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1 Introduction

In the exact WKB analysis, the wave function for the Schrödinger equation is expanded
as the asymptotic series in the Planck constant. The exact WKB periods defined by its
Borel resummation lead to the energy spectrum of the system by employing the exact
quantization condition [1, 2]. The exact WKB periods are determined by their discontinu-
ity structure and asymptotic behavior [3]. Recently, the relation between the exact WKB
analysis and the integral equations satisfied by the exact WKB periods has been noticed
in [4]. The integral equations take the form of the Thermodynamic Bethe ansatz (TBA)
equations of certain integrable models, and provide the solution to Voros’s Riemann-Hilbert
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problem to determine the exact WKB period. The TBA equations also provide an effi-
cient method to solve the spectral problems with generic polynomial potential in quantum
mechanics [4–6].

For the Schrödinger equation with the monomial potential, the relation to the inte-
grable models has been observed in [7–9], which is known as the ODE/IM correspondence,
see [10–12] for reviews. One can construct the Y-functions using the Wronskians of the
subdominant solutions of the ODE, which satisfy the Y-system. The TBA equations are
derived from the Y-system and the asymptotic behavior of the Y-functions [13, 14]. The
TBA equations for the monomial potential can be also obtained from those for generic
potential by using the wall-crossing formula from the minimal chamber to the maximal
chamber [15, 16]. Moreover, the logarithm of the Y-function is regarded as the (Borel
resummed) WKB period, which has been seen in the gluon scattering amplitudes/minimal
surface correspondence [16–18].

The ODE/IM correspondence has been generalized to a class of higher order ODEs [19–
24], which are realized as the conformal limit of the linear problem associated with the affine
Toda field equations [25–32].1 It is interesting to explore the relation between the exact
WKB periods for higher order ODE and the Y-functions for general integrable models. The
higher order ODEs also appear as the quantum Seiberg-Witten (SW) curves which describe
the low-energy effective action of N = 2 supersymmetric gauge theories in the Nekrasov-
Shatashvili limit of the Omega background [39, 40]. In particular, for the Argyres-Douglas
(AD) theory which is obtained by the scaling limit of the gauge theories [41–43], the
quantum SW curve becomes the higher order ODE [44–48]. The quantum SW curves for a
class of AD theories are labeled by a pair of Lie algebras (G,G′) [49], where the quantum
SW curve for the (A1, Ar)-type AD theory corresponds to the second order ODE with
Ar-type superpotential which is a polynomial potential of order r + 1.

In [44], using the ODE/IM correspondence, the WKB periods for (A1, A2r)-type AD
theories with a monomial potential is identified as the Y-functions of the A2r-type Y-
system.2 The effective central charge of the associated conformal field theory has been
calculated from the TBA equations. An interesting feature is that the conformal field theory
has the same central charge predicted from the 2d/4d correspondence [53]. Moreover, in the
asymptotic expansions of the Y-functions, the coefficients are identified with the eigenvalues
of the integrals of motion of the conformal field theory [8, 54].

In this paper, we study the relation between the WKB periods and the Y-functions
for the higher order ODE using the ODE/IM correspondence. The exact WKB method
for general higher order ODE has been developed in [55, 56], where the Stokes phenomena
of the WKB solutions are extensively studied. In [57–60], using the spectral network [61],
the relation between the WKB periods and the TBA equations is examined for the Hitchin
system. One can identify the cycle of the WKB period associated with the Y-function from
the Stokes graph.

In this paper, we focus on a class of the ODE obtained by replacing the second order
derivative in the Schrödinger equation with a higher order derivative. For the (N + 1)-

1See also [33–38] for related works.
2See also [50–52] for the case of SU(N) N = 2 gauge theory.
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th order potential, the (r + 1)-th order ODE describes the quantum SW curve of the
(Ar, AN )-type AD theory. For this type of ODE, one can compute quantum corrections
to the classical period similar to the Schrödinger equation. In particular, for a quadratic
potential, one calculates the quantum corrections by acting the differential operators on
a set of classical periods of the WKB curve. From the ODE/IM correspondence, the
corresponding Y-functions can be obtained from the cross ratios of the Wronskians of the
subdominant solutions, which satisfy the Ar-type Y-system. The TBA equation gives the
asymptotic expansion of the Y-function in the Planck constant. One can also compute
the coefficients numerically in the series. Comparison of the coefficients with the WKB
periods provides a non-trivial test of the ODE/IM correspondence. We will examine the
correspondence for the higher order ODE with the quadratic potential. As a generalization,
we will also study the correspondence for the cubic potential of the third order ODE, which
shows the wall-crossing of the TBA equations.

This paper is organized as follows. In section 2, we apply the WKB analysis to the
higher order ODE. Using the Riccati equation, we calculate the quantum corrections to the
classical WKB period. In section 3, we focus on the (r+1)-th order ODE with a monomial
potential of order N + 1. We define the Y-functions and the Y-system from the Wronskian
of the solutions. We discuss the semi-classical limit of the Y-function, where the logarithm
of the Y-function is represented by the WKB period associated with the cycle on the WKB
curve. In section 4, we consider the TBA equations and the asymptotic expansion of the
Y-functions in the large spectral parameter. We confirm the quantum corrections to the
WKB period agree with the coefficients of the expansion of the Y-function numerically. We
also discuss the PNP (perturbative-non-perturbative) relations for the WKB periods. In
section 5, the wall-crossing phenomena of the TBA equations for higher order ODE with
polynomial potential are discussed. Section 6 is devoted to conclusions and discussion.

2 WKB analysis for higher order ODE

In this section, we apply the WKB analysis to the higher order ODE related to the con-
formal limit of the linear problem associated with the affine Toda field equation for the
A

(1)
r -type affine Lie algebra [26, 27]. It is also regarded as the quantum SW curve for the

(Ar, AN )-type Argyres-Douglas theory [44]. The ODE is the (r + 1)-th order equation
defined in the complex plane:[

(−1)rεr+1∂r+1
x + p(x, {ui})

]
ψ(x, {ui}; ε) = 0, p(x, {ui}) =

N+1∑
i=0

uN+1−ix
i. (2.1)

We call p(x, {ui}) the potential term because in the Schrödinger case, p(x) represents
potential minus energy. The coefficients ui and ε are complex parameters, where ε plays a
role of the Planck constant. The WKB solution takes the form

ψ(x, {ui}; ε) = exp
(1
ε

∫ x

S(x′, {ui}; ε)dx′
)
, (2.2)

where S(x, {ui}; ε) is expanded in ε as

S(x, {ui}; ε) =
∞∑
n=0

εnSn(x, {ui}). (2.3)
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The S(x, {ui}; ε) in (2.2) satisfies the higher order version of the Riccati equation:

(−1)r(ε∂x + S(x, {ui}; ε))rS(x, {ui}; ε) + p(x, {ui}) = 0. (2.4)

Substituting (2.3) into (2.4) and expanding it in ε, one can determine Sn recursively. For
example, O(ε0) term in (2.4) is

(−S0)r+1 − p = 0, (2.5)

from which we find
S0 = −e

2πik
r+1 p

1
r+1 , k = 0, 1, . . . , r. (2.6)

We set k = 0 in the following calculation. The higher order correction terms can be
obtained recursively and expressed by S0:

S1 = −r2
∂xS0
S0

, S2 = r(r + 2)
12

(
∂2
xS0
S2

0
− 3

2
(∂xS0)2

S3
0

)
, . . . . (2.7)

Formulas for S4, S6 and S8 are presented in appendix A. We have computed Sn (n ≤ 20)
for r ≤ 7. From our analysis, we observe that Sn for odd n become the total derivative as
in the case of the Schrödinger equation. For even r, we also find Sn for n = 2(r+1)k+r+2
(k = 0, 1, . . . ) become the total derivative, which is new for higher order ODE. As we will
see in section 4.1, these vanishing terms can be seen also from the TBA equations.

We next study the WKB period for the ODE (2.1). We introduce the WKB curve:

Σ : yr+1 = p(x, {ui}). (2.8)

The curve (2.8) represents (r + 1)-fold covering of the complex plane with N + 1 branch
points. On this curve, there is a basis of meromorphic differentials of the form:

xi−1

ya
dx, i = 1, . . . , N − 1, a = 1, . . . , r. (2.9)

We also introduce the set of the SW differentials yadx (a = 1, . . . , r), which generate the
basis (2.9):

∂ui(yadx) = a

r + 1
xN−i+1

yr+1−a dx. (2.10)

We now define the WKB period Πγ({ui}; ε) by

Πγ({ui}; ε) :=
∫
γ
S(x, {ui}; ε)dx. (2.11)

where γ is a 1-cycle on the WKB curve (2.8). Substituting the formal expansion (2.3)
into (2.11), we obtain

Πγ({ui}; ε) =
∞∑
n=0

εnΠ(n)
γ ({ui}), (2.12)

where Π(n)
γ ({ui}) is defined by

Π(n)
γ ({ui}) :=

∫
γ
Sn(x, {ui})dx, n = 0, 1, 2, . . . . (2.13)
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Π(0)
γ is called the classical WKB period and Π(n)

γ (n ≥ 1) represents the quantum correction
to the classical WKB period. Since the period integrals of total derivative term vanish,
we can ignore the total derivative terms in Sn. Then we find Π(n)

γ = 0 for odd n and
some even n. For Sn which is not written as the total derivative, we express Sn(x, {ui})
by the linear combination of the basis (2.9) up to total derivatives. Then by using (2.10),
Sn can be expressed in terms of the derivative of yln = pln/(r+1) with respect to ui for
some 1 ≤ ln ≤ r:

Sn(x, {ui}) = OPF
n ({ui}, {∂ui}) (p(x, {ui}))

ln
r+1 + d(∗), ln ∈ {1, . . . , r}, (2.14)

where d(∗) represents the total derivatives. We refer OPF
n ({ui}, {∂ui}) as the Picard-Fuchs

operator. For example, S2 is expressed as

S2 = −r + 1
24

N−1∑
j=0

(N + 1− j)(N − j)ui∂uN+1∂uj+2y
r + d(∗). (2.15)

Substituting (2.14) into (2.13), and changing the ordering of the integral with respect to x
and the differential OPF

n ({ui}, {∂ui}), one can compute the quantum corrections from the
period integral of pln/(r+1):

Π(n)
γ ({ui}) = OPF

n ({ui}, {∂ui})Π̂(0),ln
γ ({ui}), (2.16)

where we defined Π̂(0),ln
γ by

Π̂(0),ln
γ ({ui}) =

∮
γ

(p(x, {ui}))
ln
r+1 dx. (2.17)

Note that −Π̂(0),1
γ ({ui}) is the classical WKB period Π(0)

γ ({ui}) and Π̂(0),ln
γ is the period

integral of the SW differential ylndx on the cycle. We refer it as the classical SW period.

2.1 Quadratic potential

Computation of the classical periods for a general polynomial p(x) is a highly non-trivial
problem. In this paper, we consider the case where p(x) is quadratic in x. By the shift of
x, we can set p(x) as

p(x, u0, u2) = u0x
2 + u2. (2.18)

To calculate the quantum corrections, we first compute the classical SW period Π̂(0),l
γ .

The WKB curve Σ is a (r + 1)-sheeted cover of C with two branch points x = ±
√
u

(u = −u2/u0). We set one of the branch cuts to be the half-line which ends on x =
√
u,

while the other cut ends on x = −
√
u. Let us define the sheet labeled by m ∈ {1, . . . , r+1},

where y is given by

ym = e
2πim
r+1

(
u0x

2 + u2
) 1
r+1 , m = 1, · · · , r + 1. (2.19)

We also introduce the basis γm (m = 1, . . . , r + 1) of the 1-cycles on Σ, which encircle one
of the branch point clockwise and the other anti-clockwise respectively over the m-th and
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−
√

u
√

u

Figure 1. The cycle γm. The solid line is on the m-th sheet while the dashed line is on the
(m+ 1)-th sheet of the WKB curve Σ.

the (m+ 1)-th sheets as in figure 1. The intersection number of γm to γm±1 is ±1. For the
cycle γm, Π̂(0),ln

γm becomes

Π̂(0),ln
γm =

(
e

2πimln
r+1 − e

2πi(m+1)ln
r+1

)∫ u1/2

−u1/2

(
u0x

2 + u2
) ln
r+1 dx. (2.20)

By change of the variable, we obtain

Π̂(0),ln
γm = 2e

πiln
r+1 (2m+3) sin

(
πln
r + 1

)
u

1
2 + ln

r+1
2 u

− 1
2

0 B

(1
2 , 1 + ln

r + 1

)
, (2.21)

where B(a, b) is the beta function defined by

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt = Γ(x)Γ(y)

Γ(x+ y) , Re{x} > 0,Re{y} > 0. (2.22)

2.2 An example: the third order ODE

We now perform the WKB analysis for the third order ODE as an example. The Riccati
equation (2.4) for r = 2 reads

ε2∂2
xS(x, {ui}; ε) + 3εS(x, {ui}; ε)∂xS(x, {ui}; ε) + S(x, {ui}; ε)3 + p(x, {ui}) = 0. (2.23)

Substituting the expansion (2.3), we can solve Sn in terms of S0. We see that Sn for odd
n and S6k+4 (k = 0, 1, . . . ) become total derivatives by explicit calculation.3 Here we show
the list of Sn for even n up to n = 10:

S0 = − p1/3,

S2 = − 1
36

∂2
xp

p4/3 + d(∗),

S4 = d(∗),

S6 = 979
(
∂2
xp
)3

122472p14/3 −
55∂4

xp∂
2
xp

13608p11/3 −
4
(
∂3
xp
)2

5103p11/3 + 5∂6
xp

15552p8/3 + d(∗),

S8 = − 2743
(
∂2
xp
)4

157464p19/3 + 1625∂4
xp
(
∂2
xp
)2

139968p16/3 − 65∂6
xp∂

2
xp

69984p(x)13/3

+ 143
(
∂3
xp
)2
∂2
xp

52488p16/3 − 83
(
∂4
xp
)2

93312p13/3 −
5∂3

xp∂
5
xp

8748p13/3 −
7∂8

xp

186624p10/3 + d(∗),

S10 = d(∗).

(2.24)

3We confirmed this up to n ≤ 20.
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We then calculate the quantum corrections Π(n)
γ which are non-zero only for n = 0, 2

mod 6. The integer ln in (2.14) is given by

ln =

1 for n = 0 mod 6,
2 for n = 2 mod 6.

(2.25)

The Picard-Fuchs operators OPF
n (u0, u2, ∂u2) up to ε18 take the following form:

OPF
2 = u0

4 ∂
2
u2 , OPF

6 = 89u3
0

5040∂
5
u2 , OPF

8 = −211u4
0

40320∂
7
u2 ,

OPF
12 = − 2160997u6

0
3632428800∂

10
u2 , O

PF
14 = 897629u7

0
4151347200∂

12
u2 , O

PF
18 = 26543159161u9

0
779776284672000∂

15
u2 .

(2.26)

Then, the ratios of the quantum corrections to the classical SW periods are

Π(2)
γ

Π̂(0),2
γ

= 7u0
144u2

2
,

Π(6)
γ

Π̂(0),1
γ

= 21983u3
0

1119744u5
2
,

Π(8)
γ

Π̂(0),2
γ

= 26317819u4
0

322486272u7
2
,

Π(12)
γ

Π̂(0),1
γ

= 70877384469605u6
0

13792092880896u10
2
,

Π(14)
γ

Π̂(0),2
γ

= 429318166799748793u7
0

4694326886006784u12
2
,

Π(18)
γ

Π̂(0),1
γ

= 14039462154947603772784295u9
0

286408827560773287936u15
2

.

(2.27)

In appendix B, we will show the Picard-Fuchs operators and the quantum corrections for
the case from the fourth to the seventh order ODE.

3 Y-functions and WKB periods

In this section, we first review the ODE/IM correspondence to define the Y-functions and
the Y-system from the higher order ODE [10]. We then discuss the relation between the
Y-functions and the WKB periods for the higher order ODE, which has been known for
the second order ODE in [44].

3.1 ODE/IM correspondence

Let us consider the (r + 1)-th order ODE with the monomial potential:[
(−1)rεr+1∂r+1

x +
(
u0x

N+1 + uN+1
)]
ψ(x, u0, uN+1; ε) = 0. (3.1)

The ODE/IM correspondence for (3.1) has been studied in [20, 21, 44]. This
ODE is invariant under the Symanzik (Sibuya) [63] rotation (x, u0, uN+1; ε) →
(ω−1x, u0, ω

−(N+1)uN+1; ε) with ω = e
2πi

N+h+1 and h = r + 1. For our purpose, it
is more convenient to regard the Symanzik rotation as the transformation of ε, i.e.
(x, u0, uN+1; ε) → (x, u0, uN+1; e

2πi
h ε). Since the rotated solution satisfies the same ODE,

this rotational symmetry enables us to generate solutions from a given one.
Let us consider a solution φ(x, u0, uN ; ε) to the ODE (3.1) whose asymptotic behavior

is given by

φ(x, u0, uN ; ε) ∼ ε
r
2u
− r

2h
0

i
r
2
√
h
x−

r(N+1)
2h exp

−1
ε

u
1
h
0 h

N + h+ 1x
N+h+1

h

, |x| → ∞, (3.2)

– 7 –
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along the positive real axis. The normalization factor is fixed for later convenience. Note
that φ(x, u0, uN+1; ε) is the subdominant solution which is uniquely defined in the sector
S0, where the sector Sk (k ∈ Z) is defined by

Sk =
{
x ∈ C;

∣∣∣∣arg(x)− 2πk
N + h+ 1

∣∣∣∣ < π

N + h+ 1

}
. (3.3)

Using the Symanzik rotation, we are able to find the subdominant solution in Sk:

φk(x, u0, uN+1; ε) = φ(x, u0, uN+1; ek
2πi
h ε). (3.4)

Since both φk(e−2πix, u0, uN ; ε) and φk+N+h+1(x, u0, uN ; ε) are the subdominant solution
in the same sector and the monodromy of the solution around the origin is trivial, the
relation φk(e−2πix, u0, uN ; ε) ∝ φk+N+h+1(x, u0, uN ; ε) holds. We thus find

φk+N+h+1(x, u0, uN+1; ε) ∝ φk(x, u0, uN+1; ε). (3.5)

Introduce the Wronskian of functions fi(x) (i = 0, . . . , r) by

W [f0, . . . , fr] := det


f0 . . . fr
... . . . ...

∂rxf0 . . . ∂
r
xfr

 . (3.6)

One finds W [φk, . . . , φk+r] = 1 due to the normalization factor, which implies the set of
the subdominant solutions {φk, . . . , φk+r} form a basis of the ODE. Another important
property of the Wronskian is

W [φi0 , . . . , φir ]
[2l] = W [φi0+l, . . . , φir+l], l ∈ Z, (3.7)

where we have used the notation

g[l](u0, uN ; ε) := g(u0, uN ; e
πil
h ε). (3.8)

Now let us introduce the T-functions Ta,l (1 ≤ a ≤ r, l ∈ Z) [44]:

Ta,l =



W
[
φ−r+1+a

2
, φ−r+2+a

2
, . . . , φ1−a2 , φl+2−a2 , φl+3−a2 , . . . , φl+1+a

2

][−l−1]
,

a: even,

W
[
φ−r+1+a−1

2
, φ−r+2+a−1

2
, . . . , φ−a−1

2
, φl+1−a−1

2
, φl+2−a−1

2
, . . . , φl+1+a−1

2

][−l]
,

a: odd.
(3.9)

Using the Plücker relation:

W [f0, . . . , fr−1, fr]W [f0, . . . , fr−2, fr+1, fr+2]
= W [f0, . . . , fr−1, fr+1]W [f0, . . . , fr−2, fr, fr+2]

+W [f0, . . . , fr−1, fr+2]W [f0, . . . , fr−2, fr+1, fr],
(3.10)

– 8 –
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and the property of the Wronskian (3.7), one can find that Ta,l satisfies the functional
relations called the T-system:

T
[+1]
a,l T

[−1]
a,l = Ta,l+1Ta,l−1 + Ta+1,lTa−1,l, (3.11)

where T0,l = Tr+1,l = 1. From (3.9), the T-functions satisfy the boundary conditions:

Ta,−1 = Ta,N+2 = 0, Ta,0 = Ta,N+1 = 1, a = 1, . . . , r. (3.12)

Consequently, the non-trivial T-functions are Ta,l (1 ≤ l ≤ N). Let us define the Y-
functions from cross ratio of the T-functions by

Ya,l = Ta−1,lTa+1,l
Ta,l+1Ta,l−1

, a = 1, . . . , r, l ∈ Z. (3.13)

One can show the Y-functions satisfies the functional relations called the Y-system:

Y
[+1]
a,l Y

[−1]
a,l = (1 + Ya+1,l)(1 + Ya−1,l)

(1 + Y −1
a,l+1)(1 + Y −1

a,l−1)
. (3.14)

Here we also defined Y0,l = Yr+1,l = 0. The boundary conditions for the Y-functions are
given by

Y −1
a,0 = Y −1

a,N+1 = 0, a = 1, . . . , r. (3.15)

We thus obtain the (Ar, AN )-type Y-system [13, 14]. Note that the Y-system is a universal
concept associated with the Thermodynamic Bethe ansatz (TBA) equation [64]. Fixing the
asymptotic behavior of the Y-functions, it is straightforward to convert the Y-system into a
unique set of TBA equations. In the following subsection, we will examine the asymptotic
behavior of the Y-function by using the WKB approximation and then compare the Y-
functions with the WKB periods defined in the previous section.

3.2 Y-functions and WKB periods

In the previous subsection, we have defined the Y-functions as the cross ratio (3.13) of
the Wronskians of the subdominant solutions. We now discuss the leading term of the
Y-functions in the WKB approximation. The WKB solution of φk has the form of

φk = exp
[

δk

e
2πi
h
kε

∫ x

xk

S(x′; e
2πi
h
kε)dx′

]
, (3.16)

where xk is the initial point of the integration. δk is a phase factor, whose value depends
on the sheets of the WKB curve in which φk lives. To evaluate the Wronskian, one needs
to choose δk and put x as a common point, from which the Wronskian results in a x-
independent function. Performing this evaluation for the Wronskians in the Y-function,
one can identify the xk in different Wronskians and obtain a cycle eventually [15, 16]. This
suggests that the identification between the Y-functions and the WKB periods.

In the case of the second order ODE with the (N + 1)-th order polynomial poten-
tial, say the (A1, AN )-type ODE, the identification between the WKB periods and the
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Y-functions has been obtained in [4, 44]. In general, we can determine the γ by using the
abelianization [57–59]. In [57], one finds

Y1,1 = exp
[1
ε

Πγ1

]
, (3.17)

for the third order ODE (3.1) with the quadratic potential, i.e. p(x) = u0x
2 + u2. In a

similar way, one can find a formula for Y [−1]
2,1 . By considering the Stokes graph associated

with the shift ε→ e−
πi
3 ε, we obtain

Y
[−1]

2,1 = exp
[1
ε

Πγ1+γ2

]
. (3.18)

Note that we have defined the WKB period as a formal expansion in ε. In order to define
the equality in (3.17) and (3.18), we have to take the Borel resummation of the WKB
periods. The (r + 1)-th order ODE with the quadratic potential, say (Ar, A1)-type ODE,
can be regarded as the quantum Seiberg-Witten curve of the (Ar, A1)-type AD theory
which is dual to the (A1, Ar)-type AD theory. This duality can be seen also at the level
of the Y-system. The (Ar, A1)-type Y-system (3.14) is dual to the (A1, Ar)-type Y-system
from the (A1, Ar)-type ODE. It is thus natural to propose the identification between the
Y-functions and the WKB periods for the higher order ODE:

Y
[−a+1]
a,1 = exp

[1
ε

Πγ1+···+γa

]
, a = 1, . . . , r. (3.19)

This will be tested numerically in the next section. From (3.19), one can evaluate the
asymptotic behaviors of the Y-functions. The classical periods are given by

Π(0)
γ1+···+γa = −

∮
γ1+···+γa

p(x)
1
hdx

= −2e
πi
h

(4+a) sin
(
πa

h

)
u
− 1

2
0 u

1
h

+ 1
2

2 B

(1
2 , 1 + 1

h

)
.

(3.20)

Note that the classical periods satisfy the following relation:

2Π(0)
γ1+···+γa cos

(
π

h

)
=

r∑
b=1

Gabe
πi
h

(a−b)Π(0)
γ1+···+γb , (3.21)

where Gab is the incidence matrix of the Ar-type Lie algebra. Then the leading order
approximation of the Y-function Ya,1 becomes

Ya,1 = exp
[
e−

πi
h

(a−1)

ε
Π(0)
γ1+···+γa + · · ·

]
. (3.22)

We can check that (3.22) satisfies the Y-system (4.1) at the leading order in ε.
In the next section, we test the relation (3.19) numerically by solving the TBA equa-

tions satisfied by the Y-functions.

4 TBA equations and numerical test

In this section, to confirm the identification (3.19), we compare the corresponding terms in
the ε-expansions. We rewrite the Y-system into the integral equations called the thermody-
namic Bethe ansatz equations with the help of the asymptotic conditions of the Y-functions
studied in section 3.2. We then expand the TBA equation at small ε, and compare it against
the expansion of the WKB period.
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4.1 TBA equations

We first convert the Y-system into a set of integral equations for the Y-functions called
the TBA equations according to [10, 13]. We consider particularly the (Ar, A1)-type Y-
systems (3.14), where the second index l of Ya,l takes value l = 1 only. The Y-system is
written as

Y
[+1]
a,1 Y

[−1]
a,1∏r

b=1 Y
Gab
b,1

=
r∏
b=1

(1 + Y −1
b,1 )Gab . (4.1)

Here the matrix Gab denotes the incidence matrix of Ar, which is defined by Gab :=
2δab − Cab. Cab is the Cartan matrix of Ar. Introducing the spectral parameter θ by
ε = e−θ, the rotation of ε defined in (3.8) acts on the Y-function, which is regarded as the
function of θ, as

Y
[±1]
a,1 (θ) = Ya,1

(
θ ∓ πi

h

)
. (4.2)

At the large and positive real θ, log Ya,1 is assumed to behave as:

log Ya,1(θ) ∼ ma,1e
θ. (4.3)

Herema,1 is the mass parameter of the pseudo particle described by the TBA system. Based
on the observation in the previous section, the mass parameter is related to Π(0)

γ1+···+γa as

ma,1 = e−
πi
h

(a−1)Π(0)
γ1+···+γa . (4.4)

Using this relations (4.4) and (3.21), one can express ma,1 in terms of m1,1 as

ma,1 =
sin
(
πa
h

)
sin
(
π
h

) m1,1 . (4.5)

This relation is essential to derive the TBA equations. We take the logarithm of the
Y-system (4.1) and express it in terms of fa,1 := log Ya,1 − ma,1e

θ. Taking the Fourier
transform defined by

f̃(k) =
∫ ∞
−∞

dθ f(θ)e−ikθ, (4.6)

we obtain
r∑
b=1

(
2δab cosh

(
πk

h

)
−Gab

)
f̃b,1(k) =

r∑
b=1

GabL̃b,1(k), (4.7)

where La,1 is given by

La,1(θ) := log
(
1 + Y −1

a,1 (θ)
)
, La,0 = La,2 = 0. (4.8)

Solving (4.7) in terms of f̃a,1(k) and performing the inverse Fourier transform, we finally
obtain the TBA equations:4

log Ya,1(θ) = ma,1e
θ − 1

2π

r∑
b=1

∫ ∞
−∞
Kab(θ − θ′)Lb,1(θ′) dθ′ . (4.9)

4The TBA equations based on more general assumptions were derived in [20]. Fixing the asymptotic
behaviors by using the WKB periods, the TBA equations [20] reproduce (4.9).
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The kernel Kab(θ) in the convolution term is defined by

Kab(θ) := −
∫ ∞
−∞

[
r∑
c=1

(
2δac cosh

(
πk

h

)
−Gac

)−1
Gcb

]
eikθ dk , (4.10)

which turns out to be [10]

Kab(θ) = −i d
dθ

a+b−1∑
x=|a−b|+1

step2

log {x}, (4.11)

where the functions {x} is given by

{x} :=
sinh

(
θ
2 + πi

2h(x− 1)
)

sinh
(
θ
2 −

πi
2h(x− 1)

) sinh
(
θ
2 + πi

2h(x+ 1)
)

sinh
(
θ
2 −

πi
2h(x+ 1)

) . (4.12)

The TBA equations (4.9) have the same form as the ones in [10], but can have complex
valued masses depending on u0 and u2. In a region of parameters u0 and u2 such that
the real part of ma,1 is positive, the Y-function calculated from (4.9) is shown to converge
numerically. On the other hand, the Y-function diverges numerically when the real part
of ma,1 is negative. To resolve this problem, we shift θ to θ − iφ such that Re(ma,1e

−iφ)
becomes positive.

From the definition of the kernel function of the TBA equations (4.11), the a-th and
(r + 1 − a)-th equation are the same, and together with the mass relation (3.21), we find
that the Y-function has the following symmetries:

Ya,1 = Yr+1−a,1, a = 1, . . . , r. (4.13)

We investigate the correspondence between the period integral and the Y-function in
the ε-expansion. To see this, we perform the e−θ-expansion of the kernel function of the
TBA equations following [65]. Using the expansion for the functions {x}, one finds

− i d
dθ ln {x} = −4

∞∑
n=1

cos
(
πn

h

)
sin
(
πn

h
x

)
e−nθ. (4.14)

For a ≤ b, we can expand the kernel functions in e−θ as

Kab(θ) = −4
∞∑
n=1

cos
(
πn

h

) a∑
j=1

sin
(
πn(b− a− 1 + 2j)

h

)
e−nθ

= −4
∞∑
n=1

n 6=0 mod h

cot
(
πn

h

)
sin
(
πna

h

)
sin
(
πnb

h

)
e−nθ.

(4.15)

Note that the terms e−nhθ (n = 1, 2, . . . ) are absent in the expansion. Finally, the Y-
functions have the following asymptotic expansion in e−θ:

log Ya,1(θ) = ma,1e
θ +

∞∑
n=1

m
(n)
a,1e

−nθ, (4.16)
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where the coefficients m(n)
a,1 are given by

m
(n)
a,1 :=


2
π

cot
(
πn

h

)
sin
(
πna

h

) r∑
b=1

sin
(
πnb

h

)∫ ∞
−∞

Lb,1(θ′)enθ′ dθ′ , n 6= 0 mod h,

0, n = 0 mod h.

(4.17)
In the following subsection, we will confirm that these coefficients m(n−1)

a,1 correspond to
period integrals Π(n)

γ1+···+γa .

4.2 Numerical test

In this subsection, we compare the WKB period with the Y-function numerically and
confirm the identification (3.19):

log Ya,1 =
(1
ε

Πγ1+···γa

)[a−1]
. (4.18)

Then (4.18) implies

m
(n−1)
a,1 = e

πi
h

(a−1)(n−1)Π(n)
γ1+···+γa , n = 0, 1, . . . , (4.19)

where we have defined m(−1)
a,1 = ma,1. For n− 1 = kh (k = 1, 2, . . . ), we have seen that the

l.h.s. of (4.19) vanishes. For the WKB analysis, we also see that the corresponding term in
the r.h.s. also vanishes. For example, for even r and k = 2i+ 1, we obtain n = 2hi+ h+ 1
that we have seen in section 2.

We now check the equation (4.19) numerically. To solve the TBA equations, we use the
fast Fourier transformation (FFT) with 220 discrete points and the cutoff 16. The results
for A2 and A3 case with p(x) = x2 − 1 are shown in tables 1 and 2, respectively. We can
see that the two results match each other with high precision.

As another consistency check of (4.18), we investigate the Z2-symmetry of the WKB
periods. As we mention in the section 4.1, the Y-functions of the (r + 1)-th order ODE
have the symmetry (4.13). From the identification (4.18), for the third order ODE, the
WKB periods should also have this symmetry:

ε−1Πγ1 =
(
ε−1Πγ1+γ2

)[+1]
. (4.20)

We can check the above equation explicitly. In fact, the periods ε−1Πγ1 and
(
ε−1Πγ1+γ2

)[+1]

are given by

ε−1Πγ1 =
∑
n≥0

(
ε6n−1a6nΠ̂(0),1

γ1 + ε6n+1a6n+2Π̂(0),2
γ1

)
, (4.21)

(
ε−1Πγ1+γ2

)[+1]
=
∑
n≥0

(
ε6n−1a6ne

−πi3 Π̂(0),1
γ1+γ2 + ε6n+1a6n+2e

πi
3 Π̂(0),2

γ1+γ2

)
, (4.22)

where we defined an = Π(n)
γ /Π̂(0),ln

γ . Since

Π̂(0),1
γ1 = e−

πi
3 Π̂(0),1

γ1+γ2 , Π̂(0),2
γ1 = e

πi
3 Π̂(0),2

γ1+γ2 , (4.23)

one finds (4.20). For the higher order ODE, one can also check the relation similarly.
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n Π(n)
γ1 , e

πi
3 (n−1)Π(n)

γ1+γ2
m

(n−1)
1,1 ,m

(n−1)
2,1

2 0.1244723667i 0.1244723666i
4 0 0
6 −0.05721560699i −0.05721561024i
8 −0.2089662087i −0.2089662250i

10 0 0
12 14.97696460i 14.97696419i
14 234.1765144i 234.1761561i

Table 1. Π(n)
γ and m(n−1)

a,1 for the third order ODE with p(x) = x2 − 1.

n Π(n)
γ1 , e

πi
2 (n−1)Π(n)

γ1+γ2+γ3
m

(n−1)
1,1 ,m

(n−1)
3,1 e

πi
4 (n−1)Π(n)

γ1+γ2
m

(n−1)
2,1

2 −0.2118032712 −0.2118032752 −0.2995350587 −0.2995350643
4 0.05311151419 0.05311151743 −0.07511102369 −0.07511102827
6 −0.12953645375 −0.1295364668 0.1831922097 0.1831922283
8 0.7882359521 0.7882360637 1.1147339738 1.114734131

10 −7.184548229 −7.184549472 −10.160485545 −10.16048730
12 102.58179442 102.5818017 −145.0725649+ −145.0725752
14 −2251.106503 −2251.103294 3183.545348 3183.540809

Table 2. Π(n)
γ and m(n−1)

a,1 for the fourth order ODE with p(x) = x2 − 1.

We can also use the equation (4.18) for the third order ODE to compare the eigenvalues
of the integral of motions in the W3 conformal field theory with the expansion of the
T-functions [54]. In appendix C, we show the identification between the large spectral
parameter expansion of their T-function and the ε-expansion of our WKB period.

4.3 PNP relation

We discuss the relation among the WKB periods, which is obtained as a consequence of
the identification in (4.19). The effective central charge associated to our TBA equations
is given by

ceff := 3
π2

r∑
a=1

∫ ∞
−∞

ma,1La,1(θ)eθ dθ . (4.24)

Using the Roger’s dilogarithm identity, the effective central charge becomes

ceff = h− 1
h+ 2 . (4.25)

By computing m(1)
a,1 from the definition (4.17) and using the identification between the mass

and the period (4.19), we obtain the following relation:

Π(0)
γ1+···+γaΠ(2)

γ1+···+γa = 2π
3 cot

(
π

h

)
sin2

(
πa

h

)
ceff = 2π

3
h− 1
h+ 2 cot

(
π

h

)
sin2

(
πa

h

)
. (4.26)
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Here we do not sum over a. This relation is regarded as the PNP relation [66, 67]. The
relation (4.26) can also be obtained directly from the calculation of the periods. The
classical period and the second order correction are given by

Π(0)
γ1+···+γa = −2e

πi
h

(4+a) sin
(
πa

h

)
u

1
h

+ 1
2

0 u
− 1

2
2 B

(1
2 , 1 + 1

h

)
,

Π(2)
γ1+···+γa = −4r2 − h2

24h e−
πi
h

(4+a) sin
(
πa

h

)
u
r
h
− 3

2
0 u

1
2
2B

(1
2 , 1 + r

h

) (4.27)

Then their product becomes

Π(0)
γ1+···+γaΠ(2)

γ1+···+γa = h

124 sin2
(
πa

h

)Γ
(

1
2

)2
Γ
(
1 + 1

h

)
Γ
(
1 + r

h

)
Γ
(

3
2 + 1

h

)
Γ
(
−1

2 + r
h

) . (4.28)

By using the reflection formula for the gamma function Γ(z)Γ(1 − z) = π/ sin(πz), one
obtains (4.26).

5 Higher order potential and Wall-crossing

So far, we have studied the higher order ODE with a monomial potential. It is interesting
to study polynomial potential, where the WKB periods and the TBA equations show the
wall-crossing phenomena [15]. For the second order ODE, the wall-crossing of the TBA
equations and the WKB periods has been studied in [4]. In this section, we observe that the
wall-crossing phenomena occur by considering the third order ODE with a cubic potential
p(x) = u0x

3 + u1x
2 + u2x+ u3 as an example.

Following the procedure of section 3, it is easy to generalize the Y-system (3.14) to
(Ar, AN ) type with Y-functions Ya,s (a = 1, . . . , r, s = 1, . . . , N), which leads to the
(Ar, AN )-type TBA equations [20]. In the minimal chamber of (A2, A2)-type Y-system,
they can be written as

log Ya,1(θ − iφ1) =|ma,1|eθ +K ? La,1 −K1,2 ? La,2

log Ya,2(θ − iφ2) =|ma,2|eθ −K2,1 ? La,1 +K ? La,2, (a = 1, 2)
(5.1)

where K(θ) = 1
2π

4
√

3 cosh θ
1+2 cosh 2θ , φs = Arg(m1,s) and L1,s(θ) = log

(
1 + Y1,s(θ − iφs)−1). Here

Kr,s denotes the shifted kernel which is defined by

Kr,s(θ) = K(θ − iφr + iφs). (5.2)

Since the TBA equations for a = 2 provide the same copy as a = 1. We only consider the
a = 1 equations.

By using the WKB approximations and the Stokes graph in [57], one can compute the
leading order contribution to the Y-functions at large eθ as in (3.22). We then find the
masses and the classical periods are related by

ma,s = e
πi
3 (s−a)Π(0)

γ̂a,s
, a, s = 1, 2, (5.3)
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where Π(0)
γ̂a,s

denotes the classical SW period for the 1-cycle γ̂a,s. See figure 2(a) for an
example of γ̂a,s. Including higher order contributions in ε = e−θ, we propose that the
Y-functions are identified to the exact WKB periods

log Y1,1(θ) = 1
ε

Πγ̂1,1(θ), log Y1,2(θ) =
(1
ε

Πγ̂1,2

)(
θ + πi

3

)
, (5.4)

which will be tested numerically. At large eθ, expanding the kernels in the TBA equations,
the Y-functions are expressed as

log Ya,s(θ) = ma,se
θ +

∞∑
n=1

m(n)
a,se

−nθ. (5.5)

The coefficients m(n)
a,s are given by

m(n)
a,s = kn

∫ ∞
−∞

(La,s(θ)en(θ−iφa,s)−La,s−1(θ)en(θ−iφa,s−1)−La,s+1(θ)en(θ−iφa,s+1)) dθ , (5.6)

where La,0 = La,3 = 0 and the coefficient kn is defined by

kn = 1
π

(
sin
(
π

3n
)

+ sin
(2π

3 n

))
. (5.7)

Moreover, the higher order correction of WKB periods can be computed by using the
Picard-Fuchs operators (2.14). We now confirm this identification numerically by com-
paring the expansions of WKB periods and Y-functions. In table 3, we computed the
corrections to the quantum periods and the coefficients of the expansion (5.5) for the
WKB curve y3 = −x3 +x2 + 2x which has branch points at x = −1, 0 and 2. The classical
SW periods are defined as

Π(0)
γ̂1,1

=
∫
γ̂1,1

y dx , Π(0)
γ̂1,2

=
∫
γ̂1,2

y dx . (5.8)

which are calculated by the hypergeometric integral. The masses and the classical peri-
ods are related by (5.3). From table 3, one finds that two results agree with each other
numerically.

The kernel K1,2 is shown to have poles on the real axis when |φ2 − φ1| = π
3 ,

2π
3 , · · · .

Comparing with the quadratic potential, the phase of the mass parameters are not neces-
sarily the same and the integration path of the TBA equations could cross the pole, where
the wall-crossing phenomena occur [4]. The TBA equations (5.1) are valid in the minimal
chamber, namely the region |φ2 − φ1| < π

3 . When φ2 − φ1 crosses ±π
3 ,±

2π
3 , · · · , one needs

to modify the TBA equations by picking the contributions of the poles. This modification
of TBA equations is known as the wall-crossing [16, 69].

Let us consider the situation where φ2 − φ1 crosses π/3. We thus need to pick the
residue of pole in K in the TBA equations:

log Y1,1(θ − iφ1) =|m1,1|eθ +K ? L1,1 −K1,2 ? L1,2 − L1,2

(
θ − πi

3 − iφ1

)
,

log Y1,2(θ − iφ2) =|m1,2|eθ −K2,1 ? L1,1 +K ? L1,2 − L1,1

(
θ + πi

3 − iφ2

)
.

(5.9)
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n Π(n)
γ̂1,1

m
(n−1)
1,1 e−πi

3 (n−1)Π(n)
γ̂1,2

m
(n−1)
1,2

0 3.642563830i 3.642563830i 1.244358075i 1.244358075i
2 0.1994669082i 0.1994669082i −0.1994669082i −0.1994669082i
4 0 0 0 0
6 −4.120900959i −4.120900963i 4.120900959i 4.120900963i
8 −82.25658234i −82.25658241i 82.25658234i 82.25658241i

10 0 0 0 0
12 176192.6118i 176192.5854i −176192.6118i −176192.5854i
14 15083126.44i 15083101.15i −15083126.44i −15083101.15i

Table 3. Π(n)
γ̂1,s

and m(n−1)
1,s (s = 1, 2) for the third order ODE with p(x) = −x3 + x2 + 2x. The

branch points are x0 = 2, x1 = 0, x2 = −1. Here we have denoted the mass term ma,s by m(−1)
a,s .

To obtain a closed system, we also need to shift the spectral parameter of Y1,1 and Y1,2 to
obtain the equations for log Y1,1(θ+ πi

3 − iφ2) and log Y1,2(θ− πi
3 − iφ1). We thus obtain a

closed system with four TBA equations.
It would be more interesting to introduce a set of new Y-functions Y n:

Y n
1,1(θ) = Y1,1(θ)

(
1 + 1

Y1,2(θ − πi
3 )

)
, Y n

1,2(θ) = Y1,2(θ)
(

1 + 1
Y1,1(θ + πi

3 )

)

Y n
12(θ) =

1 + 1
Y1,2(θ−πi3 ) + 1

Y1,1(θ)
1

Y1,1(θ)Y1,2(θ−πi3 )
= Y1,1(θ)Y1,2

(
θ − πi

3

)
+ Y1,1(θ) + Y1,2

(
θ − πi

3

) (5.10)

to absorb the residue in the right hand side of (5.9). The TBA system in this case reads

log Y n
1,1(θ − iφ1) =|m1,1|eθ +K ? L

n
1,1 −K1,2 ? L

n
1,2 +K−1,12 ? L

n
12,

log Y n
1,2(θ − iφ2) =|m1,2|eθ +K ? L

n
1,2 −K2,1 ? L

n
1,1 −K−2,12 ? L

n
12, (5.11)

log Y n
12(θ − iφ12) =|m12|eθ +K ? L

n
12 +K+

12,1 ? L
n
1,1 −K+

12,2 ? L
n
1,2,

where K±r,s(θ) = Kr,s(θ ± πi
3 ), Ln

1,s(θ) = log
(
1 + Y n

1,s(θ − iφs)−1) and L
n
12(θ) = log

(
1 +

Y n
12(θ− iφ12)−1). The mass term of Y n

12 is m12 = m1,1 + e−
πi
3 m1,2, whose phase is denoted

by φ12. From the asymptotic behavior of the TBA equations, we find the new Y-functions
Y n

1,1 and Y n
1,2 are related to the cycles γ̂1,1 and γ̂1,2. Note the relation

m12 = m1,1 + e−
πi
3 m1,2 = Π(0)

γ̂1,1
+ Π(0)

γ̂1,2
, (5.12)

the Y n
12 is related with the cycle γ̂1,1 + γ̂1,2. See figure 2(b). From the point view of the

Argyres-Douglas theory, the BPS states in the minimal chamber are related with the cycles
basis (γ̂1,1, γ̂1,2). In next chamber, the basis of BPS state charge becomes (γ̂1,1, γ̂1,2, γ̂1,1 +
γ̂1,2) [15]. To study the full spectrum of the next chamber, one needs to consider the closed
system related with the three cycles. Rather than the original Y-function, one thus needs
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−1 0 2

(a)

−1 0

1− i

(b)

Figure 2. One-cycles on the WKB curves for the minimal chamber (a) and outside the minimal
chamber (b). Moving from the minimal chamber to the next chamber in the moduli space, a new
cycle is involved in the BPS spectrum charge basis. In this figure, the dashed black lines starting
from the zeros (black dots) indicate the branch cuts. The black and red cycles are γ̂1,1 and γ̂1,2
respectively. The blue cycle is γ̂1,1 + γ̂1,2.

to identify the new Y-function with the WKB periods. We thus propose that the new
Y-functions are identified with the WKB periods at the region π/3 < φ2 − φ1 < 2π/3:

log Y n
1,1(θ) =

(1
ε

Πγ̂1,1

)
(θ), log Y n

1,2(θ) =
(1
ε

Πγ̂1,2

)(
θ + πi

3

)
,

log Y n
12(θ) =

(1
ε

Πγ̂1,1

)
(θ) +

(1
ε

Πγ̂1,2

)
(θ) =:

(1
ε

Πγ̂1,12

)
(θ), (5.13)

where γ̂1,12 := γ̂1,1 + γ̂1,2. The large ε−1 = eθ expansion of (5.13) can be checked by solving
the TBA equations numerically, which is shown in tables 4 and 5. Here we have defined
(mn

a,k)(n) and (mn
12)(n) by the expansions:

log Y n
a,k(θ) = ma,ke

θ +
∞∑
n=1

(mn
a,k)(n)e−nθ, k = 1, 2,

log Y n
12(θ) = m12e

θ +
∞∑
n=1

(mn
12)(n)e−nθ.

(5.14)

The TBA equations (5.11) thus describe the WKB periods in the next chamber outside
the minimal one. We can also perform further wall-crossing of the TBA equations to go to
the maximal chamber, which includes the case where the potential is monomial [62].

6 Conclusions and discussion

In this paper, we studied the WKB periods of the ODE which is a higher order general-
ization of the Schrödinger equation. The quantum corrections of the WKB periods were
obtained by solving the Riccati equation recursively. These corrections were expressed by
applying the Picard-Fuchs operators to the classical SW periods. We also defined the Y-
functions from the Wronskians and derived the Y-system and the TBA equations. Based
on the results of the Schrödinger type ODE and the third order ODE, we proposed a for-
mula which relates the WKB periods to the Y-functions for the higher order ODE with the
quadratic potential. We checked the formula numerically. We also derived a non-trivial
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n Π(n)
γ̂1,1

(mn
1,1)(n−1)

0 1.874620612 + 0.3018501837i 1.874620612 + 0.3018501837i
2 0.1284063138 + 0.3047229198i 0.1284063137 + 0.3047229201i
4 0 0
6 5.769417182− 3.128435216i 5.769417207− 3.128435225i
8 174.0185754− 30.03032475i 174.0185763− 30.03032474i

10 0 0
12 −467246.4117− 339241.7847i −467246.3493− 339241.7425i
14 −32138323.83− 52653279.18i −32138271.57− 52653196.97i

n e−πi
3 (n−1)Π(n)

γ̂1,2
(mn

1,2)(n−1)

0 0.2197744901 + 1.094413217i 0.2197744901 + 1.094413217i
2 −0.1284063138− 0.3047229198i −0.1284063137− 0.3047229201i
4 0 0
6 −5.769417182 + 3.128435216i −5.769417207 + 3.128435225i
8 −174.0185754 + 30.03032475i −174.0185763 + 30.03032474i

10 0 0
12 467246.4117 + 339241.7847i 467246.3493 + 339241.7425i
14 32138323.83 + 52653279.18i 32138271.57 + 52653196.97i

Table 4. Π(n)
γ̂1,k

and (mn
1,k)(n−1) (k = 1, 2) for the third order ODE with p(x) = −x3−ix2 +(1−i)x.

The branch points are x0 = 1− i, x1 = 0, x2 = −1. See figure 2(b).

n Π(n)
γ̂1,12

(mn
12)(n−1)

0 2.932297506 + 0.6587265011i 2.932297506 + 0.6587265011i
2 0.3281009466 + 0.04115833014i 0.3281009468 + 0.04115833032i
4 0 0
6 5.594012963 + 3.432244237i 5.594012983 + 3.432244253i
8 61.00226359− 165.7196694i 61.00226404− 165.7196701i

10 0 0
12 60168.79778− 574268.1548i 60168.79043− 574268.0568i
14 −61668239.29 + 1505965.287i −61668121.03 + 1505960.255i

Table 5. Π(n)
γ̂1,12

and (mn
12)(n−1) for the third order ODE with p(x) = −x3 − ix2 + (1− i)x.

relation between the classical WKB period and the second order quantum correction. The
relation takes the form of the PNP relation and has been re-derived from the WKB side.
It thus provides the other non-trivial test of the identification between the Y-functions and
the WKB periods.
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In the exact WKB analysis, one needs to perform the Borel resummation of the WKB
periods. The Y-function should correspond to the Borel resummation of the WKB period.
In our TBA equations, the poles of the kernel function have a rich structure. The identifi-
cation implies that the WKB periods studied in our paper are Borel summable for positive
real ε, but are Borel non-summable at arg(ε) = ±π/h along which the poles in the kernel
function are located. It would be interesting to make an extensive study in this direction.

It is also interesting to consider a generalization to the higher order polynomial po-
tential. In this case, since the phase of the mass parameters are not necessarily the same
and the integration path of the TBA equations could cross the pole, more complicated
wall-crossing phenomena may occur [4]. We have studied the third order ODE with the
cubic potential in detail. We have seen an agreement between the WKB periods and the
Y-functions before/after the wall-crossing.

There is another direction to generalize the present work. The ODE studied in this
paper is obtained from the A(1)

r -type linear problem without monodromies around the
origin, which is associated with the affine Toda equation. The WKB analyses for the linear
problem associated with the affine Toda equation for other affine Lie algebras and/or
with monodromies are also interesting in the viewpoint of the analytic structure of the
Y-functions.

The ODE studied in this paper is regarded as the quantum Seiberg-Witten curve of the
(Ar, A1)-type Argyres-Douglas theory which is dual to the (A1, Ar)-type Argyres-Douglas
theory. Our TBA equations have the same form as the ones of the (A1, Ar)-type ODE,
which has been studied in [21, 44]. This can be interpreted as the duality between the
(Ar, A1)-type AD theory and the (A1, Ar)-type AD theory in the NS limit of the Omega
background. It is interesting to study the quantum SW curves for (Dr, A1) and (Er, A1)
types by using the WKB analysis and the TBA equations (see [68] for a related work).
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A Higher order terms in the WKB expansion

In this appendix, we present the coefficients S2i (i = 1, 2, 3, 4) in the WKB expansions (2.3)
of S for the (r + 1)-th order ODE. S2i are calculated up to total derivatives:

S2 = h2 − 1
48

∂2S0
S2

0
,

S4 = (h2 − 9)(h2 − 1)
768

(∂2S0)2

S5
0
− (h2 − 9)(h2 − 1)

5120
∂4S0
S4

0
,
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S6 = a6
(∂2S0)3

S8
0

+ b6
(∂3S0)2

S7
0

+ c6
∂2S0∂

4S0
S7

0
+ d6

∂6S0
S6

0
, (A.1)

S8 = a8
(∂2S0)4

S11
0

+ b8
∂2S0(∂3S0)2

S10
0

+ c8
(∂2S0)2∂4S0

S10
0

+ d8
(∂4S0)2

S9
0

+ e8
∂3S0∂

5S0
S9

0
+ f8

∂2S0∂
6S0

S9
0

+ g8
∂8S0
S8

0
,

where

a6 = (h2 − 52)(h2 − 1)(401h2 − 2081)
1327104 ,

b6 = −(h2 − 52)(h2 − 1)2

387072 ,

c6 = −(h2 − 52)(h2 − 1)(11h2 − 59)
147456 ,

d6 = (h2 − 52)(h2 − 1)(11h2 − 59)
6193152 ,

(A.2)

and

a8 = (h2 − 72)(h2 − 1)(23490253− 7310426h2 + 452173h4)
3503554560 ,

b8 = −(h2 − 72)(h2 − 1)2(−3649 + 409h2)
364953600 ,

c8 = −(h2 − 72)(h2 − 1)(4674697− 1436114h2 + 87817h4)
1946419200 ,

d8 = (h2 − 72)(h2 − 1)(2792063− 847678h2 + 51455h4)
35035545600 ,

e8 = (h2 − 72)(h2 − 1)2(−509 + 53h2)
547430400 ,

f8 = (h2 − 72)(h2 − 1)(73943− 22510h2 + 1367h4)
973209600 ,

g8 = −(h2 − 72)(h2 − 1)(73943− 22510h2 + 1367h4)
93428121600 .

(A.3)

B The PF operators and quantum corrections

In the following, we show the Picard-Fuchs operators and the ratio of the quantum correc-
tions to the classical SW periods up to ε16 for the ODE of order from four to seven. For
r = 2k + 1 (k = 0, 1, . . . ), ln becomes

{l2n}n=1,2,... = {2k + 1, 2k − 1, . . . , 1, 2k + 1, . . . }. (B.1)

For r = 2k (k = 0, 1, . . . ), ln becomes

{l2n}n=1,2,... = {2k, 2k − 2, . . . , 0, 2k − 1, 2k − 3, . . . , 1, 2k, . . . }. (B.2)
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B.1 The fourth order ODE

The PF operators are

OPF
2 = u0

3 ∂
2
u2 , OPF

4 = −11u2
0

120 ∂
3
u2 , OPF

6 = 61u3
0

1080∂
5
u2 ,

OPF
8 = −353u4

0
8064 ∂

6
u2 , OPF

10 = 11099u5
0

362880 ∂
8
u2 , OPF

12 = −49707277u6
0

2075673600∂
9
u2 ,

OPF
14 = 4828591u7

0
230630400∂

11
u2 , O

PF
16 = −4477909193u8

0
219967488000∂

12
u2 .

(B.3)

The ratio of the quantum corrections to the classical SW periods are

Π(2)
γ

Π̂(0),3
γ

= 5u0
48u2

2
,

Π(4)
γ

Π̂(0),1
γ

= − 11u2
0

512u3
2
,

Π(6)
γ

Π̂(0),3
γ

= − 4697u3
0

73728u5
2
,

Π(8)
γ

Π̂(0),1
γ

= 1170195u4
0

3670016u6
2
,

Π(10)
γ

Π̂(0),3
γ

= 266764465u5
0

75497472u8
2
,

Π(12)
γ

Π̂(0),1
γ

= −122528437805u6
0

2952790016u9
2
,

Π(14)
γ

Π̂(0),3
γ

= −61815211551765u7
0

55834574848u11
2

,
Π(16)
γ

Π̂(0),1
γ

= 15168742752828973u8
0

549755813888u12
2

.

(B.4)

B.2 The fifth order ODE

The PF operators are

OPF
2 = 5u0

12 ∂
2
u2 , OPF

4 = −13u2
0

72 ∂3
u2 , OPF

8 = −3889u4
0

18144 ∂
6
u2 ,

OPF
10 = 8177u5

0
28512 ∂

7
u2 , O

PF
12 = −5801857u6

0
13837824 ∂

9
u2 , O

PF
14 = 6172661u7

0
8491392 ∂10

u2 .

(B.5)

The ratio of the quantum corrections to the classical SW periods are

Π(2)
γ

Π̂(0),4
γ

= 13u0
80u2

2
,

Π(4)
γ

Π̂(0),2
γ

= − 143u2
0

8000u3
2
,

Π(8)
γ

Π̂(0),3
γ

= −306425977u4
0

672000000u6
2
,

Π(10)
γ

Π̂(0),1
γ

= 39003856619u5
0

2880000000u7
2
,

Π(12)
γ

Π̂(0),4
γ

= 1965108059811387u6
0

5632000000000u9
2
,

Π(14)
γ

Π̂(0),2
γ

= −57186073300864563u7
0

16640000000000u10
2

.

(B.6)

B.3 The sixth order ODE

The PF operators are

OPF
2 = u0

2 ∂
2
u2 , OPF

6 = 5135u3
0

12096 ∂
4
u2 , OPF

8 = −75709u4
0

96768 ∂6
u2 ,

OPF
12 = −50444678155u6

0
11955879936 ∂8

u2 , O
PF
14 = 271675168801u7

0
23911759872 ∂10

u2 .

(B.7)
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The ratio of the quantum corrections to the classical SW periods are

Π(2)
γ

Π̂(0),5
γ

= 2u0
9u2

2
,

Π(6)
γ

Π̂(0),1
γ

= − 5135u3
0

17496u4
2
,

Π(8)
γ

Π̂(0),5
γ

= −4163995u4
0

1102248u6
2
,

Π(12)
γ

Π̂(0),1
γ

= 4792244424725u6
0

3367210176u8
2
,

Π(14)
γ

Π̂(0),5
γ

= 2655624775029775u7
0

35814871872u10
2

.

(B.8)

The corrections for order n = 6k + 4 (k = 0, 1, . . . ) vanish for the quadratic potential, but
do not vanish for the general potential.

B.4 The seventh order ODE

The PF operators are

OPF
2 = 7u0

12 ∂
2
u2 , OPF

4 = −119u2
0

240 ∂3
u2 ,

OPF
6 = 29u3

0
30 ∂4

u2 , OPF
10 = 765289u5

0
95040 ∂7

u2 ,

OPF
12 = −171906011u6

0
5702400 ∂8

u2 , OPF
14 = 434398427u7

0
3706560 ∂9

u2 ,

OPF
16 = −3131950604279u8

0
5930496000 ∂11

u2 .

(B.9)

The ratio of the quantum corrections to the classical SW periods are

Π(2)
γ

Π̂(0),6
γ

= 95u0
336u2

2
,

Π(4)
γ

Π̂(0),4
γ

= 221u2
0

6272u3
2
,

Π(6)
γ

Π̂(0),2
γ

= −168113u3
0

384160u4
2
,

Π(10)
γ

Π̂(0),5
γ

= −428983295585u5
0

2891341824u7
2
,

Π(12)
γ

Π̂(0),3
γ

= 63908958440313493u6
0

37402397835264u8
2
,

Π(14)
γ

Π̂(0),1
γ

= 5422964705164303925u7
0

17189990924288u9
2

,

Π(16)
γ

Π̂(0),6
γ

= 50642618652822320762759u8
0

1692552952545280u11
2

.

(B.10)

C Expansion of T-operator

In [54], the authors studied the integrable structure of the W3 conformal field theory with
the central charge c = 50− 24(g+ g−1), and constructed the T and Q operators acting on
the modules V∆2,∆3 with the highest weights

∆2 = p2
1 + p2

2
g

+ c− 2
24 , ∆3 = 2p2(p2

2 − 3p2
1)

(3g)3/2 . (C.1)
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At large spectral parameter t, the T-operator is expanded in terms of the integrals of
motions Ik:

log T(t) ∼ mt
1

3(1−g) I− 2
∞∑
n=1

C2n cos
(
πn

3

)
t
− 2n

3(1−g) I2n

+ 2i
∞∑
n=1

C2n−1 sin
(
π(2n− 1)

6

)
t
− 2n−1

3(1−g) I2n−1,

(C.2)

where m = 2πΓ( 2
3−

ξ
3 )

Γ(1− ξ3 )Γ( 2
3 )

(
Γ(1 − g)

) 1
1−g and ξ = g

1−g . The details of the coefficients Ck can
be found in [54]. The first non-zero vacuum eigenvalues of the integrals of motions Ik are

I
(vac)
1 = ∆2 −

c

24 ,

I
(vac)
2 = ∆3,

I
(vac)
3 = ∆3

(
∆2 −

c+ 6
24

)
,

I
(vac)
4 = ∆3

2 + 4∆2
3

3 − c+ 8
8 ∆2

2 + (c+ 2)(c+ 15)
192 ∆2 −

c(c+ 23)(7c+ 30)
96768 .

(C.3)

Moreover, the ODE (3.1) with r = 2 is proposed to correspond to the vacuum state of W3
integrable model with g = 3/5, ∆2 = −1/5 and ∆3 = 0 [54]. To test this correspondence,
let us compare the expansion of T -operator on the vacuum state with the expansion of the
WKB periods Πγ1 at large θ:

Πγ1 = Π(0)
γ1 e

θ + Π(2)
γ1 e
−θ + Π(6)

γ1 e
−5θ + · · · , (C.4)

which corresponds with log Y1,1 and thus is expected to related with log T on the vacuum
state. Keeping this in mind, it is easy to find

log T (t) = Πγ1 , (C.5)

under the identification

t = (−1)
4
5u2

5
6
5 Γ
(

2
5

)3
u

3
5
0

e
6θ
5 . (C.6)
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