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Abstract: We assess the status of past and future experiments on lepton flavor violating
(LFV) muon and tau decays into a light, invisible, axion-like particle (ALP), a. We propose
a new experimental setup for MEG II, the MEGII-fwd, with a forward calorimeter placed
downstream from the muon stopping target. Searching for µ → ea decays MEGII-fwd is
maximally sensitive to LFV ALPs, if these have nonzero couplings to right-handed leptons.
The experimental set-up suppresses the (left-handed) Standard Model background in the
forward direction by controlling the polarization purity of the muon beam. The reach of
MEGII-fwd is compared with the present constraints, the reach of Mu3e and the Belle-II
reach from τ → `a decays. We show that a dedicated experimental campaign for LFV muon
decays into ALPs at MEG II and Mu3e will be able to probe the ALP parameter space
in an unexplored region well beyond the existing astrophysical constraints. We study the
implications of these searches for representative LFV ALP models, where the presence of a
light ALP is motivated by neutrino masses, the strong CP problem and/or the SM flavor
puzzle. To this extent we discuss the majoron in low-scale seesaw setups and introduce the
LFV QCD axion, the LFV axiflavon and the leptonic familon, paying particular attention
to the cases where the LFV ALPs constitute cold dark matter.
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1 Introduction

Probes of the Standard Model (SM) based on rare processes with charged leptons are set
to improve substantially in the next decade. The muon beam experiments MEG II [1],
Mu3e [2, 3], COMET [4] and Mu2e [5] will collect unprecedented datasets using O(1015 −
1017) muons each. Similarly, Belle-II is expected to collect roughly 5×1010 τ+τ− pairs [6],
exceeding by more than an order of magnitude the datasets at Belle and BaBar. The
standard New Physics (NP) targets for these experiments are rare lepton flavor violating
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(LFV) transitions1 induced by dimension-6 NP operators with SM particles on the external
legs. The NP operators are suppressed by the heavy NP scale Λ so that the corresponding
LFV branching ratios scale as BR ∝ 1/Λ4. Assuming O(1) Wilson coefficients for the
dimension-6 operators the reach on the scale Λ is expected to exceed 108 GeV during the
ongoing experimental campaign [7].

This can be contrasted with LFV decays into a light axion-like particle (ALP), a, in
which case the LFV experiments probe much higher NP scales. The µ → ea, τ → µa or
τ → ea decays are induced by dimension-5 operators so that the LFV branching ratios
scale as BR ∝ 1/f2

a , where fa is the ALP decay constant. The projected bounds on
LFV decays then translate to a reach on fa that, as we will show below, could exceed
1010 GeV, assuming O(1) flavor violating couplings. These scales are among the highest we
could probe with ground-based experiments and are well above the present astrophysical
constraints induced by the coupling of the light ALP to electrons. This conclusion is the
main result of our paper and is presented in figure 1.

More broadly, in this paper we summarize the status of LFV ALP searches. The
experimental difficulty is that the ` → `′a decays look very similar to the SM decays,
resulting in a single visible object plus missing energy (since the ALP is long-lived on
detector scales in a large region of the allowed parameter space). As a consequence, the `→
`′a decays are not covered by the standard LFV searches and require dedicated experimental
strategies/setups. We show that the experimental strategies to improve the coverage of the
LFV ALP parameter space depends crucially i) on the ALP mass, and ii) on the chiral
structure of the ALP couplings to the SM. For this reason we explore the full range of ALP
masses from an effectively massless ALP with ma � me to a massive one up to ma . mτ ,
as well as all the possible chiral structures of ALP couplings to the SM leptons.

At present, the best bounds on fa from the µ→ ea decays give fa & 109 GeV [8]. The
reach can be substantially improved with the next generation of experiments, mainly due
to the increased integrated luminosities. For instance, a combination of the experiment
by Jodidio et al. from 1986 [9] and the TWIST experiment from 2015 [10] gives the best
present bounds on BR(µ→ ea) based on merely 107−108 stopped muons. This luminosity
is at least seven orders of magnitude less than those expected at MEG II and Mu3e.

Taking full advantage of the available datasets will require adjusted experimental ap-
proaches. In section 3.2 we put forward a new experimental strategy to improve the bound
on BR(µ+ → e+a) using MEG II. The main idea is to mimic the 1986 experiment by
Jodidio et al., utilizing that µ+ is polarized antiparallel to the beam direction, up to depo-
larization effects. We study the feasibility of a forward detector configuration in MEG II
which we call MEGII-fwd (“fwd” for forward), where a calorimeter is placed in the forward
direction relative to the muon beam. In this configuration the µ+ → e+a decay can be
detected by searching for a positron of maximal energy emitted in the direction opposite
to the polarization of µ+. For a highly polarized muon beam the SM background from
µ+ → e+νν̄ is strongly suppressed in this part of the phase space, while the µ+ → e+a

1These are µ→ eγ, µ→ eee and µ→ e conversion for the muon and τ → `γ, τ → ```, τ → `ρ, τ → `π

for the tau, where ` = e, µ. A more complete list of the LFV transitions and a theory summary can be
found in ref. [7].
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decay is allowed for an LFV ALP with nonzero right-handed couplings to the SM leptons.
We estimate the reach of this setup for two weeks of dedicated run at MEG II and for
different configurations of the magnetic field, which will be crucial to control the polariza-
tion of the muon beam and the positron yield in the forward direction. We also compare
the sensitivity of our proposal to the one that could be obtained at Mu3e by performing
an online analysis of the positron spectrum obtained from triggerless data acquisition [11].
Our conclusion is that the two experiments are complementary and, given their timelines,
MEGII-fwd has a chance to explore new ALP parameter space several years before Mu3e.

Accessing this new portion of ALP parameter space could unveil connections between
ALP Dark Matter (DM) and lepton flavor violation. Indeed, for ALP masses below 1–
10 eV, the ALP is a viable DM candidate, if it is produced non-thermally through the
misalignment mechanism. The reach on LFV coupling from MEGII-fwd and Mu3e is then
complemented by on-going and future experiments sensitive to the couplings of ALP DM
to photons and electrons.

While the bulk of our analysis is based on a model-independent parametrization of ALP
couplings at low energies, we do explore the implications of the projected experimental
sensitivities for a number of different NP scenarios, where the presence of a light ALP
can be motivated by the strong CP problem, Dark Matter (DM), the SM flavor puzzle or
neutrino masses.

First, we show how LFV decays arise naturally in QCD axion models of the DFSZ-
type [12, 13]. In these models the axion solves the strong CP problem which then connects
the axion mass, ma, and decay constant, fa, giving ma ∝ 1/fa. Furthermore, such a QCD
axion can make up for the total amount of DM in the Universe [14–17]. The future reach
on µ+ → e+a decays could explore new axion parameter space in the mass range 30 meV &
ma & 0.4 meV, where the upper bound is given by astrophyical constraints. Interestingly,
this high mass range requires either a non-standard cosmology [18] or special axion initial
conditions [19] in order for the axion to be the DM. The same mass range presents severe
experimental challenges for axion DM detection through flavor diagonal couplings. While
these could be possibly overcome by ongoing axion-mediated force experiments [20] or new
experimental ideas [21, 22], the QCD axion could also well be first observed through its
flavor violating couplings. For related studies where flavor violating couplings are (only or
also) in the quark sector, see [23–33].

Second, we discuss the reach of LFV decays in the parameter space of the familon.
This is the pseudo-Goldstone boson associated with the spontaneous breaking of the lepton
flavor symmetry which could explain the charged lepton hierarchies via the Froggatt-Nielsen
mechanism [34]. In this setup we show how the strength of LFV decays is correlated with
the texture of neutrino masses. A similar construction could also simultaneously address
the strong CP problem and the flavor puzzle in the quark sector as proposed in refs. [24, 33]
(and was therefore dubbed as “axiflavon”). In the axiflavon setup we show how the flavor
violation in the quark sector could be naturally suppressed in a U(2) flavor model similar
to the one presented in ref. [35]. This would leave LFV decays as the main experimental
signature to hunt for. Similarly, our updated LFV sensitivities will probe the parameter
space of axion or relaxion models which try to address the flavor puzzle [36–40].
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As a final example of a well-motivated LFV ALP setup we discuss a class of majoron
models where the breaking of lepton family number is decoupled from the spontaneous
breaking of the lepton number [41]. In this context the future reach of Mu3e and Belle II
will explore new parameter space beyond the present astrophysical bounds.

The paper is organized as follows. We start by setting up the notation in section 2,
followed by the discussion of µ→ ea searches in section 3, with section 3.1 devoted to the
review of past searches, while the future proposals, both our proposal for MEGII-fwd as
well as the prospects at Mu3e, are presented in section 3.2. Comments on µ→ e conversion
are given in section 3.3. Section 4 contains a short summary of searches for µ→ eγa decays,
while in section 5 we summarize the bounds and prospects for tau decays. In section 6.1
we discuss the astrophysical constraints coming from star cooling and SN1987a, comparing
these with the reach of LFV decays. In section 7 we discuss several models where LFV
violation arises naturally: in section 7.1 the LFV DFSZ axion, in section 7.2 the LFV
axiflavon, in section 7.3 the leptonic familon, and in section 7.4 the majoron. Finally, our
conclusions are presented in section 8.

2 Notation and summary

The ALP is a (pseudo-) Nambu-Goldstone boson (PNGB) and couples derivatively to the
SM fermions. The interaction Lagrangian is thus given by

Leff =
∑
i

∂µa

2fa
¯̀
iC

A
`i`iγ

µγ5`i +
∑
i 6=j

∂µa

2fa
¯̀
iγ
µ(CV`i`j + CA`i`jγ5)`j , (2.1)

where CA`i`i is a real diagonal matrix2 and CV,A`i`j
are hermitian matrices in flavor space,

while the summation is over i, j = 1, 2, 3, and we ignore possible axion couplings to quarks.
For ALP mass we take ma < mτ , where ma could be well below the electron mass. The
decay constant fa is related to the spontaneous breaking scale of the symmetry the ALP
is associated with. We do not assume any relations between the couplings in eq. (2.1), and
discuss the experimental bounds and prospects separately. For these 6+3 couplings we also
introduce the short-hand notation

F V,A`i`j
= 2fa
CV,A`i`j

, F`i`j = 2fa√
|CV`i`j |

2 + |CA`i`j |
2
. (2.2)

When kinematically allowed, the couplings in eq. (2.1) give rise to LFV decays with the
(invisible) ALP in the final state.3 The corresponding total decay width is given by

Γ(`i → `j a) = 1
16π

m3
`i

F 2
`i`j

(
1− m2

a

m2
`i

)2

, (2.3)

2The diagonal vector couplings were set to zero, CV`i`i
= 0, via fermion field redefinitions that are

anomalous only under SU(2)L, and thus affect only the ALP couplings to electroweak gauge bosons. These
couplings can be constrained by their loop-induced contributions to K → πa [49], which result for an
invisible axion in the very weak constraint fa/CVee ≥ 0.7 TeV.

3We note in passing, that while we do not study the phenomenology of the LFV neutrino decays,
νi → νja, the typical decay time for this process is shorter than the age of the Universe for the ALP decay
constants under consideration. This has interesting phenomenological consequences on neutrino cosmology
that will be testable in future large scale structure surveys [50, 51].
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Figure 1. Summary of the present bounds and future projections for an ALP with generic couplings
to leptons, i.e., we set CV``′ = CA``′ = 1 for all the couplings in eq. (2.1). For the isotropic case we
set CVµe = 0 and CAµe = 1 (the opposite choice leads to the same results). In the V ± A case we
set CVµe = ±CAµe = 1. The gray shaded regions are excluded by the astrophysical bounds from
star cooling due to CAee and by SN1987A due to CAee and CAµµ, see section 6.1. We present these
bounds for the isotropic case. The blue shaded region corresponds to a prompt/displaced ALP.
The green solid line is the exclusion due to the bound on µ+ → e+a by Jodidio et al., assuming an
isotropic ALP [9]. The green dotted (dashed) line is our recast of this bound for the V −A (V +A)
case. The sensitivity in the V − A case is worse since then the signal is suppressed in the forward
direction as much as the background. The blue solid (dotted, dashed) lines are the bounds from the
TWIST experiment on isotropic (V − A, V + A) ALP [10]. The dark orange thin solid line is the
MEGII-fwd projection for an isotropic ALP with no magnetic focusing while for the orange thin
solid line we assumed that focusing increases the luminosity in the forward direction by a factor of
100, cf. section 3.2 for details. The dark red thin solid line is the Mu3e projection from [42], for the
isotropic ALP. The sensitivity for the other chiral structures is expected to be similar since there is
no background suppression in this setup. The purple solid line is the bound from the τ → µa search
by the ARGUS collaboration [43], and does not dependent on the chirality of the ALP couplings.
The purple thin line is the projected reach at Belle-II, see section 5 for details. The bound on
µ+ → e+aγ from Crystal Box is subdominant, see section 4, and is not displayed.
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Figure 2. Summary of the bounds and future projections for LFV ALPs. The color coding is
the same as in figure 1. Left: We set Cµe = 1, while all the other couplings in eq. (2.1) are set
to zero. For comparison we also show the bound on µ → ea from SN1987A derived in section 6.1
even though it is subdominant relative to the existing bounds from ground based experiments.
Right: The only nonzero coupling is Cτµ = 1. The plot for Cτe = 1 is similar, and is not displayed
for brevity.

where for simplicity we neglected the mass of the final-state lepton. The differential decay
rate reads (in the same m`j = 0 limit)

dΓ(`i → `j a)
d cos θ =

m3
`i

32πF 2
`i`j

(
1− m2

a

m2
`i

)2 [
1 + 2P`i cos θ

Re(CV`i`jC
A∗
`i`j

)
|CV`i`j |

2 + |CA`i`j |
2

]
, (2.4)

where θ is the angle between the polarization vector, η̂, of the decaying lepton `i and the
momentum of the final state lepton `j , while P`i is the polarization of the decaying leptons.
The convention used for P`i is such that for the phenomenologically most important case of
µ+ → e+a decays we have P`i = η̂ · ẑ, where ẑ is the beam axis. The µ+ are predominantly
polarized antiparallel to the beam direction, thus P`i < 0 and θ is the angle between −ẑ
and the momentum of the positron, cf. figure 4 (left).

The total width of the ALP can be computed as a function of its mass by summing
the different partial decay widths

Γtot(ma) = Γ(a→ γγ) +
∑

i,j=1,2
Γ(a→ `i`j) +

∑
i,j=1,2,3

Γ(a→ νiνj) . (2.5)

Since we restricted the ALP mass to ma < mτ , only the decays to photons, neutrinos,
electrons, and possibly muons are kinematically open. The corresponding partial decay
widths are

Γ(a→ `i`j) = ma

8π

[(
m`i −m`j

F Vij

)2
z++

(
m`i +m`j

FAij

)2
z−

]√
z+z− , (2.6)

Γ(a→ γγ) = α2
emE

2
eff

64π3
m3
a

f2
a

, (2.7)
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Present best limits
Process BR Limit Decay constant Bound (GeV) Experiment
Star cooling — FAee 4.6× 109 WDs [44]

— FAµµ 1.3× 108 SN1987Aµµ [45, 46]
4× 10−3 Fµe 1.4× 108 SN1987Aµe (section 6.1)

µ→ e a 2.6× 10−6∗ Fµe (V orA) 4.8× 109 Jodidio at al. [9]
µ→ e a 2.5× 10−6∗ Fµe (V +A) 4.9× 109 Jodidio et al. [9]
µ→ e a 5.8× 10−5∗ Fµe (V −A) 1.0× 109 TWIST [10]
µ→ e a γ 1.1× 10−9∗ Fµe 5.1× 108# Crystal Box [47]
τ → e a 2.7× 10−3∗∗ Fτe 4.3× 106 ARGUS [43]
τ → µa 4.5× 10−3∗∗ Fτµ 3.3× 106 ARGUS [43]

Expected future sensitivities
Process BR Sens. Decay constant Sens. (GeV) Experiment
µ→ e a 7.2× 10−7∗ Fµe (V orA) 9.2× 109 MEGII-fwd?

µ→ e a 7.2× 10−8∗ Fµe (V orA) 2.9× 1010 MEGII-fwd??

µ→ e a 7.3× 10−8∗ Fµe (V orA) 2.9× 1010 Mu3e [42]
τ → e a 8.3× 10−6∗∗ Fτe 7.7× 107 Belle II
τ → µa 2.0× 10−5∗∗ Fτµ 4.9× 107 Belle II

Table 1. The present model independent 95% C.L. best bounds on leptonic ALP couplings FV,A``′ ,
eq. (2.2), are given in the upper part of the table, with future projections listed in the lower part.
The bounds assume ma below the mass resolution of the experiments considered here (see figure 1
for modifications when ma is sizable). These follow from 90% C.L. (∗) and 95% C.L. (∗∗) bounds on
branching ratios in the 2nd column, rescaled using Z95/Z90 = 1.3 when necessary. The MEGII-fwd
projections are obtained for two different sets of assumptions: MEGII-fwd? assumes δxe = 10−2

and 〈Pµ〉−1 = 10−2 with no focusing, while MEGII-fwd?? in contrast sets the focusing to F = 100,
roughly what was achieved in the 1986 experiment by Jodidio et al. [9], cf. section 3.2 for details.
The Belle II projection for τ → µa is rescaled from the Belle MC simulation in ref. [48], while the
one for τ → ea is rescaled directly from the ARGUS result [43]. (#) The Crystal Box bound on
Fµe can vary between (5.1 − 8.3) × 108 GeV depending on the assumed positron energy loss, cf.
eq. (4.9).

where z± = 1 − (m`i ±m`j )2/m2
a, so that for ma � m`i,`j we have z± → 1. In the limit

mi = mj the result reduces to

Γ(a→ `i`i) = ma

2π

(
m`i

FAij

)2
√

1−
4m2

`i

m2
a

. (2.8)

The ALP decays to neutrinos are often suppressed, so that in the bulk of the paper we set
Γ(a→ νiνj) = 0 (the majoron is an important exception, see section 7.4). The coupling to
photons, Eeff , depends on the UV physics as well as on the IR derivative couplings of ALP
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to the SM leptons running in the loop,

Eeff = EUV +
∑
f

CAf B(τf ), B(τ) = τ arctan2 1√
τ − 1

− 1. (2.9)

Here, τf = 4m2
f/m

2
a− iε, and the summation is over the SM leptons, f = e, µ, τ . Note that

the loop function in (2.9) tends to B(∞) = 0 for heavy fermions, and thus the contributions
due to the derivative ALP couplings decouple in the heavy fermion limit. The anomaly
contribution is encoded in the Wilson coefficient, EUV, and depends on the structure of the
UV model. We use the following normalization for the effective ALP-photon Lagrangian4

Leff = EUV
αem
4π

a

fa
FF̃ , (2.10)

such that for the QCD axion EUV = E/2N , where E and N are the electromagnetic
and color anomaly coefficients of the Peccei-Quinn symmetry. For example, in the DFSZ-
II model for the QCD axion [12, 13], in which the charged leptons couple to the same
Higgs as the up-quarks, one has EUV = 1/3. In section 7 below, we give four explicit
examples of LFV ALP models. For these we have EUV = {2/3, 10/9, (10 ÷ 24), 0} for the
LFV QCD axion (section 7.1), the LFV axiflavon (section 7.2), the anarchic LFV familon
(section 7.3) and the majoron, (section 7.4), respectively. If the ALP also couples to quarks
and gluons, there are additional contributions to the effective photon coupling in eq. (2.9),
both from heavy quarks as well as from pions running in the loop (see ref. [52] for complete
expressions). From now on we fix EUV = 1, unless specified otherwise, since its precise
value does not affect most of the physics discussed in this paper.

As shown in figure 1, we focus in this paper on the region of parameter space where
the ALP is long-lived on detector scales. As we will motivate extensively in section 7,
we believe that this region is the most appealing from a theoretical perspective. For the
discussion of phenomenologically interesting decay channels in the displaced and prompt
regions, we refer the reader to refs. [53–55] and to the recent MEG limit on LFV light
particles decaying to two photons, µ → eX, X → γγ [56]. ALP masses in the range
2me ≤ ma ≤ mµ − me are constrained by the search for the µ → 3e decays at the
SINDRUM experiment [57]. Indeed, a tiny fraction of ALPs from prompt µ → ea decays
leads to a→ e+e− decays within the detector, even for large ALP decay lengths. Assuming
1 cm for the effective decay length measurable in the instrumented volume, the SINDRUM
upper bound of BR(µ → 3e) ≤ 10−12 is expected to constrain fa to be above 107 GeV for
Cµe = Cee = 1, which is much weaker than the other bounds discussed here. The bound on
fa could be substantially improved by the Mu3e experiment [58] given the larger luminosity.
However, both the precise SINDRUM exclusion and the Mu3e projection would require to
take into account the effect of further experimental cuts on the vertex quality and it is
beyond the scope of this paper. A complementary probe of LFV couplings in the region
of heavier ALP masses is the muonium-antimuonium oscillation, which would be induced
by s- and t-channel exchanges of ALPs with couplings to µe. While the resulting bounds

4Our conventions are ε0123 = 1 and F̃µν = 1/2 εµνρσF ρσ.
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ALP, also reported in table 1. On the lower axis we indicate the corresponding values for the effective
axion mass defined by mi,eff = 4.7 eV× 106 GeV/Fi.

on fa are several order of magnitude below the ranges shown in figures 1 and 2,5 they are
stringent enough to effectively rule out the LFV ALP explanations of possible deviations
in (g − 2)e and (g − 2)µ [54, 55, 60].

In the numerical analyses throughout the paper all the axion couplings are assumed
to be real to simplify the discussion. The interpretations of the present LFV experimental
results and future projections in terms of bounds on F`i`j are summarized in figure 1,
assuming all the lepton couplings in eq. (2.1) to be O(1). Figure 2 shows instead the
same constraints for the case when only a single LFV coupling is taken to be nonzero. In
figures 1 and 2 we also show the typical reach of astrophysical bounds on the ALP decay
constant coming from star cooling and SN1987A observations (see section 6.1 for details).
In table 1 and figure 3 we summarize the current best bounds and future projections for
an effectively massless ma, i.e. lighter than the typical mass resolution of the experiments
considered here. This is the ALP mass range that applies to most of the concrete models
discussed in section 7. In the subsequent sections we discuss in detail the observables and
the experiments from which these constraints were derived.

5For heavier ALPs, ma & mµ, we can integrate out the ALP to generate the muonium-antimuonium
oscillation EFT operators. Translating the results of ref. [59] to our notation gives

1
1.9 TeV >

∣∣∣∣ 1
FAµe
± 1
FVµe

∣∣∣∣ (mµ

ma

)
,

1
3.8 TeV >

∣∣∣∣ 1
(FAµe)2 −

1
(FVµe)2

∣∣∣∣1/2 (
mµ

ma

)
.

The constraints for light ALP, ma . mµ, are obtained by taking mµ/ma → 1 in the two expressions above
(see also similar results for heavy meson mixings in the limit of light ALP in ref. [23]). In the future these
bounds could be improved for ma few GeV at Belle II by searching for e+e− → eeµµ events [60].
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3 ALPs in µ+ → e+ + invis. decays

We first summarize the status and prospects to search for the two body µ+ → e+a rare
decays, where a is invisible, i.e., it decays outside the detector. The challenge of this
measurement is to distinguish µ+ → e+a from the background distribution of the SM
µ+ → e+ ν ν̄ decay.

The µ+ → e+a decay produces a monochromatic positron line in the muon rest frame
at the positron momentum

∣∣~p line
e

∣∣ =

√√√√(m2
µ −m2

a +m2
e

2mµ

)2

−m2
e, (3.1)

or in terms of the positron energy, Eline
e ' mµ/2 for ma � mµ. The angular distribution

of the positrons depends on the initial muon polarization and the chiral structure of the
ALP interactions. We discuss three representative cases that lead to distinct angular
distributions:

• the isotropic ALP has either CVµe = 0 or CAµe = 0. The angular distribution of the
final state positrons is isotropic in the muon rest frame and independent of the muon
polarization, cf. eq. (2.4).

• the left/right-handed ALP couples only to the left/right-handed SM fermions, i.e.,
CVµe = −CAµe for the left-handed and CVµe = +CVµe for the right-handed ALP. The
positron angular distribution is ∝ (1∓ Pµ cos θ) for the left(right)-handed ALP.

The SM µ+ → e+ νe ν̄µ three-body decay proceeds through an off-shell W+ and produces
the so-called Michel spectrum

d2Γ(µ+ → e+ νe ν̄µ)
dxe d cos θ ' Γµ

[
(3− 2xe)− Pµ(2xe − 1) cos θ

]
x2
e , (3.2)

with Γµ ' m5
µG

2
F /(192π3) = 3 × 10−10 eV the total muon decay width, and θ the angle

between muon polarization vector and the positron momentum in the muon rest frame,
see figure 4 (left). The positron energy fraction xe = 2Ee/mµ takes the values 0 ≤ xe ≤ 1
(when neglecting the positron mass). In writing eq. (3.2) the NP scale was taken to be
well above the weak scale, as is the case for NP models we are interested in, so that the
three-body muon decay is the SM one. For further details on the SM muon properties we
refer the reader to the two excellent reviews, refs. [61, 62].

For an unpolarized muon beam, 〈Pµ〉 = 0, the SM background in eq. (3.2) peaks at
Eline
e = mµ/2 which corresponds to xe = 1. That is, the peak of the SM background for

unpolarized muons coincides with the µ+ → e+a positron line for a massless ALP. Luckily,
this is not the situation encountered at the intense muon facilities. The muon flux in
low energy muon beamlines such as those at TRIUMF or PSI is dominated by the muons
produced from pions decaying at rest, at the surface of the production target. These muons
are 100% polarized in the direction opposite to the muon momentum, i.e., 〈Pµ〉 = −1 in the
notation of eq. (3.2). As a consequence, muon facilities produce very intense µ+ fluxes of
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Figure 4. Left: Cartoon summarizing the relevant kinematical variables in the SM decay of a
polarized µ+. Right: Summary of the experimental strategies to hunt for µ+ → e+a. The three
blue lines show the distribution of the positron spectrum in the SM decay µ+ → e+νeν̄µ for fixed
angle cos θ̄e = 1, 0.8, 0.6 up to a typical angular resolution of δθe = ±5 × 10−3. The muon beam
is assumed to be 100% polarized 〈Pµ〉 = −1 and as a consequence the positron distribution drops
after having a maximum at xmax (see eq. (3.3)). The value of the branching ratio at the end point
depends on the angular position and resolution (see eq. (3.4)). In the gray region the positron
momentum is below 10MeV and typically not recorded, in the green region µ+ → e+a can be
searched as a spike on the Michel background. In the red region looking for the signal spike of
µ+ → e+a requires to overcome challenges in the calibration of the instrument. The two different
red lines correspond to two different momentum resolutions as in eq. (3.6): 0.13% in Jodidio et
al. [9] and 1.8% in TWIST [10] (see text for details).

almost 100% polarized muons. The final polarization at the stopping point varies between
80% and 100% depending on the size of the depolarization effects at the production point,
during the propagation and at the stopping target.

Polarization of the muon can significantly reduce the SM background. This is illus-
trated in figure 4 (right), which shows the Michel spectra as functions of xe for fixed
〈Pµ〉 = −1 and three representative values of cos θ̄e = 1, 0.8, 0.6, where θe ≡ π − θ is the
angle between the positron momentum and the muon beamline, see figure 4 (left).6 For
0 < cos θ̄e ≤ 1 the non-zero polarization moves the position of the maximum of the Michel
spectrum to

xmax = 3− 〈Pµ〉 cos θ̄e
3(1− 〈Pµ〉 cos θ̄e)

〈Pµ〉=−1= 3 + cos θ̄e
3(1 + cos θ̄e)

, (3.3)

i.e., away from the massless ALP positron line, while for cos θ̄e ≤ 0 it remains at xmax = 1.

6Technically, the Michel spectra were integrated over small angular bins, cos θ̄e ± δcos θe, where δθe =
5× 10−3, which is the typical angular resolution of these experiments.
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The SM decay rate at the position of the massless ALP positron line, xe = 1, is

d

dxe
BR(µ→ e νe ν̄µ)|xe=1,θe=θ̄e = 2δcos θe (1 + 〈Pµ〉 cos θ̄e)

〈Pµ〉=−1= 2δcos θe (1− cos θ̄e) .
(3.4)

The SM background for fully polarized muons is exactly zero for cos θ̄e = 1, i.e., for
positrons emitted in the forward direction relative to the muon beam, up to terms quadratic
in the angular resolution. However, in order to have appreciable signal rates, one cannot
work in the exact forward limit, cos θ̄e = 1, but need to accept events in some range around
θ̄e = 0, which also makes the SM background nonzero. Furthermore, any suppression in the
average muon polarization increases the SM background linearly with δPµ = 〈Pµ〉+ 1. For
the ALP positron line the background suppression is linear in the momentum uncertainty,
δxe, at least within the naive assumption of Gaussian smearing, making this uncertainty
dominant compared to the one on the angle, δθe.

With judicious choice of cuts one can optimize the signal to background ratios. The
only two discriminants between the SM background and the ALP signal are the momentum
of the final state positron, pe, and the angle θe. The reach of different µ+ → e+a searches
can be understood schematically in the cut-and-count scheme, giving

BR(µ+ → e+a) . Z

√
abkd

a2
sigNµ+

+ ε2sys , (3.5)

where Z = 1.28(1.64) for 90% (95%) C.L. intervals, taking the limit of Gaussian statistics
and using limits for one-sided intervals. Here, Nµ+ is the number of µ+ at a given exper-
iment, abkd (asig) is the background acceptance (signal efficiency), while εsys encodes the
systematic uncertainties. The abkd depends linearly on the momentum resolution, assuming
the background is roughly constant in a given momentum bin. Whenever εsys & 1/

√
Nµ+

the reach in the branching ratio saturates independently on the muon luminosity.
Figure 4 (right) summarizes the experimentally accessible regions that can be used for

µ+ → e+a searches. Due to the momentum threshold for soft positrons the ALPs with
masses above ma & 95MeV are unaccessible. For massive ALPs lighter than 95MeV a
standard bump hunt over the Michel spectrum can be performed, after the instrument is
calibrated with the Michel spectrum endpoint. For an almost massless ALP, i.e., for masses
below the momentum resolution of the experiment

ma .

√
δpe
pe
·mµ , (3.6)

the positron line gets close to the endpoint of the Michel spectrum. As a consequence,
a shift in the endpoint of the SM spectrum due to the momentum resolution or other
uncertainties on the experimental setup would result in a spike which would be impossible
to distinguish from the signal. Reducing the large systematics on the endpoint of the
Michel spectrum then requires alternative ways to calibrate the instrument in this mass
region. In figure 4 we show the two mass regions where this is required for the momentum
resolutions of the two TRIUMF experiments we describe here.
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In section 3.1 we first review the two experimental searches which were performed at
TRIUMF: i) the 1986 experiment by Jodidio et al. [9] and ii) the 2015 TWIST experi-
ment [10]. The two searches had very different philosophies. The setup by Jodidio et al.
tried to suppress the SM background as much as possible, so that abkd � asig in eq. (3.5).
This was achieved by using a highly polarized muon beam and measuring in the forward
region with a tight angular cut and excellent momentum resolution. Crucially, magnetic
focusing of the positrons improves the signal acceptance above the naive geometric one, and
the sensitivity in eq. (3.5) is maximized. The TWIST experiment relies instead on larger
integrated luminosity and uses wide angular acceptance. As we show below, combining the
results of the two experiments gives complete coverage of different ALP masses and chiral
structures of couplings for leptons.

In section 3.2 we discuss the future prospects for µ+ → e+a at PSI: at MEG II and
Mu3e [58]. MEG II is set to soon start its physics run, with the primary goal to improve the
sensitivity to µ+ → e+γ decays. The primary goal of Mu3e is to improve on µ+ → e+e−e+,
with data taking scheduled to start in the relatively near future. Both experiments use
the πE5 beamline which provides roughly 108µ/sec with muon momenta of 28 MeV, and
can also be used for µ+ → e+a searches. The two experimental proposals to hunt for
µ+ → e+a, MEGII-fwd that is part of this paper, and Mu3e-online, are very different in
spirit and could be complementary given that Mu3e will presumably start the physics run
after MEG II will have collected the planned muon luminosity.

3.1 Past searches at TRIUMF: Jodidio et al. and TWIST

The 1986 experiment by Jodidio et al. [9] used two datasets, the “spin held” sample
of 1.8×107 µ+, and “spin precessed” sample of 1.4×107 µ+. The two datasets both passed
the trigger requirements, but differed in the magnetic field configurations that were used in
the experiment. The spin held sample had much higher purity of polarized muons and was
used to perform the µ+ → e+a search. The spin precessed sample was used to calibrate
the end point of the Michel spectrum in order to reduce the systematic uncertainty. The
extremely high purity of polarized muons in the spin held sample was achieved through the
use of high purity metal foils as targets, which highly suppressed the muonium production,
while the strong magnetic field of 1.1 T parallel to the muon beam line suppressed the muon
spin precession. The measured averaged muon polarization at the stopping point was

〈Pµ〉 = −0.99863± 0.00088 , (3.7)

where we assumed the SM values for the muon decaying parameters and combined in
quadrature the statistical and systematic uncertainties.

The µ+ → e+a analysis searched for a positron line in the “spin held” data. The cuts

cos θe > 0.975 , xe > 0.97 , (3.8)

selected the region of phase space in which the SM three-body decay is heavily suppressed
for polarized muons, see eq. (3.4). The positrons emitted in the beam direction, i.e., at
cos θe ' 1, were measured downstream in the spectrometer after they bent by more than
90◦ by a magnetic field.
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First, we check how well the simple cut-and-count scheme reproduces the bound derived
by the experimental collaboration for the massless isotropic ALP,

CVµe = 0 or CAµe = 0 : BR(µ→ e a) < 2.6× 10−6 (90% CL) [9]. (3.9)

This will prove useful when deducing the projected sensitivities in the next section. Ap-
plying the cuts (3.8) on the Michel spectrum, eq. (3.2), gives ageo = 5.3 × 10−5 for the
geometric acceptance of the background. Moreover, for a massless ALP, the number of
background events in a ±2σ band around xe = 1 can be estimated by integrating the
distribution provided in ref. [9], accounting for the quoted momentum resolution

δpe
pe

= 0.13%. (3.10)

This leads to a background efficiency of εbkd = 1.7× 10−2, i.e., the fraction of background
events satisfying (3.8) that are in the signal region xe ∈ [1−2δxe, 1+2δxe]. The background
acceptance in the signal region of the initial spin held sample is thus abkd = ageo·εbkd = 8.7×
10−7. Applying instead the 2σ band cut around xe ' 1 directly on the Michel spectrum,
eq. (3.2), gives a similar estimate for the background acceptance, abkd ' 10−6. This shows
that using the simple analytical Michel spectrum is good enough for the purposes of our
estimates in the next section.

In order to obtain the correct limits we still need to take into account the effect of
magnetic focusing. After magnetic focusing and the cuts in eq. (3.8) the total number
of observed events in the spin held sample is ' 7.4 × 104 (obtained by integrating the
distribution published in ref. [9]). Assuming that these events are entirely due to the SM,
and neglecting the focusing, would require Nµ+ ' 1.4× 109 in the initial spin held sample,
while in reality Nµ+ = 1.8×107. The magnetic focusing therefore leads to effectively larger
geometric acceptance,7

F ≡ ageo+focus
ageo

= 77.8. (3.11)

The efficiency for the ALP signal in this experimental setup depends very much on
the helicity structure of the ALP couplings to the SM current and on the ALP mass.
For a massless isotropic ALP, i.e., ma � me and CV = 0 or CA = 0, we find aISOgeo =
1.25×10−2 after the angular cut in eq. (3.8). Assuming that the focusing lens act similarly
on background and signal we find aISOgeo+focus = 0.97. The experimental analysis also assigns
εsys = 0.9 × 10−6 systematic uncertainty on the branching ratio for an isotropic ALP.
Given the numbers above, eq. (3.5) then gives our recast bound of 2.8×10−6, which agrees
quite well with the result of the fit in ref. [9]. The agreement makes us confident that we
understand the main features of the experimental setup. The above exercise also highlights
that the systematic uncertainty in the experiment by Jodidio et al. was smaller than the
statistical one, and thus the bound on BR(µ→ ea) would have benefitted from a factor of
10 bigger muon luminosity before hitting the bottleneck of systematics.

7We thank Angela Papa and Giovanni Signorelli for illuminating discussions about this point and refer
to [63, 64] for a detailed derivation of the focusing power of a solenoid lens.
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Next, we recast the result by Jodidio et al. for different chiral structures of ALP cou-
plings and for higher ALP masses. We assume that there are no changes in systematic
uncertainties and the solenoid focusing effect. The ratios of signal acceptances are then ob-
tained by simply applying the angular cut in eq. (3.8) to the angular distribution predicted
by the modified ALP coupling and mass, and compare it to the baseline massless isotropic
ALP. We obtain aRHgeo/aISOgeo ' 2 and aLHgeo/aISOgeo ' 0.012 for the signal acceptances of right-
handed (RH) ALP and left-handed (LH) ALP relative to the isotropic case, respectively.
Rescaling the bound in eq. (3.9) gives for the massless right-handed ALP

CVµe = CAµe : BR(µ→ e a) < 2.5× 10−6 (90% CL) . (3.12)

The improvement in the bound is marginal compared to the isotropic case because the
magnetic focusing effect is already giving a signal acceptance very close to one. If focusing
were a tunable parameter, the setup by Jodidio et al. would have benefitted from slight
defocusing which would have decreased the SM background but kept the signal almost
unchanged, giving the best bound on the V +A ALP.

For massive ALP the measurement by Jodidio et al. still translates into a bound since
the tail of the signal distribution leaks into the experimental signal region due to the finite
experimental resolution on the positron momentum, eq. (3.10). For plinee ' mµ/2 the
momentum spread is up to 70 keV. We recast the Jodidio et al. bound to ma & me by
taking the signal to be a Gaussian in pe with the mean given by eq. (3.1) and the width
set by the momentum resolution in eq. (3.10). The overlap between the Gaussian smearing
of the signal and the flat bin centered around plinee = mµ/2 with a width of 140 keV sets
the efficiency of the signal. The result of this extrapolation is shown in figure 1 and as
expected the search strategy loses sensitivity very slowly for ma & me. The efficiency drops
significantly only when ma ' mµ/10, in which case the ALP mass starts to significantly
shift the position of the positron line in eq. (3.1).

For pure left-handed ALP the systematic uncertainties related to the determination
of the background endpoint are expected to grow significantly. The reason is that in this
case the signal is suppressed more in the spin held dataset than in the spin precessed one.
However, in the analysis [9] the latter was assumed to not be affected by the NP signal,
in order to calibrate the instrument. Assuming that this is indeed still the case gives the
green dashed line in figure 1, which should be viewed as only roughly indicative of what
the correct bound for the left-handed ALP is.

The 2015 TWIST experiment [10] collected 5.8 × 108 muons after the selection
cuts were applied. The experimental collaboration studied the µ+ → e+a decay, varying
both the mass of the ALP and the chirality of its couplings to the SM. Their results are
summarized with the blue lines in figure 1.

The experimental concept of TWIST is fundamentally different from the previously
discussed experiment by Jodidio et al. TWIST detected positrons using a spectrometer with
an approximate cylindrical symmetry surrounding the muon beam line, and momentum
resolution at xe ' 1 given by,

δpe
pe
' 1.1%
| sin θe|

, (3.13)
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which correspond to δpe = 572 keV/ sin θe at pe = 52 MeV. Since the momentum resolution
deteriorates in the forward direction (where sin θe → 0), the experimental strategy of
Jodidio et al. cannot be implemented, even though the TWIST muon beam is highly
polarized. The momentum resolution in eq. (3.10) translates into an upper bound below
which the ALP can be considered effectively massless

ma .
√

2mµ · 1MeV ' 14 MeV . (3.14)

The 1 MeV was obtained by setting cos θe = 0.8 in eq. (3.10), which is the positron angle
for which TWIST had the widest momentum acceptance.

As shown in figure 1, for a massive ALP the TWIST search covers a region that was left
unexplored by the 1986 Jodidio et al. result, and extends the coverage up to an ALP mass
of 86.6 MeV. For higher masses the positron becomes too soft to be efficiently triggered on
at TWIST. In this region older searches by Derenzo et al. [65] and Bilger et al. [66] and
the recent PIENU result [67] complement the high mass coverage. We refer to the PIENU
paper [67] for a summary plot focused on the high mass region.

TWIST becomes less sensitive for a massless ALP due to the systematic uncertainties
related to the calibration of the xe = 1 endpoint, which limited the sensitivity. Unlike
Jodidio et al., TWIST collaboration had to rely on Monte Carlo modeling to calibrate
the endpoint. The quoted systematic on the momentum edge represented an irreducible
bottleneck to improving sensitivity of the massless ALP search. The 90% C.L. upper
bounds for massless ALP by TWIST, extracted using the Feldman-Cousins method [68], are

CVµe = 0 or CAµe = 0 : BR(µ→ e a) < 2.1× 10−5 (90% CL), (3.15)
CVµe = CAµe : BR(µ→ e a) < 1× 10−5 (90% CL), (3.16)
CVµe = −CAµe : BR(µ→ e a) < 5.8× 10−5 (90% CL). (3.17)

Only the last bound, on the left-handed ALP, is stronger than our recast of the previous
bound from Jodidio et al. experiment, which, as discussed before, was less sensitive to
left-handed ALPs. The gain of the TWIST experiment is due to the much larger muon
luminosity compared to the one available to Jodidio et al., which compensates for the worse
momentum resolution at TWIST.

3.2 New searches at PSI: MEGII-fwd and Mu3e-online

A proposal for MEGII-fwd. The MEG II experiment is expected to start its physics
runs soon after completion of the engineering run that started in 2019. The goal of our
proposal is to achieve at MEG II a configuration similar to the one used in the experiment
by Jodidio et al. [9], so that the µ+ → e+a decays of polarized muons are detected in
the forward region where the SM background is suppressed, see figure 4 and discussion in
section 3.1. Such a set-up requires:

• A forward detector to collect energetic forward positrons. The final sensitivity to
µ+ → e+a decays will depend on the energy resolution of this detector. We assume
that a Lyso calorimeter (Lyso-ECAL) with a 10 cm diameter and high enough thresh-
old for positron energies can be installed in the forward direction roughly 1.5 meters

– 16 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
3

1.5 m
<latexit sha1_base64="5DUs1+vibKM5IRtbobX/0tIE1sA=">AAACDHicbVDLSgNBEJz1GeMr6tHLYBA8SNiViB6DXjxGMA/ILmF20kmGzOwuM71iWPILHr3qR3gTr/6D3+BPOHkcTGJBQ1HVTXdXmEhh0HW/nZXVtfWNzdxWfntnd2+/cHBYN3GqOdR4LGPdDJkBKSKooUAJzUQDU6GERji4HfuNR9BGxNEDDhMIFOtFois4Qyv5XunSR3jCjKpRu1B0S+4EdJl4M1IkM1TbhR+/E/NUQYRcMmNanptgkDGNgksY5f3UQML4gPWgZWnEFJggm9w8oqdW6dBurG1FSCfq34mMKWOGKrSdimHfLHpj8T+vlWL3OshElKQIEZ8u6qaSYkzHAdCO0MBRDi1hXAt7K+V9phlHG9PcljBU58Y+1ofOKG/T8RazWCb1i5JXLpXvy8XKzSynHDkmJ+SMeOSKVMgdqZIa4SQhL+SVvDnPzrvz4XxOW1ec2cwRmYPz9Qs/XZuB</latexit>

10
cm

<latexit sha1_base64="sU/pWa1p7sk52FOz9/CLGksAQJY=">AAACDHicbVDLSgNBEJyNrxhfUY9eBoPgQcKuBPQY9OIxgnlANoTZSScZMrO7zPSKYdlf8OhVP8KbePUf/AZ/wsnjYBILGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpAihjgIltGINTAUSmsHoduI3H0EbEYUPOI6ho9ggFH3BGVrJ91wf4QlTylXWLZbcsjsFXSXenJTIHLVu8cfvRTxRECKXzJi258bYSZlGwSVkBT8xEDM+YgNoWxoyBaaTTm/O6JlVerQfaVsh0qn6dyJlypixCmynYjg0y95E/M9rJ9i/7qQijBOEkM8W9RNJMaKTAGhPaOAox5YwroW9lfIh04yjjWlhSxCoC2MfG0IvK9h0vOUsVknjsuxVypX7Sql6M88pT07IKTknHrkiVXJHaqROOInJC3klb86z8+58OJ+z1pwznzkmC3C+fgGOhpux</latexit>

a
<latexit sha1_base64="eME/QKhnplHf7ifcoTaFGB3UnDA=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgQcKuBPQY9OIxAfOAZAmzs73JkJnZZWZWCEtOHr3qR3gTr36J3+BPOEn2YBILGoqqbrq7goQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRaFFYx6rbkA0cCahZZjh0E0UEBFw6ATj+5nfeQKlWSwfzSQBX5ChZBGjxFipSQblilt158DrxMtJBeVoDMo//TCmqQBpKCda9zw3MX5GlGGUw7TUTzUkhI7JEHqWSiJA+9n80Cm+sEqIo1jZkgbP1b8TGRFaT0RgOwUxI73qzcT/vF5qols/YzJJDUi6WBSlHJsYz77GIVNADZ9YQqhi9lZMR0QRamw2S1uCQFxp+9gIwmnJpuOtZrFO2tdVr1atNWuV+l2eUxGdoXN0iTx0g+roATVQC1EE6AW9ojfn2Xl3PpzPRWvByWdO0RKcr19eD5c6</latexit> pe+

<latexit sha1_base64="JFBc8ySMM7iHitOGgXKt/2qKo3M=">AAACB3icbVDLSgNBEJz1GeMr6tHLYBAEJexKQI9BLx4jmAcka5id7U2GzMwuM7NCWPIBHr3qR3gTr36G3+BPOEn2YBILGoqqbrq7goQzbVz321lZXVvf2CxsFbd3dvf2SweHTR2nikKDxjxW7YBo4ExCwzDDoZ0oICLg0AqGtxO/9QRKs1g+mFECviB9ySJGibFSK+ll8Hg+7pXKbsWdAi8TLydllKPeK/10w5imAqShnGjd8dzE+BlRhlEO42I31ZAQOiR96FgqiQDtZ9Nzx/jUKiGOYmVLGjxV/05kRGg9EoHtFMQM9KI3Ef/zOqmJrv2MySQ1IOlsUZRybGI8+R2HTAE1fGQJoYrZWzEdEEWosQnNbQkCcaHtYwMIx0WbjreYxTJpXla8aqV6Xy3XbvKcCugYnaAz5KErVEN3qI4aiKIhekGv6M15dt6dD+dz1rri5DNHaA7O1y8GZ5nK</latexit>

L
y
so
-E

C
A
L

<latexit sha1_base64="KfBFZ5UV9MEb2PB+3BCSyYgVH8Y=">AAACEnicbVDJSgNBEO1xjXEb9ehlMAgeNMxIQI/RIHjIIYJZIAmhp6cmadKz0F0TDEP+wqNX/Qhv4tUf8Bv8CTvLwSQ+KHi8V0VVPTcWXKFtfxsrq2vrG5uZrez2zu7evnlwWFNRIhlUWSQi2XCpAsFDqCJHAY1YAg1cAXW3Xxr79QFIxaPwEYcxtAPaDbnPGUUtdUyzhfCEaXmooou70k151DFzdt6ewFomzozkyAyVjvnT8iKWBBAiE1SppmPH2E6pRM4EjLKtREFMWZ92oalpSANQ7XRy+cg61Ypn+ZHUFaI1Uf9OpDRQahi4ujOg2FOL3lj8z2sm6F+3Ux7GCULIpov8RFgYWeMYLI9LYCiGmlAmub7VYj0qKUMd1twW1w3OlX6sB94oq9NxFrNYJrXLvFPIFx4KueLtLKcMOSYn5Iw45IoUyT2pkCphZEBeyCt5M56Nd+PD+Jy2rhizmSMyB+PrF0oGnaI=</latexit>

Pµ = �1
<latexit sha1_base64="uI32VCuHp/II4wH5RGlnUa2bSOQ=">AAACCHicdVDLSsNAFJ3UV62vqks3g0VwoSUJse1GKLpxWcE+oA1lMpm0Q2eSMDMRSugPuHSrH+FO3PoXfoM/4aSNYEUPXDiccy/33uPFjEplmh9GYWV1bX2juFna2t7Z3SvvH3RklAhM2jhikeh5SBJGQ9JWVDHSiwVB3GOk602uM797T4SkUXinpjFxORqFNKAYKS31WsMBTy7PrWG5YlZrjn1hO9CsmnNkxLJr9Qa0cqUCcrSG5c+BH+GEk1BhhqTsW2as3BQJRTEjs9IgkSRGeIJGpK9piDiRbjq/dwZPtOLDIBK6QgXn6s+JFHEpp9zTnRypsfztZeJfXj9RQcNNaRgnioR4sShIGFQRzJ6HPhUEKzbVBGFB9a0Qj5FAWOmIlrZ4Hj+T+rEx8Wclnc53BPB/0rGrllN1bp1K8yrPqQiOwDE4BRaogya4AS3QBhgw8AiewLPxYLwYr8bborVg5DOHYAnG+xcsxZnW</latexit> µ+

<latexit sha1_base64="q9lLvLP1FhKLmXx45pO4JQKkMmg=">AAACBXicdVDLSgMxFM3UV62vqks3wSIISpkZxrbLohuXFZy20I4lk0nb0CQzJBmhDF27dKsf4U7c+h1+gz9h+hCs6IELh3Pu5d57woRRpW37w8qtrK6tb+Q3C1vbO7t7xf2DpopTiYmPYxbLdogUYVQQX1PNSDuRBPGQkVY4upr6rXsiFY3FrR4nJOBoIGifYqSN5Hd5enfWK5bscsVzL1wP2mV7hilx3Eq1Bp2FUgILNHrFz24U45QToTFDSnUcO9FBhqSmmJFJoZsqkiA8QgPSMVQgTlSQzY6dwBOjRLAfS1NCw5n6cyJDXKkxD00nR3qofntT8S+vk+p+LcioSFJNBJ4v6qcM6hhOP4cRlQRrNjYEYUnNrRAPkURYm3yWtoQhP1fmsSGJJgWTzncE8H/SdMuOV/ZuvFL9cpFTHhyBY3AKHFAFdXANGsAHGFDwCJ7As/VgvViv1tu8NWctZg7BEqz3L4BEmPc=</latexit>

✓e
<latexit sha1_base64="d+HlLrsUM/U3W+6Pa+A3j5S6nws=">AAACCHicbVDLSsNAFJ34rPVVdekmWAQXUhIp6LLoxmUF+4A2lMnkphk6mYSZG6GE/oBLt/oR7sStf+E3+BNO2yxs64ELh3Pu5d57/FRwjY7zba2tb2xubZd2yrt7+weHlaPjtk4yxaDFEpGork81CC6hhRwFdFMFNPYFdPzR3dTvPIHSPJGPOE7Bi+lQ8pAzikbq9jECpAMYVKpOzZnBXiVuQaqkQHNQ+ekHCctikMgE1brnOil6OVXImYBJuZ9pSCkb0SH0DJU0Bu3ls3sn9rlRAjtMlCmJ9kz9O5HTWOtx7JvOmGKkl72p+J/XyzC88XIu0wxBsvmiMBM2Jvb0eTvgChiKsSGUKW5utVlEFWVoIlrY4vvxpTaPRRBMyiYddzmLVdK+qrn1Wv2hXm3cFjmVyCk5IxfEJdekQe5Jk7QII4K8kFfyZj1b79aH9TlvXbOKmROyAOvrF/5lmlU=</latexit>

Figure 5. The proposed MEGII-fwd set-up. A Lyso-ECAL detector of 10 cm in diameter is placed
along the muon beam line 1.5 m downstream from the stopping point. The muon polarization Pµ
is in the opposite direction than the detected positron.

downstream from the muon stopping target, see figure 5. The resulting angular cov-
erage is θ ' 1.91◦. We vary the positron momentum resolution at pe+ = mµ/2 in
the range8

δxe ≡ δpe+/me = 10−3 − 10−1 . (3.18)

At a similar position the MEG II collaboration planned to put a Radiative Decay
Counter (RDC), with the aim to reduce the accidental background for the search of
µ+ → e+γ. However, RDC is designed to detect low-momenta positrons and would
not be useful for the µ+ → e+a search.

• A new configuration of the MEG II magnetic field in order to suppress depolarization
effects and keep the µ+ antiparallel to the outgoing positron. The two main sources of
depolarization of the muon beam are the so called “halo muons”, emitted from pions
decay in flight, and the angular divergence of the beam. How close the polarization
can be kept to the maximal one, 〈Pµ〉 = −1 is crucial here, as this controls the
suppression of the SM background, see (3.4), which directly affects the sensitivity to
µ+ → e+a. In what follows, we vary the depolarization in the range,

∆Pµ ≡ 〈Pµ〉+ 1 = 10−3 − 10−1 . (3.19)

In the predecessor experiment, the MEG experiment, the muon polarization at the
stopping target was 〈Pµ〉 = −0.86 ± 0.06 [70], which corresponds to the upper limit
of the above range. The lower limit of the range assumes that the depolarization
strategy similar to the one used in the 1998 experiment by Jodidio et al., ref. [9], can
be put in place. Collecting in addition a less pure sample of polarized muons would
help in calibrating the endpoint of the Michel spectrum, xe = 1, exactly as it was
done in ref. [9].

• A focusing lens to increase the positron luminosity in the forward direction. In
the experiment by Jodidio et al., a solenoid lens was used to maximize the signal
acceptance at the price of a higher SM background, cf. section 3.1. Focusing enlarges

8We are aware that the use of such a calorimeter for calibration purposes was discussed inside the MEG
II collaboration. A momentum resolution δpe+/pe+ = 10−2 at pe+ = mµ/2 is realistic for this ECAL [69].
We thank Angela Papa for private communications regarding this.
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the effective size of the forward detector. The angular coverage of the Lyso-ECAL is
very small so that without focusing the geometric acceptance of the signal is only,

aISOgeo = 5.6× 10−4 , aV+A
geo = 1.2× 10−3 , (3.20)

for isotropic and V + A ALP, respectively. The reach on the branching ratio scales
with the focusing factor F as BR(µ+ → e+a) ∼ 1/

√
F as long as F×ageo < 1 and the

systematics uncertainties are subdominant. In the projections we leave F as a free
parameter, noting that F ∼ O(102) was reached in the 1986 experiment by Jodidio
et al., cf. eq. (3.11).

• Sufficient time devoted to the physics run in the µ+ → e+a search configuration. As
a reference point we will use

Nµ = 1.2× 1014µ+ , (3.21)

which corresponds to a 2 week run at an instantaneous luminosity of 108µ+/sec.9
This is seven orders of magnitude greater than the dataset collected by Jodidio et
al. Crucially, the µ → ea run could be performed at the very end of the µ → eγ

data taking at MEGII. This would allow to work on the necessary modifications and
extend the physics purpose of MEG II before Mu3e starts.

In the left panel of figure 6 we show how the reach on the branching ratio BR(µ+ →
e+a) for a massless ALP depends on the average polarization and the angular resolution.
Interestingly, from the shape of the contours one sees that augmenting the polarization
purity of the muon beam should go together with an increase of the momentum resolution
in order to lead to a better experimental reach. The orange star in the plot is one of our
benchmark configurations, where we assume no focusing in the forward direction and set
δxe = 〈Pµ〉+1 = 10−2. Already in these suboptimal conditions, MEGII-fwd could improve
on the present bound from Jodidio et al.

In the right panel we set δxe = 〈Pµ〉+1 and investigate the importance of the focusing.
To be conservative we take as the benchmark F = 100, which corresponds to an effective
diameter of the forward calorimeter roughly 10 times bigger than its actual size. This is of
the same order of magnitude as the focusing achieved in ref. [9]. However, a larger focusing
would always be beneficial until F × ageo would be of order unity.

In table 1 and figure 1 we show the estimated reach of MEGII-fwd for the two bench-
mark configurations described above. The reach for higher ma, shown in figure 1, is com-
puted accounting for the amount of signal which will overlap with the massless hypothesis
given the experimental resolution. Due to worse momentum resolution the drop in the fa
reach at high masses is slower at MEGII-fwd compared to the Jodidio et al. experiment.

9MEG II plans to run with the reduced instantaneous luminosity of 3× 107µ+/sec in order to decrease
accidental coincidences, which is the dominant background in the µ+ → e+γ measurement. For the µ+ →
e+a search one should attempt to use the full instantaneous luminosity of 108µ+/sec available at the πE5
beamline at PSI.
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Figure 6. Left: The orange contours show the 90% C.L. expected sensitivity on BR(µ+ → e+a)
at MEGII-fwd for a massless isotropic ALP (either CVµe 6= 0 or CAµe 6= 0) as a function of the
momentum resolution δxe, and the deviation of average polarization 〈Pµ〉 from −1, assuming there is
no magnetic focusing. Right: The expected sensitivity at MEGII-fwd (orange contours) as a function
of the momentum resolution δxe and focusing F , setting muon polarization to 〈Pµ〉 = −1+δxe. The
angular resolution is assumed to be subdominant and systematic uncertainties below the statistical
one. The darker green region are excluded by the 1986 Jodidio et al. experiment [9], cf. table 1. The
dashed dark orange line indicates where our future projections assume that systematic uncertainties
can be lowered compared to the ones in Jodidio et al. εsys = 0.9× 10−6.

Mu3e-online. The primary goal of the planned Mu3e experiment at PSI is to search
for µ+ → e+e−e+ with the unprecedented sensitivity of 10−16. The key feature of Mu3e
is that it will operate without a hardware trigger. The full detector read-out will be
streamed to the filter farm at 80 GB/sec, where the µ+ → e+e−e+ events will be identified
and eventually stored on disk.

Recently, ref. [11] performed a preliminary study of the Mu3e sensitivity to BR(µ+ →
e+a), based on a more detailed simulation of the µ+ → e+a channel at the phase I of the
Mu3e experiment [42]. The dark thin red line in figure 1 shows the 95% C.L. limit on fa for
isotropic LFV ALP that Mu3e is projected to achieve with a physics run of 300 days. The
∼ 104 improvement in fa reach over the TWIST experiment is mostly driven by the seven
orders of magnitude larger dataset, which, however, does not come without challenges.

For µ+ → e+a search the Mu3e will be able to reconstruct online all the single positron
events corresponding to “short tracks”, i.e., events with only four hits on the four detector
layers. The online reconstruction of “short tracks” in the filter farm has been shown to
reduce by a factor of 100 the data rate [71], making it possible to process all the short
tracks events and store positron three-momenta, ~pe. A search for BR(µ+ → e+a) positron
line can be done as a bump hunt on the smooth SM |~pe| distribution, assuming that every
positron event corresponds to a single track.
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The tracks in Mu3e will gyrate around the magnetic field of roughly 1 T. The typical
e+ gyroradius will be much larger than the radius of the Mu3e instrumented region — a
cylinder with radius of around 6 cm. Encountering the detector material the positron will
loose momentum and eventually stop. The positron will typically stop after half a turn,
i.e., after having encountered at least four detector layers: 2 central layers + 2 external
layers. This justifies the assumption of one positron per one track. Positrons emitted
perpendicularly to the muon beam will instead perform many turns in the central layers
without being stopped in the detector material. Enforcing an angular cut will minimize the
impact of these re-curling tracks. As a result, the angular acceptance of the Mu3e analysis
is expected to be reduced to the region θe < π/2− 0.1.

The momentum resolution for short tracks will be in the δpshort = 0.5− 3 MeV range,
roughly comparable to TWIST. In principle, a momentum resolution down to δplong =
0.1 − 0.45 MeV could be achieved, if an experimental upgrade allowed to also process
online the “long tracks”, characterized by 6 or 8 hits in the detector layers. The Mu3e
sensitivity on BR(µ+ → e+a) extracted from the long track analysis would then improve
by a factor of

√
δplong/δpshort ' 0.4 [42].

Finally, we comment on the challenges of calibrating the instrument. As already men-
tioned, the current concept foresees to use the endpoint of the positron momentum spec-
trum to calibrate the online reconstructed tracks. This method will not allow to efficiently
search for µ+ → e+a decays when ma . 10 − 25 MeV, depending on the precise positron
momentum resolution. Given the large amount of single positron data collected at Mu3e,
ref. [42] showed that, within a given mass assumption for the signal, one could in principle
use the same momentum spectrum to simultaneously calibrate the apparatus and to per-
form the peak search. In the calibration fit one would remove from the calibration dataset
the signal region, which is defined as a 2δpshort band below and above the expected mo-
mentum of the positron corresponding to the ALP mass. Given that for ma . 25 MeV the
signal region includes the Michel edge the determination of the scaling parameter xe = 1
deteriorates, resulting in a limited sensitivity at low masses. Including this effect the
expected sensitivites for a massless isotropic ALP are

CVµe = 0 or CAµe = 0 : BR(µ→ e a) < 7.3× 10−8 (90% CL) . (3.22)

Notice that the deteriotation computed in ref. [42] includes only the broadening of the xe
statistical distribution estimated from a toy Monte Carlo sample of 109µ+ (the root mean
square error grows from 7 × 10−6 for ma = 60 MeV to 3.8 × 10−5 for ma = 10 MeV). A
similar effect is expected for both the left-handed and the right-handed ALPs so that the
reach shown in figure 1 is a realistic estimate of the Mu3e reach for all chiral structures.
It is possible, however, that alternative calibration strategies such as the one proposed in
ref. [72] could improve the Mu3e reach at low masses.

3.3 The potential at µ− → e− conversion experiments

The µ → e conversion in nuclei experiments, COMET at J-PARC [4] and Mu2e at
FNAL [5], are designed around very large muon fluxes, with over 109µ−/s and 1010µ−/s
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at the two respective experiments. One may hope that these could also be used for µ→ ea

searches. However, in order to be able to deal with the vast data-streams the two experi-
ments will not measure the full Michel spectrum but rather focus on the endpoint of the e−
energy, which for the µ−+ (A,Z)→ e−+ (A,Z) process is at Eend

e = mµ−Eb−Erec, with
Eb the binding energy of the muonic atom and Erec the nuclear recoil energy. In Aluminum
Eend
e ' 105MeV, while in gold Eend

e ' 95MeV.
The conversion with the emission of the ALP, µ− + (A,Z) → e− + a + (A,Z), peaks

instead at the electron energy of around Ee ' mµ/2, but with the tails of the electron
energy distribution that go all the way up to Eend

e . Nominally, searches for the µ → ea

process at COMET and Mu2e would also rely on these tails of the distribution, which poses
a challenge for obtaining a competitive reach. For instance, for Ee > 100MeV only a small
fraction of µ → ea decays, about 2 × 10−10, would be inside the signal region for µ → e

conversion on Al [73] (see also [74]). Even with 1018 muons a competitive search would
thus likely require relaxing the lower bound on Ee and developing techniques to distinguish
between the smooth shapes of the signal, µ → ea, and SM background, µ → eνν̄, decays
in orbit.

4 ALPs in µ→ e+ γ + invis. decays

The µ+ → e+γa decay offers a complementary probe of the LFV ALP which is less de-
pendent on the chiral structure of the ALP couplings than the experimental searches for
µ → ea. In section 4.1 we first discuss the searches performed at the Crystal Box ex-
periment with a total number of 8.15 × 1011 stopped muons [47, 75]. In section 4.2 we
discuss possible improvements in the reach were a similar search to be implemented at
MEG II. A more detailed analysis of a dedicated trigger at MEG II for this channel is left
for future work.

4.1 Past searches at Crystal Box

In order to lower the trigger rate the Crystal Box required at the trigger level a hard positron
and a photon of similar energy [47, 75]. The search for the three-body µ+ → e+γa decay
is then a search for a bump in the missing mass distribution in the collected data. The
signal would be centered at mmiss = m2

a and spread by the photon and positron energy
resolutions and the resolution on the angle between the two. The SM background has two
main components: the four-body µ+ → e+γνν̄ decays, and the combinatorics background
due to coincident µ+ → e+νν̄ and µ+ → e+γνν̄ events. For the latter, a sufficiently hard
positron from the µ+ → e+νν̄ decay is detected within a 1.5 ns time window together with
a hard photon from the µ+ → e+γνν̄ decay, while the soft positron is left undetected. The
background and signal shapes at Crystal Box are shown in figure 7 (left).

The rate of the three-body decay Γ(µ→ e a γ) for an ALP of mass ma is given by (in
the limit me � mµ)

Γ(µ→ e a γ) ≈ αem
32π2

m3
µ

F 2
µe

I(xmin, ymin, ηa) , (4.1)
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with the phase space integral given by

I(xmin, ymin, ηa) =
∫ 1−ηa

ymin
dy

∫ 1−y−ηa
1−y

max(xmin,1−y−ηa)
dx

y(1− x2 − η2
a)− 2(1− ηa)(1− x− ηa)

y2(1− x− y − ηa)
, (4.2)

where
x = 2Ee/mµ, y = 2Eγ/mµ, ηa = m2

a/m
2
µ. (4.3)

These kinematic variables are related to the angle θeγ between the electron and photon
momenta,

cos θeγ = 1 + 2(1− x− y − ηa)
xy

. (4.4)

The branching ratio for the three-body decay, BR(µ → e a γ), is related to the branching
ratio for the 2-body decay, BR(µ→ e a),

BR(µ→ e a γ) ≈ αem
2π(1− ηa)2I(xmin, ymin, ηa)BR(µ→ e a) , (4.5)

where in the expressions for both BR(µ → e a γ) and BR(µ → e a) the mass of electron
should be neglected.

The infrared and collinear divergences (we are working in the limit me → 0) are
regulated by the experimental cuts on photon and positron energies xmin, ymin. The exper-
imental cuts in the Cristal Box search were [47]

Ee > 38− 43 MeV , Eγ > 38 MeV ⇒ xmin = 0.72− 0.81 , ymin = 0.72 . (4.6)
θeγ > 140◦ ⇒ cos θeγ < −0.77 . (4.7)

Imposing the θeγ cut in the phase space integral, eq. (4.2), reduces I(xmin, ymin, ηa) by
∼ 10% for a massless ALP, and has negligible effect for a massive ALP. The positron
energy cut, Ee > 38MeV, reported by the Crystal Box collaboration, refers to the positron
energy measured by the scintillation crystals. When translating this cut to xmin in the
phase space integral, eq. (4.2), one needs to account for the positron’s energy loss during
the propagation to the detector. The Crystal Box collaboration indicated that the positron
could loose up to 5MeV before reaching the detector. In our analysis we therefore vary the
cut on the positron energy in the range from 38 to 43MeV.

In the special case of vanishing axion mass, ηa → 0, the above expressions, eq. (4.1)–
(4.5), reduce to the ones obtained in ref. [76]. Notice that the expression used by the
experimental collaboration in ref. [75] appears to have a typographical error (the roles of
x and y in the phase space integral in eq. (4.2) were exchanged). However, this does not
affect the analysis in ref. [47] because of symmetric cuts on photon and positron energies
(up to the positron energy losses), cf. eq. (4.6).

The 90% C.L. bound on the µ → eaγ branching ratio for ma ' 0, obtained by the
Crystal Box experiment, is

BR(µ→ e a γ) < 1.1× 10−9 (90% CL) , (4.8)
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Figure 7. Left: Missing mass distribution of background and signal events in Crystal Box after
the cuts in eqs. (4.6), (4.7) are implemented and experimental efficiencies taken into account. Solid
blue is the total background composed by the dashed blue distribution of µ+ → e+γνν̄ events and
the dotted blue distribution of events where a hard photon from µ+ → e+γνν̄ and a positron from
µ+ → e+νν̄ are randomly coincident. Solid magenta shows the combined background plus signal
distribution. The dashed magenta is the signal shape smeared by the experimental resolution for
ma = 0 and BR(µ+ → e+γa) = 3 × 10−9. Right: the 95% C.L. sensitivity of Crystal Box that we
obtain using the simple cut and count scheme as described in the main text. The two lines indicate
how the final bound on Fµe depends on the positron energy loss before it reaches the detector. The
actual experimental bound reaches a 30% higher value of Fµe and is reported in eq. (4.9).

to be compared with the theory prediction,

BR(µ→ e a γ) ≈ (3.7− 9.7)× 10−10
(

109 GeV
Fµe

)2

, (4.9)

where the range is due to the variation in the phase space integral, I(xmin, ymin, ηa) ≈
(0.004 − 0.011), obtained by varying the cut on the upstream positron energy between
38MeV and 43MeV. The 95% C.L. bound is then Fµe & (5.1 − 8.3) × 108 GeV, and is
always subdominant compared to the combination of the bounds obtained from µ+ → e+a

by Jodidio et al. [9] and TWIST [10], cf. table 1.
For completeness, we discuss a simple procedure that we use to roughly reproduce

the Crystal Box result and extend it to ma > 0. The results of this recasting procedure
are shown in the right panel of figure 7. We first extract the experimental efficiency for
the µ+ → e+γa signal from the bound on the branching ratio, BRexcl., in eq. (4.8), which
corresponds to Nexcl. = 165 signal events [47]. Given that the total number of stopped
muons is Nµ+ = 8.15× 1011 we get

εS = Nexcl.
Nµ+ × BRexcl.

' 0.18 . (4.10)

The signal shape can be extracted from the binned MC sample given in ref. [75], and is
well described by a Gaussian centered at m2

miss = 0 with a variance of σS = 100 MeV2.
For a given mass ma one can then estimate the sensitivity of Crystal Box on BR(µ→

e a γ) by considering the expected background and signal in a missing mass window, (m2
a−
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σS ,m
2
a + σS) and using the asymptotic formula at 90% C.L. For ma = 0, this procedure

gives BR(µ→ e a γ) < 1.6×10−9 which is weaker than the experimental bound in eq. (4.9)
only by about 30%. This is not surprising since the full likelihood analysis has better
discriminating power than the simple cut and count analysis we are performing. The
bound on the branching ratio gets stronger for m2

miss > 100 MeV2 because the background
is suppressed. However, this effect is compensated by the phase space suppression of the
signal, eq. (4.1). All in all, the bound on Fµe is constant up to ma ' 10 MeV after which
the signal phase space starts to shrink significantly with increasing ALP mass, given the
strong energy cuts on the photon and positron energies.

4.2 Possibilities for future search at MEG II

We now briefly comment on the possibility for MEG II to improve on the Crystal Box
result discussed above. Naively, the MEG II luminosity will exceed the one of Crystal Box
by at least 3 orders of magnitude. In optimal conditions, this could lead to an increase of
sensitivity on Fµe of more than a factor of 5 with respect to the current bound in table. 1.
With such an optimistic gain MEG II could start probing new parameter space beyond
the current TWIST bound for the V − A ALPs. An improvement on µ → eaγ would
complement the MEGII-fwd proposal, section 3.2, since this is only sensitive to ALPs with
some amount of right handed couplings to the SM leptons. The combination of the two
searches, µ → eaγ and µ → ea at MEGII-fwd would then fully cover the possible chiral
structures of the ALP couplings.

Clearly, the above naive estimate for the improvement on the reach is far from guaran-
teed. A more realistic estimate of the reach would require a dedicated trigger study. The
current energy and angular cuts of the MEG II trigger dedicated to the µ → eγ search
are designed to select a very energetic positron and a photon exactly back to back [77].
Keeping these cuts will greatly suppress the signal rate of µ→ eγa, and make it impossible
to perform the search. An interesting possibility would be to relax the energy and angular
cuts of the trigger down to similar values than the ones in Crystal Box. The final ex-
pected sensitivity at MEG II will strongly depend on the signal vs. background efficiencies
whose detailed determination goes beyond the scope of this paper and is left for future
investigations.

5 ALPs in τ decays

The search strategies for τ → µa and τ → ea decays are qualitatively different from the
µ→ ea searches. The main differences can be traced to the fact that τ has a much shorter
life-time (3× 10−13 s vs. 2× 10−6 s for the muon), that it has many more decay channels,
and that from the τ production it is not possible to unambiguously reconstruct the τ

rest frame.

5.1 Past searches at ARGUS

The ARGUS experiment in 1995 derived bounds on tauonic LFV ALP couplings [43].
The tau data sample was produced from e+e− collisions in the DORIS II storage ring at
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DESY at a center of mass energy varying between 9.4 and 10.6GeV with a total integrated
luminosity of 472 pb−1.

The challenge in τ → `ia search is to disentangle the signal decay from the SM τ →
`i νν̄ decays. The search would be easier in the tau rest frame, since then the lepton from
τ → `ia is monochromatic and one can do a line search on top of the smooth τ → `i νν̄

background. Unfortunately, the tau is pair-produced in e+e− → τ+τ− collisions. Each
of the tau’s decays into a final state with at least one invisible particle, making exact
reconstructions of the tau rest frames impossible. Instead, the ARGUS analysis used the
“pseudo-rest frame” technique. The idea is to require one side of the τ+τ− pair to decay
into a three prong hadronic mode. The direction of the τ momentum is then approximated
by the direction of the combined momentum of the three prong decay products. In the
center of mass of e+e− collision the tau energy equals the beam energy, while the two taus
are back to back. This gives enough constraints so that one can boost the leptonically
decaying tau to its, approximate “pseudo-rest frame”. The crucial property of this frame
is that the sensitivity on LFV two body tau decays into ALPs does not depend much on
the ALP mass (see [43] for further details).

For a massless ALP ARGUS obtained [43]

BR(τ → e a) < 2.7× 10−3 (95% C.L.) ⇒ Fτe & 4.3× 106 GeV , (5.1)
BR(τ → µa) < 4.5× 10−3 (95% C.L.) ⇒ Fτµ & 3.3× 106 GeV . (5.2)

The bound on BR(τ → µa) is less stringent than BR(τ → e a) at low masses while they
become comparable for higher masses. The final bound on the ALP decay constant from
BR(τ → µa) is shown in figure 1. The mass dependence of the bound is predominantly
due to the phase space suppression of the two-body decay for heavier ALPs.

5.2 Future searches at Belle-II

Belle and Belle-II. While Belle and Babar collected ≈ 2000 times larger datasets of
τ ’s than ARGUS, no experimental searches for τ → `ia were performed yet. However, a
recent simulation of the expected limit at the Belle experiment with integrated luminosity
of 1020 fb−1 was performed in ref. [48], and obtained for a massless ALP at 90% CL)

Belle (1/ab) prospect: BR(τ → µa) < 1.1× 10−4 ⇒ Fτµ & 2.1× 107 GeV . (5.3)

Notice that this bound is almost exactly a factor of
√

2000 more stringent than the present
one from ARGUS, eq. (5.2). Using the same simple rescaling with the luminosity, we obtain
for the expected 95% CL limit for a massless ALP for Belle II with 50 ab−1,

Belle-II (50/ab) prospect: BR(τ → µa) < 2.0× 10−5 ⇒ Fτµ & 4.9× 107 GeV. (5.4)

The limit as a function of ALP mass is shown with the purple line in figure 1. In the absence
of MC analysis of Belle or Belle II reach for τ → ea, we estimate the Belle II sensitivity by
performing the naive rescaling of the ARGUS result with luminosity, which gives

Belle-II (50/ab) prospect: BR(τ → e a) < 8.3× 10−6 ⇒ Fτe & 7.7× 107 GeV . (5.5)
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Belle II may improve the ARGUS searches for τ → ea and τ → µa transitions beyond
mere increase in statistics. First of all, it could be interesting to explore the reach on
BR(τ → µa γ) and BR(τ → e a γ), especially since for muons µ → eaγ gives constraints
that are not that far from the two-body µ → ea decay (see [78] for similar comments in
the context of a light Z ′). Secondly, further improvements of τ → `ia searches may be
possible. A possibly interesting direction, while still using the tau “pseudo-rest frame”,
is to employ in addition variables that tag the tau polarization, such as the directions of
pions in two prong tau decays. If successful, this could allow to further suppress the SM
τ → `i νν̄ background, similarly to what was done for µ→ ea decays in the experiment by
Jodidio et al. [9].

6 Bounds from astrophysics and cosmology

The bounds on ALP couplings from the astrophysical observations and from cosmology fall
into two categories, depending on whether the ALP is assumed to constitute the observed
DM relic abundance or not. In section 6.1 we first discuss the constraints from stellar
cooling, which do not depend on whether or not ALP is the DM. In section 6.2 we then
explore in which parts of the parameter space the LFV ALP could explain the observed
DM abundance.

6.1 Bounds from stellar cooling

The emission of light particles inside stars can alter stellar evolution to an extent that
is in conflict with observations. This leads to powerful constraints on the interactions of
such light particles with matter and radiation [79]. Our primary interest here are the ALP
couplings to leptons. In this context, ALP couplings to electrons can lead to efficient energy
loss mechanisms in stars. For massless ALP (such as the QCD axion) the studies of red
giants (RG) [80, 81] and white dwarfs (WD) [44], give roughly comparable bounds, which
at 95% C.L. are10

FAee & 4.6× 109 GeV (WD) , FAee & 2.4× 109 GeV (RG) . (6.1)

In both cases the dominant cooling mechanism is ALP bremsstrahlung in electron–nucleus
scattering, e−+N → e−+N+a. This dominates over the Compton process, γ+e− → e−+a,
and electron-electron bremsstrahlung, e−+e− → e−+e−+a, which are relevant only when
electrons are non-degenerate [79].

For non-negligible ALP masses, the cooling rates are expected to be Boltzmann-
suppressed. Following ref. [83], we estimate the resulting constraints on massive ALPs
by rescaling the energy loss rates with the ratio R(ma, T ) of ALP energy densities Ea for
the massive and massless case

R(ma, T ) ≡ Ea(ma, T )/Ea(0, T ) . (6.2)
10Interestingly, several stellar systems exhibit hints of non-standard energy losses. The global fit per-

formed in ref. [82] finds that an axion/ALP solution to these anomalies with a coupling 5.4 × 109 GeV .
FAee . 8.1× 109 GeV (1σ range) is preferred at the 3σ level over the case of only the standard energy loss
through neutrinos.
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The energy densities are given by

Ea(ma, T ) = 1
2π2

∫ ∞
ma

E2√E2 −m2
a

eE/T − 1
dE =


π2

30T
4 ma � T,

1
(2π)3/2T

4 (ma
T

)5/2
e−ma/T ma � T.

(6.3)

Since the cooling rates scale with (FAee)−2, the constraints on massive ALPs in figure 1 are
obtained from the bounds on FAee for the massless ALP by rescaling them with the factor√
R(ma, T ). Because of the Boltzmann suppression the star cooling bounds rapidly shut off

for ALP masses above ma ≈ 2T , where TRG ≈ 108K ≈ 8.6 keV and TWD ≈ 107K ≈ 0.8 keV.
For heavier ALPs the relevant astrophysics constraints are due to neutron star cooling

in supernova (SN) explosions, since the nascent proto-neutron star (PNS) reaches a tem-
perature of order 30 MeV a few seconds after the start of the supernova explosion [84, 85].
In order to estimate the SN bound on FAaa we use the expression for the energy loss rate
per unit mass, ε, through electron-nucleon bremsstrahlung under highly degenerate condi-
tions [79, 86],

ε = π

15α
2
em

T 4

mn(FAee)2Yp I . (6.4)

Here, Yp = np/nB is the number density of protons relative to the baryon number density,
while I is the angular integral that includes plasma screening effects,

I =
∫
dΩ2
4π

dΩa

4π

(
1− β2

F
) [

2 (1− c12)− (c1a − c2a)2
]

(1− c1aβF) (1− c2aβF) (1− c12)
(
1− c12 + κ2

DH
) . (6.5)

It depends on the electron velocity at the Fermi surface, βF = pF/EF = pF/
√
p2

F +m2
e ≈ 1,

while c12, c1a, c2a are the cosines of the angles between the 3-momenta p1 (p2) of the
incoming (outgoing) electron and the ALP 3-momentum pa, respectively. The screening
effects enter through the parameter κ2

DH = k2
DH/2p2

F, where kDH is the Debye screening
scale. Note that the PNS with temperature TNS ≈ 30 MeV and mass density ρ ≈ ρnuclear
can be treated as composed of weakly coupled degenerate plasmas. The electron screening
can then be neglected with respect to the proton screening, giving k2

DH = 4παemnp/TNS.
Since the main contribution to the angular integral (6.5) comes from the forward direction,
c12 = 1 and c1a = c2a, the integral is well approximated by the simplified form obtained by
setting c2a = c1a in the denominator. In the ultra-relativistic case then [83]

I = 2 + κ2
DH

2 log 2 + κ2
DH

κ2
DH

− 1 . (6.6)

For the numerical evaluation we use nB = 1.4 × 106 MeV3, Yp = 0.2, pF = 204 MeV, so
that κDH = 0.10 and I = 4.3. This implies for the energy loss rate

ε = 1.2× 1020 erg
g s

(
107 GeV
FAee

)2

. (6.7)
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Imposing the crude bound on the energy loss of ε . 1019 erg g−1 s−1 [83], leads in the case
of a massless ALP to the bound

FAee & 3.4× 107 GeV (SN1987A) . (6.8)

For massive ALP we rescale this bound by the factor R(ma, T ) in eq. (6.2) with T →
TNS ≈ 30 MeV. Note that for heavy ALPs the m5/2

a dependence in the energy loss rate (6.3)
appreciably counteracts the exp(−ma/T ) suppression, so that the SN bounds on FAaa are
important up to ma ≈ 200MeV, cf. figure 1.

A qualitatively different regime is obtained for small values of FAee. For small enough
FAee the ALP interactions become so strong that the ALP remains trapped within the stellar
material, in which case there are no bounds on FAee from the stellar cooling constraints.
Following ref. [83], we estimate this limiting values of FAee for RG, WD and NS systems by
requiring that the mean free path λ of the ALP is smaller than the corresponding stellar
effective radius R0, cf. table 2. The mean free path is calculated from ALP decay and
absorption rates,

λ−1 = β−1Γabs + (βγ)−1Γdecay . (6.9)

The absorption rate is approximately given by the total energy loss rate per volume, ρε,
divided by the ALP energy density, Ea (even if ALPs are not in thermal equilibrium)

Γabs = ρε/Ea . (6.10)

As this estimate just follows from the principle of detailed balance, the absorption rate is
independent of the ALP mass. We can therefore use for the energy loss per unit mass, ε,
the result in eq. (6.4), while Ea = Ea(0, T ) in eq. (6.2). The dependence of λ on the ALP
mass dominantly enters through the kinematical factors β and γ which are given by the
integrals

β =
〈
(E2 −m2

a)
〉
T〈

E
√
E2 −m2

a

〉
T

, βγ =
〈
E/ma

(
E2 −m2

a

)〉
T〈

E
√
E2 −m2

a

〉
T

, (6.11)

where 〈. . . 〉T denotes a thermal average using the Bose-Einstein thermal distribution of
ALPs. In the limit of large masses, ma � T , one finds β ≈ γ ≈

√
8/π

√
T/ma.

For the decay rates, Γdecay, we only consider decays to electrons and photons induced by
FAee. The resulting decay widths are given in section 2 (we set EUV = 1 in these expressions,
for definiteness). The contributions from γγ decay channel are always subdominant — for
low ALP masses, where the decays to photons dominate Γdecay, the absorption rate is more
important in determining λ, while for higher ALP masses the decays to electrons or even
to muons dominate over decays into photons.

We have used the inputs in table 2 (taken from ref. [79]) to derive the bounds in the
trapping regime in figure 1. Note that for WDs the plasma is typically strongly coupled,
so that the Debye screening given in eq. (6.6) is not an appropriate description. In these
case we simply use I ≈ 1, which provides a good approximation [79, 87, 88].
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T ρ pF Yp R0

RG 8.6 keV 4.3 MeV4 409 keV 0.5 104 km
WD 0.8 keV 7.7 MeV4 495 keV 0.5 103 km
PNS (SN) 30 MeV 1.3× 109 MeV4 204 MeV 0.2 10 km

Table 2. Numerical inputs used in the evaluation of the stellar cooling bounds.

We have also included the recent bounds on ALP couplings to muons obtained in
ref. [45] from SN1987A (see also ref. [46]). In contrast to our rough description of the PNS,
these authors have used dedicated simulations which lead to the robust (and conservative)
bound of FAµµ ≥ 1.3 × 108 GeV for a massless axion. As for the case of the bounds on
electron couplings from WDs and RGs, we simply rescale this bound by

√
R(ma, T ) defined

in eq. (6.2) (with T ≈ 30 MeV) in order to account for non-zero axion masses. Note that
the bound on muons is stronger than the SN bound on electron couplings in eq. (6.8),
because energy loss through the Compton process for non-relativstic and non-degenerate
muons is much more efficient than the same process for highly relativstic and degenerate
electrons, see refs. [79, 89].

Finally, we comment on the bound on BR(µ → ea) from SN1987A. This decay con-
tributes to the cooling of the PNS, with a cooling rate that is given by (see ref. [23])

ε =
m3
µΓ(µ→ ea)

π2ρ(m2
µ −m2

n)

∫ ∞
0

pµ dpµ

∫ pmax
e

pmin
e

pe dpe
Eµ − En
EµEe

fµ(Eµ)(1− fe(Ee)), (6.12)

where pmax
e (pmin

e ) is the maximal (minimal) electron momentum in the µ → ea decay, if
µ has momentum pµ = |pppµ|, and E2

i = p2
i + m2

i are the energies in the PNS’s rest frame.
Moreover, fi(Ei) = 1/

(
1 + exp

(Ei−µi
T

))
are the Fermi distribution functions with µi the

chemical potentials, which is the only non-trivial input in eq. (6.12). Using the numerical
values µµ ≈ 41 MeV and µe ≈ 190 MeV which we obtained as described below, the cooling
rate becomes

ε ≈ 1019 erg
g s

(BR(µ→ ea)
4× 10−3

)
. (6.13)

The resulting bound on BR(µ → ea) is therefore about three orders of magnitude weaker
than the constraints from laboratory experiments.

It is instructive to compare this result with the case where Pauli blocking in eq. (6.12)
is neglected (i.e. fe(Ee)→ 1), in which case the energy loss rate would be approximated by

ε ' nµ
ρ

(mµ −me) Γ(µ→ ea) = Yµ
mn

(mµ −me) Γ(µ→ ea) . (6.14)

Using Yµ ≈ 2.9 × 10−3 ' Ye exp [−(mµ −me)/T ] (see below), the resulting bound on
BR(µ→ ea) is about a factor 50 larger than the exact result, indicating that Pauli blocking
is an important effect. This can be understood by the large Fermi energy of the electrons,
EF ≈ pF ≈ 200 MeV, which implies that muons at rest can hardly decay because almost
all the relevant electron levels are filled.
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The above values of µµ, µe and Yµ were obtained by treating the PNS as a non-
interacting Fermi gas, where all particles are in thermal and chemical equilibrium (see
also ref. [23]). At given temperature the number density of a given particle then depends
only on its chemical potential, which in turn can be written as a linear combination of the
chemical potentials associated with the conserved quantum numbers, i.e., charge Q, baryon
number B and the individual lepton numbers Li. Furthermore, we assumed that neutri-
nos are trapped inside the PNS, which implies that the muon number density vanishes,
YLµ = Yµ + Yνµ = 0 [90]. For the electron number density (relative to the baryon number
density nB) we used YLe = 0.3 [79]. With these three input values and the constraint of
charge neutrality, nQ = 0, one can numerically solve for the 4 unknown chemical potentials
µQ, µB, µLe , µLµ and thus obtain number densities ni and chemical potentials µi for all the
involved particles. The tau leptons could be trivially included, taking YLτ = 0. However,
unlike Yµ, the tau number density is negligible, Yτ ≈ 0. The electron’s Fermi energy of
about 200 MeV is just large enough to excite a relatively substantial muon population via
electron scattering, while taus are simply too heavy. Note that this rather crude treatment
of the PNS’s thermodynamics appears to be consistent with the results from the dedicated
simulations in ref. [45], since we obtain similar bounds on FAµµ using the expressions for the
energy loss rate through Compton (as appropriate for muons) with the above input.

Finally, the derived SN bounds depend crucially on the SN explosion mechanism. If
the SN1987A was not triggered by the canonical delayed neutrino mechanism but is rather
due to the collapse-induced thermonuclear explosion, there would be no resulting bounds
on the ALP couplings [91]. However, this interpretation would be disfavored, if the possible
ALMA detection of a compact object in the remnant of SN 1987A [92], consistent with the
neutron star [93], is confirmed.

6.2 ALP Dark Matter

Next, we explore under what circumstances the LFV ALP is a viable DM candidate, with
the correct DM relic abundance. This will lead us to two important conclusions. Firstly,
since the expected sensitivity of future LFV experiments is fa & 1010 GeV, well above the
present astrophysical bounds, the LFV experiments will explore a part of the parameter
space of an ultralight ALP DM. Secondly, the LFV experiments cannot resolve ALP
masses below 1MeV (i.e. the typical experimental mass resolution). Below this mass range
pinpointing the ALP mass will require experiments that search for ALP DM using other
means, through its couplings to photons and/or electrons.

The minimal requirement for ALP to be the DM is that it is stable on timescales longer
than the lifetime of the Universe. Assuming the a → γγ decay dominates, this translates
into the following constraint,

H0
Γtot

= H0τa > 1, where H0τa ' 5.4
(

1
E2
eff

)2 (10 keV
ma

)3 ( fa
1010 GeV

)2
. (6.15)

Taking fa = 1010 GeV as a reference value, this means that the ALP DM probed in LFV
experiments must have a mass below 10 keV. If other decay channels, such as a → νiν̄j ,
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Figure 8. The impact of present and future µ → ea searches compared to other light ALP
DM searches, taking EUV = 1, 0 as two representative examples. The green solid line shows the
current best bound on the isotropic LFV ALP [9], the (dark) orange thin line gives our MEGII-fwd
projection assuming F = 100 focusing enhancement (no focusing). The dark red line (overlapping
with the orange thin line) shows the sensitivity of Mu3e-online analysis [42]. In the blue region
enclosed by the solid blue line the ALP decays within the present Hubble time, while the region to the
right of the dashed blue line is excluded by the extragalactic diffuse background light measurements
for EUV = 0, 1. We also show the X-rays constraints for EUV = 0 [94, 95]. The red blob indicates
where ALP DM could explain the XENON1T anomaly [96]. The dashed gray lines denote two
scenarios where the observed DM relic abundance is due to ALPs produced trough the misalignment
mechanism. On the upper line the ALP mass is temperature independent, cf. eq. (6.17), while on
the lower line the temperature dependence is parametrically similar to the one for the QCD axion,
cf. eq. (6.18). The gray shaded regions are excluded by the star cooling bounds, and the ADMX
data [97–99]. The light green region is excluded by the S2-only analysis of XENON1T [100] and
Panda-X [101]. The purple shaded region shows the future reach of axion-magnon conversion
experiments such as QUAX [102–104]. Regarding the coupling to photons, the cyan band shows
the future sensitivity of SPHEREx estimated in ref. [105], assuming ALP decay exclusively to
two photons, while the yellow bands show the future sensitivities of resonant microwave cavities
such as ADMX [106], CAPP [107], KLASH [108], and ORGAN [109], dielectric haloscopes such as
MADMAX [110] and the reach of the dielectric stack proposal [111] is shown with light blue.
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are appreciable, then the above bound on the ALP mass is correspondingly lowered (this
is for instance the case for the majoron, see section 7.4). For the rest of this section we
will assume that the ALP decay channels apart from a→ γγ can be neglected.

The a → γγ decays contribute to the extragalactic background light (EBL) and may
be bounded by EBL measurements. The ALP decay results in a line at frequency νa =
1.2× 1014ma/eV Hz with intensity

νaIνa = 5× 10−3 Wm−2sr−1

τγγH0
' 6× 10−13 Wm−2sr−1

(
ma

1 eV

)3
(

1010Eeff GeV
fa

)2

. (6.16)

A conservative bound on the decay width Γ(a→ γγ) is obtained by requiring that the line
intensity in eq. (6.16) is less than what is observed at that frequency [105]. An updated map
of the EBL observations at different frequencies can be found in ref. [112]. For instance,
the observed EBL intensity in the optical band is 10−8 Wm−2sr−1, constraining the axion
width well below H0. Converting the EBL constraints to a bound on fa gives the light blue
exclusion region in figure 8 for EUV = 1 and EUV = 0. Stronger bounds can be obtained
from the measurements of the X-ray microcalorimeters in the XQC rocket [94, 95]. These
constraints will be further improved by future X-ray missions such as Athena [113] or by
future line-intensity mapping campaigns [105]. Particularly relevant for the ALP parameter
space is the SPHEREx project [114], a funded two-year mission by NASA with a planned
launch in 2023, that will probe optical and near infrared frequencies corresponding to
ma ∼ eV. The SPHEREx reach is denoted as green region in figure 8.

The ALP that satisfies the stability and decaying DM bounds could be a viable DM
candidate. The main production mechanism in the allowed region of parameter space in
figure 8 is the misalignment mechanism, first discussed in the context of the QCD axion
in refs. [14–16] and then generalized to a generic ALP in ref. [115].11 If inflation occurred
below the scale of ALP global symmetry breaking, the initial misallignment of the ALP,
a0, is frozen by the inflationary dynamics and acts as the initial condition. Conventionally,
it is parametrized in terms of an angular variable, a0 = faθ0, where θ0 ∈ [0, π). As long as
the Hubble expansion rate is large, H > ma, the field is frozen at its initial value a0. At
temperature Tosc, when H(Tosc) ' ma, the field starts to oscillate and produces the ALP
number density na(Tosc) = 1

2m
2
aa

2
0, which then expands adiabatically until the present

time. For the case when ALP oscillations occur during the radiation dominated epoch the
resulting ALP relic abundance is (see also [117])

ΩT -indep.
a h2 = 0.12× 10−2

√
ma

eV

(
fa

1010GeV

)2 (θ0
π

)2 ( 90
g∗(Tosc)

)1/4
. (6.17)

Since the ALP mass is bounded from above by EBL constraints, the future reach of LFV
searches (i.e. fa ≈ 1010 GeV) will probe a region of parameter space where the production

11The production of hot ALPs through freeze-in via lepton annihilation, `+`− → aγ, or lepton-photon
collisions, `±γ → e±a, could lead to a too large contribution to ∆Neff. It is easy to check that this
contribution is in fact negligible in the parameter space in figure 8, once the present bounds on the axion-
electron couplings from stellar cooling are taken into account. (A systematic study of hot ALPs production
through muon or tau couplings in the case where couplings to electrons are switched off has been performed
in ref. [116].)
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from misalignment does not suffice to obtain the total observed DM abundance (ΩDMh
2 '

0.12 [118]) with an ALP mass independent on temperature. The relation between ma and
fa that leads to the observed DM abundance for θ0 ∼ 1 for a temperature independent
ALP mass corresponds to the upper gray dashed line in figure 8. Below this line the ALP
DM produced through the misalignment mechanism is under-abundant, while above this
line a smaller value of θ0 is needed in order to obtain ΩDMh

2 = 0.12.
An interesting alternative possibility that leads to enhanced misalignment production

is if the ALP mass comes from a dynamical mechanism like the one of the QCD axion.
At zero temperature the ALP mass is given by ma = Λ2/fa, while at finite temperature
the mass is suppressed, and is given by ma(T ) = ma(Λ/T )b, where b = 4 in QCD (an
expression for b in a general gauge theory can be found in ref. [119]). The relic density
from misalignment for this case has been studied in ref. [115], and more recently in ref. [117],
and is given by

ΩT -dep
a = ΩT -indep.

a

(2 + b

2

) 3+b
2+b

(
5

8π
MPl
fa

√
90

g∗(Tosc)

) b
4+2b

. (6.18)

The two additional factors on the r.h.s. enhance the relic abundance with respect to the
result in eq. (6.17). In figure 8 we show that for b = 4 this enhancement is large enough
that the correct DM relic abundance is obtained in a large region of parameter space that
will be tested by future LFV searches. The ALP abundance can be enhanced even further
at small decay constants by tuning the ALP initial condition very close to θ0 = π, such that
non-linearities dominate the production [19], or by mixing of the ALP with a dark photon
in a presence of a magnetic field in the early Universe [18]. In summary, these different
production mechanisms can make the ALP abundance match the current DM abundance in
the whole parameter space shown in figure 8 which is not excluded by present constraints.

Parts of the LFV ALP parameter space will be probed by other means. In figure 8 we
show two types of such probes, based either on axion couplings to electrons or to photon.
All of these probes require the ALP to be the DM, and assume that the ALP is responsible
for the full DM relic abundance. Note that in this case, for the range of masses shown in
figure 8, the description of ALP in terms of classical background field is justified in the
early Universe, since there are many ALPs inside a single de Broglie volume.

The ALP couplings to electrons can then lead to interesting constraints from electron
recoil experiments where the ALP energy gets absorbed in the detector. The energy thresh-
old of the DM experiment translate directly to the lower ALP mass that these experiment
can probe. We show the current constraints from Panda-X [101] and from the S2-only
analysis of XENON1T [100]. The fit of the XENON1T anomaly derived in [96] is also
shown. Further improvements at lower ALP mass are expected from low threshold experi-
ments like SENSEI [120]. The efficient axion-magnon conversion in an experiment such as
QUAX [102, 103] could probe a portion of the ALP parameter space in thema ∼ 10−50µeV
window. The light purple region in figure 8 shows the future reach of QUAX derived in
ref. [104] (the present sensitivity in ref. [121] is still outside the plotted range in fa). At
higher masses the low threshold DM absorption experiments based on existing technol-

– 33 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
3

ogy are generically weaker than the stellar cooling bounds, even if improvements can be
foreseen with future technology under optimistic conditions [21, 22].

If the ALP coupling to photons is not suppressed, the standard searches for the QCD
axion will cover significant parts of the parameter space, as seen in figure 8 for the case of
EUV = 1. The gray region around 0.2µeV is excluded by current ADMX data [97–99]. The
future axion haloscope campaigns will explore the ALP mass region between 0.2− 20µeV.
In figure 8 we show in yellow the estimated sensitivities of CAPP [107], KLASH [108], OR-
GAN [109], MADMAX [110] and the ADMX upgrade [106]. We also include the “dieletric
stack” proposal which could have sensivity beyond the current stellar cooling bounds be-
tween 0.1 and 1 eV, depending on the value of EUV [111]. The sensitivities of large-scale
helioscopes such as IAXO [122, 123], and light-shining-through-wall experiments such as
ALPS-II [124] lie below the current stellar cooling bounds for our choice of parameters and
is not shown in figure 8.

7 LFV ALP models

So far we were concerned with the model independent bounds on LFV ALP couplings,
eq. (2.1). In the remainder of this paper we focus instead on several representative models
of ALPs with LFV couplings: the LFV QCD axion, the LFV axiflavon, the leptonic familon
and the majoron. These examples are representative for broad classes of models, and
illustrate how flavor-violating couplings to leptons can naturally arise for PNGBs of global
symmetries addressing the strong CP problem, the SM flavor puzzle, or neutrino masses.
In the first three models the LFV couplings are generated at tree level via non-universal
charges of the global symmetry under which the ALP transform non-linearly while in
the last one the LFV comes from loop-induced couplings. For each model above we also
present the parameter space where the ALP can be a viable DM candidate as discussed in
section 6.2.

The LFV QCD axion (section 7.1) and the LFV axiflavon (section 7.2) are two explicit
realizations of the QCD axion, which elegantly solves the strong CP problem in the SM
via the spontaneous breaking of a U(1) Peccei-Quinn (PQ) symmetry that is anomalous
under QCD. In section 7.1 we first show that in DFSZ-like models [12, 13] the QCD axion
can naturally have LFV couplings while keeping the couplings to quarks flavor diagonal.
In section 7.2 we go one step further and identify the PQ symmetry with a subgroup of the
flavor symmetry that gives the hierarchical masses and mixings of the SM fermions. The
LFV axiflavon is obtained for the U(2) flavor group, since in this case the flavor violating
couplings are parametrically larger in the leptonic than the quark sector.

The Leptonic familon (section 7.3) is the PNGB of a U(1) flavor symmetry in the
leptonic sector. The spontaneous breaking of this symmetry could explain the hierarchies
among the charged leptons via the Froggatt-Nielsen mechanism [34, 125, 126] (for recent
variations see [26, 127]). In the LFV familon setup the strengths of the LFV couplings
depend on the texture of the PMNS matrix, as we will see in detail below.

Our final example, the majoron, is the PNGB associated with the spontaneous breaking
of the lepton number [128, 129]. In section 7.4 we show that in a non-minimal class of
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seesaw models the majoron has parametrically enhanced LFV couplings. In these theories
an approximate generalized lepton number suppresses the neutrino masses [41, 130–138],
without suppressing the majoron couplings to the SM.

7.1 The LFV QCD axion

The mass of the QCD axion is entirely due to the QCD anomaly, and is given by [139]

ma = 5.691(51)µeV
(

1012 GeV
fa

)
. (7.1)

The value of the axion decay constraint fa therefore completely determines the mass of the
QCD axion, which for all the processes we consider is effectively massless.

Astrophysical constraints require the axion to be very weakly coupled, with a lifetime
larger than the age of the universe and a mass below 3× 10−2 eV. In this range the QCD
axion is a perfectly viable cold DM candidate in large parts of the parameter space. One
of the simplest scenarios for axion production is the misalignment mechanism described
in section 6.2. In the QCD axion case the observed DM abundance is obtained for mis-
alignment angles of order unity θ0 ∼ 1 with an axion decay constants fa ∼ 10(11÷13) GeV.
For smaller decay constants, within the reach of LFV experiments, the axion relic from
the standard misalignment contribution is under-abundant unless non-trivial dynamics or
tuning are invoked (see discussion in section 6.2).

The axion couplings to fermions in eq. (2.1) arise from rotating the PQ current to the
fermion mass basis, with unitary rotations V f defined by V f †

L yfV
f
R = ydiag

f . Denoting the
PQ charge matrices by Xf , one has

CV,Afifj
= − 1

2N
(
V f †
R XfRV

f
R ± V

f †
L XfLV

f
L

)
ij
, (7.2)

where 2N is the domain wall number. This implies that off-diagonal couplings arise when
the PQ charges are not diagonal in the same basis as the Yukawa couplings, yf . Their sizes
depend on the misalignment between the two bases, which is parametrized by the unitary
rotations V f

R,L. We focus on the situation where the PQ charges in the quark sector are
universal, so that the QCD axion only has flavor violating couplings in the lepton sector.
(This is of course not the most general case. If PQ charges in the quark sector are not
universal, the results from ref. [23] apply, with the bound from K+ → π+a leading to tight
constraints on fa.)

In the following, we specify a DFSZ-like model of the QCD axion with LFV couplings.
The field content of the theory consists of the SM fermions, two Higgs doublets, H1,2, and
a complex scalar S that is a gauge singlet. The model contains an anomalous global U(1)
PQ symmetry under which the scalar fields carry charges XS = 1, XH2 = 2 + XH1 . As
a consequence, the scalar potential contains the couplings H†2H1S

2 and (S†S)2, but not,
for instance, H†1H2S

2 or S4. The fermionic U(1)PQ charges are flavor universal in the
quark sector, XuRi = −XH1 , XdRi = XH2 , XqLi = 0, i = 1, 2, 3, while they are generation
dependent in the lepton sector, such that the Yukawa interaction Lagrangian takes the
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form (here H̃i = iσ2H
∗
i and a, b = 2, 3)

L = ye1a`L1eRaH̃1 + yea1`LaeR1H̃1 + yeab`LaeRbH̃2 − yuqLuRH1 + ydqLdRH̃2 + h.c. . (7.3)

The first generation leptons carry charges XeR1 = XH1 , X`L1 = 2 under U(1)PQ, while the
2nd and 3rd generation leptons have XeRa = XH2 , X`La = 0, where a = 2, 3. In eq. (7.3)
ye1a and yea1 are complex 2-vectors, yeab is a complex 2 × 2 matrix, while for simplicity we
do not display the flavor indices on 3 × 3 complex Yukawa matrices in the quark sector,
yu, yd. The forms of ye1a, yea1, y

e
ab and yu,d are not fixed by the U(1)PQ symmetry and are

thus external to the discussion (presumably there is additional flavor dynamics that gives
their form and thus the required hierarchy of SM fermion masses).

The form of the scalar potential is assumed to be suitable to induce vacuum expectation
values for all scalars, with the ratio of Higgs vevs given by v2/v1 = tan β ≡ tβ and
〈S〉 ≡ vPQ/

√
2 � vi, while v2

1 + v2
2 = v2 with v = 246GeV the electroweak vev. The

axion a is then mainly contained in S, i.e., S = 〈S〉 exp
(
ia/vPQ

)
+ · · · , and partially in

the two Higgs doublets, Hi = 〈Hi〉 exp
(
iXHia/vPQ

)
+ · · · (here we only show the leading

dependence on a). Requiring that the axion is orthogonal to the Goldstone boson eaten
by the Z completely fixes the embedding of U(1)PQ, i.e., it fixes the PQ charge of the
two Higgs doublets to be XH1 = −2s2

β , XH2 = 2c2
β , where we used the shortened notation

sβ ≡ sin β, cβ ≡ cosβ.
It is conventional to remove the axion from the Yukawa interactions (7.3) through

phase redefinitions of the SM fermion fields. Working in this basis, the axion couples
derivatively to the fermions as in eq. (2.1), and in addition has couplings to gluons and
photons induced by the color and EM anomalies

La = a

fa

αs
8πGµνG̃

µν + E

N

a

fa

αem
8π FµνF̃

µν + ∂µa

2fa
f iγ

µ
[
CVij + CAijγ5

]
fj . (7.4)

The axion decay constant is related to the PQ breaking vev, 〈S〉 =
√

2Nfa. The anomaly
coefficients are given by 2N = −6 and E/N = 4/3.

The couplings to fermions are given by eq. (7.2). In the quark sector the PQ charges
are flavor universal, and so are the axion couplings,

CVuiuj = CAuiuj =
s2
β

3 δij , CVdidj = CAdidj =
c2
β

3 δij . (7.5)

In contrast, in the charged lepton sector the PQ charges are not universal and therefore
the axion couplings to charged leptons depend on the unitary rotations that diagonalize
the Yukawas as in eq. (7.2). It is useful to introduce the hermitian matrices

εeLij ≡ (V e
L)∗1i(V e

L)1j , εeRij ≡ (V e
R)∗1i(V e

R)1j , (7.6)

which satisfy

0 ≤ εePii ≤ 1 ,
∑
i

εePii = 1 , |εePij | =
√
εePii ε

eP
jj , (7.7)
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Bound on fa (in GeV)
Benchmark “V ” Benchmark “V +A” Benchmark “V −A”

SN1987A 9.4× 107 9.4× 107 9.4× 107

WD cooling 1.3× 109 9.3× 108 9.3× 108

µ→ e a 1.1× 108 8.0× 108 1.2× 108

Table 3. Bounds on the axion decay constant fa (in GeV) for the three bechmarks of the LFV
axion model choosing β = 1, cf. eqs. (7.11)–(7.13).

for P = L,R. In terms of these parameters one has

CV`i`j = 1
3
[
c2
βδij − ε

eR
ij + εeLij

]
, CA`i`j = 1

3
[
c2
βδij − ε

eR
ij − ε

eL
ij

]
. (7.8)

Note that the flavor diagonal parts of the vectorial couplings, CVfifj , eqs. (7.5), (7.8), can
be set to zero through fermion field redefinitions (these would introduce couplings to EW
boson field strengths as in eq. (7.4) that are, however, not relevant for our analyses).

To show the impact of the experimental searches for LFV processes with muons, we
construct three benchmarks for off-diagonal matrices εeLij and εeRij . To do so we first choose
a particular form of the leptonic Yukawa couplings, where we assume that in the basis in
which yeab is diagonal the Yukawa 2-vectors ye1a, ye1b have zero couplings between the 1st and
3rd generation. Within these assumptions the charged lepton mass matrix is completely
fixed, apart from a single continuous parameter, η,

me
ij =

 0 ηmµ 0
−me/η meff 0

0 0 mτ

 , meff ≡
√
m2
µ(1− η2) +m2

e(1− 1/η2) . (7.9)

The parameter η controls the size of left- and right-handed rotations. We restrict its values
to the range me/mµ ≤ η ≤ 1 such that there are no unnaturally large cancellations when
diagonalizing the mass matrix. Choosing three representative values of η gives

(V e
L)12 ≈


1√
2 η = 1√

2 ,√
me
mµ

η =
√

me
mµ
,

me
mµ

η =
√

2memµ ,

(V e
R)12 ≈


−me
mµ

η = 1√
2 ,

−
√

me
mµ

η =
√

me
mµ
,

− 1√
2 η =

√
2memµ ,

(7.10)

which we take as the three representative benchmarks: the “V − A”, “V ” and “V + A”
scenarios, respectively. As per our assumptions, the only flavor violating couplings are
between the 1st and the 2nd generation leptons.

More explicitly, the axion couplings in the three scenarios are,

• Benchmark “V ” (η =
√
me/mµ)

CVµe ≈ 2/3
√
me/mµ , CAµe = 0 , CAee ≈ c2

β/3− 2/3 , (7.11)
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Figure 9. Present and expected future bounds on fa and ma for the LFV QCD axion in the
three scenarios described in detail in the text, see also table 3 and eqs. (7.11)–(7.13). On the
lower axis we indicate the corresponding values for the effective axion mass defined by mi,eff =
4.7 eV× 106 GeV/Fi.

• Benchmark “V +A” (η =
√

2me/mµ)

CVµe ≈ CAµe ≈ 1/6 , CAee ≈ c2
β/3− 1/2 , (7.12)

• Benchmark “V −A” (η = 1/
√

2)

CVµe ≈ −CAµe ≈ 1/6 , CAee ≈ c2
β/3− 1/2 . (7.13)

We can now reinterpret the model independent bounds on LFV ALPs, derived in sections 3–
6, for the three LFV QCD axion benchmarks (choosing β = 1 as a representative value).
The resulting bounds on fa from µ → ea and from WD cooling, obtained by rescaling
respectively the bounds on FA,Vµe , FAee in table 1 by the appropriate values of CV,Aµe , CAee in
the three benchmarks, are collected in table 3 and presented graphically in figure 9.

The SN1987 bound is modified with respect to the one discussed in section 6.1 due
to the axion couplings to quarks and gluons that then result in the axion couplings to
nucleons (due to smaller scattering cross sections the processes involving electrons lead
only to subleading corrections). Adopting the treatment of ref. [140], the relevant bound
is on the effective coupling to nucleons,

CN ≡
√
C2
n + 0.29C2

p + 0.27CpCn , (7.14)

where Cp,n are the axion couplings to protons and neutrons, respectively. Using the expres-
sions in ref. [17] along with the values of couplings to quarks and gluons in eqs. (7.4), (7.5),
we get for the LFV axion model, for all three benchmarks,

CN =
√

0.042− 0.084 c2
β + 0.18 c4

β . (7.15)
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Figure 10. Left: the “V + A” LFV axion corresponds to the orange bold solid line. Right: the
“V − A” LFV axion corresponds to the green bold solid line. The grey shaded regions show the
present bounds on LFV QCD axion couplings to photons as a function of axion mass for the two
benchmarks. The grey dashed lines denote future projected sensitivities on the photon coupling.
The solid orange/green vertical lines show the present upper bound on the axion mass from WD
cooling in the two models. The dotted orange/green vertical lines show the present bound and future
reach on the axion mass from LFV experiments. For a comparison we also show lines corresponding
to the standard KSVZ (dark blue) and DSFZ-II (blue) models. The former one is limited by the
SN1987A bound, the latter one by WD cooling. For both the DSFZ-II and our LFV QCD axion
models we set β = 1. See the main text for details.

For given cβ the bound on fa follows from the bound on the effective decay constant
FN ≡ 2fa/CN ≥ 109 GeV [140]. The resulting bound on fa is of the order fa & 108 GeV,
with mild dependce on cβ .

In figure 10 we show the constraints on the axion-photon couplings

gaγγ = 1
fa

αem
2π

(
E/N − 1.92

)
, (7.16)

as a function of the axion mass, ma. The orange (green) solid line in the left (right) panel
shows gaγγ as a function of ma in the V + A (V − A) benchmark up to the exclusion
by the WD cooling constraints (the dotted continuation of the line is excluded by WD
cooling but is not excluded by the direct µ → ea searches). Note that for the LFV QCD
axion, E/N = 4/3, leading to smaller coupling to photons, |gaγγ | ' 0.6 × αem/(2πfa),
than for the flavor universal original KSVZ model, for which E/N = 0 and thus |gaγγ | '
1.9 × αem/(2πfa) [141, 142], and DFSZ-II model [12, 13], for which E/N = 2/3 and
|gaγγ | ' 1.3× αem/(2πfa) (though large variations in this coupling are possible depending
on the precise choices of the heavy fields and their charges [143–145]). The dotted orange
(green) vertical lines show projected and present bounds from µ→ ea searches, as denoted.
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The gray regions are excluded by other axion experiments: CAST [146], cooling of
horizontal branch stars (HB) and ADMX [97–99]. The gray dashed lines denote future
projections from different axion searches already discussed in section 6.2. We show the
reach of the future ADMX upgrade [106], of CAPP [107], KLASH [108], and ORGAN [109],
MADMAX [110] and the “dieletric stack” proposal [111]. We also include the reach of large-
scale helioscopes such as IAXO [122, 123], and light-shining-through-wall experiments such
as ALPS-II [124].

Figure 10 demonstrates the complementarity between this diverse experimental pro-
gram based on axion couplings to photons and electrons, and the reach of the LFV exper-
iments MEG-fwd and Mu3e, in order to search for LFV axions. In particular, a signal in
a future LFV search would be incompatible with an axion lighter than a few meV. Such
an LFV axion line will be challenging to test in axion haloscopes because of the infamous
DFSZ accidental suppression of the photon coupling, see eq. (7.16). In contrast, the future
ADMX experimental campaign and CAPP will probe the LFV axion for masses between
few µeV and few tens of µeV, which are inaccessible through LFV experiments.

7.2 The LFV axiflavon

We discuss next the possibility that the PQ symmetry that solves the strong CP problem is
also responsible for explaining the smallness of the SM Yukawas, i.e., that the QCD axion
is the axiflavon. This framework naturally results in a QCD axion with flavor-violating
couplings.

The simplest scenarios of this kind arise when the U(1)PQ is responsible for explaining
all the SM fermion mass hierarchies and mixings, along the lines of the Froggatt-Nielsen
models [34, 125, 126], as in refs. [24, 33]. In these constructions the strongest bound on
the axion decay constant always arises from K+ → π+a constraints [24], since the axion
coupling to sd is suppressed only by roughly the size of the Cabibbo angle, Vus = λ ' 0.2.
Indeed, for the U(1) axiflavon the LH quark charges, XqL

i , are non-universal so that from
eq. (7.2),

CVsd ∼ Vus
XqL

1 −X
qL
2

2N ∼ Vus. (7.17)

The sd axiflavon couplings, on the other hand, can be strongly suppressed in U(2)F
flavor models [35, 147, 148]. In these classes of models the light generations form doublets
of U(2)F . The U(1)F factor acts as the PQ symmetry that gives rise to the QCD axion
after spontaneous symmetry breaking. This scenario successfully explains the fermion
mass hierarchies and mixings in terms of just two small parameters. In the model of
ref. [35] both quark and lepton flavor violating couplings between the first two generations
are equally suppressed because of the assumed structure that is compatible with SU(5)
unification. Here we present a variant of this model that leads instead to parametrically
large µe couplings (their enhancement can be traced to large PMNS mixing angles). This
model is a successful model of flavor and at the same time an example of a large class
of flavored axion models where the LFV couplings are sizable while the FV couplings to
quarks are suppressed.
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U ca Dc
a Qa U c3 Dc

3 Q3 Eca La Ec3 L3 H φa χ

SU(2)F 2 2 2 1 1 1 2 2 1 1 1 2 1
U(1)F 1 1 1 0 1 0 1 1 0 −1 0 −1 −1

Table 4. The U(2)F quantum numbers of the SM fermions and the scalars H, φa and χ in the
example LFV axiflavon model.

In the LFV axiflavon model the U(2)F = SU(2)F ×U(1)F quantum numbers of almost
all the SM fermion are the same as in ref. [35]. In particular, all the fermions transform as
2 + 1 under SU(2)F . The only difference with respect to ref. [35] is that the U(1)F charge
of the SU(2)F singlet left-handed lepton, L3, is −1 instead of 1. Table 4 summarizes the
complete field content and the transformation properties under the U(2)F flavor group.
In addition to the SM fermions, the electroweak doublets Qi, Li, and singlets U ci , Dc

i , E
c
i ,

i = 1, 2, 3 (in table 4, a = 1, 2), the model contains the SM Higgs doublet as well as two
scalar spurions, φa and χ.

As in ref. [35], the breaking of the flavor symmetry is parametrized by two scalar
spurions φ and χ, which transform under U(2)F as φ = 2−1 and χ= 1−1. These fields
acquire the following flavor symmetry breaking vevs

〈φ〉 =
(
εφΛ
0

)
, 〈χ〉 = εχΛ , (7.18)

where Λ is, up to O(1) factors, the typical mass of the heavy states present in the full
UV model (their exact structure is not important for our effective low energy discussion as
they are integrated out). The values of the two small parameters in the two spurions are
fixed by the fit to quark masses and mixings to be about εφ ∼ λ2 and εχ ∼ λ3.

Since the SM fermions are charged under U(2)F , the Yukawa interactions between the
SM fermions and the Higgs require insertions of the spurion fields in order to form invariants
under U(2)F . This leads to non-renormalizable interactions suppressed by appropriate
powers of Λ. After replacing spurions with their vevs, eq. (7.18), the dependence on the
heavy scale Λ drops out. The hierarchies in Yukawa matrices then arise from powers of
the small parameters εφ,χ, giving for the mass matrices

mu ≈
v√
2

λ
u
11ε

2
φε

4
χ λ

u
12ε

2
χ λ

u
13εφε

2
χ

−λu12ε
2
χ λu22ε

2
φ λu23εφ

λu31εφε
2
χ λ

u
32εφ λu33

 , md ≈
v√
2

λ
d
11ε

2
φε

4
χ λ

d
12ε

2
χ λ

d
13εφε

3
χ

−λd12ε
2
χ λd22ε

2
φ λ

d
23εφεχ

λd31εφε
2
χ λ

d
32εφ λd33εχ

 , (7.19)

me ≈
v√
2

λ
e
11ε

2
φε

4
χ λe12ε

2
χ λe13εφε

2
χ

−λe12ε
2
χ λe22ε

2
φ λe23εφ

λe31εφεχ λ
e
32εφεχ λe33εχ

 , mν ≈
v2

2M

λ
ν
11ε

2
φε

4
χ λ

ν
12ε

2
φε

2
χ λ

ν
13εφεχ

λν12ε
2
φε

2
χ λν22ε

2
φ λν23εφεχ

λν13εφεχ λ
ν
23εφεχ λν33ε

2
χ

 , (7.20)

where we kept only the leading contributions in εφ,χ. The parameters λfij are O(1) com-
plex coefficients. The structure of the neutrino mass matrix mν was obtained under the
assumption that the neutrinos are Majorana with the masses arising from the Weinberg
operator with the UV suppression scale M . Notice that the 1–2 entry in mν of order ε2χ
vanishes due to anti-symmetrization, so that the first nonzero entry is of O(ε2φε2χ).
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Figure 11. Present bounds and projected sensitivity for the LFV axiflavon model illustrated in
section 7.2, with the LFV couplings given in eq. (7.30). The red bold solid line shows the predicted
coupling to photons (as defined in eq. (7.16)) of the LFV axiflavon model. The solid red vertical
line shows the upper bound on the axion mass from star cooling while the dotted red vertical lines
the present bound and future sensitivity from LFV axion searches. The grey shaded and grey dotted
regions, and the blue and dark blue lines are the same as in figure 10.

The quark sector of this model is identical to the one in ref. [35], and so are the unitary
rotations that diagonalize the quark masses. Their parametric structure is given by,

V u
L ∼ V u

R ∼

 1 λ λ7

λ 1 λ2

λ3 λ2 1

 , V d
L ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , V d
R ∼

1 λ λ5

λ 1 1
λ 1 1

 , (7.21)

where λ = Vus ∼ 0.2. The charged lepton mass matrix is parametrically the same as in
ref. [35], and so are the parametric sizes of the unitary rotations that diagonalize it,

V e
R ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , V e
L ∼

1 λ λ5

λ 1 1
λ 1 1

 . (7.22)

It is easy to check that the neutrino sector can reproduce the PMNS matrix and neutrino
mass differences for λνij that are O(1) for normal neutrino mass ordering.

The PNGB corresponding to the U(1)F factor is the LFV axiflavon, i.e., it acts as
the QCD axion that solves the strong CP problem (see ref. [35] for details). The anomaly
coefficients controlling the couplings of the LFV axiflavon to gluons and to photons in
eq. (7.4) are given by

N = 9/2 , E = 10 . (7.23)
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The couplings of the LFV axiflavon to the SM fermions depend on the unitary rotations in
eqs. (7.21), (7.22), as in eq. (7.2). Because of the SU(2)F structure of the LFV axiflavon
model it is useful to introduce the matrices (f = u, d, e;P = L,R)12

εfPij ≡ (V f
P )∗3i(V

f
P )3j , (7.24)

which satisfy

0 ≤ εfPii ≤ 1 ,
∑
i

εfPii = 1 , |εfPij | =
√
εfPii ε

fP
jj . (7.25)

They have the parametric structures

εuLij ∼ ε
uR
ij ∼ ε

dL
ij ∼ ε

eR
ij ∼

λ
6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

 , εdRij ∼ ε
eL
ij ∼

λ
2 λ λ

λ 1 1
λ 1 1

 . (7.26)

The axiflavon couplings to fermions are given in terms of charges and these parameters as

CVfifj =
Xfca −Xfa

2N δij +
Xfc3
−Xfca

2N εfRij −
Xf3 −Xfa

2N εfLij , (7.27)

CAfifj =
Xfca +Xfa

2N δij +
Xfc3
−Xfca

2N εfRij + Xf3 −Xfa

2N εfLij , (7.28)

where f = u, d, e denotes the fermion sector and Xfca , Xfa , Xfc3
, Xf3 are the U(1)F charges

in table 4.
The sd couplings are strongly suppressed, CV,Asd ∼ λ5/(2N), as a result of small rota-

tions in the LH sector, εdL,12 ∼ λ5, and the fact that RH rotation do not lead to off-diagonal
terms because of universal charges in the RH sector, XDca = XDc3

. The RH contributions
to the µe couplings are CKM-like suppressed, while the contribution from the LH rota-
tions are large, since the corresponding charges are non-universal (in contrast to ref. [35]),
XLa 6= XL3 , giving CVµe = −CAµe ∼

√
me/mµ/N . The axiflavon couplings to nucleons and

electrons are identical to ref. [35] and are to good approximation given by

CAee = CAuu = CAdd = CAcc = CAss ≈
2
9 , CAtt ≈ 0 , CAbb ≈

1
9 . (7.29)

The O(1) coefficients in the rotation matrices can be fixed by performing an ex-
plicit fit to all the observables — the masses and mixings, including the neutrino sec-
tor. Using the same procedure and the SM inputs as in ref. [35], we find that a
good fit is obtained by choosing εφ = 0.023, εχ = 0.080, M = 4.8 × 1011 GeV, with
Yukawa couplings for the up quark sector λu{12,22,23,32,33} = {−2.0, 1.0,−3.1,−1.1,−0.79},
and for the down quark sector λd{12,22,23,32,33} = {1.3, 1.1,−0.76, 0.44,−0.85}, with the
couplings λu11,13,31 and λd11,13,31 irrelevant because they give only subleading contribu-
tions to quark masses and mixings. The couplings for the lepton Yukawa matrices are

12Note the difference between εeP
ij defined here and in eq. (7.6). For this reason we restrict the use of εfP

ij

symbols to the two respective sections.
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λe{11,12,13,22,23,31,32,33} = {1.0, 2.3, 1.0, 1.7, 0.40,−0.30,−1.3, 0.55}, while for the neutrinos
they are λν{11,12,13,22,23,33} = {−1.0,−1.0, 0.38,−1.2, 1.9,−0.69}. For this fit we find for
the sd axiflavon coupling CVsd = 1.6 × 10−5, while the relevant couplings in the leptonic
sector are

CVµe = −CAµe = 0.043 , Ce = 0.21 , Cτe = 0.029 , Cτµ = 0.12 , (7.30)

where C`i`j ≡
√
|CV`i`j |

2 + |CA`i`j |
2. We use the above benchmark values for axiflavon cou-

pling to derive the sensitivities of different observables to axiflavon in figure 11. Other
phenomenologically viable choices of parameters that differ by “O(1)" factors can also give
a good fit to the SM masses and mixings, so the constraints obtained in our benchmark
should be viewed only as indicative, with O(1) variations, when this larger class of axiflavon
parameters is considered.

The red line in figure 11 shows the predicted coupling to photons, gaγγ , which for
the LFV axiflavon is given by eq. (7.16) with E/N = 20/9, as a function of axiflavon
mass, eq. (7.1). The bound on fa from WD cooling is denoted with a vertical solid red
line. The next less stringent bound comes from the µ → ea search by TWIST (dotted
vertical red line). Figure 11 shows that the Mu3e future reach (dotted vertical red line)
will exceed the WD cooling constraints. In order not to clutter figure 11, we do not show
the less constraining present bound (future senstivity) on LFV axiflavon from K+ → π+a

which is f & 5.4 × 106 GeV (1.6 × 107 GeV) [23]. The expected reach from Belle II is
fa & 3(1)× 106 GeV from τ → µa(τ → ea) searches, which is outside the range plotted in
figure 11. The other constraints, shown in grey with future sensitivities denoted with grey
dashed lines, are as in figure 10. Clearly, there is significant parameter space where the
LFV axiflavon can be discovered in LFV experiments, especially considering the potential
astrophysical uncertainties in the WD cooling bounds.

7.3 The leptonic familon

Our next example of an LFV ALP is the familon, i.e., the PNGB arising from the sponta-
neous breaking of a global horizontal symmetry, which we take to be the Froggatt-Nielsen
(FN) flavor symmetry, U(1)FN [34]. We consider the case where the U(1)FN only acts on
the leptonic sector so that the LFV ALP is the leptonic familon. Unlike the previous two
examples, the leptonic familon does not solve the strong CP problem and, as a conse-
quence, its mass is not determined by the QCD anomaly. The mass of the leptonic familon
is therefore taken to be a free parameter, yet still small enough that it can be produced
in tau or muon decays. The predictive power of the model is limited to the parametric
prediction of the LFV coupling, which are related to the neutrinos mass texture.

The couplings of the leptonic familon to the SM leptons are determined by the positive
U(1)FN charges [L]i and [e]i carried by the lepton doublets Li and singlets eci , respectively.
The U(1)FN symmetry is broken by the vev fa of a scalar field Φ with charge [Φ] = −1,

Φ = fa + φ√
2

eia/fa , (7.31)
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where a is the familon, while φ is the radial mode with the mass O(fa). Integrating out
all the heavy fields the charged lepton Yukawa couplings and the Majorana neutrino mass
matrix are given by (as determined through spurion analysis)

yeij = aeij

(〈Φ∗〉
M

)[L]i+[e]j
, mν

ij = κνij
v2

ΛN

(〈Φ∗〉
M

)[L]i+[L]j
, (7.32)

where ae and κν are assumed to be flavour-anarchical matrices of O(1) coefficients, M is a
cut-off scale with

ε ≡ 〈Φ
∗〉

M
< 1,

controlling the hierarchies among charged lepton masses, while ΛN is the lepton-number
breaking scale suppressing the dimension 5 Weinberg operator.13 An anarchical PMNS
matrix featuring O(1) mixing angles [149] can be achieved by taking equal charges for the
lepton doublets,

([L]1, [L]2, [L]3) = (L, L, L), [Pure Anarchy] . (7.33)

Good fits to the neutrino oscillation data can also be obtained for mildly hierarchical
charges (at the price of somewhat larger values of ε ∼ 0.3− 0.4) [150, 151],

([L]1, [L]2, [L]3) = (L+ 1, L, L), [µτ Anarchy] , (7.34)
([L]1, [L]2, [L]3) = (L+ 2, L+ 1, L), [Hierarchy] . (7.35)

The hierarchy of charged leptons is then reproduced by a suitable choice of the charges of the
RH leptons. Up to some freedom due to uncertainties relative to the expansion parameter
ε and more importantly to the O(1) coefficients aeij , a successful charge assignment is
the following:

([e]1, [e]2, [e]3) = (5− L, 3− L, 2− L), ε = 0.1 [Pure Anarchy] , (7.36)
([e]1, [e]2, [e]3) = (9− L, 5− L, 3− L), ε = 0.3 [µτ Anarchy] , (7.37)
([e]1, [e]2, [e]3) = (11− L, 6− L, 4− L), ε = 0.4 [Hierarchy] . (7.38)

The couplings of the familon to the leptons are given by,

L ⊃ ∂µa

2fa

(
CV`i`j

¯̀
iγµ`j + CA`i`j

¯̀
iγµγ5`j

)
, (7.39)

where

CV/A = V e †
R Xe

R V
e
R ± V e †

L Xe
L V

e
L . (7.40)

The unitary rotation matrices are defined as V e †
L ye V e

R ≡ yediag, while (Xe
L)ij = [L]iδij ,

(Xe
R)ij = −[e]iδij are diagonal matrices of the FN charges. Up to O(1) coefficients the LH

and RH rotations are given by
(
V e
L/R

)
ij
≈ ε|[L/e]i−[L/e]j |.

13Introducing instead the RH neutrinos such that the neutrinos have Dirac masses would not change the
following discussion and the resulting PMNS matrix.
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The three charge assignments (7.33)–(7.35) lead to qualitatively different values of
LFV familon couplings, eq. (7.40). In the purely anarchical model the [L]i are universal,
cf. eq. (7.33), so that the off-diagonal couplings in eq. (7.40) are entirely due to the RH
charges. The RH rotations are small, of the order of the ratios of lepton masses, (V e

R)ij ≈
(V e
R)ji ≈ m`i/m`j (i < j), and thus the LFV couplings are suppressed,

CV`i`j = CA`i`j ≈ ([e]i − [e]j)
m`i

m`j

(i < j) [Pure Anarchy] . (7.41)

The purely anarchical leptonic familon couples to the V + A current. It is thus subject
to constraints from the old Jodidio et al. experiment and can be an important target for
the proposed MEGII-fwd setup, despite the severe suppression of the LFV couplings, see
figure 12 (left).

For the hierarchical model the [L]i are non-universal, eq. (7.35), and the LH rotations
give the dominant contributions to the off-diagonal familon couplings in eq. (7.40). Even so,
the V +A couplings induced via RH rotations remain non-negligible, and are even enhanced
compared to the anarchical case,

(
V e
R

)
ij
≈
(
V e
R

)
ji
≈ ε[e]i−[e]j ≈ (m`i/m`j )/ε[L]i−[L]j (i < j).

The LFV couplings of the hierarchical leptonic familon are thus, from eq. (7.40),

CV`i`j ≈ ([e]i − [e]j) 1
ε[L]i−[L]j

m`i
m`j
− ([L]i − [L]j)ε[L]i−[L]j ,

CA`i`j ≈ ([e]i − [e]j) 1
ε[L]i−[L]j

m`i
m`j

+ ([L]i − [L]j)ε[L]i−[L]j ,
(i < j) [Hierarchy] . (7.42)

Because the hierarchical familon mostly couples to the V − A current the dominant con-
straint comes from the bound on µ → e a due to TWIST, eq. (3.17), even though this is
otherwise the weakest bound on BR(µ→ e a). In the future, MEGII-fwd can improve the
reach on the hierarchical familon beyond the present bounds, because of the non-vanishing
V +A contributions, cf. figure 12 (right).

The µτ Anarchy scenario is in between the above two cases. There is no LH mixing
in the 2 − 3 sector, while there is one in the case of 1 − 2 and 1 − 3 transitions. The RH
mixings are suppressed, but with 1 − 2 and 1 − 3 mixing enhanced by 1/ε over the pure
anarchical case.

The familon coupling to electrons, relevant for assessing the star cooling bounds, is
given by

CAee ≈ −
(
[e]1 + [L]1

)
. (7.43)

Finally, the coupling to photons is controlled by the anomaly contribution EUV, eq. (2.9),
which can be calculated in terms of FN charges in eqs. (7.33)–(7.38) as

EUV =
∑
i

([e]i + [L]i) , (7.44)

such that, for the three illustrative charge assignments (Anarchy, µτ Anarchy, Hierarchy),
one gets respectively EUV = {10, 18, 24}.

Figure 12 summarizes the present and expected future bounds on the FN breaking
scale fa for the purely anarchical (left panel) and for the hierarchical leptonic familon
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Figure 12. Present bounds and future sensitivities on the decay constant fa (in GeV) vs. the mass
ma for two familon models. The blue shaded regions indicate where the familon decays promptly
into SM states. The grey shaded regions are currently excluded by a combination of µ+ → e+a

experiments and star cooling bounds on the ALP-electron coupling. We show projected sensitivities
of MEGII-fwd in orange, Mu3e in red, Belle II in purple. Left: Anarchical model, cf. eq. (7.41),
Right: Hierarchical model, cf. eq. (7.35).

(right panel). For the anarchical model, we set [e]1 − [e]2 = 2 and [e]2 − [e]3 = 1 in
eq. (7.41), and [e]1 + [L]1 = 8 in eq. (7.43). For the hierarchical case we estimated the
LH rotations appearing in eq. (7.42) employing ε = 0.4 as in refs. [150, 151], while the
RH couplings are obtained by setting [e]1 − [e]2 = 5 and [e]2 − [e]3 = 2. In this case the
diagonal coupling to electrons in eq. (7.43) follows from [e]1 + [L]1 = 13. In all the cases
the O(1) coefficients were set to 1 exactly. The blue area in figure 12 indicates where
the familon proper decay length is shorter than 1m (due to a sizeable width to leptons,
a → `i`j), so that searches for `i → `j+ invisible lose sensitivity. Figure 12 shows that in
both representative models all future searches for LFV processes performed by MEG II,
Mu3e and Belle II can probe well into the yet unexplored parameter space.

As far as DM is concerned, the leptonic familon resembles very much the generic ALP
DM discussion in section 8. We refer to that section for an extensive discussion of the
implications of LFV searches on the ALP DM parameter space.

7.4 The majoron

The majoron [128, 129] is the PNGB due to spontaneous breaking of the lepton number. A
natural context where this kind of ALP arises are the seesaw models, where the breaking
scale of lepton number is associated with the mass scale of heavy new fields. In type-I
seesaw models at least two singlet fermions, the right-handed neutrinos Ni, are added to
the SM (for concreteness we will assume below two RH neutrinos). The RH neutrinos
couple to LH leptons via the Yukawa coupling matrix, yN , while their masses are described
by the Majorana mass matrix MN ,

L = LSM + iN /∂N −
(
yNLNH̃ + 1

2N
cMNN + h.c.

)
. (7.45)
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In the seesaw limit, MN � mD ≡ yNv, the RH neutrinos are heavy and can be integrated
out, while the light neutrinos are predominantly part of the SM doublets, Li, with the
Majorana mass matrix given by

mν = −mDM
−1
N mT

D . (7.46)

The majoron J arises when the mass matrix MN , which breaks the lepton number by
two units, is generated dynamically by the vev of a new SM singlet scalar field σ. In this
case the RH neutrino mass matrix in eq. (7.45) is replaced by the Yukawa couplings of RH
neutrinos to the scalar σ, i.e., MN → λNσ in eq. (7.45), where

σ = fN + σ̂√
2

eiJ/fN , (7.47)

so that the RH neutrino mass matrix is given in terms of the matrix λN as

MN = λNfN√
2

. (7.48)

The radial mode σ̂ is heavy and can be integrated out, while the majoron J is a PNGB
and is light (we take its mass to be a free parameter).

The majoron couples at tree level to neutrinos through the N̄ cλNσN Yukawa terms.
These Yukawa interactions then induce couplings of J to charged leptons and quarks
at loop-level [128], see ref. [152] for complete expressions. Here we are interested only
in the seesaw limit of these general expressions, which we match onto the effective La-
grangian (2.1) upon identifying a → J, fa → fN . Using the results of refs. [153, 154], we
find for the majoron couplings to quarks and leptons, respectively,

CVqiqj = 0 , CAqiqj = − T q3
16π2 δij Tr

(
yNy

†
N

)
, (7.49)

CVeiej = 1
16π2

(
yNy

†
N

)
ij
, CAeiej = 1

16π2

[
δij
2 Tr

(
yNy

†
N

)
− (yNy†N )ij

]
, (7.50)

where T u,d3 = ±1/2. Note that F Vµe = −FAµe, i.e., the LFV couplings of type-I seesaw
majoron have the V −A form (the couplings to the V +A leptonic current are flavor con-
serving). The TWIST experiment is sensitive to such a majoron, while the more stringent
bounds from the 1986 experiment by Jodidio et al. do not apply, see section 3.1 for details.

In contrast to the other ALP scenarios discussed above, in the case of a majoron,
couplings to neutrinos are particularly relevant to assess the stability of the particle, hence
whether it is a viable DM candidate. This is a consequence of the suppressed coupling
to photons of the majoron, which in fact decays preferably to neutrinos when its mass is
below the 2me threshold. In the seesaw limit, the coupling to light neutrinos is diagonal
and the decay width reads [153, 154]

Γ(J → νiν̄i) = mJ

16πf2
N

m2
i

√
1− 4m2

i

m2
J

, (7.51)

where mi are the light neutrino mass eigenvalues.
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Another crucial issue is whether the experiments are able to probe scales that are
interesting for the neutrino mass generation. We can distinguish two limits:

• In the standard seesaw setup, sizeable entries of the Yukawa matrix yN are only
compatible with the observed neutrino masses for an ultra-high seesaw scale. For
instance, let us consider the case where elements of the Yukawa matrix are all of
similar size, without any special structure, |(yN )ij | ∼ y (a hierarchical structure
would not qualitatively change the argument). The light neutrino masses are thus of
the size mν ∼ y2v2/MN , where v = 246GeV is the electroweak symmetry breaking
scale. The effective scale suppressing the LFV `i → `jJ decays is then given by
F ∼ fN/C ∼ 16π2fN/y

2 ∼ 16π2v2/mν & 1016 GeV. The standard set-up therefore
cannot be probed by the present nor any of the planned LFV experiments.

• In the low-scale seesaw setup, the neutrino masses are additionally suppressed, such
that large couplings in yN and a lower seesaw scale are compatible with the observed
light neutrino masses. Indeed, since the neutrino masses mν ∝ yNM−1

N yTN transform
non-trivially under the lepton number (in contrast to yNy†N ), it is possible that light
neutrino masses are parametrically suppressed in the presence of an approximate
generalized lepton number. Such scenarios, usually referred to as the “TeV scale
seesaw mechanism”, have been extensively studied in the literature [41, 130–138].
In the following we use the results of ref. [41] to construct a concrete example of
a majoron model with parametrically suppressed neutrino masses (and thus with
enhanced majoron couplings to the SM leptons).

In the simplest low-energy seesaw model one considers two right-handed neutrinos N1,2
with a 2× 2 Dirac mass matrix, MN , and 3× 2 Dirac Yukawa couplings, yN ,

MN =
(

0 M

M 0

)
= λ√

2

(
0 fN
fN 0

)
, yN =

ye1 ye2
yµ1 yµ2
yτ1 yτ2

 , (7.52)

where λ ≡
√

2M/fN is a real free parameter. In the y`1 → 0 limit the model has a
global U(1) symmetry, MN → PMNP , yN → eiαyNP with P = diag{eiα, e−iα}. The
majoron couplings, which are proportional to yNy†N , are invariant under this symmetry,
while the neutrino masses are not, mν → e2iαmν . This means that the neutrino masses are
proportional to symmetry breaking parameters, y`1, which, if small, additionally suppress
the neutrino masses compared to the majoron couplings.

Working in a basis where the charged lepton matrix is diagonal, we can adjust the
input parameters, M and y`i, such that all neutrino observables (2 mass differences + 3
mixing angles) are at the central experimental values. This leaves two free parameters,
which we choose to be M , the mass scale of RH neutrinos, and the largest eigenvalue of
the Dirac Yukawa matrix, y = max

[
eig(yNy†N )

]
. Using the results of ref. [41], we obtain

for the Normal Ordering (NO) in the seesaw limit,

yNy
†
N ≈ y

2 m3
m2 +m3

A∗iAj , where Ai = Ui3 + iUi2

√
m2/m3 , (7.53)
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with m2 =
(
∆m2

21
)1/2 and m3 =

(
∆m2

31
)1/2 the light neutrino masses (the lightest neutrino

mass is m1 = 0 as we introduced only two RH neutrinos). The Uij are the elements of the
PMNS matrix, all of which are experimentally observable, while y ≈

(
Tr (yNy†N )

)1/2 is a
free parameter, only bounded by perturbativity, y . 4. The result for Inverted Ordering
(IO) is obtained from (7.53) by replacing m3 → m2 =

(
− ∆m2

32
)1/2

,m2 → m1 =
(
−

∆m2
21 −∆m2

32
)1/2 and Ui3 → Ui2, Ui2 → Ui1.

For the numerical analysis we use the latest global neutrino oscillation fit results [155,
156], and set in eq. (7.53) the mass differences, the mixing angles and the Dirac CP phase in
PMNS matrix to their central experimental values. This gives the 3× 3 Hermitian matrix
yNy

†
N that still depends on y and one Majorana phases, αm. For simplicity, we set the

latter to zero, αm = 0. The effective suppression scales for the majoron couplings are in
the NO case given by (similar results are obtained for IO)

FAee = 1.1× 1010 GeV
λy2

(
M

107 GeV

)
, Fµe = 1.4× 1010 GeV

λy2

(
M

107 GeV

)
, (7.54)

Fτe = 1.6× 1010 GeV
λy2

(
M

107 GeV

)
, Fτµ = 0.71× 1010 GeV

λy2

(
M

107 GeV

)
, (7.55)

where for the flavor-violating cases we quote the bound on combined A, V effective scale,
as defined in eq. (2.2). For completeness we also show the results for the flavor diagonal
couplings to muons and taus, although they are at the moment of little phenomenological
relevance,

FAµµ = −2.7× 1011 GeV
λy2

(
M

107 GeV

)
, FAττ = 3.7× 1010 GeV

λy2

(
M

107 GeV

)
. (7.56)

The coupling to muons is comparatively suppressed due to an accidental cancellation be-
tween the two contributions to CAµµ in eq. (7.50).

The majoron also couples to nucleons via its couplings to quarks (7.49). These cou-
plings do not depend on PMNS elements and are given by

FN ≈
0.88× 1010 GeV

λy2

(
M

107 GeV

)
. (7.57)

In figure 13, we summarize the current status and future prospect of the constraints on
the parameter space of the low-energy seesaw majoron model described above. Besides the
present and future bounds from LFV experiments and the astrophysical limits discussed
in section 6.1 involving the coupling of the majoron to electrons, we display as a yellow-
shaded area the region excluded by SN1987A, according to the study of ref. [157], due to
the nucleon-majoron coupling of eq. (7.57).

We also show as a dashed blue line where the majoron lifetime equals the lifetime of
the universe. Anywhere to the left of this line, the majoron is a viable DM candidate. In
fact, there is no strong constraint from observations of the extragalactic background light,
since coupling of the majoron to photons are suppressed. The two representative lines
explained in section 6.2 show where the misalignment mechanism accounts for the whole
DM abundance today with θ0 ∼ 1. Below these lines the majoron is a sub-component
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Figure 13. Present bounds and future sensitivities on the coupling to electrons FAee (in GeV) and
the RH neutrino mass scale M (normalized by the combination of free parameters λy2) vs. the
majoron mass mJ (in eV) for the low-energy seesaw majoron model. On the left of dashed blue line
the majoron is stable on time scale of our Universe and could account for the DM abundance. The
two dashed gray lines are examples of misalignment production discussed in section 6.2. The gray
shaded region is excluded by star cooling bounds on the majoron-electron coupling and µ+ → e+a

bounds. The yellow shaded is excluded by SN1987A. We show in red the future reach of Mu3e, in
purple the reach of Belle II and in light purple the reach of QUAX which requires the majoron to
be DM.

of the total DM abundance unless new dynamical mechanism or a tuning of the initial
condition is put into place. Notice that here we ignore further mechanisms of production
that could arise from Higgs portal-type of couplings (see ref. [158] for a discussion).

Finally, the light purple line denotes the expected reach of the QUAX experiment [102,
103, 121], which is directly sensitive to the coupling of the majoron to electrons. The shown
sensitivity is as assessed in ref. [104], under the assumption that the majoron is responsible
for 100% of the observed DM abundance.

Figure 13 shows the remarkable reach in terms of the effective scale FAee and the RH
mass neutrino mass scale M of the Mu3e experiment, which, by searching for the µ→ eJ

decay, will be able to probe for the first time the uncharted territory beyond the star
cooling and SN1987A bounds. In particular, Mu3e will be able to probe that part of the
parameter space where the majoron can be a substantial component of DM.

Stringent constraints on low-energy seesaw models arise also from LFV decays, µ →
eγ, eee, and µ → e conversion, mediated by the heavy neutrinos at the scale M , if this
is not much above the TeV scale. Following again ref. [41], one for instance finds for the
branching ratio of µ→ eγ

BR(µ→ eγ) = 3αem
32π

|(mDm
†
D)12|2

M4 |H (X)|2 , (7.58)

– 51 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
3

where X = M2/M2
W and

H(x) = x(1− 6x+ 3x2 + 2x3 − 6x2 log x)
(1− x)4 =

x x� 1
2 + (11− 6 log x)/x x� 1

. (7.59)

This gives, in the M �MW limit,

BR(µ→ eγ) = 2.4× 10−13

λ2

(
103 GeV
M

)2 (BR(µ→ ea)
5.8× 10−5

)
. (7.60)

This should be compared to the current 90% CL limit set by the MEG experiment, BR(µ→
eγ) < 4.2 × 10−13 [77]. The LFV decays to majorons therefore typically provide stronger
bounds on the seesaw scale M than the LFV processes, µ → eγ, µ → 3e, and µN → eN ,
unless either M ≈ fN ≈ 1TeV, or λ� 1, such that the mass scale of the RH neutrinos is
much lower than the L-breaking scale M � fN . Apart from these limits, µ → eJ tends
to provide the dominant constraint, as a consequence of different scalings with the heavy
scale (the rate of µ → eJ is ∝ M−2, while the rates of µ → eγ, µ → 3e, and µN → eN ,
are ∝M−4). See also the detailed discussion in ref. [154].

Finally, we comment on the chiral structure of the LFV majoron couplings which in
our minimal implementation are entirely of V − A, given that LFV is mediated by the
W -loops. This will not be the case in a two Higgs doublet model, where the majoron LFV
couplings can be induced by loops of the charged Higgs. The V +A LFV couplings are then
going to be suppressed by ∼ y2

Hv
2/m2

H+ , where mH+ is the mass of the charged Higgs and
yH its coupling to leptons. Given the strong bounds on H+ coming from indirect searches
in b→ sγ [159] and direct collider searches [160] we expect the right-handed LFV couplings
of the majoron to be generically suppressed with respect to the left-handed ones. It would
be interesting to explore further the robustness of this statement in models where a light
charged Higgs is still unconstrained [161].

8 Conclusions

Generically, axion like particles (ALPs) can have flavor violating couplings to the SM
fermions. In this manuscript we explored the phenomenological consequences of such cou-
plings; in the first part we took a model-independent perspective and summarized present
constraints and future sensitivities on generic lepton flavor violating couplings of light
ALPs, see figure 1. Here an important feature is our proposal for a new experimental
set-up at MEG II, MEGII-fwd, which consists of a forward calorimeter to be installed in
front of the MEG II beamline, see section 3.2 for details. The major benefit of such an
experimental set-up is that the irreducible SM background from µ+ → e+νν̄ is reduced
at the highest positron momentum in the forward region. Since the SM decay ampli-
tude is controlled by left-handed couplings, it vanishes for an exactly forward positron of
pe+ = mµ/2 if produced from a muon that is completely negatively polarized. MEGII-fwd
can be used to search for an effectively massles ALP produced in µ+ → e+a with some
amount of right-handed LFV coupling to the SM leptons. The signal will appear as a sharp
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line in positron energy distribution, in contrast to the smoothly falling SM background.
The final reach of MEGII-fwd depends on how well depolarization effects can be controlled,
on the positron momentum resolution, and on whether or not magnetic focusing is applied
in order to increase the positron luminosity in the forward direction. Assuming realistic
estimates for these parameters, we expect that a two week run at MEG II in MEGII-fwd
configuration will allow to explore new ALP parameter space well before Mu3e and beyond
the current astrophysical limits from star cooling.

Exploring this new region of parameter space will provide new insights on the couplings
of an ALP DM produced non-thermally in the early Universe as discussed in section 6.2. A
possible signal in an LFV experiment could be cross-correlated with the future experimental
campaigns of axion haloscopes and future intensity mapping searches. This would give us
more information about the light ALP mass beyond the expected resolution of MEGII-fwd.

In the second part of this paper we discussed several UV models where ALPs with
flavor-violating couplings to leptons arise when addressing various shortcomings of the
SM, such as the Strong CP Problem or the Flavor Puzzle, see section 7. These models
explicitly demonstrate that the LFV couplings, which will be tested by future laboratory
experiments, are correlated to the flavor-diagonal lepton couplings, which are strongly con-
strained by star cooling. Despite these constraints we find encouraging prospects for the
expected sensitivity of MEGII-fwd to test these theoretically well-motivated models. We
believe that this warrants a more systematic exploration of the feasibility of MEGII-fwd,
including proper detector simulations. In particular, it would be interesting to investigate
in more detail the required rearrangement of the MEGII magnetic field and its interplay
with the achievable momentum resolution. We hope that this proposal will be explored fur-
ther by the experimental collaboration. The MEGII-fwd proposal should also be carefully
compared with other possibilities of improving the MEGII reach on LFV decays, for exam-
ple the possibility of a dedicated trigger for µ+ → e+aγ decays as discussed in section 4.2.
We hope to return to these issues in the future.

Beyond the new proposed experimental ideas, the paper includes several novel theo-
retical results. First of all, in section 6.1 we derived the astrophysical bounds from stellar
cooling on leptonic couplings of an ALP with arbitrary mass. While the bounds on cou-
plings of massless ALPs to electrons were readily available in the literature, this was not
the case, to the best of our knowledge, for massive ALPs coupling to ee, as well as for the
couplings to µe and µµ (recently, ref. [45] treated the case of massless ALP coupling to
muons). Second, we showed how the chiral structure of the LFV couplings emerges in var-
ious explicit (and mostly novel) models, in which the presence of a light ALP is motivated
by addressing the strong CP Problem (the LFV QCD Axion and the LFV Axiflavon), the
hierarchical structure of SM fermion masses (the LFV Axiflavon and the Leptonic Familon)
or the origin of neutrino masses (the Majoron). For the LFV Axiflavon and the majoron
the ALP couples mainly to left-handed leptons, and thus improvements in the reach on
µ+ → e+γa at MEGII (or ultimately the inclusive on-line bump hunt proposed at Mu3e)
will be needed in order to test these scenarios. On the other hand, for the case of LFV
QCD axion and the leptonic familon the right-handed couplings are sufficiently large to
allow MEGII-fwd to be the first experiment to discover the flavor violating ALP.
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To conclude, we hope that this work may boost a renovated interest in the experimen-
tal possibilities at near future LFV experiments. The unprecedented luminosity of these
facilities has been conceived to probe extremely rare lepton decays mediated by heavy new
physics. The same data could also be used to probe decays with an (invisible) light new
particle in the final state. We believe that we merely started to scratch the surface of the
possible experimental improvements and theoretical motivations to search for light new
physics in rare lepton flavor violating decays.
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