
J
H
E
P
1
0
(
2
0
2
1
)
0
7
6

Published for SISSA by Springer

Received: August 31, 2021
Accepted: September 20, 2021

Published: October 8, 2021

The unbearable lightness of charged gravitini

Gianguido Dall’Agata, Maxim Emelin, Fotis Farakos and Matteo Morittu
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova,
Via Marzolo 8, 35131 Padova, Italy
INFN, Sezione di Padova,
Via Marzolo 8, 35131 Padova, Italy
E-mail: gianguido.dallagata@pd.infn.it, maxim.emelin@mail.mcgill.ca,
fotis.farakos@gmail.com, matteo.morittu@pd.infn.it

Abstract: We prove that charged gravitini cannot have parametrically small or vanishing
Lagrangian mass in de Sitter vacua of extended supergravity while respecting the magnetic
weak gravity conjecture. This places large classes of de Sitter solutions of gauged super-
gravity in the swampland, including all known stable solutions of the N=2 theory. We
illustrate this result by analyzing a variety of de Sitter critical points of N=2 matter-
coupled supergravity that also include new stable de Sitter solutions. Our results provide
concrete evidence that (quasi) de Sitter with charged light gravitini should belong to the
swampland, which also strongly resonates with the “festina lente” bound.

Keywords: Extended Supersymmetry, Supergravity Models, Superstring Vacua

ArXiv ePrint: 2108.04254

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2021)076

mailto:gianguido.dallagata@pd.infn.it
mailto:maxim.emelin@mail.mcgill.ca
mailto:fotis.farakos@gmail.com
mailto:matteo.morittu@pd.infn.it
https://arxiv.org/abs/2108.04254
https://doi.org/10.1007/JHEP10(2021)076


J
H
E
P
1
0
(
2
0
2
1
)
0
7
6

Contents

1 Introduction 2

2 General considerations 3
2.1 Magnetic WGC and de Sitter 3

2.1.1 Warm-up: gauged R-symmetry in N=1 4
2.2 WGC and non-abelian gauge groups 4
2.3 N=2 with charged light gravitini 6
2.4 Main result and related conjectures 9

3 Stable de Sitter vacua with massless gravitini 10
3.1 SO(2,1) × U(1) with one hypermultiplet 10
3.2 SO(2,1) × U(1)3 with two hypermultiplets 13

3.2.1 Vector multiplets 13
3.2.2 Gauging U(1)3 on two hypermultiplets 15
3.2.3 Gauging the SO(3) 18

4 Multiple unstable de Sitter vacua with various gravitini masses 19
4.1 Scalar manifolds 19
4.2 Gauging 20
4.3 SO(3) × U(1) 21
4.4 SO(3) × O(1,1) 23

5 Unstable vacua with no massless U(1) couplings 26
5.1 Massive gravitini 26
5.2 Massless uncharged gravitini 27

6 Maximal supergravity with light gravitini 27

7 Conclusions 31

A Basic ingredients of 4D N=2 gauged supergravity 31
A.1 Vector multiplets 31
A.2 Hypermultiplets 34
A.3 Potential, gravitino mass and charge 35

B SO(4, 2)/SO(4) × SO(2) coset space hyper geometry 36

– 1 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
6

1 Introduction

The vacuum structure of four-dimensional gauged supergravities has been under intense
scrutiny ever since the first matter-coupled theories were constructed and their close connec-
tion to string theory was appreciated. However, it is not always evident which supergravity
models are true low-energy effective theories arising from string compactifications, which
are truncations of larger low-energy field theories, and which may have no relation to string
theory at all. To make progress on this question one can turn to the swampland criteria [1],
a set of interconnected conjectures that aim to restrict the properties of low-energy effective
field theories (EFTs) that have a consistent embedding into quantum gravity.

The swampland criteria are motivated by black hole arguments, quantum gravity
arguments, or simply by recurring patterns in string flux compactifications. Arguably,
among the most well-established of the swampland criteria is the weak gravity conjecture
(WGC) [2]. The “electric” version of the WGC places restrictions on the possible masses
and charges that can exist in an EFT, whereas the “magnetic” version further posits that
there is a prematurely low ultraviolet (UV) cut-off that depends on the gauge coupling.
In parallel, various considerations have cast doubt on the possibility of realizing de Sitter
space within string theory [3], or in quantum gravity more broadly [4]. This culminated in
a series of conjectures that explicitly forbid stable [5–8] or long-lived [9–11] de Sitter solu-
tions in a UV-completable EFT. These conjectures, if correct, have profound implications
for string cosmology. It would be therefore desirable to acquire further evidence for or
against these conjectures, in particular by exploring their connections to other more estab-
lished ones. In this vein, it was demonstrated in [12] that applying the magnetic WGC on
certain supergravity de Sitter vacua results in their elimination without the need to invoke
other conjectures. It was further noted that this violation of the WGC correlates with the
presence of charged massless gravitini which was proposed as an independent swampland
criterion in its own right.

In this work we further build on the results of [12] using N=2 matter-coupled gauged
supergravity as our main framework [13, 14]. We present for the first time a general proof
that parametrically light or massless1 charged gravitini at a de Sitter critical point result
in a violation of the magnetic WGC in N=2 supergravity. This result is illustrated with
several N=2 models that have de Sitter critical points, both stable or unstable, or even have
flat directions corresponding to moduli. We are able to exclude a majority of these de Sitter
solutions, including some that fail to be excluded even by the de Sitter swampland criteria.
We also discuss examples that evade exclusion by the WGC by having either uncharged
gravitini or by breaking all gauge symmetry at the critical point. After examining the N=2
models, we also provide a parallel proof that de Sitter critical points with light charged

1We stress that the mass is not a good quantum number to describe physical states in de Sitter and
Anti-de Sitter spacetimes, because P 2 is not a good Casimir of the corresponding symmetry algebras. Also,
gravitini are never truly massless in de Sitter, even when they have vanishing Lagrangian mass, in the sense
that they always propagate four degrees of freedom instead of two. Therefore in our work when we refer to
“massless gravitini” we mean gravitini with vanishing Lagrangian mass, whereas by “light gravitini” we will
mean a vanishing or parametrically small Lagrangian mass compared to the Hubble scale. We will omit
the word “Lagrangian” to avoid clutter and we hope the reader will not be confused by this omission.
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gravitini are similarly excluded in N=8 supergravity. Our findings strongly indicate that
an analogous result for other extended supergravities with 8>N>2 should hold.

As a cross-validation of our findings, we see that our results are strongly consonant
with the “festina lente” (FL) bound [15–17], which places a lower bound on the masses of
all charged particles in a de Sitter background. Conversely, our findings can be interpreted
as a highly non-trivial check on the consistency of the FL bound, by simply applying it
on the N=2 gravitini and demanding gravity to be the weakest force. Complementary
arguments, that deal with the lowering of the EFT cut-off in the limit of light gravitini,
including considerations based on the WGC, appear in [18], and are further established
in [19].2 For completeness, let us note that further restrictions on the properties of scalar
potentials such that gravity remains the weakest force have been considered in [24–26],
while the WGC in de Sitter space has been further studied in [27, 28].

2 General considerations

In this section we present our main arguments for why (quasi) de Sitter backgrounds with
charged light gravitini belong to the swampland. First we recall how the magnetic weak
gravity conjecture for a U(1) places a restriction on the energy density of a theory and
then we further argue for an extension of this restriction to the case of non-abelian gauge
symmetry. After that we present a general proof that de Sitter critical points in N=2 gauged
supergravity with charged massless gravitini belong to the swampland and we show that
it also applies to the case of parametrically light masses. We close the section by relating
our results to other swampland conjectures.

2.1 Magnetic WGC and de Sitter

In this section we review the implications that the weak gravity conjecture can have on
de Sitter backgrounds. Let us first recall that the magnetic WGC postulates that for any
U(1) gauge symmetry there is a quantum gravity-induced UV cut-off [2]. The value of that
cut-off ΛUV for an EFT is bounded from above by the formula

ΛUV < gU(1) qelMP , for every charged object , (2.1)

where gU(1) is the U(1) gauge coupling and qel is the charge with respect to that U(1).
From now on we will call gU(1)qel the physical coupling of an object

qphys = gU(1)qel . (2.2)

Clearly the object with the lowest physical coupling sets the strongest restriction on the
allowed UV cut-off, and for uncharged objects (2.1) does not apply. The way the UV cut-off
manifests in the EFT is not known a priori unless one knows also the UV completion of the
theory. For example it can be due to towers of massive states that have a mass controlled
by ΛUV. For us here this UV cut-off will be simply used as a device to signal when higher

2For a different line of investigation concerning massless gravitini based on post-inflationary cosmological
considerations, see [20–23].
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order corrections to the effective theory become important. If one wants to safely ignore
such corrections, then one should work at energies parametrically lower than ΛUV.

On a de Sitter background there is one simple condition that should be satisfied such
that higher order gravitational corrections do not immediately threaten the EFT. For a
background with Hubble constant H the condition is

H � ΛUV . (2.3)

An extended discussion justifying this condition can be found in [12]. If (2.3) does not hold
then the two-derivative gravitational theory may be subject to strong quantum corrections.
As a result it is not a trustworthy EFT.

2.1.1 Warm-up: gauged R-symmetry in N=1

A simple illustration of the restrictions placed by the magnetic WGC on supergravity
theories is the following observation that was presented in [29]. If we consider the Freedman
model [30] then the Lagrangian contains only gravitation with a positive cosmological
constant, a U(1) gauge field (vµ) that gauges the R-symmetry, and a massless, but charged,
gravitino (ψµ). In the unitary gauge this is

e−1L =− 1
2R+ 1

2ε
κλµν

(
ψκσλDµψν − ψκσλDµψν

)
− 1

4g2FµνF
µν + iq εκλµνψκσλψµvν − 4g2q2 ,

(2.4)

where Dµ here is the spacetime Lorentz-covariant derivative, which includes the gravitino-
dependent spin-connection. This de Sitter space is characterized by a Hubble scale that
is of the same order as the gravitino charge times the gauge coupling. As a result one
can argue that the Hubble scale of such a simple model already hits the magnetic WGC
cut-off and thus is faced with a Dine-Seiberg problem [31]. Interestingly, one could place
this model in the swampland equally well just by applying the FL conjecture [17].

2.2 WGC and non-abelian gauge groups

The magnetic WGC is formulated for U(1) gauge symmetries, and a natural question is
whether a similar expression for the UV cut-off exists involving the gauge couplings of non-
abelian groups. In theories with charged scalar fields one should expect this to be the case,
because the gauge group itself can be broken or enhanced depending on the expectation
values of the fields. This is especially true in gauged extended supergravities, where the
gauging of a non-abelian group forces the theory to contain the would-be goldstones of the
non-abelian gauge symmetries.

The simplest case to consider would be a theory where a certain vacuum preserves a
non-abelian gauge symmetry but also has a charged modulus, such that giving it an expec-
tation value breaks the non-abelian symmetry to a U(1). For any value of this modulus,
we have a vacuum of the theory, where one can clearly apply the WGC using the gauge
coupling of this U(1). We can then take the limit as the expectation value approaches the
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original “central” vacuum where the full non-abelian symmetry is restored. In this limit
the U(1) gauge coupling will approach the non-abelian coupling of the central vacuum.

In this sequence of U(1) gauge theories we can determine the WGC cut-off in the usual
manner and then by continuity, we conclude that the cut-off of the vacuum with non-
abelian symmetry must be the limit of the cut-offs of the broken phase. Since this cut-off
is determined from the U(1) gauge coupling, which in turn approaches the non-abelian
coupling, we conclude that the non-abelian coupling can also be used to determine the UV
cut-off for the original non-abelian theory.

If we interpret the WGC cut-off as, for example, coming from the mass scale of some
UV states that aren’t captured by the effective theory, these masses would not change
drastically between nearby points in moduli space. We expect this to be the case, regardless
of any gauge symmetry enhancement or breaking that may also be taking place. Thus if
the WGC is a good criterion for determining the cut-off of a U(1) gauge theory, it should
work when we approach a point where this symmetry is enhanced. The same holds for any
other UV origin of the cut-off.

A more subtle situation happens when the direction in field space that breaks the
non-abelian symmetry but preserves a U(1) is not a modulus. In this case, although we
can still consider a sequence of points in moduli space that approach the central vacuum,
they will not dynamically “stay in place”, so to speak.

In that case, the next best scenario is if the U(1) preserving direction also has the
gradient of the potential tangent to it. Then there exists a U(1)-preserving classical tra-
jectory, and the situation is similar to the case when it’s a modulus. Indeed, if we set
conditions at t = 0 where this field has a sufficiently small but non-zero expectation value
and vanishing kinetic energy, the subsequent trajectory will be along the U(1)-preserving
direction. In this case we can expand the action around that path and this expansion will
still have a massless U(1) gauge field manifestly present, with the various field excitations
charged under it. The magnetic WGC can then be applied as usual to determine a (pos-
sibly time-dependent) UV cut-off for the effective theory defined by the expansion around
such a non-stationary classical path.

If we can carry out this procedure of defining effective theories around U(1)-preserving
non-stationary backgrounds, we can consider a sequence of such effective theories defined
around paths with t = 0 conditions closer and closer to the central vacuum. Once again
we expect the cut-offs for this sequence of effective theories to approach the cut-off of the
non-abelian theory, while the U(1) gauge coupling will approach the non-abelian coupling,
leading to the non-abelian WGC.

Of course in general theories, we do not always have the ability to break the non-
abelian group while preserving a U(1) subgroup. The above arguments are particularly
relevant to N=2 supergravity, where the vector multiplet scalars transform in the adjoint
of the non-abelian gauge group and can thus be used to break it to a U(1). In section 4
we will see examples of both of the above scenarios, where an SU(2) gauge group in the
central vacuum gets broken down to a U(1) either by a modulus or a tachyonic scalar that
allows for U(1)-preserving classical trajectories. In both of those examples we will be able
to exclude the central vacuum with non-abelian gauge group by considering the WGC for
the neighboring U(1)-preserving points.
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A final possible caveat is that although a U(1) preserving direction in field space might
exist, there might be no U(1) preserving classical trajectories, if the gradient of the potential
is not aligned with the U(1) preserving direction. In this case it isn’t clear how to apply
the WGC. We have not encountered such examples in our investigations.

2.3 N=2 with charged light gravitini

Here we provide a simple proof of the fact that in N=2 gauged supergravity de Sitter critical
points with charged massless gravitini are incompatible with the consistency requirements
of the weak gravity conjecture. For the sake of clarity in the presentation we directly give
the argument in the following, using only the N=2 ingredients that are directly relevant.
The interested reader can find a summary of N=2 gauged supergravity and all relevant
references in appendix A. In detail, we need three ingredients: the kinetic terms of the vec-
tors in order to identify the gauge couplings, the gravitini-gauge vectors minimal couplings
in order to identify the charge, and the value of the vacuum energy when the gravitino
mass is vanishing. Since it is not restrictive, we assume that the gauging is purely electric.
Once we establish that massless charged gravitini are in the swampland we show that if
they have a parametrically small mass then the same results still apply.

The kinetic terms of the gauge vectors AΛ
µ have the form

e−1Lkin. = 1
4 IΛΣ F

Λ
µνF

µν Σ , (2.5)

where IΛΣ is a negative definite scalar dependent matrix and FΛ
µν = 2∂[µA

Λ
ν] + fΛ

ΣΓA
Σ
µA

Γ
ν .

Once we define vielbeins and inverse vielbeins for the matrix I as follows

−IΛΣ = δAB EAΛ EBΣ , EAΛ EΛ
B = δAB , (2.6)

we get the kinetic terms for the canonical vectors vA = EAΛAΛ

e−1Lkin. = −1
4δABF

A
µνF

µν B . (2.7)

Within these vAµ vectors will be the massless U(1) gauge field we are interested in.
Now we wish to identify the physical charge of the gravitini under this U(1). To this

end we focus on the minimal coupling between the gravitini and the U(1) vector. The
relevant term takes the form

e−1Lkin. 3/2 = −ψiµγµνρDν(ω)ψiρ −
i

2ψ
i
µγ

µνρvAν

(
δjiP

0
A + σxi

jP xA

)
ψjρ , (2.8)

once we define

P 0
ΛEΛ

B = P 0
B , P xΛEΛ

B = P xB . (2.9)

In (2.8) we also include the kinetic term of the gravitino to stress that it is already canon-
ically normalized. In choosing the vielbein basis we have enough freedom to ensure that
our U(1) gauge field, um, is along one specific basis element

uµ = vA=1
µ , (2.10)
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so that the corresponding minimal coupling to the gravitino is

e−1Lkin. 3/2 = −ψiµγµνρDν(ω)ψiρ − iψ
i
µγ

µνρuνQi
jψjρ , (2.11)

where we defined the hermitian matrix

2Qij = δjiP
0
1 + σxi

jP x1 . (2.12)

Since the two-by-two matrix Q is hermitian we can diagonalize it by a unitary transforma-
tion U , which we can also use to rotate the gravitini

Q→ UQU † , ψ → Uψ , ψ → ψU † , (2.13)

so that the minimal coupling has the form

e−1Lkin. 3/2 = −ψiµγµνρDν(ω)ψiρ − iψ
1
µγ

µνρuνq1ψ1ρ − iψ
2
µγ

µνρuνq2ψ2ρ . (2.14)

Note that q1 and q2 are the physical couplings (i.e. gauge coupling × integer charge)
between the canonical gauge bosons and the gravitini. Therefore they are the quantities
that enter the WGC. As a result the magnetic WGC for the U(1) under which the gravitini
are charged states that

ΛUV < q1 & ΛUV < q2 , (2.15)

where we remind the reader that we are working in Planck units.
Now we turn to the scalar potential. We will see that under the assumption that the

charged gravitini masses vanish, the vacuum energy hits the WGC cut-off. The N=2 scalar
potential with vanishing gravitini masses takes the form

V = −1
2I
−1|ΛΣ

[
P 0

ΛP
0
Σ + P xΛP

x
Σ

]
+ 4huv kuΛkvΣ L̄ΛLΣ . (2.16)

This means the scalar potential has the property

V ≥ 1
2δ

AB
[
P 0
AP

0
B + P xAP

x
B

]
. (2.17)

Then we further have

δAB
[
P 0
AP

0
B+P xAP xB

]
= 1

2δ
AB
[
δjiP

0
A+σxijP xA

][
δijP

0
B+σyjiP yB

]
≥ 1

2
[
δjiP

0
1 +σxijP x1

]2
.

(2.18)

Once we make use of the Q matrix (2.12) and perform the rotation (2.13) we obtain

V ≥ Tr
(
UQU †UQU †

)
= Tr (QQ) = q2

1 + q2
2 . (2.19)

We conclude that

V ≥ q2
1 & V ≥ q2

2 ⇒ V ≥ Λ2
UV . (2.20)
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This translates into

H ≥ ΛUV/
√

3 , (2.21)

which means that the tree-level de Sitter critical points will receive large quantum correc-
tions and cannot be trusted. This is a manifestation of the Dine-Seiberg problem [31] and
challenges the consistency of such de Sitter vacua. It is important to keep in mind that we
are always talking about charges of the gravitino under massless gauge fields, such that the
weak gravity conjecture can be directly applied. Instead, when a gauge symmetry is broken
even though a (covariantly) conserved current does still exist one cannot unambiguously
define the charge any more, at least in Minkowski.

As promised we can extend our conclusions to the case of very light gravitini, in
particular when they are parametrically lighter than the Hubble scale. Indeed, a gravitino
mass matrix has the form

Sij = iP xΛL
Λ(σx) k

i εjk , (2.22)

and will only influence the supergravity scalar potential by the supersymmetry requirement
that we include a new term of the form

VS = −4L̄ΛLΣP xΛP
x
Σ . (2.23)

Having gravitino masses parametrically small compared to the Hubble scale means√
L̄ΛLΣP xΛP

x
Σ � H . (2.24)

As a result the dominant contribution still comes from the term (2.20) and therefore the
Hubble still hits the cut-off. We see that de Sitter backgrounds in N=2 supergravity with
charged light gravitini are faced with a Dine-Seiberg problem. In the upcoming sections
we will give explicit examples that show how the magnetic WGC restricts such vacua.

Note that if the gravitini are uncharged the situation is different. Indeed in such a
setup we would have P 0

Λ = 0 = P xΛ , and then the scalar potential takes the form

V = 4huv kuΛkvΣ L̄ΛLΣ ≥ 0 . (2.25)

Thus, if we have an isometry with non-vanishing Killing vectors this can lead to positive
vacuum energy while maintaining vanishing gravitini mass. However if such a background
contains only spectator massless U(1) gauge fields then in any case the WGC cannot be
directly applied and we cannot conclude if it is in the swampland or not. We will present
an example where this happens in subsection 5.2.

If one does not consider gauged supergravities then the WGC is even less restrictive, at
least at first sight. For example de Sitter vacua with an underlying non-linear realization
of N=2 would not require charged gravitini or any gauging at all [32, 33]. Such models can
evade the restrictions we have found here but this does not mean they can arise from string
theory, or even if they do, they may still lead to short-lived vacua [34]. In addition one may
find complementary restrictions on such theories from EFT arguments as discussed in [35].
There are also examples where the N=2 de Sitter is supported by condensates of gravitini
bi-linears [36], which hints that the vacuum does lie within a strongly coupled regime.
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2.4 Main result and related conjectures

Our results have common ground with other conjectures and swampland bounds. It is thus
instructive to state clearly what we find here and then discuss what is the relation to the
existing swampland bounds. Our results here can be expressed in the following way:

Quasi-de Sitter with m3/2 � H & q3/2 6= 0 has a Dine-Seiberg problem. (2.26)

Indeed, when the conditions described in (2.26) are met we find that the EFT has a very
low cut-off and so the two-derivative truncation is inherently inconsistent. One can thus
say that such EFTs belong to the swampland. We have already presented a general proof
for gauged N=2 in subsection 2.3, and we also give a proof for N=8 in section 6. We further
illustrate this result in the various examples in the following sections.

Let us stress that the bound (2.26) follows from the magnetic weak gravity conjecture,
and that it was already noticed in [12] for gauged N=2 without hypermultiplets. There it
was also rephrased as a conjecture, stating that de Sitter vacua with degenerate gravitino
mass matrix belong to the swampland. Our results here thus yield further credence to such
a bound, also in the presence of hypermultiplets.

There is a non-trivial convergence between our results and the festina lente bound [15],
which roughly states that m2 & qgH has to hold for every charged particle in the spectrum,
and has been further sharpened in [17]. There are three instances where we can draw
compatible conclusions. Firstly, if we apply the FL bound on the gravitino we can bring it
exactly to the form:

m3/2 � H & q3/2 6= 0 =⇒ in the swampland. (2.27)

We see that this exactly matches our main conclusion. Thus our results can be considered
solid independent evidence that the gravitino abides by the festina lente bound. Conversely,
if we had assumed the FL bound, then (2.26) would emerge as simply a particular instance
of it. Secondly, in [17] it is further argued that the Hubble is bounded from above by the
magnetic WGC, which can be recast in a form that is relevant to us, that is:

H � qphysMP =⇒ in the swampland. (2.28)

Again this condition is at the core of our work here and is already discussed in [12]. Thirdly,
according to [17] the FL bound also gives restrictions on non-abelian gauge theories, im-
plying that they should either confine or break spontaneously at a scale above Hubble,
that is:

de Sitter with perturbative non-abelian gauging =⇒ in the swampland. (2.29)

This result again aligns nicely with our earlier discussion on non-abelian gaugings because
we have used the WGC to argue that de Sitter N=2 vacua with perturbative non-abelian
groups and massless gravitini are in the swampland.

Clearly our work also makes partial contact with the de Sitter/TCC conjectures [3, 5–
10] which indicate that de Sitter space either does not exist as a solution within a theory
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of quantum gravity, or is inherently unstable. Our results however differs in that it is
based solely on the magnetic weak gravity conjecture without reference to the shape of the
potential around the critical point. In particular, this leads to the elimination of certain de
Sitter solutions that would be otherwise acceptable by the refined de Sitter conjecture [6, 7],
i.e. de Sitter points with steep tachyons.

Our analysis also makes contact with recent work [18, 19] claiming that the massless
gravitini limit would correspond to a parametrically low cut-off due to towers of light
states entering the EFT. Our work here and the earlier work [12] is in agreement with
these conjectures as the de Sitter points with vanishing gravitino mass are proposed to be
in the swampland precisely because of a very low cut-off, and thus, clearly, so is the limit
when approaching such points.

3 Stable de Sitter vacua with massless gravitini

3.1 SO(2,1) × U(1) with one hypermultiplet

The first illustrative model with vanishing gravitino masses comes from the gauging of
a SO(2,1) × U(1) group in a supergravity model with three vector multiplets and one
hypermultiplet. The scalar manifolds are

MSK =
[SU(1, 1)

U(1)

]3
, MQK = SU(2, 1)

SU(2)×U(1) . (3.1)

For the Special-Kähler geometry we use as a starting point the symplectic frame where the
prepotential is

F (X) =
√

((X0)2 + (X1)2) ((X2)2 + (X3)2) , (3.2)

which was shown in [37] to give a description in terms of the Calabi-Vesentini coordinates
zI = {S, y0, y1}, by means of the symplectic sections

Z =



1
2(1 + y2

0 + y2
1)

i
2(1− y2

0 − y2
1)

Sy0

Sy1
1
2S(1 + y2

0 + y2
1)

i
2S(1− y2

0 − y2
1)

y0

y1



. (3.3)
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The gauging that we perform is not electric in this frame and therefore we introduce the
symplectic rotation

SSp(8.R) =



12
0 0 1 0
0 − sinφ 0 cosφ

12
−1 0 0 0
0 − cosφ 0 − sinφ


(3.4)

acting on the symplectic section according to (A.2). The resulting holomorphic sections are

Z =



1
2(1 + y2

0 + y2
1)

i
2(1− y2

0 − y2
1)

y0

y1(cos φ− S sin φ)
1
2S(1 + y2

0 + y2
1)

i
2S(1− y2

0 − y2
1)

−Sy0

−y1(S cos φ+ sin φ)



, (3.5)

which fix the Kähler potential as

e−K = −ImS
(
1− 2|y0|2 − 2|y1|2 + |y2

0 + y2
1|2
)
, (3.6)

and the rest of the geometry according to the formulae in the appendix A.
In this parameterization there is an obvious SO(2,1) symmetry acting on the first three

sections, generated by the Killing vectors

κI0 =


0

− i
2(1 + y2

0 − y2
1)

−iy0y1

 , κI1 =


0

1
2(1− y2

0 − y2
1)

−y0y1

 , κI2 =


0
iy0

iy1

 , (3.7)

which we choose to gauge with the first three vectors (the graviphoton and two of the other
vectors in the vector multiplets), hence fixing

kIΛ = e0
(
κI0 , κ

I
1 , κ

I
2 , 0

)
, (3.8)

where we also introduced explicitly the SO(2,1) coupling e0, which is going to be crucial
in the following analysis.

The Quaternionic-Kähler geometry is that of the universal hypermultiplet (see for
instance [38]), parametrized by the scalar fields qu = {ρ, σ, θ, τ}, with metric

ds2 = huvdq
udqv = dρ2

2ρ2 + 1
2ρ2 (dσ − 2τdθ + 2θdτ)2 + 2

ρ
(dθ2 + dτ2) . (3.9)
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In this sector we decide to gauge a compact U(1) symmetry generated by the Killing vector

κuH =


4ρτ

2θ + 2στ + 2ρθ + 2θ(θ2 + τ2)
4θτ − σ

1− ρ− 3θ2 + τ2

 . (3.10)

The gauging is performed using the last vector available, hence fixing

kuΛ = e1
(
0 , 0 , 0 , κuH

)
, (3.11)

where once again, we made explicit the coupling e1. Since the scalar potential (A.45)
is determined not only by the Killing vectors of the hypermultiplets, but also by their
prepotentials, we also give here the explicit form of the prepotential associated to the
isometry κuH :

P x3 = e1


− 2√

ρ(1 + ρ− 3θ2 + τ2)
2
ρ(σ − 4θτ)

2
ρ(θ + 3ρθ − θ3 + στ − θτ2)

 . (3.12)

Once one puts together the various pieces to the scalar potential, one can see that it
has a critical point at

S = cotφ− i

4

∣∣∣∣ e0
e1 sinφ

∣∣∣∣ , ρ = 1 , y0 = y1 = σ = θ = τ = 0 , (3.13)

where

V = 4 |e0 e1 sinφ|. (3.14)

This implies that the Hubble scale at this critical point is

H =
√

4
3 |e0e1 sinφ| . (3.15)

Moreover the gravitini mass matrix is identically vanishing at this critical point. The U(1)
Killing vector also vanishes at this critical point, indicating that the U(1) symmetry is
preserved and thus the WGC can be applied.

To check explicitly the consistency of such vacua against the weak gravity conjecture,
we first compute the gauge couplings at the critical point, which follow from

I−1|ΛΣ = −1
2 sinφ


4e1/e0 0 0 0

0 4e1/e0 0 0
0 0 4e1/e0 0
0 0 0 e0/e1

 . (3.16)
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We also note that the gravitino is only charged under the U(1) symmetry with charge
q3/2 = 2e1, so the magnetic WGC cut-off is

ΛUV = gU(1)q3/2 =
√

2|e0e1 sinφ| , (3.17)

and we see that the Hubble scale is of the order of the cut-off dictated by the magnetic
WGC and illustrates why there is a Dine-Seiberg problem.

The mass spectrum of the scalar fluctuations around the critical point includes two
zero-modes, corresponding to the goldstone modes eaten by the two broken non-compact
SO(2,1) isometries. The rest of the spectrum is positive definite

m2
(multiplicity) =

(
0(2) , 1/4(4) , 1(2) , 2(2)

)
× V , (3.18)

so this critical point is also in violation of the de Sitter criterion.
For completeness, we note that there is also another unbroken U(1) isometry coming

from the compact generator of SO(2, 1) gauged on the vectors. The gravitino charge under
that U(1) is given by P 0

2 , which at the critical point simply evaluates to

q3/2 = 1
2P

0
2 = e0 . (3.19)

Multiplying by the appropriate component of I we obtain the same cut-off as before,
ΛUV =

√
2|e0e1 sin φ|, which again points to the Dine-Seiberg problem.

3.2 SO(2,1) × U(1)3 with two hypermultiplets

The model presented in this subsection has again massless gravitini at its critical point. A
version of this model without hypermultiplets can be found in [39] and is already discussed
from the WGC perspective in [12] and eliminated.

The modification that we consider here contains two hypermultiplets and is the first
time a model with two hypermultiplets and a fully stable de Sitter vacuum has been
constructed. However, as we will see, it still suffers from a Dine-Seiberg problem that is
signaled by the WGC.

The matter content of the model is given by five vector multiplets and two hypermul-
tiplets, with scalar geometry

MSK = SU(1, 1)
U(1) × SO(2, 4)

SO(2)× SO(4) , MQK = SO(4, 2)
SO(4)× SO(2) . (3.20)

3.2.1 Vector multiplets

The geometry of the vector multiplet sector is described in a similar way as in the example
above, starting from the prepotential

F (X) =
√

((X0)2 + (X1)2)
(
X ãX b̃δãb̃

)
, (3.21)

where ã, b̃ = 2, 3, 4, 5. As in the previous case, we can describe our gauging in the electric
frame by introducing the Calabi-Vesentini coordinates [37, 39]

zI = {S , ya} , where ya = {y0, yx}, x = 1, 2, 3 , (3.22)

and by performing an appropriate symplectic rotation analogous to (3.4).
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The resulting holomorphic sections in the new frame are

Z =
(
XΛ

FΣ

)
, (3.23)

where

XΛ(S, ya) =


1
2(1 + yaya)
i
2(1− yaya)

y0

yx(cosφ− S sinφ)

 , (3.24)

and

FΛ(S, ya) =


1
2S(1 + yaya)
i
2S(1− yaya)
−Sy0

−yx(S cosφ+ sinφ)

 . (3.25)

The geometry of this sector follows from these sections according to the formulae in ap-
pendix A. The Kähler potential is the sum of two factors

K = − log[i(XΛ
FΛ − FΣX

Σ)] = K1 +K2 , (3.26)

where

K1 = − log[i(S − S)] , (3.27)

K2 = − log
[1

2(1− 2yaya + yayayaya)
]
. (3.28)

The metric for the scalar fields is factorized as

gIJ =
(
gSS 0
0 gab

)
, (3.29)

with

gSS = 1
(2 ImS)2 , gab = ∂

∂ya
∂

∂yb
K2 . (3.30)

Also in this model we gauge the SO(2,1) symmetry in the vector sector that rotates
the first three sections. This is generated by the Killing vectors

κI0 =
(

0,− i2

[
1 + y2

0 −
∑
x

(yx)2
]
,−iy0y1,−iy0y2,−iy0y3

)
, (3.31)

κI1 =
(

0, 1
2

[
1− y2

0 +
∑
x

(yx)2
]
,−y0y1,−y0y2,−y0y3

)
, (3.32)

κI2 = (0, iy0, iy1, iy2, iy3) . (3.33)
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We gauge these isometries with the graviphoton and the first two vectors in the vector
multiplet sector. The Killing vectors then are

kIΛ = e0
(
κI0 , κ

I
1 , κ

I
2 , 0 , 0 , 0

)
, (3.34)

where we made once more explicit the coupling e0. From the above ingredients we can
compute,

VD1 = gIJ k
I
Λk

J
Σ L

Λ
LΣ , (3.35)

which only depends on the vector multiplets and will therefore remain the same regardless
of our choice of hypermultiplets or their gauging.

3.2.2 Gauging U(1)3 on two hypermultiplets

We will now include two hypermultiplets in the model that we studied in the previous
subsection. The hyper manifold MQK given above is a coset space and therefore we can
exploit this fact to explicitly provide the details of its construction in the appendix B. We
only report here its metric

ds2 =huvdq
udqv

= 1
q2

1

[
dq2

1 +q2
5dq

2
4 +(dq2+

√
2q7dq4)2+(dq3+

√
2q8dq4)2

]
+ 1

72q2
1q

2
5

[
6
√

2dq6−12q7dq2−12q8dq3+2
√

2q4(q7dq7+q8dq8)−5
√

2(q2
7 +q2

8)dq4)
]2

+ 1
q2

5

(
dq2

5 +dq2
7 +dq2

8
)
. (3.36)

Given that the isometries of MQK are a subset of those ofMSK, one could gauge an
SO(2, 1) × SO(3) gauge group using at the same time their action on the vector scalars
and on the hypers. This is what was done in [39] to find one of the first examples of
marginally stable de Sitter vacua. These models however do not lead to scalars with all
masses positive and a simple analysis of their vacuum structure also shows that they are
in tension with the WGC.

We therefore decided to follow a different path and gauge three abelian commuting
isometries in the hypermultiplet geometry while leaving the SO(2,1) action confined to the
vector multiplet sectors. To summarize, our gauging is

Ggauge = SO(2, 1)only on vectors ×
(
U(1)×U(1)×U(1)

)
only on hypers . (3.37)

This gauging is specified by the Killing vectors (3.34), together with the Killing vectors
specifying the isometries that we want to gauge on the hypermultiplet sector

U(1)3 : kuΛ =
(
0 , 0 , 0 , e4 k

u
T12 , e5 k

u
T34 , e6 k

u
T56

)
, (3.38)

where the explicit expression of the kuTab
can be found in appendix B. The gauging is electric

in the frame given by (3.23). Notice that we could have made use of additional symplectic
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rotation parameters φi for each U(1) and indeed that would lead to different expressions
for the masses. However, in all cases where the masses are positive, the properties of the
vacuum do not significantly depend on the values of the angles and so we took them here
to be all of the same value φ for simplicity. In the end these ingredients contribute to the
scalar potential that relates to the hypers and has the form

VD2 = 4huv kuΛkvΣL
Λ
LΣ . (3.39)

When hypers are introduced the would-be FI terms are field-dependent and are given
by the appropriate prepotentials P xΛ(qu), which are determined by the isometries gauged
on the hypers as reviewed in appendix A. We thus have

VF =
(
UΛΣ − 3LΛ

LΣ
)
P xΛP

x
Σ , (3.40)

and the total potential is VD1 + VD2 + VF .
One can then verify that there is a central critical point at

q1 = q5 = 1 , q2 = q3 = q4 = q6 = q7 = q8 = 0 , (3.41)

and

y0 = yx = 0 , S = cotφ− i

∣∣∣∣∣∣ e0√
e2

4 + e2
5 sinφ

∣∣∣∣∣∣ . (3.42)

It is interesting to note that at this critical point most prepotentials vanish

P x0 = P x1 = P x2 = P x5 =

0
0
0

 , P x3 =

−e4
0
0

 , P x4 =

−e5
0
0

 , (3.43)

as well as all Killing vectors of the compact U(1) isometries gauged in the hyper-sector

kuΛ = 0 . (3.44)

This is in accordance with the fact that we have a residual U(1)4 gauge symmetry on the
vacuum. The value of the scalar potential is then

V =
√
e2

4 + e2
5 |e0 sinφ| , (3.45)

and the canonically normalized mass eigenvalues are given by

m2
(multiplicity) =

(
0(2) , 1(6) , 2(2) ,

e2
4

e2
4 + e2

5
(4) ,

e2
5

e2
4 + e2

5
(4)

)
× V , (3.46)

which include two goldstone modes, while all the other masses are positive definite. We
therefore see that we have a fully stabilized de Sitter critical point with both vector and hy-
permultiplets. This is the first instance where a model with these properties is constructed.
We also see however that the gravitini remain massless

Sij = iP xΛL
Λ(σx) k

i εjk = 0 (3.47)
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and hence we expect this model to fail to give a proper effective theory, according to
the WGC.

In order to check this, we need the kinetic terms of the vectors, and in particular of
the ones that are performing the U(1) gaugings. At the critical point this sector of the
Lagrangian becomes

e−1Lkin. vec. = −1
4

∣∣∣∣∣∣ e0√
e2

4 + e2
5 sinφ

∣∣∣∣∣∣
2∑

Λ=0
F 2(AΛ)− 1

4

√
e2

4 + e2
5

|e0 sinφ|

5∑
Λ=3

F 2(AΛ) (3.48)

and we see that there is a rather intricated dependence of the gauge couplings on the
charges e0, e4 and e5. The simplest way to check compatibility with the magnetic WGC
is the following. We first notice that we have a spontaneous breaking of the SO(2,1) to
a U(1) and the goldstone modes associated to this symmetry breaking are the real and
imaginary parts of y0. This is seen from the fact that on the vacuum we have

kI0 = e0

(
0,− i2 , 0, 0, 0

)
, (3.49)

kI1 = e0

(
0, 1

2 , 0, 0, 0
)
, (3.50)

kI2 = e0 (0, 0, 0, 0, 0) , (3.51)

kI3 = kI4 = kI5 = 0 . (3.52)

This means that the U(1) that survives the Higgsing is the one corresponding to kI2, which
is just a standard U(1) acting on the yx’s as follows

U(1)residual : yx → eiα e0 yx . (3.53)

As a result we can identify the physical minimal coupling between the yx’s and the residual
massless U(1) gauge vector as

qphys = e0 ×
√√

e2
4 + e2

5

∣∣∣∣sinφe0

∣∣∣∣ . (3.54)

For any charged field the magnetic WGC tells us that in Planck units

ΛUV < qphys , (3.55)

while inspecting (3.45) and (3.54) we have that

H ∼ ΛUV , (3.56)

which is the signal that such vacua are faced with a Dine-Seiberg problem. One can reach
the same conclusion by identifying the gravitino charge under the residual U(1) from P 0

2 /2
which gives q3/2 = e0, and thus also the gravitino has physical coupling (3.54).

It is interesting to note that the model we just presented can also be obtained from
a reduction from the SO(4,4) gauged N=8 supergravity of [40]. In particular, if we set
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e5 = e6 = 0 in the model above and keep only the e4 we get that the mass eigenvalues are
given by

m2
(multiplicity + goldstones) =

(
0(4+2), 1(10), 2(2)

)
× V , (3.57)

which match the truncated spectrum of the central vacuum in [40]. This can be under-
stood from the fact that the scalar manifold (3.20) can be obtained as a N=2 truncation
of the N=8 scalar manifold E7(7)/SU(8), following [41], and that the SO(4,4) gauging pro-
duces an action on the scalar fields which is factorized in the same way as that of our
truncated model.

3.2.3 Gauging the SO(3)

The same model with scalar manifold (3.20), has been used in [39], but with a SO(3)
gauging rather than a U(1)3. Also, both the SO(3) and the SO(2,1) factors have been
gauged with a diagonal action on the vectors and hypermultiplets. The resulting scalar
potential has a critical point where the hypers have non-negative masses. For completeness,
we show here that these models are still faced with a Dine-Seiberg problem.

Since all details of the model can be found in [39], we will only report here the details
relevant for our discussion. Let us recall that e0 corresponds to the coupling of the SO(2,1)
factor (and r0 = 0, 1 is the coefficient that signals the presence of a simultaneous action
on the hyperscalars) and e1 is the coupling of the SO(3) factor (and r1 = 0, 1 again signals
the action on the hyperscalars).

These models have a meta-stable vacuum with vacuum energy

V =
√

3(1 + 2r2
0) |e0 e1 r1 sinφ| > 0 . (3.58)

On this point the SO(2,1) gauge group is broken to a residual U(1), whose gauge vector
has a kinetic term of the form

e−1Lresidual U(1) = −1
4

∣∣∣∣∣∣
e0
√

(1 + 2r2
0)

√
3 e1 r1 sinφ

∣∣∣∣∣∣FµνFµν . (3.59)

Under the surviving U(1) the scalars of the vector multiplet are still charged with charge
e0, that is

U(1)residual : δyx = iα e0 y
x . (3.60)

As a result the physical charge of the yx scalars under the residual U(1) is

qphys =

√√√√√
∣∣∣∣∣∣
√

3 e1 r1 sinφ

e0
√

(1 + 2r2
0)

∣∣∣∣∣∣× e0 , (3.61)

which sets the upper bound on the WGC cut-off. We conclude again that

H ∼ ΛUV , (3.62)
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both for r0 = 0 and for r0 = 1. Note that here we used the charge of the yx scalars under
the U(1) to find the WGC cut-off, but we could have equally well used the gravitino charge.

Note that in all of the examples presented in this section, the central vacuum has
vanishing gravitino mass. The contribution to the gravitino mass from the SO(2,1) gauging
vanishes because the corresponding prepotentials vanish, while the contributions associated
to the rest of the gauge group vanish due to the vanishing of the corresponding section
components. Thus all these examples serve to illustrate the result that critical points with
charged massless gravitini violate the WGC. Of course, these examples also violate the de
Sitter criterion directly, by virtue of their scalar mass spectra being positive (semi-)definite.

4 Multiple unstable de Sitter vacua with various gravitini masses

We now turn to a different set of examples, where the de Sitter critical points are unstable
and could survive the de Sitter conjecture. We will show that whenever the gravitini
masses are vanishing, we still can place these models in the swampland. Also, among these
examples we find a case where there is a modulus such that the gravitini masses vary with
its expectation value. This is a very instructive example because it shows explicitly how we
can violate the WGC in a dynamic way, showing that not only vanishing gravitini masses
are dangerous, but also very light ones. We also give another example that we think is
instructive, because it makes explicit the discussion of our section 2.2, having a central
vacuum with non-abelian gauge symmetry and massless gravitini, for which the argument
in section 2.2 allows to point out a Dine-Seiberg problem.

4.1 Scalar manifolds

Both models we consider in the following contain three vector multiplets and two hyper-
multiplets, parameterizing the scalar manifold

MSK = SU(1, 3)
SU(3)×U(1) , MQK = SO(4, 2)

SO(4)× SO(2) . (4.1)

The Special-Kähler manifold describes a vector multiplet geometry with minimal couplings
and follows from the prepotential

F (X) = − i4X
ΛXΣ ηΛΣ, (4.2)

with η = diag{1,−1,−1,−1}. The associated symplectic frame is described by the holo-
morphic sections

Z =


1
zI

− i
2

i
2z
I

 , I = 1, 2, 3 , (4.3)
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where the zI are the three complex vector multiplet scalars. The Kähler potential is
given by

K = − log
[
1− zI z̄I

]
, (4.4)

which makes explicit the SU(2) isometry that rotates the three scalars. The Killing vectors
for these isometries are

κI1 =

 0
z3
−z2

 , κI2 =

−z3
0
z1

 , κI3 =

 z2
−z1

0

 . (4.5)

The hypermultiplet scalar manifold is the same as in the previous section and the
details of its parametrization are given in appendix B.

4.2 Gauging

The two models that we are going to analyze in the following have a gauge group that
is the direct product of an SO(3) factor and an abelian compact or non-compact one-
dimensional group.

The common SO(3) factor is taken to act simultaneously on the vector multiplet scalars
as well as on the hyperscalars. The action on the vector scalar fields is identified with the
isometries generated by the Killing vectors (4.5) and is gauged by the vector fields in the
vector multiplets

kIΛ = e1
(
0 , κI1 , κI2 , κI3

)
. (4.6)

The same SO(3) gauge group acts on the hyperscalars as specified by the generators
T12, T13, T23 of the so(4, 2) algebra (see equation (B.1) in appendix B). In addition we either
take a compact abelian factor gauged by the graviphoton and acting on the hyperscalars
as specified by T56, or a non-compact abelian factor, always gauged by the graviphoton,
and acting on the hyperscalars as specified by T46. Overall on the hypermultiplets we have
the identifications

SO(3)×U(1) : kuΛ =
(
e0k

u
T56 , e1k

u
T12 , e1k

u
T13 , e1k

u
T23

)
, (4.7)

SO(3)×O(1, 1) : kuΛ =
(
e0k

u
T46 , e1k

u
T12 , e1k

u
T13 , e1k

u
T23

)
, (4.8)

i.e. the SU(2) acting on the vector multiplets is identified with the SO(3) of the hyper
manifold, while the U(1) or the O(1,1) symmetry is gauged by the graviphoton. From the
Killing vectors and the metric we can also compute the prepotentials P x using (A.38).

Both models have a critical point at the SO(3) invariant point

q1 = q5 = 1 , q2 = q3 = q4 = q6 = q7 = q8 = 0 , zI = 0, (4.9)

where the SO(3) Killing vectors vanish. The U(1) Killing vector also vanishes at this point,
hence showing that the whole gauge group survives, while the O(1,1) Killing vector takes
the form

ku46 = δu8 , (4.10)
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thus signalling its breaking at the critical point. The corresponding prepotentials at the
same point are

P x0 =

0
0
0

 , P x1 =

e1
0
0

 , P x2 =

 0
e1
0

 , P x3 =

 0
0
e1

 , (4.11)

with P x0 vanishing for both the U(1) and the O(1,1) generators. As anticipated in the
introduction to this section, both models have interesting features for our analysis, which
we now are going to examine.

4.3 SO(3) × U(1)

The central critical point in this model has energy

V = 3 e2
1, (4.12)

while the eigenvalues of the scalar mass matrix are

m2
(multiplicity) =

(
−2

3 (6)
,

4
3r

2
(2) ,

4
3(r2 + 1)(6)

)
× V , (4.13)

where r = e0/e1 is the ratio of the U(1) and SO(3) couplings. The gravitino mass matrix
vanishes at this critical point and hence we could be within the assumptions of our general
proof of section 2.3. However, the gravitino charges under the four gauge bosons are

qA =
(
±0 , ± 1√

2
e1 , ±

1√
2
e1 , ±

1√
2
e1

)
, (4.14)

so that we see that the gravitini are not charged under the U(1), but only with respect
to the SO(3) gauge group. The charges listed above have been computed by taking into
account the normalization of the vector kinetic terms, given by the values of the gauge
kinetic functions at the critical point, namely IΛΣ = −1

2 δΛΣ.
Since the gravitini are not charged under the U(1) gauge group, and the SO(3) factor

is unbroken, we can not confidently apply the WGC in its usual form, using its gauge
coupling. We must therefore resort to the argument presented in section 2.2 where we look
at nearby configurations that break the SO(3) symmetry down to a U(1). This allows us to
use the SO(3) coupling in the magnetic WGC, giving a cut-off ΛUV = e1√

2 , and the Hubble
scale exceeds this. In particular, we assume a small perturbation of the SO(3) point of
the form

z2 = i ε , z1 = z3 = 0 . (4.15)

This point is not a critical point of the theory of course, but it is still a legitimate config-
uration in our field space. In particular since Im z2 gets a vacuum expectation value, the
central SO(3) gauge group is Higgsed and only a U(1) remains under which fields are still
charged with charge e1. In addition the total energy density, which is dominated by the
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vacuum energy, is still given approximately by ρ ' 3 e2
1 + ε dV

dImz2 . As a result, for small ε
we have

ΛWGC
∣∣∣
ε∼0
∼ e1 ∼ H , (4.16)

which can be extrapolated to the central vacuum as the limit ε→ 0. We conclude that the
central critical point is also threatened by the WGC cut-off.

It is worth pointing out that for non-zero Im z2, the derivative of the potential also
points in that direction. This allows for classical trajectories which preserve the U(1)
symmetry throughout their entire duration. This puts us in the second scenario discussed
in section 2.2, where we do not have a modulus, but do still have a classical path. An
example, where Im z2 is a true modulus will be however presented in the next subsection.

Before moving on, we would like to point out that the same model possesses a second
critical point, where the SO(3) gauge group is fully broken. This vacuum can be found by
letting, for example, Re z1 and Im z2 vary. The new critical point appears at

Re z1 = 1
2 , Im z2 = 1

2 , (4.17)

and has energy V = 2 e2
1. The normalized scalar mass spectrum is

m2
(mult.) =

(
0(3),−1(2),8(1),2+4r2−2r(2),β

2+β(2),β
2−β(2),2+2r+4r2

(2)

)
×V , (4.18)

with r = e0/e1 describing the ratio of the charges and β = 4r+ 1. Once again this critical
point respects the de Sitter criterion and also our criterion fails because the gravitino mass
matrix at this saddle point is

Sij =
(√

2 e1 0
0 0

)
, (4.19)

so that one gravitino acquires a mass of order the Hubble scale, while the other remains
massless. We can also see that the gravitini are still uncharged under the residual U(1),
because the gauge kinetic functions at this point are given by

−1
2I
−1 =


3 2 0 0
2 2 0 0
0 0 2 0
0 0 0 1

 (4.20)

and physical gravitino charges are then given by the eigenvalues of

(qA)ij = 1
2E

Λ
AP

x
Λ(σx)ij , (4.21)

where

EΛ
A =


√

2 2 0 0
0 2 0 0
0 0 2 0
0 0 0

√
2

 , (4.22)
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so that I−1|ΛΣ = EΛ
AEΣ

Bδ
AB. After a straightforward calculation we find that

qA =
(
±0 , ±e1 , ±e1 , ±

1√
2
e1

)
. (4.23)

One might hope to apply the WGC despite a complete breaking of the SO(3) gauge
symmetry, if some of the gauge fields have masses below the Hubble scale and therefore still
effectively mediate long-range forces within a Hubble patch, however, in this model this is
not the case. The masses of the gauge bosons can be determined from the eigenvalues of

m2
AB = 1

2
(
EΛ
Ak

α
Λgαβ̄k

β̄
ΣE

Σ
B + h.c.

)
, (4.24)

which are (0 , 8e2
1 , 4e2

1 , 4e2
1). The zero mass corresponds to the unbroken U(1) under

which the gravitino is uncharged. The remaining masses are clearly of order the Hubble
scale and thus do not mediate long-range forces.

4.4 SO(3) × O(1,1)

A very instructive model is the one described by (4.1), but now with a SO(3) × O(1,1)
gauge group. This model also has a critical point at (4.9), with a vacuum energy

V = 2 e2
0 + 3 e2

1 , (4.25)

and scalar mass spectrum

m2
(multiplicity) =

(
0(1) , 2(e2

0 − e2
1)(3) , 4e2

0 (1) , 4e2
1 (2) , x1 (1) , x2 (1) , x3 (1)

e2
1 +

√
4e4

0 − 4e2
0e

2
1 + 9e4

1(2)
, e2

1 −
√

4e4
0 − 4e2

0e
2
1 + 9e4

1(2)

)
× V ,

(4.26)

where x1,2,3 are solutions of the cubic equation

x3 + 6e1x
2 +

(
4e2

0e
2
1 − 4e4

0

)
x−

(
16e4

0e
2
1 − 16e2

0e
4
1 + 32e6

1

)
= 0 . (4.27)

This mass spectrum pushes the limits of the de Sitter criterion, but not parametrically
so. Again, the normalization of the vector kinetic terms, given by the values of the gauge
kinetic functions at the critical point, is trivial, because IΛΣ = −1

2 δΛΣ.
As in the previous model, the gravitino masses vanish at the central point, but, once

again, the unbroken SO(3) prevents a straightforward application of the WGC and one
must therefore resort to the argument presented in section 2.2 where we look at nearby
configurations that break the SO(3) symmetry down to a U(1). In particular, for the
special choice e0 = e1, we find entire lines of critical points that pass from the center and
are parametrized by any of the three imaginary components. Along each of these lines,
except the central point, the SO(3) is broken to a U(1) and therefore we can confidently
invoke the WGC.

For the rest of this subsection we will set e0 = e1 and for concreteness let us take
Im z2 = z as the modulus, with all other scalars remaining fixed at zero. The scalar mass
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Figure 1. The ratio m2/V of all the scalar fields in the SU(2)×O(1,1) model, plotted as a function
of the modulus z = Im z2. The central vacuum z = 0 preserves the full SU(2) gauge group. Tachyons
with m2/V = −2/5 are present for all values of z.

spectrum along this line is given by

m2
(multiplicity) =

(
0(4),−2/5(1), 4/5(3),

4
5− 5z2 (1)

, x1 (1), x2 (1), x3 (1)

1 + z2 +
√

9− 14z + 9z2

5− 5z2 (1)
,
1 + z2 −

√
9− 14z + 9z2

5− 5z2 (1)

)
× V ,

(4.28)

where x1,2,3 are now solutions of

x3 +
√

1− z2(6− 2z2)x2 + (16z2 − 32z4 + 16z6)x

+
√

1− z2(−32 + 128z2 − 192z4 + 128z6 − 32z8) = 0 .
(4.29)

The behavior of these normalized masses is shown in figure 1. Notice that, in addition to
the three goldstone modes of the SU(2)×O(1,1) breaking to U(1), there is an additional
massless scalar field, z = Imz2. We therefore now have a residual U(1) gauge group with
respect to which the gravitini are charged. This is specified by the physical gravitino
charges

qA =

±0 , ± e1 , ± e1

√
1 + z2

1− z2 , ± e1

 , (4.30)

where the normalizations follow from the gauge couplings at the line of critical points

−1
2 I
−1 =


1+z2

1−z2 0 0 0
0 1 0 0
0 0 1+z2

1−z2 0
0 0 0 1

 . (4.31)
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Λ
U
V
/H
,m

3
/2
/H

z

Figure 2. The ratios ΛUV/H (solid) and m3/2/H (dot-dashed) as a function of the modulus
z = Imz2 in the SU(2)×O(1,1) model. For small values of z the gravitino mass vanishes and the
Hubble scale is above the cut-off, so the theory has a Dine-Seiberg problem. The shaded gray region
denotes where the effective theory is increasingly well controlled; in the dark gray part H � ΛUV.
The gravitino mass is always below the cut-off, approaching it as z approaches the boundary of
moduli space.

The third eigenvalue of (4.30) is the coupling of the unbroken U(1) subgroup of the SO(3)
symmetry and thus is the one that can be used for the WGC. This implies that the WGC
cut-off is

ΛUV = e1

√
1 + z2

1− z2 . (4.32)

On the other hand the gravitino mass matrix is

Sij =

e1
z√

1−z2 0
0 e1

z√
1−z2

 (4.33)

and therefore, as we move away from the central point, both gravitini become massive,
while the gauge coupling increases, thus increasing the magnetic WGC cut-off.

As we mentioned before, this is very instructive for various reasons. First of all, we
see that the vacuum at z = 0 has a symmetry enhancement, so we could not apply directly
the WGC. However, this vacuum is now the limiting point of a series of critical points
with a residual U(1) gauge group for which we can apply the WGC and having charged
gravitini, we can apply our argument. In fact, all the critical points close to the central
one are not part of a good EFT, because the vacuum energy is larger than the cut-off
scale (ΛUV/H < 1). Then, as the gravitini mass approaches the Hubble, the Hubble
parameter itself becomes smaller than the cut-off energy, saving the EFT approximation.
This can be seen explicitly in figure 2, where both the ratios of the cut-off over Hubble
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and gravitini mass over Hubble are plotted, for the whole range of validity of the scalar
vacuum expectation value z.

5 Unstable vacua with no massless U(1) couplings

We conclude our discussion of N=2 models by giving some simple models for which our
criteria do not apply, just to clarify the existence of situations that avoid our assumptions.

5.1 Massive gravitini

The first simple example is based on a method to construct stable de Sitter critical points
in N=2 presented in [42]. Such critical points always have non-vanishing gravitini mass and
therefore our general argument does not apply. In addition as the only gauging involved is
a Higgsed U(1) the WGC cannot be applied to eliminate such vacua. Taking however into
account that in [42] only a general strategy is presented but no explicit example is given, we
believe it is useful to see a concrete example. We thus skip the general properties presented
in [42] and focus on a model that contains a single hypermultiplet with a Quaternionic-
Kähler geometry that is not homogeneous. This is a special case of the general metric
presented in [42] of a Quaternionic-Kähler with one isometry. The specific example we
study has a metric given by

ds2 = 1
2ρ2

(
fdρ2 + feh(dθ2 + dτ2) + f−1(dσ + Θ)2

)
, (5.1)

where the scalar fields are qu = {ρ, θ, τ, σ} and

h = log(aρ+ b) , f = aρ+ 2b
aρ+ b

, Θ = a

2 (θdτ − τdθ) , (5.2)

for a, b real parameters. This metric has an obvious shift symmetry along σ. After the
gauging with the graviphoton of such isometry

ku = e0 (0, 0, 0, 1) , (5.3)

we have a scalar potential of the form

V = e2
0
ρ2

(
aρ+ b

aρ+ 2b −
3
4

)
. (5.4)

This has a critical point at

ρ = (1 +
√

5)b
a

, (5.5)

which gives a positive vacuum energy

V = (5
√

5− 11)a2e2
0

32b2 . (5.6)
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The scalar ρ is tachyonic of course, while the scalars θ and τ are flat directions. In particular
the canonically normalized mass of ρ is given by

m2
ρ = −(5 +

√
5)× V . (5.7)

As a result the refined de Sitter conjecture [6, 7] is not violated. We can also compute the
gravitini masses

m2
3/2 = e2

0a
2

(2(1 +
√

5)b)2 . (5.8)

We see that this critical point is not threatened by a low cut-off because there is no
U(1) to invoke the WGC, and at the same time both gravitini are massive. One can work
out different examples that include additional vector multiplets, but they essentially have
the same property as far as our work is concerned. It is further worth noting that in the
procedure of [42] for constructing fully stable de Sitter vacua, there is always a spectator
U(1) related to the graviphoton because the shift symmetry of the hypermultiplet is gauged
by a vector belonging to a physical vector multiplet.

5.2 Massless uncharged gravitini

Another simple instance where our argument in section 2 does not apply is when the
gravitini are both massless and uncharged. A model of this type is simply obtained from
the models of subsection 4.4 by taking e1 = 0, i.e. removing the SO(3) gauging. The central
vacuum is still present, with energy V = 2e2

0, but there is no longer any physical U(1) charge
to determine a WGC cut-off. Indeed, the vacuum energy only comes from the charges of the
hypermultiplets under the broken symmetries, in this case our O(1,1). Note that there are
three more vectors in the theory on top of the graviphoton, but they are merely spectators
and one can truncate them without changing the properties of the example.

We see that the fact that we cannot exclude the existence of this de Sitter vacuum
due to the massless but uncharged gravitini aligns nicely with the FL bound [15–17] which
does not prohibit massless uncharged fields either. Furthermore, models that contain only
hypers and where the gauging is from the graviphoton have been proven to be tachyonic [43].
In particular as shown in [43], such models always contain an O(1) in Hubble units mass
tachyon and so do not violate the de Sitter criterion [5–7].

6 Maximal supergravity with light gravitini

While all the discussions and examples provided so far are related to N=2 gauged super-
gravity, we strongly believe that our arguments are fairly general and should apply to any
gauged extended supergravity theory. In this section, we show how the proof of section 2
can be applied to the case of maximal supergravity. We believe that similar results could
be obtained for any N ≥ 2.

Let us first recall some crucial aspects of N=8 gauged supergravity [44]. Maximal su-
pergravity contains a single gravity multiplet, whose fields are the graviton, gµν , 8 gravitini,
ψiµ (i = 1, . . . , 8), 28 vector fields, AΛ

µ (conventionally Λ = 0, . . . , 27), 56 spin 1/2 dilatini,
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χijk = χ[ijk], and 70 real scalar fields, ϕu (u = 1, . . . , 70). The scalar fields describe a
non-linear σ-model given by a homogeneous manifold

Mscalar =
E7(7)
SU(8) . (6.1)

The vector fields and their duals transform in the 56 dimensional fundamental represen-
tation of E7(7), which is a symplectic representation, defining an embedding of E7(7) in
Sp(56,R), i.e. VM = {V Λ, VΛ}. The coset representative is customarily described by com-
plex 56-dimensional vectors, LMij = −LMji, and their complex conjugates, LM ij , which
together build a matrix

LM
N =

(
LM

ij , LM kl

)
. (6.2)

This matrix transforms under rigid E7(7) transformations from the left and under local
SU(8) transformations from the right. We also note the following properties of LMN ,
which follow from their definition,

LM
ijLN ij − LNijLM ij = iΩMN ,

ΩMNLM
ijLN kl = i δijkl,

ΩMNLM
ijLklN = 0,

(6.3)

where Ω is the symplectic invariant matrix.
The gauging procedure fixes the gauge generators XM from the E7(7) ones tα specifying

the embedding tensor Θ
XMN

P = ΘM
α(tα)NP . (6.4)

Of course, consistent gaugings have restrictions on the allowed form of Θ and consequently
of X, as discussed in [44].

We are interested in the vector kinetic terms, in the Lagrangian sector describing the
kinetic and mass terms for the gravitini, and in the scalar potential. The vector kinetic
terms have the usual form

e−1Lkin. = 1
4 IΛΣ F

Λ
µνF

µνΣ , (6.5)

although now the vector kinetic term can be expressed in terms of the coset representa-
tives as

I−1|ΛΣ = −2LΛ
ij L

Σ ij . (6.6)

The relevant sector for the gravitini is

− 1
2ε

µνρσ
(
ψ̄µ

iγνDρ(ω,Q)ψσ i + h.c.
)

+ g e

(1
2
√

2A1 ij ψ̄
i
µγ

µνψjν + h.c.

)
, (6.7)

where the covariant derivative acts as

Dρ(ω,Q)ψσ i = Dρ(ω)ψσ i + 1
2Qρ i

jψσ j , (6.8)
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and the gauged SU(8) connection Qµ contains the gauging charges QMi
j in the form

Qµ ij = 2
3i(LΛ ik ∂µL

Λ jk − LΛ
ik ∂µLΛ

jk)− g AµM QM i
j . (6.9)

The explicit expression of the gauging charges can be obtained from the following identities,

QM ij
kl = δ[i

[kQM j]
l] = iΩNP LN ijXMP

Q LQ
kl ,

PM ijkl = 1
24 εijklmnpq P

mnpq
M = iΩNP LN ijXMP

Q LQkl ,
(6.10)

where QMij = −QMj
i and QMi

i = 0, which means that QMi
j is taken to be antihermitian

Q†M = −QM . The Lagrangian mass A1 ij is defined by the gauging procedure, together
with the tensor A2i

jkl, which will fix the scalar potential, as

i ΩMN QM i
j LN

kl = −A2i
jkl − 2A1

j[k δl]i . (6.11)

Finally, the scalar potential can be written by using the various structures we introduced
so far as

V = g2
{ 1

24

∣∣∣A2i
jkl
∣∣∣2 − 3

4

∣∣∣Aij1 ∣∣∣2}
= 1

336 g
2MMN

{
8PMijklPNijkl + 9QMi

j QNji
}
, (6.12)

where
MMN ≡ LMij LN ij + LM ij LN

ij , MMN = ΩMPΩNQMPQ , (6.13)

and one notes the relations

MMNPMijklPNijkl = 4 |A2l
ijk|2 , (6.14)

MMNQMi
j QNji = −2 |A2l

ijk|2 − 28 |A1
ij |2 . (6.15)

Now that all necessary ingredients have been put forward, we can build our argument
along the lines of section 2.

First of all we assume that all gravitini are massless and hence that we have a de Sitter
critical point where Aij1 = 0. This implies that at the critical point it holds that

MMNPMijklPNijkl = −2MMNQMi
j QNji (6.16)

and in turn that the potential can be written as

V = − 1
48 g

2MMNQMi
j QNji > 0 . (6.17)

If we move to an electric symplectic frame, we can further simplify this to

V = − 1
48 g

2MΛΣQΛi
j QΣj

i > 0 (6.18)
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and using (6.6), (6.13) and the coset relations (6.3) we findMΛΣ = −IΛΣ

V = 1
48 g

2 IΛΣQΛi
j QΣj

i = − 1
48 g

2 IΛΣTr(Q†ΛQΣ) > 0 , (6.19)

where we recall that I is negative definite and Q is anti-hermitian.
At this point the argument follows along the same lines as in section 2. We define a

set of vielbeins to put the kinetic terms of the vectors in canonical form

−IΛΣ = δAB EAΛ EBΣ , EAΛ EΛ
B = δAB , (6.20)

use the same vielbeins to identify the physical, now hermitian, charges of the gravitini

QA = i

2 g E
Λ
A QΛ , (6.21)

so that (6.8) becomes

Dρψσi = Dρ(ω)ψσi + . . .+ iAAµQA i
jψσj , (6.22)

and the scalar potential at the critical point is

V = 1
12 δ

AB Tr (QAQB) . (6.23)

We therefore see that if there is a U(1) surviving at the critical point under which the
gravitini are charged, the scalar potential is larger than the sum of its square.

Clearly the only effect of switching-on a parametrically small gravitino mass is to
slightly alter the vacuum energy. However, as long as such contribution is parametrically
smaller than the Hubble scale it does not alter the fact that the vacuum energy hits the cut-
off. As a result we conclude once again that (quasi) de Sitter with light charged gravitini
belongs to the swampland.

So far we do not have many examples of de Sitter vacua in maximal gauged supergravity
and all the examples we have do not have abelian factors in the residual gauge symmetry.
However, we can once more employ the argument about the WGC for critical points with
a non-abelian gauge symmetry made in section 2, because in maximal supergravity every
time we gauge a non-abelian symmetry of the scalar manifold, we will have scalars that
potentially break this symmetry by acquiring a vev. This would tell us that the SO(4) ×
SO(4) vacuum of the SO(4,4) gauging in [40] is not a consistent effective theory, because it
has massless gravitini, charged under the residual gauge group. While this was expected
for the vacuum coming from the regular gauging, which is a consistent truncation of type
II compactifications on a hyperboloid, and therefore do not have a mass gap with the
Kaluza-Klein states, it is certainly interesting for the deformed models, where the SO(4,4)
gauge group was embedded in a new, rotated way inside E7(7). We also confirm that the
second de Sitter vacuum found in [40], when the deformation parameter is non-vanishing,
has non-vanishing gravitino masses and therefore could still survive the WGC constraints,
while having a parametrically small tachyon.3

3See also [45] for further solutions of Type II on non-compact group manifolds.
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7 Conclusions

In this paper, we have argued that de Sitter critical points in extended supergravity violate
the magnetic weak gravity conjecture when they have charged, light gravitini. We have
presented a general proof of this claim in N=2 and N=8 gauged supergravity. We have
further illustrated this claim with several N=2 models with hypermultiplets, whose scalar
potentials admit de Sitter critical points, both stable and unstable. We also presented
examples of critical points that escape the WGC by having either massive gravitini or
no U(1) gauge symmetry at the critical point, and a model where a modulus interpolates
between respecting and violating the WGC. Many of the unstable critical points that we
rule out respect the de Sitter criterion. Interestingly, our results are especially consonant
with the festina lente bound, which forbids charged particles that are too light in a de
Sitter background. Our findings are also similar in spirit to other works pointing towards
a lowering of the UV cut-off of effective theories in the limit of vanishing gravitino mass.
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A Basic ingredients of 4D N=2 gauged supergravity

In this appendix we give a very short description of some identities in Special-Kähler ge-
ometry, Quaternionic-Kähler geometry and in the gauging procedure of N=2 supergravity.
It is by no means a comprehensive summary of gauged N=2 supergravity theories, but
it contains the ingredients required to reproduce the calculations in this work. For the
derivation of what follows we refer the reader to the original works we used [46–50] and to
the very nice review [13].

We should start by stressing that although a full N=2 duality covariant supergravity
action has not been built so far, decisive steps have been taken in this direction. As
shown in [51], whenever one introduces magnetic gaugings, tensor multiplets have to be
introduced. In the case of supergravity coupled to vector multiplets, one has therefore to
improve couplings to vector-tensor multiplets [52, 53] (and its extension to non-trivial FI
terms in [54]). For the general matter-coupled case, an outline of the general procedure by
using the embedding tensor formalism can be found in [55] and general Lagrangians for N=2
conformal supergravity theories with arbitrary gaugings have been presented in [56]. Our
formulae are straightforward applications of the results contained in the above references.

A.1 Vector multiplets

The geometry described by the scalar fields appearing in N=2 vector multiplets coupled
to supergravity is called Special-Kähler. A Special-Kähler manifold is parameterized by
complex coordinates zI , I = 1, . . . , nV . Since this is the geometry of the vector-multiplet
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sector, electric-magnetic duality plays a role in constraining the manifold and this is made
manifest by describing the geometry by means of holomorphic sections

ZM =
(
XΛ(z)
FΛ(z)

)
, Λ = 0, I , (A.1)

where the additional sections with index 0 have been added to take into account the
graviphoton and its dual, which do not have corresponding scalars in their multiplet. When
a prepotential F (X) exists, these sections can also be though of as projective coordinates
and FΛ = ∂ΛF (X). However, special geometry can be defined in the absence of such a
prepotential and, unless specified otherwise, we will not assume the sections are chosen in
such a specific frame. Note that two different patches of the manifold are related by

Z ′(z) = e−f(z)SZ(z), (A.2)

where S is a constant symplectic matrix and f is a holomorphic function of the coordinates,
generating the Kähler transformations of the Kähler potential. Defining the symplectic
product

〈A,B〉 = ATΩB = AΛBΛ −BΛAΛ, (A.3)

the Kähler potential is then
K = − log

[
−i〈Z, Z̄〉

]
(A.4)

and changing patches, from (A.2), we get the usual Kähler transformation

K ′(z, z̄)→ K(z, z̄) + f(z) + f̄(z̄). (A.5)

On the Hodge bundle over the manifold one can also define covariantly-holomorphic sections

VM = e
K
2 ZM (A.6)

such that the whole geometric structure gets encoded in the following algebraic and differ-
ential constraints:

〈V, V 〉 = i, (A.7)
UI = DIV = (fΛ

I , hIΛ), (A.8)

DIUJ = i ĈIJK g
KK̄U K̄ , (A.9)

DIU J̄ = gIJ̄ V , (A.10)
DIV = 0, (A.11)

where now DI is the covariant derivative with respect to the usual Levi-Civita connection
and the Kähler connection ∂IK. This means that under a Kähler transformation (A.5),
a generic field χI , with charge p, namely transforming as χI → e−

p
2 f+ p̄

2 f̄χI , has covariant
derivative

DIχ
J = ∂Iχ

J + ΓIJKχK + p

2 ∂JK χI , (A.12)

– 32 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
6

and analogously for DJ̄ , with p → p̄. We followed standard conventions and chose p =
−p̄ = 1 for the weight of V . Note also that

gIJ̄ = i 〈UI , U J̄〉. (A.13)

One more ingredient needed is the matrix defining the non-minimal couplings of the
vector multiplets

NΛΣ = RΛΣ + i IΛΣ =
(
MΛ, hĪ

) (
LΣ, f

Σ
Ī

)−1
, (A.14)

which results in the kinetic Lagrangian for the vector multiplets

Lkin = 1
4 e IΛΣ F

Λ
µνF

Σµν + 1
8 RΛΣ ε

µνρσ FΛ
µνF

Σ
ρσ, (A.15)

which means that I is negative definite.
The scalar potential following from the gauging procedure has two main contributions.

The first one VF is coming from the N = 2 Fayet-Iliopoulos terms, which are the relics
of the possible coupling to hypermultiplets. If we consider full symplectic invariance, the
FI terms are given in terms of the triplet of FI charge vectors QMx =

(
PΛx, P xΛ

)
, with

x = 1, 2, 3:
VF = gIJ̄〈Qx, UI〉〈Qx, U J̄〉 − 3〈Qx, V 〉〈Qx, V 〉. (A.16)

The second contribution is the D-term VD generated by the proper gauging of the
isometries of the Special-Kähler scalar manifold. Again, trying to be general and main-
taining symplectic invariance, for Special-Kähler manifolds, the isometries can be derived
by looking at their linear action on the sections. In fact all isometries must preserve (A.2)
and therefore

δPZ
M = (TP )NMZN − fP (z)ZM , (A.17)

where TP is a symplectic matrix (the generator of S) satisfying

T TΛ Ω + ΩTΛ = 0, (A.18)

and fN (z) are compensating holomorphic functions, which are going to be related to how
the Kähler potential transforms under such isometries. Using full Sp(2nV + 2,R) indices:

TM [N
QΩP ]Q = 0. (A.19)

Consistency of the gauging also requires

T(MN
QΩP )Q = 0. (A.20)

Note that now the position of the index transforming with S is fixed, so that indices
M,N, . . . are lowered and raised with the symplectic matrix. Upper indices transform with
S and lower indices transform with S−1 = −ΩSTΩ, so that VMWM = VMΩMNW

N is
symplectic invariant

VM ′W ′M = VM ′ΩMNW
N ′ = V PSMPΩMNS

N
QW

Q = VMΩMNW
N = VMWM . (A.21)
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The non-linear action on the coordinates can be obtained by means of holomorphic Killing
vectors, which can be related to the linear action above in frames where the prepotential ex-
ists. In this case the Killing vectors follow by introducing normal coordinates zI ≡ XI/X0:

δMz
I = δMX

I

X0 − XI

X0
δMX

0

X0 =

= (TMZ)I

X0 − XI

X0
(TMZ)0

X0 ≡ kIM (z). (A.22)

At the infinitesimal level

δMV
N = −TMP

MV P , (A.23)

δMWN = TMN
PWP . (A.24)

Under an isometry the Kähler potential transforms as

δMK = −eK i (δMZTΩZ + ZTΩ δMZ) = fM + fM . (A.25)

As is customary in supergravity, the gauging procedure is enforced by the introduc-
tion of prepotentials (or moment maps) for the gauged isometries. In this context, the
prepotential definition is

P 0
M = −ikiM∂iK + i fM , (A.26)

which, in the frame where a prepotential exists, becomes

P 0
M = eK Z

TΩTMZ = eK TMN
QΩQPZ

NZ
P
. (A.27)

Prepotentials satisfy the constraint

ZM (z)P 0
M (z, z̄) = 0 (A.28)

which also implies
ZM (z)kIM (z) = 0 . (A.29)

The relations between the prepotentials and the Killing vectors also imply that

Z̄M (z̄)kIM (z) = i gIJ̄U
M
J̄ P

0
M . (A.30)

After the gauging, the resulting scalar potential is therefore

VD1 = V
M
kIMV

N k̄J̄NgIJ̄ = gIJ̄UMI U
N
J̄ P

0
MP

0
N . (A.31)

A.2 Hypermultiplets

Hyper-scalars, qu, u = 1, . . . , 4nH , span a Quaternionic-Kähler manifold, namely a 4nH -
dimensional real manifold endowed with an invertible metric huv and a triplet of complex
structures (Jx)uv, x = 1, 2, 3, satisfying the quaternionic algebra

JxJy = −δxy1 + εxyzJz , (A.32)
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and with respect to which the metric is hermitian

(Jx)uw(Jx)vthwt = huv. (A.33)

From the complex structures one can introduce a triplet of 2-forms Kx = huw(Jx)vw dqu ∧
dqv, which are proportional to the curvatures of an SU(2) bundle with connections ωx,
namely

Rx = dωx + 1
2 ε

xyzωy ∧ ωz = −Kx. (A.34)

This implies that the quaternionic structures are preserved by the SU(2) connection, i.e.

∇Kx = dKx + εxyzωy ∧Kz = 0. (A.35)

This same structure also implies that for each isometry of the manifold, δqu = εMkuM ,
we can introduce a triplet of moment maps by

2Rxuv kvM = ∂uP
x
M + εxyzωyuP

z
M . (A.36)

and satisfy the consistency condition

Rxuv k
u
Mk

v
N + 1

2 ε
xyzP yMP

z
N = 1

2 fMN
PP zP , (A.37)

required by gauge invariance of the N=2 action, where fMN
P are the structure constants

of the gauge algebra. Using the properties of the SU(2) curvatures, one can also find

2nH P xM = −(Rx) v
u ∇vkuM . (A.38)

In the absence of hypermultiplets we can still introduce constant P xM , which correspond to
the FI-terms of the previous subsection.

The gauging of a non-abelian gauge group introduces a new D-term potential

VD2 = 4VM
kuMV

N k̄vNhuv (A.39)

and the F-term potential gets improved from the U(1) charges of the previous section to
the full prepotentials PMx =

(
PΛx, P xΛ

)
:

VF = gIJ̄〈P x, UI〉〈P x, U J̄〉 − 3〈P x, V 〉〈P x, V 〉. (A.40)

A.3 Potential, gravitino mass and charge

Summarizing, the scalar potential of a generic N=2 matter coupled gauged supergravity
theory can be written as the sum of three pieces

V = VD1 + VD2 + VF , (A.41)

VD1 = V
M
kIMV

N k̄J̄NgIJ̄ = gIJ̄UMI U
N
J̄ P

0
MP

0
N , (A.42)

VD2 = 4VM
kuMV

N k̄vNhuv, (A.43)

VF = gIJ̄〈P x, UI〉〈P x, U J̄〉 − 3〈P x, V 〉〈P x, V 〉. (A.44)
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A general result of consistent gaugings is that we can always rotate the symplectic
frame from which we start in the description of the lagrangian so that the couplings and
the potentials result from purely electric gaugings [14]. This means that once we introduce
new sections as in (A.2) with an appropriate symplectic matrix S, we can write the scalar
potential above as

V = VD1 + VD2 + VF , (A.45)

VD1 = L
Λ
kIΛ L

Σk̄J̄Σ gIJ̄ = UΛΣP 0
ΛP

0
Σ, (A.46)

VD2 = 4LΛ
kuΛ V

Σk̄vΣ huv, (A.47)

VF = gIJ̄fΛ
I f

Σ
J̄P

x
ΛP

x
Σ − 3LΛL

Σ
P xΛP

x
Σ =

(
UΛΣ − 3LΛL

Σ)
P xΛP

x
Σ, (A.48)

where we note the useful identity

UΛΣ = gαβ̄fΛ
I f

Σ
J̄

= −1
2 I
−1|ΛΣ − L̄ΛLΣ. (A.49)

Clearly in all these expressions the LΛ refer to the new frame V ′.
From the full Lagrangian [13, 48, 50] we can also extract two ingredients that are

central in our analysis, the gravitino mass matrix

Sij = 〈P x, V 〉 i (σx) k
i εjk, (A.50)

and the physical charges of the gravitini, which, in the electric frame, are the eigenvalues of

(qA)ij = 1
2 E

Λ
A P

x
Λ(σx)ij (A.51)

where EΛ
AEΣ

B δ
AB = I−1|ΛΣ. These are the charges to be used when determining the mag-

netic WGC cut-off.

B SO(4, 2)/SO(4) × SO(2) coset space hyper geometry

In this appendix we describve the Quaternionic-Kähler geometry of the coset space
SO(4,2)

SO(4)×SO(2) , parametrized by the scalars qu, u = 1, . . . , 8. We start from the SO(4, 2)
generators

(Tab)cd = ηc[aδ
d
b], (B.1)

where a = 1, . . . 6 is in the fundamental of so(4, 2) and ηab = diag{1, 1, 1, 1,−1,−1}.
We use C1 = T15 and C2 = T36 as the non-compact Cartan generators and introduce

the following set of positive roots with respect to C1 and C2

E
(1,1)
0 = 1√

2
(
T12+T25−T16+T56

)
, E

(1,−1)
0 = 1√

2
(
T12+T25+T16−T56

)
,

E(1,0)
a =T13+T35 , E

(1,0)
b =T14+T45 , E(0,1)

a =T23+T36 , E
(0,1)
b =T24+T46 ,

(B.2)
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where the superscripts denote the weights under the non-compact Cartans and the a, b
subscript distinguishes between generators of different weight under the remaining compact
Cartan. Together with C1 and C2, these six generators form a basis for the tangent space
of the coset space, which we will collectively denote

Ga =
(
C1 , E

(1,0)
a , E

(1,0)
b , E

(1,−1)
0 , C2 , E

(1,1)
0 , E(0,1)

a , E
(0,1)
b

)
. (B.3)

We then write the coset representative as

L = exp
[(
q6 −

q2q7√
2
− q3q8√

2

)
E

(1,1)
0 +

(
q2 + q7q4√

2

)
E(1,0)
a +

(
q3 + q8q4√

2

)
E

(1,0)
b

+ q7E
(0,1)
a + q8E

(0,1)
b + q4E

(1,−1)
0

]
exp [log(q1)C1] exp [log(q5)C2] ,

(B.4)

from which we can read off the vielbeins eam through

Gae
a
udq

u = L−1dL . (B.5)

The resulting vielbein is

eau =



1√
2q1

0 0 0 0 0 0 0
0 1√

2q1
0 q7

q1
0 0 0 0

0 0 1√
2q1

q8
q1

0 0 0 0
0 0 0 q5√

2q1
0 0 0 0

0 0 0 0 1√
2q5

0 0 0

0 − q7
q1q5
− q8
q1q5
−5(q2

7+q2
8)

6
√

2q1q5
0 1√

2q1q5
q4q7

3
√

2q1q5
q4q8

3
√

2q1q5
0 0 0 0 0 0 1√

2q5
0

0 0 0 0 0 0 0 1√
2q5



(B.6)

and the metric is then

ds2 =huvdq
udqv = δab e

a
ue
b
vdq

udqv

= 1
q2

1

[
dq2

1 +q2
5dq

2
4 +(dq2+

√
2q7dq4)2+(dq3+

√
2q8dq4)2

]
+ 1

72q2
1q

2
5

[
6
√

2dq6−12q7dq2−12q8dq3+2
√

2q4(q7dq7+q8dq8)−5
√

2(q2
7 +q2

8)dq4)
]2

+ 1
q2

5

(
dq2

5 +dq2
7 +dq2

8
)
. (B.7)

The homogeneous nature of the scalar manifold allows us to find the Killing vectors of
the SO(4,2) isometries by the action of the generators on the coset representative (see for
instance [14]):

kuTSO(4,2)
∂uL = TSO(4,2)L− LwH TH=SO(4)×SO(2) , (B.8)
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where the last term is the H-compensator and cancels the part of the transformation that
moves along the coset. For each generator this is a set of 15 equations (L has 15 independent
components) in 15 unknowns (8 components for the Killing vector ku and 7 coefficients for
the compensator wH). Finding the solution is straightforward, but the resulting expressions
are very elaborate and we do not present them here.

Finally, we give here the quaternionic structures

J1 = T12 + T34 , J2 = −T13 + T24 , J3 = T23 + T14 , (B.9)

which correspond to a normal SU(2) subgroup of the SO(4). The action of the genera-
tors on the vielbeins defined in (B.6) can be deduced from their commutators with the
corresponding generators such that

[Jx, eaGa] = (Jx)abebGa (B.10)

and take the form

J1 =



0 0 0 − 1√
2 0 − 1√

2 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1√
2 0 0 0 − 1√

2 0 0 0
0 0 0 1√

2 0 − 1√
2 0 0

1√
2 0 0 0 1√

2 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


,

J2 =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 − 1√

2 0 − 1√
2 0 0

0 0 1√
2 0 0 0 − 1√

2 0
0 0 0 0 0 0 0 1
0 0 1√

2 0 0 0 1√
2 0

0 0 0 1√
2 0 − 1√

2 0 0
0 0 0 0 −1 0 0 0


,

J3 =



0 0 −1 0 0 0 0 0
0 0 0 1√

2 0 1√
2 0 0

1 0 0 0 0 0 0 0
0 − 1√

2 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 −1 0
0 − 1√

2 0 0 0 0 0 1√
2

0 0 0 0 1 0 0 0
0 0 0 1√

2 0 − 1√
2 0 0


.

(B.11)
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