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1 Introduction

This is going to be a rather technical paper, targeted at clarification of the long-standing
puzzles of Generalized Kontsevich model (GKM) [1]–[15]. It is not fully successful, still it
can attract attention to potentially important aspects of the story. No doubt, at technical
level these observations are well known to people who worked with GKM, but we make
an attempt to summarize them and promote to a more conceptual level. This is needed
because of the new accents introduced into the GKM theory quite recently, in [16–22]
and [23]–[25], and the need to explain the origins and the form of the “single equation” [24]
and the character expansion in terms of Hall-Littlewood polynomials [16–22]. We do not
achieve these goals in the present paper, but we try to better explain the difficulties of one
particularly promising suggestion from [25] — with the hope that it gains attention and
will be somehow resolved in the near future.

GKM [4, 5] is an eigenvalue matrix model [7–12] with the partition function

ZV [L] =
∫
N×N

dXe−tr (V (X)+LX) = etrMV ′(M)−V (M)√
detV ′′(M)

· ZV {pk} := ZclV [M ] · ZV {pk} (1.1)

– 1 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
3

with V ′(M) = L, which depends on the matrix variable L and satisfies the obvious matrix-
valued Ward identity [2, 26] {

V ′
(

∂

∂Ltr

)
− L

}
ZV [L] = 0 (1.2)

We further restrict attention to the monomial case, V (X) = Xr+1

r+1 and label Zr and Zr by
integer r. Qualitatively the properties of monomial GKM are well known [4, 5, 7–12]:

1) the “quantum” pieces Zr are KP τ -functions of the “time variables” pk = trM−k

(which are r-dependent in terms of L, pk = trL−k/r),

2) they are independent of all pkr and belong to the r-reduction of KP [27, 28],

3) the shape of Zr{p} is independent of the size N of the matrix M , only the locus
pk = trM−k where the particular integral is actually defined, depends on N ,

4) the “classical” pieces Zclr [M ] also can be expressed through pk, but their shapes do
depend on N — this was the reason why these formulas are not very popular, and
we discuss them in a special section 2 below,

5) Ward identities (1.2) can be rewritten as an infinite set of W -constraints on
Zr{pk} [4, 5, 7–12, 27, 28],

Ŵ
(i+1)
nr−r+i · Zr = 0, i = 1, . . . , r − 1, n ≥ 1 (1.3)

and, as established recently,

6) Zr has a peculiar non-Abelian W -representation [25, 29–44], i.e. can be unambigu-
ously described by a single combination of W -constraints,

Single Equation (SE) :
r−1∑
i=1

(−)i
∑
n

pnr−r+iŴ
(i+1)
n−i−1 · Zr{p} = 0 (1.4)

nicknamed “single equation” (SE) in what follows,

7) Zr possesses character expansion in terms of Hall-Littlewood polynomials [16–22].
While rather well established in the case of the ordinary cubic (r = 2) Kontsevich
model [1], these issues are quite difficult to address for r > 2. It is the purpose of
this paper to make one more technical step in this direction.
Namely, we study a scalar implication of matrix Gross-Newmann equation (1.2),

Main Equation (ME) : tr
(
M

{(
∂

∂Ltr

)r
− L

})
Zr[L] = 0 (1.5)

and the suggestion of [25] to use it as SE — a basic equation which provides Zr as a
unique solution in the form of the non-Abelian W -representation. In this paper we
call it “the main equation”, or just ME to simplify the reference. In other words, the
main question of the present paper is if

ME ?= SE (1.6)

and, if not, what is the difference.
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Substitution of a badly controlled system of matrix equations (1.2), which is believed
to be equivalent to an infinite set of W -constraints (1.3), by a single equation SE [24] is a
big simplification — surprisingly this is possible without a loss of information. However, to
make it fully satisfactory, we need a maximally simple origin if this SE — and ME would
be just a dream. Unfortunately, as anticipated in [25], the story is not just so simple —
and details, though seemingly technical, are quite interesting. The fact that the simplest
Ward identity ME is not quite the same as SE, which controls the solution, is an interesting
twist of the story and this is what we call anomaly in the title of this paper:

SE = ME mod anomaly (1.7)

The actual calculation consists of three steps. First one needs to express matrix deriva-
tives through eigenvalues, this is discussed in a separate section 3. Then one needs to act
on the product Zr[L] = Zclr [M ] ·Zr{p} and convert the equation w.r.t. eigenvalues into the
one for the “quantum” Zr{p}, depending on time variables. And afterwards one should
interpret the results. We demonstrate that “anomaly” has two origins. The first is that the
coefficients of the terms with derivatives over pkr are ugly and, actually, non-polynomial in
time variables. This can serve as a possible interpretation of the need for the r-reduction,
i.e. the need for these derivatives to vanish — what looks particularly convincing in the
case of cubic (r = 2) model, when this is the only manifestation of the anomaly. Unfor-
tunately, for r > 2 the situation gets more obscure. The second phenomenon is that for
r > 2 this non-polynomiality shows up also in the coefficients of other derivatives — and
ME is not sufficient to explain the vanishing of these unwanted contributions. Of course,
other constituents of (1.3) should imply this nullification, but this brings us back to the
complicated form of (1.3) and SE (1.4).

2 Strong dependence on N : the classical piece of partition function

Usually in discussion of GKM we emphasize the remarkable property 3) from above list
— that the essential (“quantum”) part of partition function depends on the matrix size
N only through the choice of the locus

{
pk = trM−k

}
— an N -dimensional non-linear

subspace in the infinite-dimensional space of time-variables {pk}. The shape of Z{pk} is,
however, independent of N , and in this sense the N -dependence of Z{p} on N is weak.

In this paper we switch the accent to another side of the story: to the “classical” part
of partition function, which is much simpler, but depends on N much stronger — and this
will have a serious impact on the Ward identities (1.3) and (1.4), making their simplest
treatment through the otherwise appealing “main equation” (1.5) less straightforward —
if not totally meaningless.

For monomial potential V (M) = Mr+1

r+1 the classical part of partition function can also
be easily expressed through the time variables pk = trM−k, though expressions are a little
lengthy. They are naturally written through the Schur functions SR{p}, where R denotes
the Young diagrams (for example, S[1] = p1, S[2] = p2+p2

1
2 , S[1,1] = −p2+p2

1
2 an so on). Most
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important, these formulas have strong and explicit dependence on N :

Zclr := etrMV ′(M)−V (M)√
detV ′′(M)

= e
r
r+1
∑N

i=1 µ
r+1
i∏N

i=1 µ
r−1

2
i

∏N
i<j

µri−µ
r
j

µi−µj

= (2.1)

=
S

(2N−1)(r−1)
2

[1,1,...,1]
S[(N−1)(r−1),...,2(r−1),r−1]

· exp

 r

r+1
S[r+1,r+1,r+1,...,r+1]−S[r+1,...,r+1,r,1]+S[r+1,...,r+1,r,r,2]− . . .± S[r,r,...,r,r,N−1]

Sr+1
[1,1,...,1]


Two Young diagrams in Schur functions have N−1 columns, S[r + 1, r + 1, r + 1, . . . , r + 1︸ ︷︷ ︸

N−1

]

in the exponent and S[(N − 1)(r − 1), . . . , 2(r − 1), r − 1]︸ ︷︷ ︸
N−1

in the denominator. All the rest

have N columns: from S[r + 1, . . . , r + 1, r, 1]︸ ︷︷ ︸
N

to S[r, . . . , r, r,N − 1︸ ︷︷ ︸
N

] in the exponent and

also S[1, . . . , 1︸ ︷︷ ︸
N

] =
∏N
i=1 µ

−1
i .

For N = 2 eq. (2.1) becomes just

e
r
r+1 (µr+1

1 +µr+1
2 )

(µ1µ2)
r−1

2
µr1−µ

r
1

µ1−µ2

=
S

3(r−1)
2

[1,1]
S[r−1]

exp

 r

r + 1
S[r+1] − S[r,1]

Sr+1
[1,1]

 (2.2)

while for N = 3 and N = 4 it is

e
r
r+1 (µr+1

1 +µr+1
2 +µr+1

3 )

(µ1µ2µ3)
r−1

2
µr1−µ

r
1

µ1−µ2

µr1−µ
r
3

µ1−µ3

µr2−µ
r
3

µ2−µ3

=
S

5(r−1)
2

[1,1,1]
S[r−1,2r−2]

exp

 r

r + 1
S[r+1,r+1] − S[r+1,r,1] + S[r,r,2]

Sr+1
[1,1,1]


(2.3)

e
r
r+1 (µr+1

1 +µr+1
2 +µr+1

3 +µr+1
4 )

(µ1µ2µ3µ4)
r−1

2
µr1−µ

r
1

µ1−µ2

µr1−µ
r
3

µ1−µ3

µr1−µ
r
4

µ1−µ4

µr2−µ
r
3

µ2−µ3

µr2−µ
r
4

µ2−µ4

µr3−µ
r
4

µ3−µ4

=

=
S

7(r−1)
2

[1,1,1,1]
S[r−1,2r−2,3r−3]

exp

 r

r + 1
S[r+1,r+1,r+1] − S[r+1,r+1,r,1] + S[r+1,r,r,2] − S[r,r,r,3]

Sr+1
[1,1,1,1]


As we will see, non-trivial Schur functions in the pre-exponent survive in the main

equation (1.5) and make it non-polynomial in time variables. The only case when this does
not matter at all, is r = 1, which we will briefly mention in section 4 below. In conventional
cubic model at r = 2 the non-polynomiality can be eliminated by r-reduction (from KP
to KdV in this case) — this we will see in section 5. Starting from r = 3, however, the
problem (anomaly) is far more difficult to cure, and the corrected form of ME — and thus
the simple derivation of SE — still needs to be found.
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3 From matrices to eigenvalues

As already mentioned, GKM (1.1) is an eigenvalue model, the integral is reduced to eigen-
values of X and the answer depends on the eigenvalues of L = M r. Still the reason for
the special properties of GKM is that originally it depends on the matrix variable, and the
natural Ward identities [45–50]) are matrix-valued — given by (1.2). Since they contain
matrix derivatives, it is separate exercise to convert them to the eigenvalue form. What we
need are diagonal elements of ∂

rZ[L]
∂Lrtr

, evaluated at diagonal matrix L = diag(λi) = diag(µri ).
They do not arise from just a substitution of diagonal L into Z[L]. Still the answer is well
known from perturbation theory in quantum mechanics [51] (where one diagonalizes the
Hamiltonian and obtains corrections to the wave functions): according to [2],

(
∂rF

∂Lrtr

)
ii

=
∑

j1,...,jr−1

 ∑
permutations of i,j1,...,jr−1

∂F
∂λi∏r−1

s=1(λi − λjs)

 (3.1)

Note that λjs can coincide, also with λi — then one should apply the l’Hopitale rule, and
this gives rise to more sophisticated structures. In [52] a special technique was developed
on this occasion. We, however, just work with explicit formulas, without going into details
of the derivations. In particular,(

∂F

∂Ltr

)
ii

= ∂F

∂λi
,(

∂2F

∂L2
tr

)
ii

=
∑
j

∂F
∂λi
− ∂F

∂λj

λi − λj
=
∑
j 6=i

∂F
∂λi
− ∂F

∂λj

λi − λj
+ ∂2F

∂λ2
i

,

(
∂3F

∂L3
tr

)
ii

=
∑
j,k

∂F
∂λi

(λi − λj)(λi − λk)
+

∂F
∂λj

(λj − λi)(λj − λk)
+

∂F
∂λk

(λk − λi)(λk − λj)
=

=
N∑

k 6=j 6=i

 ∂F
∂λi

(λi − λj)(λi − λk)
+

∂F
∂λj

(λj − λi)(λj − λk)
+

∂F
∂λk

(λk − λi)(λk − λj)

+

−
N∑
j 6=i

∂F
∂λi
− ∂F

∂λj

(λi − λj)2 +
N∑
j 6=i

2∂2F
∂λ2

i
− ∂2F

∂λi∂λj
− ∂2F

∂λ2
j

λi − λj
+ ∂3F

∂λ3
i

,

. . . (3.2)

For example, at N = 2, for a function F (λ1, λ2) :=F
(
L11+L22±

√
(L11−L22)2+4L12L21

2

)
one can

explicitly check, that{(
∂3F

∂Ł3
tr

)
11

:= ∂3F

∂Ł3
11

+ 2 ∂3F

∂Ł11∂L12∂L21
+ ∂3F

∂Ł12∂L21∂L22

}∣∣∣∣∣
L=diag(λ1,λ2)

=− F,1 − F,2
(λ1 − λ2)2 + 2F,11 − F,12 − F,22

λ1 − λ2
+ F1,1,1

in accordance with this general prescription.
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4 A toy example at r = 1

This is a special case, where equation (1.2) has a “wrong” power of ∂/∂L. It was used as
a training example in [2]. For Z{pk} = Z

{∑N
i=1 λ

−k
i

}
we have:

N∑
i=1

(
∂2Z
∂L2

tr

)
ii

=
N∑
i 6=j

∂Z
∂λi
− ∂Z

∂λj

λi − λj
+

N∑
i=1

∂2Z
∂λ2

i

=
∞∑
n=1

n+1∑
a=1

npapn+2−a
∂Z

∂pn
+

∞∑
n1,n2=1

n1n2pn1+n2+2
∂2Z

∂pn1∂pn2
=

=
∞∑

n=−1
pn+2

∑(k + n)pk
∂Z

∂pk+n
+

∑
a+b=n

ab
∂2Z

∂papb

 =
∞∑
n=1

pnL̂
(1)
n−2Z (4.1)

where

L̂(1)
n =

∞∑
k=1

(k + n)pk
∂Z

∂pk+n
+

∑
a+b=n

ab
∂2Z

∂papb
(4.2)

and superscript label (1) refers to r = 1. This is the ordinary Virasoro operator, which
defines Virasoro constraints in Hermitian matrix model, and it appears here because this
model can be also treated as GKM with additional insertion of a power of detX in the
integral, what causes also an increase of r by one [7–12, 53].

5 Original cubic (r = 2) Kontsevich model

5.1 Implication from the known Z2

We now proceed to the study of the true main equation (1.5), beginning from the first case
of cubic Kontsevich model. What we need is to substitute

Z2 =

Zcl2︷ ︸︸ ︷
e

2
3
∑

µ3
i√∏

i µi
∏
i<j(µi + µj)

·Z2{pk} (5.1)

into (1.5):

1
Zcl2

N∑
i=1

√
λi
(

(∂2Z2/∂L2
tr)ii︷ ︸︸ ︷

∂2Z2
∂λ2

i

+
N∑
j 6=i

∂Z2
∂λi
− ∂Z2

∂λj

λi − λj
−λiZ2

)
=

=
N∑
i=1

√
λi

∂2Z2
∂λ2

i

+
N∑
j 6=i

∂Z2
∂λi
− ∂Z2

∂λj

λi − λj

+

+
N∑
i=1

√
λi

∂2 logZcl2
∂λ2

i

+
(
∂ logZcl2
∂λi

)2

+
∑
j 6=i

∂ logZcl2
∂λi

− ∂ logZcl2
∂λj

λi − λj
− λi

Z2+

+ 2
N∑
i=1

√
λi
∂ logZcl2
∂λi

∂Z2
∂λi

(5.2)
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First of all we can substitute the known series for Z2{pk} (last time cited in the
appendix to [25]),

Z2{pk}= 1+
(
p2p

2
1

6 + p4
36

)
+

+
(

13
216p4p2p

2
1 + 13

2592p
2
4 −

1
216p

4
2 + 1

72p
2
2p

4
1 + 1

27p5p
3
1 + 1

27p7p1

)
+ . . . (5.3)

and we expect to get zero. It is instructive to see how this really works. If we substitute
instead of Z2 just 1 — the first term in the series,– we get a polynomial of grading 3:
p3+4p3

1
16 , if 1 +

(
p2p2

1
6 + p4

36

)
, then a polynomial of grading 6 and so on: the more gradings we

include into Z2{p}, the higher is the grading of (5.2): if gradings up to 3m are included
into Z2{p}, then (5.2) is of grading 3(m + 1). Thus we obtain zero for (5.2) in the sense
that every particular grading vanishes as we include appropriately many terms into Z2{p}.
Also at every stage the answer is not just of definite grading, it is actually a polynomial in
time variables.

One can wonder, what happens to S[1] factor in (2.2) — why does not it produce non-
polynomial contributions? It turns out to be a rather delicate adjustment. Already the
quadratic singularity S−2

[1] = (µ1 + µ2)−2 drops out from the sum
∑
i µi

∂2(µ1+µ2)α
∂λ2

i
because

of the peculiar property µ1
µ2

1
+ µ2

µ2
2
∼ µ1 +µ2. The linear singularity is even more miraculous:

potentially relevant terms in (2.2) are

∑
i

µi


∂2 log 1

S[1]

∂λ2
i

+


∂

(
log

S
3β
2

[1,1]
S[1]

+ 2α(S[3]−S[2,1])
3S3

[1,1]

)
∂λi



2

+ γ
∑
j 6=i

∂ log 1
S[1]

∂λi
−

∂ log 1
S[1]

∂λj

λi − λj


(5.4)

and the term 1
µ1+µ2

is independent of α, but depends in β. It vanishes when γ = 3β − 2,
what includes the true values β = γ = 1, but clearly demonstrates the delicate balance
between various contributions. Therefore it is not surprising that thus balance will be
often violated — the surprise is that it continues to hold (anomaly is lacking) for r = 2 for
arbitrary N , and also for the coefficients of odd derivatives ∂Z

∂p2n+1
— as we will explain in

the next sections.
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5.2 r = 2, all times

The next exercise is to convert (5.2) into an equation for Z2{pk}, similar to what we
considered above in section 4. Assume first that Z2{pk} depends on all the time-variables
pk. Then, once again substituting (5.1) into (5.2) we get:

0 (1.5)= 1
Zcl2

N∑
i=1

√
λi

( (∂2Z2/∂L2
tr)ii︷ ︸︸ ︷

∂2Z2
∂λ2

i

+
N∑
j 6=i

∂Z2
∂λi
− ∂Z2

∂λj

λi − λj
−λiZ2

)
= (5.5)

= 1
4

∞∑
n1,n2=1

n1n2pn1+n2+3
∂2Z

∂pn1∂pn2

+
∞∑
n=1

n

−pn + 1
2

n−1
2 +2∑
a=1

p2a−1pn+4−2a + ξ(N)
n ·

frac
(
n−1

2

)
2

 ∂Z

∂pn
+ p3 + 4p3

1
16 Z

The last term is of course the same as we got from substitution of 1 into (5.2). However,
with the first derivatives of Z there is a trouble (underlined): for derivatives w.r.t. even
p2k the coefficients are not polynomial in p. Moreover, they depend on N , with somewhat
sophisticated self-consistency/reduction relations between different N . In terms of Schur
functions SR

ξ(2)
n = pn+4 + (p2

1 − p2)pn+2
p1

=
S[n+4] + 2S[n+3,1] − 3S[n+2,2]

S[1]

ξ(3)
n =

S[n+5,1] + 2S[n+4,2] + 2S[n+4,1,1] − 3S[n+3,3] − S[n+2,3,1] − 2S[n+2,2,2] + 5S[n+1,3,2]
2S[2,1]

ξ(4)
n =

S[n+6,2,1] +2S[n+5,3,1] +2S[n+5,2,2] +2S[n+5,2,1,1]−3S[n+4,4,1]−2S[n+3,4,2]−2S[n+3,3,3]−2S[n+3,2,2,2]−2S[n+3,4,1,1] +5S[n+2,4,3]

S[3,2,1]

+ 1
S[3,2,1]

·

 9S[n+1,3,3,2] for n = 2

2S[n+1,3,3,2] + 2S[n+1,4,3,1] + 2S[n+1,4,2,2] − 7S[n,4,3,2] for n ≥ 4

. . . (5.6)

i.e. denominator is equal to S[N−1,...,3,2,1].
This problem of non-polynomiality is cured (the underlined terms are absent) in the

action on functions Z2{p1, p3, p5, . . .}, which depend only on odd times p2k−1.

5.3 r = 2, odd times = cubic Kontsevich model

Assume now that Z{pk} depends on all the odd time-variables p2k−1. Then the terms
with ξ(N) drop out of (5.5) and we get a differential equation for Z−2{p} with polynomial

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
3

coefficients in p:

0 (1.5)=
N∑
i=1

λ
1/r
i

( (∂2Z/∂L2
tr)ii︷ ︸︸ ︷

N∑
j 6=i

∂Z
∂λi
− ∂Z

∂λj

λi − λj
+ ∂2Z

∂λ2
i

−λiZ
)

=

= 1
4

∞∑
n1,n2=1

(2n1 − 1)(2n2 − 1)p2n1+2n2+1
∂2Z

∂p2n1−1∂p2n2−1
+

+
∞∑
n=1

(2n− 1)
(
− p2n−1 + 1

2

n∑
a=1

p2a−1p2n+3−2a

)
∂Z

∂p2n−1
+ p3 + 4p3

1
16 Z =

=− l̂0Z +
∞∑
n=1

p2n−1L̂
(2)
n−2Z (5.7)

where

L̂(2)
n = 1

4δn,0 + p2
1

16δn,−1 + 1
2

∞∑
k=1

(2k + 2n− 1)p2k−1
∂

∂p2k+2n−1
+

+ 1
4

∑
a+b=2n

(2a− 1)(2b− 1) ∂2

∂p2a−1∂p2b−1
(5.8)

and the grading-counting operator

l̂0 =
∞∑
n=1

(2n− 1)p2n−1
∂

∂p2n−1
(5.9)

Note that elimination of derivatives ∂Z
∂p2k

automatically eliminates all even times p2k
from the coefficients of (5.7): for r = 2 the r-reduction is necessary and sufficient for ME
to reproduce SE.

6 The first non-standard case: quartic model r + 1 = 4

6.1 Solution to projected Ward identity

Now we can repeat all the same steps in the first non-trivial case of quartic GKM with
r = 3. We will see that the non-polynomiality gets now even more pronounced.

In terms of µ-variables (λi = µri ) the main equation in this case looks as follows:

N∑
i=1

λ
1/3
i


N∑

k 6=j 6=i

 ∂Z
∂λi

(λi − λj)(λi − λk)
+

∂Z
∂λj

(λj − λi)(λj − λk)
+

∂Z
∂λk

(λk − λi)(λk − λj)

+

+
N∑
j 6=i

− ∂Z
∂λi
− ∂Z

∂λj

(λi − λj)2 +
2∂2Z
∂λ2

i
− ∂2Z

∂λi∂λj
− ∂2Z

∂λ2
j

λi − λj

+ ∂3Z
∂λ3

i

− λiZ

 (1.5)= 0 (6.1)

Conversion to µ-variables (λ = µri ) is easy: ∂
∂λi

= 1
rµr−1
j

∂
∂µi

. For r > 3 denominators get
larger and degenerations provide higher derivatives of Z.
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The next step is to substitute

Z3 = e
3
4 trM4√

det (M2 ⊗ 1 +M ⊗M + 1⊗M2)
· Z3{pk}

= e
3
4
∑

i
µ4
i∏

i µi
∏
i<j(µ2

i + µiµj + µ2
j )
· Z3{pk} (6.2)

and obtain an equation ME (1.5) for Z3 with time-derivatives instead of the µ-ones.
Then we can compare it to SE (1.4), which in the case of r = 3 involves two opera-

tors [25]:

Ŵ (2)
n = 1

3

∞∑
k=1

(k + 3n)Pk
∂

∂pk+3n
+ 1

6
∑

a+b=3n
ab

∂2

∂pa∂pb
+ p1p2

3 δn,−1 + 1
9δn,0 (6.3)

Ŵ (3)
n = 1

9

∞∑
k,l=1

(k + l + 3n)PkPl
∂

∂pk+l+3n
+ 1

9

∞∑
k=1

∑
a+b=k+3n

abPk
∂2

∂pa∂pb

+ 1
27

∑
a+b+c=3n

abc
∂3

∂pa∂pb∂pc
+ 1

27
∑

a+b+c=−3n
PaPbPc

with Pk = pk − 3δk,4 and a, b, c, k, l not divisible by 3. Note that the sums are restricted
more than it would follow from omission of derivatives w.r.t. p3k, for example, there are
no terms ∂3

∂p2
1∂p2

and ∂3

∂p1∂p2
2
in Ŵ (3), only ∂3

∂p3
1
and ∂3

∂p3
2
. This will be one of the apparent

differences from the ME, which contains third derivatives of all the four kinds.

6.2 Non-trivial denominators

The other striking difference will be non-polynomiality. In fact, one can observe it at the
very early stage. For r > 2 it is enough to look at the derivative-free term in ME. Namely,
if Z3 = 1 the l.h.s. of (6.1) is non-vanishing, but contains contributions of just two (r − 1)
gradings: −4 and 0. In the simplest case of N = 2

Z = 1 (6.1)=⇒
7S[4] + 5S[3,1]

9 −
4
(
7S[10] + 7S[9,1] + 10S[8,2]

)
27S[2]

(6.4)

The first is polynomial in times, the second is not. In other words we observe the same
phenomenon as in (5.5), but now it is present already for the item Z, without derivatives.

Adding appropriate p-dependent pieces to Z3{p} [25] preserves the pattern — just
shifts it to higher and higher gradings:

Z = 1 +
(
p4
36 + p2p

2
1

6

)

=⇒
35p4

(
11S[4] + 13S[3,1]

)
324 −

−
35
(
32S[13,1] + 38S[12,2] + S[2](22S[12] − 22S[11,1] + 35S[9,3] − 36S[8,4] + 35S[6,6])

)
243S[2]
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and so on. For generic N denominator becomes S[2N−2,...,6,4,2]:

Z3 = 1 (6.1)=⇒

p4+6p2p
2
1

9︷ ︸︸ ︷
7S[4] + 5S[3,1] − 5S[2,1,1] − 7S[1,1,1,1]

9 − (6.5)

−



4
(

7S[10]+7S[9,1]+10S[8,2]

)
27S[2]

= 1
27

(
(p2 + p2

1)(4p3
2 + 21p2

2p
2
1 − 12p2p

4
1 + p6

1)−
12p[2]S4

[1,1]
S[2]

)
N = 2

1
27S[4,2]

(
28S[12,2] + 28S[11,3] + 28S[11,2,1] + 40S[10,4] + 18S[10,3,1] + 40S[10,2,2]+

+30S[9,4,1] + 30S[9,3,2] − 16S[8,5,1] + 42S[8,4,2] − 16S[8,3,3] + 3S[7,6,1] − 13S[7,5,2]−
−22S[7,4,3] + 3S[6,6,2] − 19S[6,5,3] − 6S[6,4,4] + 12S[5,5,4]

)
N = 3

1
27S[6,4,2]

(
. . .
)

N = 4
. . .

While the first polynomial piece is stabilized and does not vary anymore for N > r, the
shape of non-polynomial terms is not stable — it varies with N .

Building up the true Z3{p} results into the shift of the two non-vanishing pieces to
infinite gradings p∞, p∞ — and in this sense the answer, understood as the contributions
at every particular grading, gets vanishing.

The moral is that now the non-polynomiality is less related to r-reduction: a function
can be independent of prk (like Z3 = 1), still (6.1) does not convert it into a polynomial —
non-trivial denominators occur. However, the proper Z3{p} is converted to zero. Together
with occurrence of the underlined term in (6.4) this implies that at least some terms in the
main equation with derivatives of Z3{pk} w.r.t. pk should be non-polynomial, even if k is
not divisible by r. Since such non-polynomiality does not appear in the highest-derivative
terms ∂rZr

∂pi1 ...∂pir
, the natural guess after that is that these additional terms are made from

the lower W -constraints, i.e. from the complements of the main equation (1.5) — the other
corollaries of the matrix Ward identity (1.2).

6.3 ME for r = 3, all times

As we already know from the previous subsection, there will be problems with relating SE
to ME. In addition to the two nice terms at the r.h.s. of

0 (1.5)=
N∑
i=1

λ
1/r
i

(
(∂3Z/∂L3

tr)ii︷ ︸︸ ︷
N∑

k 6=j 6=i

∂Z
∂λi

(λi − λj)(λi − λk)
−

N∑
j 6=i

∂2Z
∂λ2

i

λi − λj
+ ∂3Z

∂λ3
i

− λiZ

)
=

= 1
27

∞∑
n1,n2,n3=1

n1n2n3pn1+n2+n3+8
∂3Z

∂pn1∂pn2∂pn3
+

+ 1
3

∞∑
n1,n2

n1n2pn1+n2+4
∂2Z

∂pn1∂pn2
+ . . . (6.6)
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the non-polynomial terms will appear, which depend on N . In the simplest case of N = 2
the full expression is:

0 (1.5)= −
∞∑

n1,n2,n3=1

n1n2n3pn1+n2+n3+8

27
∂3Z

∂pn1∂pn2∂pn3
+

+
∞∑

n1,n2=1

n1n2

(
pn1+n2+4

3 − (n1 + n2 + 8)pn1+n2+8

18 −

−
2pn1+n2+6S[1,1] + 4pn1+n2+4S[2,2] + 2pn1+n2S[4,4] + 4pn1+n2−2S[5,5]

18 +

+
S7

[1,1] ·
(
S[n1+n2−4] + 2S[n1+n2−5,1] + S[n1−2,n2−2]

)
− S([1,1])n2+5

2 p1S[n1−n2−1] + S6
[1,1]S[n1−1]δn2,1

9S[2]
−

−
2S7

[1,1] ·
(
δn1,3δn2,1 + δn1,2δn2,2

)
+ S6

[1,1]
(
2p1δn1,2 + δn1,1

)
δn2,1

9S[2]

)
∂2Z

∂pn1∂pn2
+

+
∑
n

n

(
(n+ 4)

(
S[n+6] − S[n+3,2]

)
+ 3
(
S[n+5,1] + S[n+4,2]

)
3S[2]

−

−
(n2+12n+39)S[n+10]+3(n+7)S[n+9,1]+6(n+6)S[n+8,2]−(n2+12n+27)S[n+7,3]−3(1−δn,1)S[n+4,6]

27S[2]

)
∂Z

∂pn

− npn
∂Z

∂pn
+

(
7S[4] + 5S[3,1]

9 −
4
(
7S[10] + 7S[9,1] + 10S[8,2]

)
27S[2]

)
Z

6.4 ME versus SE

This should be compared to the operator in (1.4), which after substitution of (1.3) becomes

−
∑

a+b+c=3n−9

abcpa+b+c+8
27

∂3Z

∂pa∂pb∂pc
+

1
3

∑
a+b=3n−5

+1
6

∑
a+b=3n−6

 abpa+b+4
∂2Z

∂pa∂pb
−

−
∑

a+b=3n−1

abpkpa+b−k+8
9

∂2Z

∂pa∂pb
+ 2

3p3n−1(k + 3n− 5)pk
∂Z

∂pk+3n−5
+

+ 1
3p3n−2(k + 3n− 6)pk

∂Z

∂pk+3n−6
− 1

9p3n−1(k + l + 3n− 9)pkpl
∂Z

∂pk+l+3n−9
−

− npn
∂Z

∂pn
+
(
p4 + 6p2p

2
1

9 − p5p
3
1 + 3p4p2p

2
1 + p4

2
27

)
Z

(1.4)= 0 (6.7)

Like it was for r = 2, in (6.6) there are items with the derivatives ∂/∂p3k, which are
absent in (6.7). They can be eliminated by asking Z3 to belong to the 3-reduction —
exactly like it happened in the previous section for r = 2. This is the positive part of the
story: cancellation of anomaly requires the r-reduction. But is the r-reduction sufficient
for deriving SE from ME?

Unfortunately, the answer is “no”: now there are a few more striking differences be-
tween (6.6) and (6.7), e.g.

i) already in (6.6) there are items with p3k in the sums, which are absent in (6.7),
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ii) the full expression at the r.h.s. of (6.6) contains non-polynomial terms with denomi-
nators S[...,2],

iii) terms like ∂3
112Z, ∂3

122Z and ∂2
11Z, ∂2

22Z are present already in (6.6), while only ∂3
111Z,

∂3
222Z and ∂2

12Z are allowed in (6.7).

These are the qualitative deviations, as to the quantitative details of the two formulas,
they look even more different. Still both are true. The only way out of this apparent
discrepancy is that the anomalous difference between the two formulas is made from some
other W -constraints (1.3), not incorporated into the simple equation (6.7). This would
mean that literally SE 6= ME even for r-reduced Zr, still the anomaly is canceled by
r-reduction plus some additional information — superficial for the scalar projection ME
of the Ward identity (1.2), still implied by the entire (1.2). This is indeed the case, but it
is quite difficult to see. We show how it works for contributions from a few lowest gradings
4m to Z4 =

∑∞
m=0 z4m.

In grading four we have exact matching: both (6.6) and (6.7) contribute

−npn
∂z4
∂pn

+ p4 + 6p2p
2
1

9 z0 =
(
−4

4 + 1
)
· p4 + 6p2p

2
1

9 = 0 (6.8)

In grading eight:

SE : −npn
∂z8
∂pn

+ p4 + 6p2p
2
1

9 z4 −
p5p

3
1 + 3p4p2p

2
1 + p4

2
27 z0 +

+
∑
n

∑
k 6=0 mod 3

(2
3p3n−1(k+3n−5)pk

∂z4
∂pk+3n−5

+ 1
3p3n−2(k+3n−6)pk

∂z4
∂pk+3n−6

)
+

+
( 1

3
∑

a+b=3n−5︸ ︷︷ ︸
does not contribute

+1
6

∑
a+b=3n−6

)
abpa+b+4

∂2z4
∂pa∂pb

= 0 (6.9)

while (for N = 2)

ME : −npn
∂z8
∂pn

+ p4 + 6p2p
2
1

9 z4 −
4(7S[10] + 7S[9,1] + 10S[8,2])

27S[2]
z0+

+ 1
S[2]

∑
n

n

(
n+ 4

3 (S[n+6] − S[n+3,3]) + (S[n+5,1] + S[n+4,2])
)
∂z4
∂pn

+

+ 1
3
∑
n1,n2

n1n2pn1+n2+4
∂2z4

∂pn1∂pn2
= 0 (6.10)

Already at this level the difference between the two correct formulas looks quite pronounced
— and it only increases at the next levels. Some new ideas are needed to express the
(vanishing) difference in terms of the W-constraints (1.3) and, hopefully, find a concise
and universal expression for this discrepancy. Since it relates two clearly distinguished
quantities — the SE which is a single polynomial equation, which defines Z{pk}, and ME
which is the distinguished scalar projection of the fundamental matrix Ward-identity (1.2)
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— there should be some simple relation between them. We see that the hope of [25], that
this relation is just an identity, fails. But in the simplest cases (like the basic Kontsevich
model r = 2) it is true — and thus the discrepancy is an anomaly, in the sense which
still remains to be formulated. Anyhow, so far anomalies were always comprehensible —
hopefully this will be the case with this new one as well.

7 Conclusion

In this paper we studied the properties of the main equation (1.5) from [25]. This is
important because this equation seems to somehow accumulate the power of all the W -
constraints in monomial GKM and fully define the time dependence of its partition function
Zr{p}. In particular it should imply that this partition function is independent of prk (of
time-variables with the numbers divisible by r). We demonstrated that it does so in an
elegant way: if there was a prk-dependence in Zr, we would not get an equation for it,
which is polynomial in time-variables pk. Since Zr is known from [2, 4, 5] to be a KP
τ -function (this is relatively simple to demonstrate), independence of prk means that it
belongs to the r-reduction of KP hierarchy. In fact, one can consider our calculation as a
new kind of a proof of this statement (that Zr is an r-reduced τ -function), but still a rather
sophisticated and undirect one. A concise, clear and direct proof remains highly desirable.

Also desirable is a direct relation of our calculation with the elegant descrip-
tion [27, 28] of theW -constraints for r-reductions as a normal ordering of “circular formula”∏r
m=1 J

(
z · e2πim/r

)
. There are now few doubts that the W -constraints are implied by the

single main equation — but the way it works remains unclear. One can only hope that if
this is clarified, the constraints will also come in some clever form — probably, provided
by the circular formula.

Our main result is that the main equation (1.5), directly following from the matrix
Ward identity (1.2), is not exactly the same as the “single equation” (SE) of [24, 25],
but differs from it by additional non-polynomial (!) terms, which presumably are propor-
tional to

(a) some lower W -constraints and

(b) the terms with derivatives over pkr, which do not contribute for r-reduced partition
functions:

for a matrix M = diag(µ1, . . . , µN ) of the size N and on the locus pk =
∑N
i=1 µ

−k
i

ME︷ ︸︸ ︷
tr
(
M

{(
∂

∂Ltr

)r
− L

})
=

SE︷ ︸︸ ︷
−l̂0 +

r−1∑
i=1

∞∑
n=1

prn−iŴ
r+1−i
n−r−1+i +

O
(
Ŵ (2), . . . , Ŵ (r−1), ∂

∂pkr

)
S[(r−1),2(r−1),...,(N−1)(r−1)]

(7.1)

The fact that some other W constraints emerge in addition to the single equation in the
truly-first-principle approach (based on [26]) can be important for better understanding
of its surprising predictive power — a possibility for a single equation to substitute the
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entire set of the W -constraints (which has more than one generator: already two, L−1
and L2, for r = 2). As a byproduct of our calculation we found an amusing structure of
non-polynomial terms, with a peculiar embedded dependence on N . Since non-polynomial
terms are coefficients of ∂Zr/∂pkr which actually vanish for the GKM partition function,
the true significance of these formulas, at least in the case (b), remain unclear — still they
look interesting by themselves and can show up in some other contexts.

The observation of “anomaly” SE 6= ME even for r-reduced τ -functions leaves the
puzzle of W -constraints and the origin of W -representation for GKM with r > 2 [25]
unsolved. This adds to the equally puzzling complication of superintegrability formulas and
character calculus for r > 2: at least the appropriate basis of Q-functions [16–22] remains
unknown. It is unclear if there is a direct connection between these two complications
— anyhow, the story of GKM is still incomplete and at least one additional idea is still
lacking. Of course the previous ideas, like “circular formula” [27, 28] and non-abelian W-
representation [24, 25], also need to be polished and brought to the same level of clarity as
determinantal representation and KP integrability [4, 5], — but this is hard to do before
the “anomaly” issue is fixed, which controls the puzzle of r-reduction and the very origin
of sophisticated W -constraints and the way they follow from the apparent original Ward
identity [26]. If superintegrability and character expansion will also get clarified by the
resolution of this puzzle, or need to wait for additional insights, remains to be seen.

Last but not the least — all the formulas in this paper are obtained for particular low
values of r and N , what is enough to reveal the emerging structures and phenomena. Still
general consideration and proofs remain to be given. They can also bring new ideas and
further develop and clarify the theory of GKM, which remains mysteriously complicated
and transcendent — perhaps a little less now, but still far from simplicity and transparency
achieved for the other eigenvalue matrix models (including the cubic GKM).
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