combine more events into an input sample because 
of the fluctuation reduction. However, given a certain number of 
events, combining more events to input will reduce the number 
of training samples, which may depress the performance of CNN 
training. Combining 100 events to a sample is a compromise be-
tween fluctuation and the number of training samples.

The CNN architecture used in this work is inspired from suc-
cessful applications in Refs. [36,39,40], which has two convolution 
layers and one subsequent fully-connected layer. The input to the 
CNN is the two-dimensional (transverse momentum and rapidity) 
distributions of protons, which is a 20×40 matrix, as the trans-
verse momentum pt spans from 0 to 1 GeV/c with 20 bins and the 
rapidity y0 spans from -2 to 2 with 40 bins in between, respec-
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Fig. 3. The accuracy of two-class classification task as a function of the epoch (train-
ing time). Left panel: the accuracies for classifying Skz4 and SkI1, SV-sym34 and 
SkI2 by using classifier trained with event-by-event proton spectra. Right panel: 
similar as the left plot but with event-summed spectra as input for training and 
testing. In each plot, the accuracies for training, validation and testing data are dis-
played.

tively. A batch normalization (only after the first layer), LeakyReLU 
activation with a slope of 0.1, dropout with a rate of 0.2, as well 
as average pooling with a kernel size 2×2 and a stride of 2 pixels 
are added between the two layers. Each convolution layer consists
of 128 filters of size 5×5. We have checked that, the accuracy is 
hardly influenced when varying the above mentioned parameters 
or adding more layers, these variations only affect the runtime and 
the stability of training process.

3. Results and discussion

3.1. Result of two-class classification task

The simulated events for each symmetry energy are randomly 
divided into three parts: training, validation, and testing sets with 
the ratio of 60:15:25. Training set is used to adjust the parame-
ters in CNN, validation set is used to monitor and avoid overfitting 
during the training by ensuring that the performance over both the 
training and validation set should not deviate a lot, otherwise the 
CNN is overfitting and the training should stop. Testing set is used 
to evaluate the actual predictive power of CNN on unseen different 
events. As CNN has a deep structure and consists of many param-
eters, in principle the training accuracy can keep on increasing to 
100%, while the validation and testing accuracy may not always 
increase unless the CNN learns the underlying relevant rules. As 
displayed in the left panel of Fig. 3, after 50 epochs the training 
accuracy still increases while the validation and test accuracy does 
not, indicating overfitting happening and accordingly the training 
should cease before epoch=50. The testing accuracy on distinguish-
ing Skz4 and SkI1 is about 0.6 by using event-by-event proton 
spectra. For SV-sym34 and SkI2, the testing accuracy is about 0.5, 
meaning that the proton spectra obtained from these two symme-
try energies are indistinguishable by the machine. The results by 
using event-summed samples (100 event-summed proton spectra) 
are displayed in that both testing and validation accuracy is en-
hanced. The accuracy is about 98% and 63% for classifying Skz4 vs 
SkI1, and SV-sym34 vs SkI2, respectively. As one expects, the for-
mer has larger accuracy because of the larger difference in Esym(ρ)

as shown in Fig. 1. By averaging over 100 events, the fluctuation 
is reduced largely and the tiny difference on samples obtained 
from different symmetry energy can be partly identified by the 
3

Fig. 4. The accuracy of two-class classification task. The number in each cell denotes 
the accuracy for classifying the vertical and horizontal labeled symmetry energies. 
The statistical error of the accuracy was estimated to be smaller than 2% by com-
paring parallel testing data, being therefore negligible.

Fig. 5. The accuracy of five-class classification task as a function of the epoch with 
event-summed proton or neutron spectra used.

machine. In HICs at intermediate energies, there are basically two 
sources of fluctuations: the initial fluctuation and dynamical fluc-
tuation (i.e., stochastic particle collision). We have tried to reduce 
the initial fluctuation by artificially using the same initial nuclei 
in every collision events. Consequently, the accuracy for classify-
ing Skz4 and SkI1 on the event-by-event basis reaches the range 
70%-90%, which depends strongly on the random number genera-
tor seed. Fig. 4 displays the accuracy for classifying two different 
symmetry energies by using event-summed proton spectra. The 
larger the difference in Esym(ρ), the higher the accuracy for their 
classification. The accuracy for classifying SV-sym34 vs SkI2 is the 
lowest of all, since their difference in L is the smallest. Generally, 
the accuracy increases with the slope L difference between two 
symmetry energies increasing, showing that the CNN is capable of 
manifesting fingerprints of the density-dependent nuclear symme-
try energy on proton spectra.

3.2. Result of five-class classification task

The accuracy of the five-class classification task is plotted in 
Fig. 5, where the results by using event-summed either proton or 
neutron spectra are displayed. Using proton spectra, the accuracy 
is about 58% which is almost three times that of a random guess-
ing. While the accuracy is increased to 72% if the neutron spec-
tra are used. It is understandable that the accuracy with neutron 
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Fig. 6. The confusion matrix for five-class classification task. Number in each off-
diagonal cell represents the probability that the object of the symmetry energy 
(vertical label) being misclassified as the horizontal labeled symmetry energy. The 
diagonal entries show the fraction of correctly classified testing data. Thus the sum 
of number in each row is unit. Upper and lower panels denote the results by using 
event-summed proton and neutron spectra, respectively.

spectra is higher because neutron-related observables are usually 
more sensitive to Esym(ρ) than proton-related observables, see, 
e.g., Refs. [53,54].

The confusion matrix is a good way to display the performance 
of multi-class classification model in making prediction. Fig. 6
shows the confusion matrix for the five-class classification task. 
The diagonal numbers denote the probability that a horizontal la-
beled symmetry energy is correctly classified, as can be seen that 
they are the largest one in each row, although the probability is 
very high for some symmetry energies (e.g., SkI1 and Skz4) and 
very low for others (e.g., SV-sym34 and SLy230a). For example, by 
using event-summed proton spectra, 78% of SkI1 sample can be 
correctly identified, while 20% of them are misidentified as SkI2, 
and the remaining 2% are misidentified as SV-sym34. This result 
is reasonable as the symmetry energies obtained with SkI1 and 
SkI2 are close to each other, thus the probability of misrecogniz-
ing each other is high. Indeed, numbers around diagonal are larger 
than others, meaning that the predicted labels are close to the 
ground truth, although the classifier cannot always give the cor-
rect answer, indicating that the CNN can indeed capture symmetry 
energy signals in the spectra.
4

Fig. 7. The distribution of the predicted slope parameter L. 2000 samples are tested 
for each symmetry energy. Upper and lower panels denote the results by using 
event-summed proton and neutron spectra, respectively. Dotted lines are Gaussian 
fits to the prediction.

Table 2
The mean values of predicted L and its standard deviation σ
obtained with Gaussian fit, in units of MeV.

Proton spectra Neutron spectra

Ltrue Lpred σ Lpred σ

Skz4 5.8 18.9 11.5 8.5 3.7
SLy230a 44.3 46.9 26.5 47.5 12.1
SV-sym36 81.2 84.5 23.3 96.4 14.8
Skl2 106.4 100.9 23.6 106.7 17.0
Skl1 159.0 142.6 20.7 138.1 18.5

3.3. Result of regression task

It is known that the slope L is one of the important quantities 
that characterizes the behavior of density-dependent symmetry 
energy. The CNN architecture is also adapted to predict the slope L
(regression task) instead of classifying symmetry energies. The dis-
tribution of the predicted slope parameter L with event-summed 
proton and neutron spectra are plotted in Fig. 7. Mean absolute er-
ror (MAE), which is the absolute difference between the true and 
the predicted values, is about 20.4 and 14.8 MeV for using event-
summed proton and neutron spectra, respectively. As can be seen, 
the predicted L distributions for Skz4 and SkI1 are well separated 
with each other, while the distributions for SV-sym34 and SkI2 
are overlapping each other largely, which is due to the fact that 
L difference in the former case is about 153 MeV but it is only 
about 25 MeV in the later case. Using Gaussian fit, one can get the 
mean value of the predicted L and its standard deviation, which 
are listed in Table 2. The mean values of predicted L are close 
to the true values used in corresponding events, indicating again 
the strong capability of CNN in revealing fingerprints of Esym(ρ)

on the transverse momentum and rapidity distributions of protons 
and neutrons.

4. Summary and outlook

To summarize, we have presented the first attempt to find fin-
gerprints of the nuclear symmetry energy in heavy-ion collision 
with deep learning. The two-dimensional (transverse momentum 
and rapidity) distributions of protons and neutrons simulated with 
UrQMD model are fed into a CNN, and the output of CNN is ei-
ther the label which denotes the stiffness of Esym(ρ) or the slope 
parameter L. It is found that, when using proton distributions on 
event-by-event basis, the accuracy for classifying the soft and stiff 
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Esym(ρ) is about 60%, due to large event-by-event fluctuations, 
while by using event-summed proton spectra as the input sam-
ple the accuracy increases to 98%. For classifying five different 
Esym(ρ), the accuracy is about 58% and 72% when proton and neu-
tron spectra are used, respectively. For the L regression, the mean 
absolute errors between the CNN predicted and true L are about 
20.4 and 14.8 MeV by using proton and neutron spectra, respec-
tively. The present results suggest fingerprints of Esym(ρ) on the 
transverse momentum and rapidity distributions can be identified 
by deep learning algorithm.

It is known that deep learning techniques have strong ability 
to deal with classification task while for regression task it’s more 
data-hungry. Regarding the present work, a key challenge going 
forward is to determine the slope parameter L with small un-
certainties. On one hand, by using Bayesian neural network-based 
architectures, one can get not only accurate results but also un-
certainties. On the other hand, increasing the size of input dataset, 
e.g., adding more calculations with different stiffness of the nuclear 
symmetry energy (different L), will reduce uncertainties on pre-
dicting L. Moreover, combining physical model and deep learning 
algorithm, e.g., physics-guided neural networks (PGNN) [55] and 
physics-informed neural network (PINN) [56], will be beneficial to 
future studies. We are continuing in our research efforts to study 
the nuclear symmetry energy with deep learning techniques by 
considering the above mentioned issues.
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