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Abstract: New-physics (NP) constraints on first-generation quark-lepton interactions are
particularly interesting given the large number of complementary processes and observables
that have been measured. Recently, first hints for such NP effects have been observed as an
apparent deficit in first-row CKM unitarity, known as the Cabibbo angle anomaly, and the
CMS excess in qq̄ → e+e−. Since the same NP would inevitably enter in searches for low-
energy parity violation, such as atomic parity violation, parity-violating electron scattering,
and coherent neutrino-nucleus scattering, as well as electroweak precision observables, a
combined analysis is required to assess the viability of potential NP interpretations. In
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this article we investigate the interplay between LHC searches, the Cabibbo angle anomaly,
electroweak precision observables, and low-energy parity violation by studying all simplified
models that give rise to tree-level effects related to interactions between first-generation
quarks and leptons. Matching these models onto Standard Model effective field theory, we
derive master formulae in terms of the respective Wilson coefficients, perform a complete
phenomenological analysis of all available constraints, point out how parity violation can
in the future be used to disentangle different NP scenarios, and project the constraints
achievable with forthcoming experiments.
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1 Introduction

The Standard Model (SM) of particle physics has been very successfully tested and con-
firmed with great precision in the last decades with the Higgs discovery in 2012 unveiling
the last missing piece. While the LHC has not (yet) found any new particles directly,
precision experiments are becoming increasingly important to gather hints as to how the
SM needs to be extended, so as to eventually construct a more fundamental theory that
can account for dark matter, neutrino masses, and new sources of CP violation. Such
measurements can usually be carried out to the highest precision when particles composed
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of first-generation quarks and leptons are involved, given the practical life-time constraints
of other SM sectors.

One class of low-energy precision experiments concerns parity violation (PV), as here
QCD and QED processes that otherwise overshadow weak SM and potential NP effects
are suppressed. PV is realized in atomic parity violation (APV), parity-violating electron
scattering (PVES), and, more recently, coherent neutrino-nucleus scattering (CEνNS).
Next, β decays are sensitive to modifications of the charged current, with most precise
constraints available from superallowed β decays and neutron decay. Further constraints
arise from electroweak precision observables (EWPO) at the Z pole, and finally also at the
LHC precision-frontier measurements such as non-resonant di-lepton searches are possible.
This broad class of complementary measurements motivates combined analyses, especially
once hints for NP arise in one or more of the processes, to elucidate which, if any, NP
interpretations are viable.

Such NP hints have emerged recently from β decays, which, in combination with kaon
decays, suggest a deficit in first-row CKM unitarity, a tension referred to as the Cabibbo
angle anomaly (CAA) [1–6]. In addition, the CMS experiment at CERN reported a first
hint for lepton flavor universality violation (LFUV) in non-resonant di-lepton searches by
measuring the di-muon to di-electron ratio [7]. Since the CAA also permits an interpreta-
tion in terms of LFUV [6], these tensions might be related to other anomalies accumulated
in the flavor sector within the last few years. In particular, data for b → s`+`− [8–15],
b→ cτν [16–21], and the anomalous magnetic moment of the muon [22, 23] point towards
LFUV NP with a significance of > 5σ [24–35], > 3σ [36–40], and 4.2σ [41–61], respectively.

While the anomalies in semi-leptonic B decays and the anomalous magnetic moment
of the muon point towards NP related to second- and third-generation fermions, the CAA
and the CMS di-lepton excess can be related to first-generation quarks and leptons, with
simultaneous explanations possible in terms of the effective dimension-6 operator Q(3)

`q [62].
Similarly, explanations of the CAA via modifiedW–u–d couplings also require NP related to
first generation-quarks [1, 63–65]. In this paper, we take the large array of complementary
measurements sensitive to first-generation NP, together with hints for potential NP effects,
as motivation to perform a combined analysis, concentrating on possible correlations among
the processes listed above.

In general, however, most of these processes cannot be correlated in a model-indepen-
dent way,1 due to the proliferation of independent Wilson coefficients in SM effective field
theory (SMEFT) [69, 70]. For this reason, we will consider a set of simplified NP models,
covering the four different classes of new particles [71] that can give rise to modified vector
(or axial-vector) quark-lepton interactions below the EW symmetry breaking scale: lep-
toquarks (LQs), vector bosons (VBs), vector-like quarks (VLQs), and vector-like leptons
(VLLs). In particular, we do not consider particles giving rise to scalar interactions (in the
qq`` basis), as the resulting currents are often related to fermion masses, and thus negli-
gible for the first generation. Furthermore, the effect in our observables of interest would

1See refs. [66, 67] for a comprehensive analysis of 4-fermion contact interactions and ref. [68] for an
analysis of β decays and LHC bounds.
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be suppressed, while other channels would be more sensitive due to chiral enhancement,
e.g., π → eνe/π → µνµ if a charged current were generated [72, 73], and π0 → e+e− for a
neutral current [74, 75]. The aim of our analysis is then to identify correlations among the
processes described above, compare sensitivities for a given NP scenario, and project the
reach of future measurements in the various search channels.

In order to analyze these simplified models we will first perform the matching onto
SMEFT (thus explicitly respecting SU(2)L gauge invariance) in section 2. Then in sec-
tion 3 we express the relevant observables in terms of the Wilson coefficients of SMEFT,
including detailed discussions of the respective master formulae and NP constraints. The
phenomenological analysis of the four classes of simplified models is performed in section 4,
before we conclude in section 5.

2 Standard Model Effective Theory and simplified models

As motivated in the introduction, we consider four different classes of new particles that
modify quark-lepton interactions at tree level: LQs, VBs, VLQs, and VLLs. As we assume
the NP to be heavy, i.e., to be realized above the EW symmetry breaking scale, we can
match these models onto SMEFT. This makes SU(2)L gauge invariance explicit, and allows
for a straightforward comparison of the additional relations that arise in each simplified
model. In this section, we will first establish our conventions for the SMEFT operator
basis, before defining the NP models and performing the matching.

2.1 SMEFT

Following the conventions of ref. [70], we use the Lagrangian

L = LSM +
∑
k

CkQk, (2.1)

where the chirality conserving dimension-6 operators (we do not consider scalar or tensor
operators here) that generate 4-fermion contact interactions between quarks and leptons are

Q
(1)ijkl
`q = (¯̀

iγµ`j)(q̄kγµql), Q
(3)ijkl
`q = (¯̀

iγµτ
I`j)(q̄kγµτ Iql),

Qijkl`u = (¯̀
iγµ`j)(ūkγµul), Qijkl`d = (¯̀

iγµ`j)(d̄kγµdl),
Qijklqe = (q̄iγµqj)(ēkγµel), Qijkleu = (ēiγµej)(ūkγµul),

Qijkled = (ēiγµej)(d̄kγµdl), (2.2)

while the operators generating modified gauge-boson couplings to fermions are

Q
(1)ij
φq = (φ†i

↔
Dµφ)(q̄iγµqj), Q

(3)ij
φq = (φ†i

↔
DI
µφ)(q̄iτ Iγµqj),

Qijφu = (φ†
↔
Dµφ)(ūiγµuj), Qijφd = (φ†

↔
Dµφ)(d̄iγµdj),

Qijφud = i(φ̃†Dµφ)(ūiγµdj). (2.3)

Here q and ` are the quark and lepton SU(2)L doublets, while u, d, and e are SU(2)L singlets.

φ is the Higgs doublet, Dµ the covariant derivative,
↔
Dµ = (Dµ−

←
Dµ),

↔
DI
µ = (τ IDµ−

←
Dµτ

I),
and τ I are the Pauli matrices.
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SU(3) SU(2)L U(1)Y SU(3) SU(2)L U(1)Y
Φ1 3 1 −1/3 V1 3 1 2/3
Φ̃1 3 1 −4/3 Ṽ1 3 1 5/3
Φ2 3 2 7/6 V2 3 2 −5/6
Φ̃2 3 2 1/6 Ṽ2 3 2 1/6
Φ3 3 3 −1/3 V3 3 3 2/3

Table 1. The ten possible scalar (vector) LQ representations Φ (V ) under the SM gauge group.

As we only consider first-generation fermions in this article, we can set i, j, k, l = 1
and omit the flavor indices in the following. In general, if left-handed quarks are involved,
flavor-violating ūc and/or d̄s couplings are generated after EW symmetry breaking, which
lead to various effects in flavor observables. However, by assuming alignment to the down
basis, down-quark flavor-changing neutral current are avoided and only D0–D̄0 mixing
remains as a relevant constraint. Here the SM contributions cannot be reliably calculated,
in such a way that the bounds can always be avoided if one allows for a certain degree of
cancellation between SM and potential NP contributions, and we will therefore not consider
flavor bounds in the following.

2.2 Simplified models and SMEFT

Extending the SM by LQs, VBs, VLQs, or VLLs gives rise to modified axial-vector or
vector quark-lepton interactions described by the effective Lagrangian in eq. (2.1) at tree
level [71]. Here, we define LQs via their coupling to SM fermions, i.e., they have a vertex
involving both a lepton and a quark. VBs are understood as QCD neutral spin-1 particles
and VLQs (VLLs) are SU(3) triplets (singlets) that can couple to SM quarks (leptons) via
the Higgs in an SU(2)L invariant way.

2.2.1 Leptoquarks

Ten LQ representations exist [76], of which five are scalars (Φ) and five are vectors (V ) as
given in table 1. Some of the LQ representations can have multiple couplings to quarks and
leptons, such that overall 14 gauge-invariant interaction terms with quarks and leptons2

are possible, as listed in table 2. A complete set of LQ interactions can be found in ref. [79].
The tree-level matching onto the dimension-6 4-fermion operators in eqs. (2.2) and (2.3)

then yields [80–82]

C
(1)
`q = |λ

L
1 |2

4m2
1

+ 3|λ3|2

4m2
3
− |κ

L
1 |2

2M2
1
− 3|κ3|2

2M2
3
, C

(3)
`q = −|λ

L
1 |2

4m2
1

+ |λ3|2

4m2
3
− |κ

L
1 |2

2M2
1

+ |κ3|2

2M2
3
,

C`u = −|λ
RL
2 |2

2m2
2

+ |κ̃2|2

M̃2
2
, C`d = −|λ̃2|2

2m̃2
2

+ |κ
RL
2 |2

M2
2
,

2Here we disregard couplings to two quarks, which would lead to proton decay, and can be forbidden by
assigning lepton and baryon numbers to the LQs (see refs. [77, 78] for some examples). Furthermore, we
assumed that in case the LQ representation allowed for coupling to left-handed and right-handed fermions,
only one of them is present at a time such that no scalar operators are generated.
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` e

q̄ κL1 γµV
µ
1 + κ3γµ (τ · V µ3 ) λLR2 Φ2

d̄ λ̃2Φ̃T2 iτ2 κR1 γµV
µ
1

ū λRL2 ΦT2 iτ2 κ̃1γµṼ
µ
1

q̄c λ3iτ2(τ · Φ3)† + λL1 iτ2Φ†1 κLR2 γµV
µ†
2

d̄c κRL2 γµV
µ†
2 λ̃1Φ̃†1

ūc κ̃2γµṼ
µ†
2 λR1 Φ†1

Table 2. Couplings of the ten LQ representations to the SM quarks and leptons in the Lagrangian.
14 different couplings are possible, the ones of the scalar LQs are denoted by λ, the ones of the
vector LQs by κ.

Ceu = |λ
R
1 |2

2m2
1
− |κ̃1|2

M̃2
1
, Ced = |λ̃1|2

2m̃2
1
− |κ

R
1 |2

M2
1
,

Cqe = −|λ
LR
2 |2

2m2
2

+ |κ
LR
2 |2

M2
2
, (2.4)

where the lowercase m (capital M) stands for the mass of the scalar (vector) LQs.

2.2.2 Vector bosons

There are two possible representations under the SM gauge group for (QCD neutral) VBs
that allow for couplings both to quarks and leptons: an SU(2)L singlet (triplet), denoted
as Z ′µ (XI

µ), both with zero hypercharge. Then the possible interactions with fermions are

−LVB =
(
g` ¯̀γµ`+ geēγµe+ gdd̄γµd+ guūγµu+ gq q̄γµq

)
Z ′µ

+
(
g`X

¯̀γµ
τ I

2 `− g
q
X q̄γµ

τ I

2 q
)
Xµ
I , (2.5)

and the matching onto 2-quark-2-lepton operators in SMEFT gives

C
(1)
`q = −g

egq

M2
Z′
, C

(3)
`q = −g

`
Xg

q
X

4M2
X

, Cqe = −g
qge

M2
Z′
, C

(1)
`u = −g

`gu

M2
Z′
,

C`d = −g
`gd

M2
Z′
, Ceu = −g

egu

M2
Z′
, Ced = −g

egd

M2
Z′
. (2.6)

2.2.3 Vector-like quarks

There are seven possible representations of VLQs under SU(3)× SU(2)L×U(1)Y , as given
in table 3. The Lagrangian describing their interactions with SM quarks and the Higgs
field is

−LVLQ = ξU ŪH̃†q + ξDD̄H†q + ξu1Q̄1H̃u+ ξd1Q̄1Hd

+ ξQ5Q̄5H̃d+ ξQ7Q̄7Hu+ 1
2ξ

T1H†τ · T̄1q + 1
2ξ

T2H̃†τ · T̄2q + h.c. (2.7)
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SU(3) SU(2)L U(1)Y
U 3 1 2/3
D 3 1 −1/3
Q1 3 2 1/6
Q5 3 2 −5/6
Q7 3 2 7/6
T1 3 3 −1/3
T2 3 3 2/3

Table 3. Different representations of the VLQs under the SM gauge group.

Integrating out these new particles at tree level gives

C
(1)
φq =

∣∣ξU ∣∣2
4M2

U

−
∣∣ξD∣∣2
4M2

D

−
3
∣∣ξT1

∣∣2
16M2

T1

+
3
∣∣ξT2

∣∣2
16M2

T2

, Cφu = −
∣∣ξu1

∣∣2
2M2

Q1

+
∣∣ξQ7

∣∣2
2M2

Q7

,

C
(3)
φq = −

∣∣ξU ∣∣2
4M2

U

−
∣∣ξD∣∣2
4M2

D

+
∣∣ξT1

∣∣2
16M2

T1

+
∣∣ξT2

∣∣2
16M2

T2

, Cφd =
∣∣ξd1

∣∣2
2M2

Q1

−
∣∣ξQ5

∣∣2
2M2

Q5

,

Cφud = ξd1ξu1∗

M2
Q1

, (2.8)

where we have further assumed the limit of vanishing first-generation quark Yukawa cou-
plings [83].

2.2.4 Vector-like leptons

There are six representations of VLLs under the SM gauge group, as given in table 4, which
couple to SM leptons and the Higgs field via

−LVLL =λN ¯̀φ̃ N + λiE
¯̀φE + λ∆1 ∆̄1 φ e

+ λ∆3 ∆̄3 φ̃ e+ λΣ0 φ̃
† Σ̄I

0 τ
I `+ λΣ1 φ

† Σ̄I
1 τ

I `+ h.c., (2.9)

and at tree level give rise to the Wilson coefficients [71, 84–86]

C
(1)
φ` = λNλ

†
N

4M2
N

− λEλ
†
E

4M2
E

+ 3
16
λ†Σ0

λΣ0

M2
Σ0

− 3
16
λ†Σ1

λΣ1

M2
Σ1

, (2.10)

C
(3)
φ` = −λNλ

∗
N

4M2
N

− λEλ
∗
E

4M2
E

+ 1
16
λ†Σ0

λΣ0

M2
Σ0

+ 1
16
λ†Σ1

λΣ1

M2
Σ1

, Cφe =
λ†∆1

λ∆1

2M2
∆1

−
λ†∆3

λ∆3

2M2
∆3

.

3 Observables

In this section we summarize the observables relevant for constraining our simplified models.

3.1 Parity-violating electron scattering

Limits on NP couplings to electrons and first-generation quarks can be extracted from data
on PVES off the proton and off nuclei. In this subsection, we review the corresponding
theoretical expressions, the constraints that are currently available, and future prospects.

– 6 –
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SU(3) SU(2)L U(1)Y
N 1 1 0
E 1 1 −1
∆1 1 2 −1/2
∆3 1 2 −3/2
Σ0 1 3 0
Σ1 1 3 −1

Table 4. Different representations of the VLLs under the SM gauge group.

3.1.1 Low-energy scattering

Interference between electromagnetic and weak scattering amplitudes leads to a PV asym-
metry ANe that can be measured with a longitudinally polarized electron beam incident on
an unpolarized nucleon target

ANe = σ+ − σ−

σ+ + σ−
= tGF

4πα
√

2
ANV (t) +ANA (t)

ε
[
GNE (t)

]2 + η
[
GNM (t)

]2 , (3.1)

where σ± represents the cross section of the helicity-dependent elastic scattering, t = −Q2

the four-momentum transfer squared, and the kinematic quantities are defined as

η = −t
4m2

N

, ε−1 = 1 + 2(1 + η) tan2 θ

2 , ε′ =
√
η(1 + η)

√
1− ε2, (3.2)

with scattering angle θ. The quantities ANV/A(t) represent the asymmetries arising from the
terms in which the vector/axial-vector part of the weak current appears on the quark side,
commonly parameterized in the effective Lagrangian

Leeeff = GF√
2

∑
q=u,d,s

(
Ce1q

[
q̄γµq

][
ēγµγ5e

]
+ Ce2q

[
q̄γµγ5q

][
ēγµe

])
, (3.3)

where Ce1q, Ce2q contribute to ANV,A(t), respectively. Writing

Ce1q = Ce,SM1q + Ce,NP1q , Ce2q = Ce,SM2q + Ce,NP2q , (3.4)

we have the SM values

Ce,SM1u = −0.1888, Ce,SM2u = −0.0352,

Ce,SM1d = Ce,SM1s = 0.3419, Ce,SM2d = Ce,SM2s = 0.0249, (3.5)

including radiative corrections as detailed in refs. [87, 88]. The NP contributions, expressed
in terms of the SMEFT Wilson coefficients defined in eqs. (2.2) and (2.3), are given by

Ce,NP
1u =

√
2

4GF

(
C

(3)
`q − C

(1)
`q + Ceu + Cqe − C`u − |Vud|2

(
C

(3)
φq − C

(1)
φq

)
+ Cφu

)
,

Ce,NP
2u =

√
2

4GF

(
C

(3)
`q − C

(1)
`q + Ceu − Cqe + C`u − (1− 4s2

W )
[
|Vud|2

(
C

(3)
φq − C

(1)
φq

)
+ Cφu

])
,
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Ce,NP
1d =

√
2

4GF

(
− C(3)

`q − C
(1)
`q + Ced + Cqe − C`d + C

(3)
φq + C

(1)
φq + Cφd

)
,

Ce,NP
2d =

√
2

4GF

(
− C(3)

`q − C
(1)
`q + Ced− Cqe+ C`d− (1− 4s2

W )
[
C

(3)
φq − C

(1)
φq + Cφd

])
, (3.6)

where sW = sin θW is short for the weak mixing angle. Next, the nucleon matrix elements
are expressed in terms of form factors according to

〈N(p′)|q̄γµq|N(p)〉 = ū(p′)
[
γµF q,N1 (t) + iσµνqν

2mN
F q,N2 (t)

]
u(p),

〈N(p′)|q̄γµγ5q|N(p)〉 = ū(p′)
[
γµγ5G

q,N
A (t) + γ5

qµ

2mN
Gq,NP (t)

]
u(p), (3.7)

where q = p′ − p, t = q2. In particular, we will write FNi (t) for the electromagnetic form
factors, G3

A(t) = Gu,pA (t)−Gd,pA (t) for the triplet component of the axial-vector form factor
of the proton, Gq,NA (0) ≡ gq,NA (with gu,pA −g

d,p
A = gA = 1.27641(56) the axial-vector coupling

of the nucleon [89]), and define the Sachs form factors

GNE (t) = FN1 (t)− ηFN2 (t), GNM (t) = FN1 (t) + FN2 (t). (3.8)

In these conventions, the asymmetries become

ApV (t) = − 2(2Ce1u + Ce1d)
[
ε
[
GpE(t)

]2 + η
[
GpM (t)

]2]
− 2(Ce1u + 2Ce1d)

[
εGpE(t)GnE(t) + ηGpM (t)GnM (t)

]
− 2(Ce1u + Ce1d + Ce1s)

[
εGpE(t)Gs,NE (t) + ηGpM (t)Gs,NM (t)

]
− 2(Ce1u + 2Ce1d)

[
εGpE(t)Gu,dE (t) + ηGpM (t)Gu,dM (t)

]
,

ApA(t) = − ε′GpM (t)G3
A(t)(Ce2u − Ce2d)− ε′G

p
M (t)(gu,pA + gd,pA )(Ce2u + Ce2d)

− 2ε′GpM (t)gs,NA Ce2s, (3.9)

where
Gu,dE/M (t) = 1

3
(
Gd,nE/M (t)−Gu,pE/M (t)

)
− 2

3
(
Gu,nE/M (t)−Gd,pE/M (t)

)
, (3.10)

is an isospin-breaking correction [90] (while isospin breaking in the strangeness contribution
has been ignored). The weak charge of the proton is then identified as

Qpw = −2(2Ce1u + Ce1d), (3.11)

but its SM prediction includes further radiative corrections not yet included in eq. (3.5),
leading to

Qpw = −2(2Ce1u + Ce1d + 0.00005)
(

1− α

2π

)
= 0.0710(4). (3.12)

This value is slightly smaller than the naive application of eq. (3.5), Qpw = 0.0714, and
slightly larger than the reference value quoted in ref. [91], Qpw = 0.0708(3), with a difference
that traces back to a small change in Ce,SM1u [88]. The adjustments in eq. (3.12) include
part of the γZ box correction from ref. [92].
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The present best measurement of Qpw comes from the Qweak experiment [91, 93, 94]
at Jefferson Lab, which measured the asymmetry at 〈Q2〉 = 0.0248GeV2 and 〈θ〉 = 7.90◦,
yielding [91]

Ape = −226.5(9.3)× 10−9. (3.13)

The data were analyzed setting all Wilson coefficients except for Qpw to their SM values,
which, at tree level, implies

−2(Ce1u + 2Ce1d) = −2(Ce1u + Ce1d + Ce1s) = −1,

−(Ce2u − Ce2d) = 2Ce2s = 1− 4s2
W , Ce2u + Ce2d = 0, (3.14)

in agreement with ref. [91] (note that our G3
A(0) = gA > 0 has the opposite sign). Our

formulation in terms of Wilson coefficients (3.9) automatically accounts for the relevant
short-range radiative corrections, including what is called the “one-quark” axial-vector
contribution in refs. [95, 96].

Updating the strangeness form factor using µs = −0.017(4), 〈r2
M,s〉 = −0.015(9) fm2,

〈r2
E,s〉 = −0.0048(6) fm2 [97], ΛA = 1.0(2)GeV (corresponding to the axial radius from

ref. [98]) for the dipole scale in G3
A(t), and estimating the axial-vector couplings as gu,pA +

gd,pA = 0.40(5), gs,NA = −0.05(5) [99–101], we extract from eq. (3.13)

Qpw = 0.0704(47), (3.15)

where we have followed the same prescription for the energy-dependent part of the γZ
box correction [92, 102–105] as in ref. [91]. This value is perfectly in line both with the
Qweak-only result from ref. [91], Qpw = 0.0706(47), and the combination with other PVES
data, Qpw = 0.0719(45). In our analysis, we will retain the complete master formula (3.9),
as the subleading terms produce some sensitivity to combinations of Wilson coefficients
other than those contained in Qpw.

The uncertainty is currently dominated by experiment, with theory uncertainties esti-
mated in ref. [91] at the level of 4.5× 10−9 when expressed in terms of Ape. In the future,
the measurement of Qpw will improve considerably by the forthcoming high-precision P2
experiment at the MESA accelerator in Mainz [106]. Conducting the experiment at lower
momentum transfer (〈Q2〉 = 0.006 GeV2, 〈θ〉 = 35◦) to reduce the size of the γZ box cor-
rections, P2 aims to measure the proton weak charge with a relative precision of 1.83%, a
more than three-fold improvement over Qweak. At this level of precision also theory input
requires further scrutiny, see the discussion in ref. [106], including the role of Gu,dE/M (t)
and further long-range corrections [107, 108], such as PV γγ boxes involving a nucleon
anapole moment (called “many-quark” contribution in refs. [95, 96]). With a dedicated
backward-angle measurement planned to constrain the latter, the remaining uncertainty
from nucleon form factors is projected more than a factor of two below the experimental
uncertainties.

Finally, PVES scattering can also be measured off nuclei, but so far results are re-
stricted to 208Pb [109, 110]. Future plans include 48Ca [111] and 12C [106], but in both
cases the major motivation concerns the presently poorly understood neutron distribution
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in the nucleus, in such a way that it is unlikely that meaningful constraints on NP can be
extracted from PVES off nuclei alone. However, in a similar way CEνNS is also sensitive
to a combination of NP couplings and nuclear structure (see section 3.2), so that improved
NP constraints are expected from a combined analysis of both classes of measurements.

3.1.2 Atomic parity violation

Apart from the very challenging measurements of PVES off nuclei at low momentum trans-
fer, nuclear weak charges can also be accessed in APV, exploiting asymmetry amplification
by stimulated emission in a highly forbidden atomic transition. Experimentally, the ratio
of the PV amplitude over the Stark vector transition polarizability β is measured (with
the most precise results currently available for 133Cs [112, 113]), which then needs to be
combined with atomic-theory calculations and independent input for β. The latter can
be determined semi-empirically either via a measurement together with another hyperfine
amplitude [114, 115] or the scalar polarizability [116–118], leading to the recommendation
β = 27.064(25)exp(21)tha3

B [88] in units of the Bohr radius aB, but the uncertainty of this
average does not include an error inflation to account for the 2.7σ tension between the
two methods. Similarly, the coefficient of the atomic structure calculation has been under
debate in the literature [119–124], with ref. [88] recommending 0.8977(40) from ref. [124],
which is in 1.7σ tension with the more recent 0.8893(27) from ref. [125]. Finally, despite the
amplified asymmetry in the atomic system, the result is still sensitive to nuclear structure
input, i.e., the neutron distribution in the nucleus. In ref. [126] the recent PREX-2 mea-
surement [110] of PVES off 208Pb, in combination with a correlation to 133Cs established
based on density-functional methods, was used to improve this aspect of the extraction of
the weak charge of 133Cs [126]

Qw
(133Cs

)
= −72.94(43), (3.16)

a slight shift from Qw(133Cs) = −72.82(42) [88]. Both values lie about 1.5σ below
Qw(133Cs) = −73.71(35) [125], mainly due to the difference in the atomic-structure calcu-
lation. Both values agree with the SM prediction [88]

Qw
(133Cs

)
= −2

[
Z
(
2Ce1u + Ce1d + 0.00005

)
+N

(
Ce1u + 2Ce1d + 0.00006

)](
1− α

2π

)
= −73.24(5), (3.17)

but the pull goes into the opposite direction. In our analysis, we will use eq. (3.16), bearing
in mind that the uncertainties might be slightly underestimated.

The above discussion shows that the current 0.6% precision of the weak charge of 133Cs
is becoming limited by theory, indicating that future improvements are difficult in the Cs
system. However, the PV effect is enhanced by another factor of 50 in Ra+ atoms, with a
Ra-based experiment under development at TRIµP [127] and ISOLDE [128]. The projected
gain in sensitivity on s2

W by a factor of 5 would correspond to a 0.1% measurement of the
weak charge of Ra.

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
1

3.1.3 Parity-violating deep inelastic scattering

PVES can also be studied in deep inelastic reactions, with the master formula [129]

APVDIS = 3GFQ2

2πα
√

2
2C1u

[
1 +RC(x)

]
− C1d

[
1 +RS(x)

]
+ Y3(2C2u − C2d)RV (x)

5 +RS(x) + 4RC(x) , (3.18)

which depends on various parton distribution functions contained in RC (charm), RS
(strange), RV (valence), as well as a kinematic factor Y3. In contrast to low-energy scatter-
ing, the PVDIS process is also strongly sensitive to the Ce2q couplings for sufficiently large
Y3. The most precise measurements come from the Jefferson Lab PVDIS collaboration,
who measured PVDIS off a liquid deuterium target for two kinematic settings [129, 130]

A
(1)
PVDIS = 1.156× 10−4[(2Ce1u − Ce1d) + 0.348(2Ce2u − Ce2d)]

= −91.10(3.11)(2.97)× 10−6,

A
(2)
PVDIS = 2.022× 10−4[(2Ce1u − Ce1d) + 0.594(2Ce2u − Ce2d)]

= −160.80(6.39)(3.12)× 10−6, (3.19)

with corresponding SM predictions A(1)
PVDIS = −87.7(7)×10−6 and A(2)

PVDIS = −158.9(1.0)×
10−6. The SoLID experiment at Jefferson Lab Hall A aims to improve this measurement
up to a 0.8% relative error on APVDIS [131].

3.2 Coherent elastic neutrino-nucleus scattering

Low-energy PV is also accessible in CEνNS, in which a neutrino interacts with a nucleus
via a neutral current, and the elastic recoil of the nucleus is measured. This rare process
was measured for the first time by the COHERENT experiment [132, 133], and future mea-
surements at a number of experiments worldwide are expected to provide complementary
constraints on the Wilson coefficients probed in electron scattering. In analogy to eqs. (3.3)
and (3.4), we write the relevant effective Lagrangian as

Lνeνeeff = GF√
2

∑
q=u,d,s

(
Cνe1q

[
q̄γµq

][
ν̄eγµ(1− γ5)νe

]
+ Cνe2q

[
q̄γµγ5q

][
ν̄eγµ(1− γ5)νe

])
, (3.20)

where
Cνe1q = Cνe,SM1q + Cνe,NP1q , Cνe2q = Cνe,SM2q + Cνe,NP2q , (3.21)

and the tree-level values in the SM fulfill

Ce,SM1q
∣∣
tree = Cνe,SM1q

∣∣
tree, Ce,SM2q

∣∣
tree = −(1− 4s2

W )Cνe,SM2q
∣∣
tree. (3.22)

The relation of the NP contributions to the Wilson coefficients in eqs. (2.2) and (2.3) is
given by

Cνe,NP
1u =

√
2

4GF

(
C

(3)
`q + C

(1)
`q + C`u + |Vud|2

(
C

(3)
φq − C

(1)
φq

)
− Cφu

)
,

Cνe,NP
2u =

√
2

4GF

(
−C(3)

`q − C
(1)
`q + C`u − (1− 4s2

W )
[
|Vud|2

(
C

(3)
φq − C

(1)
φq

)
+ Cφu

])
,
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Cνe,NP
1d =

√
2

4GF

(
−C(3)

`q + C
(1)
`q + C`d − C

(3)
φq − C

(1)
φq − Cφd

)
,

Cνe,NP
2d =

√
2

4GF

(
C

(3)
`q − C

(1)
`q + C`d − (1− 4s2

W )
[
C

(3)
φq − C

(1)
φq + Cφd

])
. (3.23)

Radiative corrections to the SM values have been studied in refs. [87, 134, 135]. Following
the conventions from ref. [87], one has

Cνe,SM1u = −0.1961, C
νµ,SM
1u = −0.1906, Cντ ,SM1u = −0.1877,

Cνe,SM1d = 0.3539, C
νµ,SM
1d = 0.3511, Cντ ,SM1d = 0.3497,

Cνe,SM2u = C
νµ,SM
2u = Cντ ,SM2u = 0.5010,

Cνe,SM2d = C
νµ,SM
2d = Cντ ,SM2d = −0.5065, (3.24)

where we included the flavor dependence of Cν`,SM1q . Since the additional corrections from
γZ boxes and renormalization of the axial-vector current as in eq. (3.17) are absent for
CEνNS, this leads to the flavor-dependent weak charges

Qν`w = ZQν`,pw +NQν`,nw , (3.25)

where Qν`,pw = −2(2Cν`1u + Cν`1d), Qν`,nw = −2(Cν`1u + 2Cν`1d), i.e.,

Qνe,pw = 0.0766, Qνµ,pw = 0.0601, Qντ ,pw = 0.0513,
Qν`,nw = −1.0233. (3.26)

These values are consistent with Qνe,pw = 0.0747(34), Qν`,nw = −1.02352(25), and the flavor-
changing corrections Qνe,pw −Qνµ,pw = 0.01654, Qνµ,pw −Qντ ,pw = 0.00876 from ref. [135]. The
main difference between refs. [87, 135] concerns the treatment of the non-perturbative un-
certainties arising in γ–Z mixing diagrams involving light quark loops, but this only affects
Qν`,pw and thus Qν`w at well below the percent level. In either case, due to process-dependent
corrections being absorbed into the definition, there is no direct correspondence to the weak
charges as defined in electron scattering, in such a way that the model-independent com-
parison of NP constraints has to proceed in terms of the respective Wilson coefficients.

The cross section for CEνNS takes the form [136]

dσν`A
dT

= G2
FmA

4π

(
1− mAT

2E2
ν

− T

Eν

)[
Qν`w

]2∣∣Fw(q2)
∣∣2

+ G2
FmA

4π

(
1 + mAT

2E2
ν

− T

Eν

)
FA(q2), (3.27)

where Eν/E′ν is the energy of the incoming/outgoing neutrino, T = Eν − E′ν the nuclear
recoil, q the momentum transfer, and mA the target mass. The main sensitivity to NP
effects proceeds via the weak charge, which enters as a normalization for the quark vector
operators, while the correction from axial-vector operators, which contribute for non-spin-
zero nuclei, is sensitive to Cν`2q . The respective nuclear form factors Fw(q2) and FA(q2)
are discussed in detail in ref. [136]. The weak form factor is normalized as Fw(0) = 1, but
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the momentum dependence is, in general, still sensitive to the Cν`1q , i.e., the short-distance
physics does not simply factorize into the weak charge Qν`w . The axial-vector form factor
decomposes as

FA(q2) = 8π
2J + 1

((
g0
A

)2
ST00(q2) + g0

Ag
1
AS
T
01(q2) +

(
g1
A

)2
ST11(q2)

)
, (3.28)

where J is the spin of the nucleus, the Wilson coefficients factorize into

g0
A =

(
Cν`2u + Cν`2d

)(
gu,pA + gd,pA

)
+ 2Cν`2sg

s,N
A , g1

A =
(
Cν`2u − C

ν`
2d
)
gA, (3.29)

and the nuclear form factors STij are defined in such a way that the one-body contribution
is normalized to

FA(0)
∣∣
1b = 4

3
J + 1
J

[
(g0
A + g1

A)〈Sp〉+ (g0
A − g1

A)〈Sn〉
]2
. (3.30)

Accordingly, this response only contributes to odd-A nuclei, for which the spin expectation
values 〈SN 〉 can be non-vanishing, but even then FA(q2) only matters for precision mea-
surements, since the vector contribution is enhanced by a factor ∼ N2 due to the coherent
sum over the nucleus. To reduce the nuclear uncertainties subsumed into Fw(q2), either
measurements need to be performed at very small momentum transfer, or improved nuclear-
structure calculations are required, whose most uncertain part, again related to the neutron
distribution in the nucleus, could be constrained in future global analyses of CEνNS and
PVES off multiple nuclear targets. At present, ab-initio calculations are becoming available
for medium-size nuclei [137], while currently most calculations are based on (relativistic)
mean field methods [138–142] and the large-scale nuclear shell model [136, 143–145].

The NP constraints that can be derived from the CEνNS measurements by COHER-
ENT for CsI [132] and Ar [133] are not yet competitive, see, e.g., refs. [146, 147], but
future improvements are projected to even become interesting probes of the weak mixing
angle [148, 149]. In our analysis, we will thus first use the present COHERENT constraints,
whose neutrino beam, through the decay of the π+, consist of a mixture of νµ, νe, and ν̄µ.
While flavor oscillations can be neglected on the scale of the experiment, this implies that
only about a third of the events are actually sensitive to the first-generation NP operators,
which will be taken into account in the respective exclusion plots. The current uncertain-
ties on the total cross section, both for the CsI and the Ar measurement, are at the level of
30%, but in view of the broad CEνNS program worldwide, we also consider an optimistic
projection of 1%-precision for a COHERENT-like decomposition of the neutrino beam. At
this level of precision the subtleties regarding radiative corrections discussed above will
also become relevant.

3.3 Beta decays

In addition to the neutral current probed in electron and neutrino scattering off quarks,
the same effective operators also contribute to β decays via SU(2)L invariance. In this
case, observables depend on the CKM matrix element Vud, so to be able to extract NP
constraints other processes that, indirectly, enter the determination of CKM parameters
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become important. Here, we briefly review the relevant processes and summarize the input
we will use.

Superallowed β decays remain the primary source of information on Vud [150]. While
the data base, an average over a large number of nuclear decays, has been stable for
many years, the accuracy of the extraction of Vud critically depends on hadronic [3, 151–
156] and nuclear [150, 157–159] corrections. The former can be addressed in combination
with lattice-QCD calculations [3], but improved control of the nuclear uncertainties will
require a concerted effort that exploits recent advances in ab-initio nuclear-structure cal-
culations [160–162]. Alternatively, Vud can be extracted from neutron decay [163, 164],
in which case the additional nuclear uncertainties are absent, leaving the same hadronic
effects as for superallowed β decays. In this case, significant improvements in precision
measurements of the neutron life time τn [165, 166] and the asymmetry parameter λ [89]
have been achieved in the last years, so that, with ref. [166] for τn, a gain of another factor
2 in precision in λ would render the neutron-decay extraction competitive with superal-
lowed β decays. Finally, pion β decay π± → π0e±νe [167–169] is currently not measured
sufficiently precisely to impose meaningful constraints, but might become relevant in the
future [170] in particular in combination with K`3 decays [169].

The confrontation of the resulting value for Vud with CKM unitarity is then further
complicated by a tension between K`2 and K`3 decays, leading to contradicting values for
Vus. For K`2 decays, traditionally, the ratio to the pion decay is studied, in such a way
that only the ratio of decay constants [171–173] and radiative corrections [174, 175] are
required for the interpretation. Likewise, K`3 decays require input for the hadronic form
factor f+(0) [176, 177], but in contrast to K`2 radiative corrections [178–182] have not yet
been independently verified in lattice QCD. Finally, also τ decays [36] allow for extractions
of Vus, which, however, do not resolve the K`2 and K`3 tension either.

In the end, this leads to a situation in which two tensions are present in a combined
analysis of Vus and Vud from kaon and β decays, one between K`2 and K`3, the other with
CKM unitarity. The exact significance depends on the choice for the various corrections
described above, see ref. [6] for a detailed analysis of the numerics, but a significance
around 3σ should give a realistic estimate of the current situation. For definiteness we use
the combination of ref. [88] for the test of CKM unitarity, where they quote:∣∣Vud∣∣2 +

∣∣Vus∣∣2 +
∣∣Vub∣∣2 = 0.9985(5), (3.31)∣∣Vud∣∣2 +

∣∣Vcd∣∣2 +
∣∣Vtd∣∣2 = 0.9970(18), (3.32)

while the tensions among the kaon decays cannot be related to the first-generation NP
operators we study here. In fact, even though the deficit in the first-column CKM uni-
tarity is less significant than the one of the first row, it does support an interpretation in
which NP affecting Vud could lead to an apparent violation of CKM unitarity. In view
of the higher precision we will use the constraint from the first-row unitarity test in the
numerical analysis.

3.4 Electroweak precision observables

EWPO include Z decays measured at LEP as well as the W mass (LEP+Tevatron+LHC),
the Fermi constant GF , the fine structure constant α, and its running from the low to the
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EW scale, which depends on ∆αhad.3 In this article we use the Python code smelli [192–
194] v2.2.0 [195] to perform a global fit to the EWPO (a complete list is given in table 5),
in particular to constrain the effect of NP that modifies Z and W couplings to quarks
and leptons. Note that among the set of EWPO two measurements deviate from their
SM predictions by more than 2σ: the Z → b̄b forward-backward asymmetry A0,b

FB and the
Z → e+e− asymmetry parameter Ae. Since this later one involves first-generation fermions,
it is of particular interest to our analysis, along with the ratio of the Z hadronic width to
e+e− or µ+µ− pairs (R0

e,µ), which also deviates from the SM, albeit with small significance
of about 1.4σ. Together this leads to a slight preference for non-zero NP effects for some
simplified models in our phenomenological analysis.

3.5 LHC bounds

Both the ATLAS and CMS collaboration recently presented a new non-resonant di-lepton
analysis in ref. [209] and ref. [7], respectively. These data can be used to constrain the LQ
and VB models as they give effects in non-resonant di-lepton events (assuming that the Z ′

is heavier than ≈ 5.5TeV). To this end, we first compute the partonic cross sections

σ̂SM+NP
qq̄ ≡ σ̂SM+NP(qq̄ → e+e−), (3.33)

with q ∈ {u, d, s, c, b} at tree level. The SM tree-level amplitudes are

ASM
uj ūj ,AB = −2

3
e2

q2 −
g2

c2
W q

2

(
I3,A −

2
3s

2
W

)(
I3,B − s2

W

)
,

ASM
dj d̄j ,AB

= 1
3
e2

q2 −
g2

c2
W q

2

(
−I3,A + 1

3s
2
W

)(
I3,B − s2

W

)
, (3.34)

with uj ∈ {u, c}, dj ∈ {d, s, b}, A,B ∈ {L,R}, I3,L = 1
2 , I3,R = 0, and e = gsW . The NP

amplitudesMNP
qq̄,AB from the 2-quark-2-lepton operators are given in table 6.

The partonic cross section is then proportional to

σ̂SM+NP
qq̄ ∼

∣∣∣MSM
qq̄,AB +MNP

qq̄,AB

∣∣∣2 , (3.35)

and the total cross section is obtained by integrating over the luminosities

σSM+NP =
∑
i

∫ ŝmax

ŝmin

dŝ

ŝ

(
dLqq̄
dŝ

)(
ŝσ̂SM+NP

qq̄

)
, (3.36)

with the parton center-of-mass energy ŝ equal to the square of the invariant mass of
the electron-positron pairs m2

eē and the differential parton-anti-parton luminosities [210]
given by

dLqq̄
dŝ

= 1
s

∫ 1

τ

dx

x
fq(x,

√
ŝ)fq̄

(
τ

x
,
√
ŝ

)
+ (q ↔ q̄) , (3.37)

3GF is taken from muon decay [183], for α the tensions among determinations from (g−2)e [43, 184] and
atom interferometry [185, 186] do not play a role, and ∆αhad is taken from e+e− → hadrons data [50, 51],
which is robust to changes in hadronic vacuum polarization [187] as long as they are restricted to sufficiently
low energies, see refs. [188–191].

– 15 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
1

Observable Description Exp. Theory
ΓZ Total width of the Z0 boson [196] [197, 198]
σ0

had e+e− → Z0 hadronic pole cross section [196] [197, 198]
R0
e Ratio of Z0 partial widths to hadrons vs. e+e− [196] [197, 198]

R0
µ Ratio of Z0 partial widths to hadrons vs.

µ+µ−
[196] [197, 198]

R0
τ Ratio of Z0 partial widths to hadrons vs. τ+τ− [196] [197, 198]

A0,e
FB Forward-backward asymmetry in Z0 → e+e− [196] [198]

A0,µ
FB Forward-backward asymmetry in Z0 → µ+µ− [196] [198]

A0,τ
FB Forward-backward asymmetry in Z0 → τ+τ− [196] [198]

Ae Asymmetry parameter in Z0 → e+e− [199] [198]
Aµ Asymmetry parameter in Z0 → µ+µ− [199] [198]
Aτ Asymmetry parameter in Z0 → τ+τ− [199] [198]
R0
b Ratio of Z0 partial widths to bb̄ vs. all hadrons [199] [197, 198]

R0
c Ratio of Z0 partial widths to cc̄ vs. all hadrons [199] [197, 198]

A0,b
FB Forward-backward asymmetry in Z0 → bb̄ [199] [198]

A0,c
FB Forward-backward asymmetry in Z0 → cc̄ [199] [198]

Ab Asymmetry parameter in Z0 → bb̄ [199] [198]
Ac Asymmetry parameter in Z0 → cc̄ [199] [198]
MW W± boson pole mass [200, 201] [198, 202, 203]
ΓW Total width of the W± boson [88] [198]
BR(W → eν) Branching ratio ofW → eν, summed over neu-

trino flavors
[204] [198]

BR(W → µν) Branching ratio of W → µν, summed over
neutrino flavors

[204] [198]

BR(W → τν) Branching ratio ofW → τν, summed over neu-
trino flavors

[204] [198]

R(W+ → cX) Ratio of partial width of W+ → cX, X =
d̄, s̄, b̄ over the hadronic W width

[88] [198]

Rµe(W → `ν) Ratio of branching ratio ofW → µν andW →
eν, individually summed over neutrino flavors

[204, 205] [198]

Rτe(W → `ν) Ratio of branching ratio of W → τν andW →
eν, individually summed over neutrino flavors

[204, 206] [198]

Rτµ(W → `ν) Ratio of branching ratio of W → τν andW →
µν, individually summed over neutrino flavors

[204, 207] [198]

As Asymmetry parameter in Z0 → ss̄ [208] [198]
R0
uc Average ratio of Z0 partial widths to uū or cc̄

vs. all hadrons
[88] [197, 198]

Table 5. List of EWPO used in our analysis, along with the relevant experimental and theoretical
references.
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MNP
qq̄,AB LL LR RL RR

q = u C
(1)
`q − C

(3)
`q Cqe C`u Ceu

q = d C
(1)
`q + C

(3)
`q Cqe C`d Ced

Table 6. NP amplitudesMNP
qq̄,AB from the 2-quark-2-lepton operators in SMEFT.

where s is the beam center-of-mass energy and τ = ŝ/s. In our numerical analysis, we use
the PDF set NNPDF23LO, also employed, e.g., in the ATLAS analysis, to generate the
signal Drell-Yan process [209], with the help of the Mathematica package ManeParse [211].

The CMS collaboration also provided results for the differential cross-section ratio

Rµµ̄/eē ≡
dσ(pp→ µ+µ−)/dmµµ̄

dσ(pp→ e+e−)/dmeē
, (3.38)

for the nine m`¯̀ (` = e, µ) bins between 200, 300, 400, 500, 700, 900, 1250, 1600, 2000,
and 3500 GeV. By distinguishing the cases where zero, or at least one, of the leptons
were detected in the CMS endcaps, eighteen values were obtained, denoted by RData

µµ̄/eē,i

with i = 1, . . . , 18. These were then normalized to the SM predictions obtained from
Monte-Carlo simulations

RData
µµ̄/eē,i/R

MC
µµ̄/eē,i. (3.39)

In the double ratio, many of the experimental uncertainties cancel [212] and, impor-
tantly, the double ratio was further normalized to unity in the first bin from 200 to 400GeV
to correct for the different detector sensitivity to electrons and muons. In order to relate
the NP Wilson coefficients to the CMS measurements, we compute RSM+NP

µµ̄/eē,i . We then
determine the best fit to data via a χ2 statistical analysis, defining

χ2 ≡
∑

i=1,...,18

RData
µµ̄/eē,i

RMC
µµ̄/eē,i

−
RSM+NP
µµ̄/eē,i

RSM
µµ/ee,i

2

σ2
i

, (3.40)

where σi are the experimental uncertainties reported in ref. [7]. Here, CMS reported an
excess in electrons of about 4σ, and taking into account the q2 distribution, one can improve
the description of the data by more than 3σ with respect to the SM [213].

ATLAS, on the other hand, did not provide the muon vs. electron ratio, but rather
quoted limits on NP from non-resonant di-electrons in the signal region [2.2, 6.0]TeV
([2.7, 6.0]TeV) for the cases where the NP contribution is interfering constructively (de-
structively) with the SM. Even though their limits agree with the SM expectation within
2σ, slightly more electrons than expected are observed. Here, we have to recast the bounds
on the Wilson coefficients (similarly to the method described for the CMS analysis), since
ATLAS studied only operators that have equal couplings to up and down quarks, which is
generally not the case for the simplified models we consider.

Concerning LQs, which contribute in the t-channel, we included the propagator ac-
cording to the prescription in ref. [214]. For Z ′ bosons we did not include resonant LHC
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ATLAS destructive ATLAS constructive CMS CAA APV+Qweak

(95%) (95%) (68%) (68%) (95%)
Φ1 (λL1 ) 2.5 * − − 2.6
Φ1 (λR1 ) 2.8 * − * 4.1
Φ1̃ (λR1 ) * 2.9 3.4+0.7

−0.5 * 3.9
Φ2 (λLR2 ) * 4.2 4.3+0.8

−0.6 * 3.5
Φ2 (λRL2 ) * 3.8 4.2+0.9

−0.6 * 4.1
Φ2̃ (λ2̃) 2.6 * 2.4+0.4

−0.3 * 3.9
Φ3 (λ3) * 4.8 4.4+0.7

−0.5 4.5+1.0
−0.6 4.2

V1 (κL1 ) 3.9 * − − 5.6
V1 (κR1 ) 4.3 * 3.4+0.4

−0.3 * 3.3
V1̃ (κ1̃) * 6.6 7.5+1.7

−1.1 * 3.7
V2 (κLR2 ) 6.4 * 4.6+0.6

−0.5 * 8.0
V2 (κRL2 ) * 4.5 4.5+0.8

−0.6 * 3.3
V2̃ (κ2̃) 5.4 * 3.7+0.4

−0.4 * 3.7
V3 (κ3) * 10.0 10.7+2.4

−1.6 6.4+1.4
−0.9 9.9

Table 7. Lower limits on the LQ masses for |λ| = |κ| = 1. For the ATLAS di-electron searches [209]
and PV the 95% C.L. limits are given, while for CMS [7] and the CAA the preferred 1σ regions
are shown (if the representation improves the fit with respect to the SM). Scenarios that worsen
the agreement with data compared to the SM are indicated by − and ∗ marks if the corresponding
observable is unaffected.

searches. This means implicitly that we assumed thatM is above the production threshold,
in such a way that the bound on M for g = 1, to be derived in the next section, should be
understood as a limit on g/M .

4 Phenomenology

We now turn to the phenomenological analysis, in which we will again consider the different
classes of new particles separately. First we will collect the bounds for each representation,
and then have a more detailed look at low-energy PV including a discussion of future
prospects.

4.1 Leptoquarks

First-generation LQs were studied in refs. [82, 214–218]. The summary of the bounds and
preferred values for the LQ masses from LHC searches, PV, and the CAA is given in table 7
and shown in figure 1 in the Ce1u–Ce1d plane. One can see that the ATLAS bounds from
non-resonant di-lepton searches are very stringent, but still allow for an explanation of the
CMS excess for the LQ representations with the couplings λ̃1, λ

LR
2 , λRL2 , λ3, κ̃1, κ

RL
2 , and

κ3 that give rise to constructive interference with the SM. While an explanation of the
CAA with κ3 is in tension with the ATLAS and APV+Qweak measurements, the scalar
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Figure 1. Parametric plot of LQ effects in the Ce1u–Ce1d plane as well as the preferred regions from
PV and the corresponding prospects. The gray parts of the lines are excluded by the di-electron
searches of ATLAS (95% C.L.) and the preferred regions from CMS and the CAA (both 1σ) are
indicated by thick and black lines, respectively. The three different values for the LQ masses (6TeV,
4TeV, and 2TeV), setting λ, κ = 1, are indicated by markers of different shapes, the cross denotes
the best-fit point of APV and Qweak, and the black circle the SM point.
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ATLAS (95%) CMS CAA APV+Qweak (95%)
destr. constr. (68%) (68%)

XI(g`Xg
q
X) (+) 2.1 (−) 4.3 (−) 5.3+1.1

−1.1 (−) 4.5+1.0
−0.6 (+) 1.4 (−) 1.4

Z ′ (g`gq) (−) 4.5 (+) 7.3 (+) 7.1+1.5
−0.9 * (−) 5.0 (+) 8.0

Z ′ (g`gu) (−) 4.2 (+) 6.5 (+) 6.3+1.3
−0.8 * (−) 3.8 (+) 5.8

Z ′ (g`gd) (+) 3.6 (−) 5.1 (−) 4.8+0.8
−0.6 * (+) 3.4 (−) 5.6

Z ′ (g`gu = g`gd) (−) 4.7 (+) 6.9 (+) 6.4+1.2
−0.8 * (−) 5.0 (+) 8.0

Z ′(g`gu = −g`gd) (−) 4.6 (+) 7.2 (+) 7.1+1.4
−0.9 * (−) 2.8 (+) 2.8

Z ′ (gegq) (−) 4.7 (+) 6.9 (+) 6.5+1.2
−0.8 * (−) 4.9 (+) 8.0

Z ′ (gegu) (−) 4.2 (+) 7.1 (+) 7.6+1.8
−1.1 * (−) 3.7 (+) 5.8

Z ′ (gegd) (+) 3.6 (−) 5.3 (−) 5.2+1.0
−0.6 * (+) 3.3 (−) 5.6

Z ′ (gegu = gegd) (−) 4.7 (+) 7.3 (+) 7.2+1.5
−0.9 * (−) 4.9 (+) 8.0

Z ′ (gegu = −gegd) (−) 4.6 (+) 5.4 (+) 8.7+1.9
−1.3 * (−) 2.8 (+) 2.8

Table 8. Lower limits on the masses of VBs for |ge| = |gq| = 1 extracted from the ATLAS di-
electron analysis and PV, as well as the mass ranges preferred by the CAA and CMS data (1σ). The
∗ mark indicates if the corresponding observable is unaffected. The signs in the brackets denote the
sign of the product gegq. The notation for the couplings is as in eq. (2.5), with only the couplings
as indicated in brackets in the first column non-vanishing.

triplet with the coupling λ3 could address the anomaly.4 While the current limits from
PV experiments are only in some cases competitive with, or superior to, LHC limits, the
experimental prospects look more promising. In fact, the Ra+ and P2 experiments would
be able to distinguish different representations and, e.g., favor λLR2 and κRL2 as solutions to
the CMS excess, if the current central values for Ce1u and Ce2u were confirmed. Regarding
the PV experiments involving neutrinos, not even the 1% accuracy projection for an Ar-
COHERENT-type experiment can compete with the direct search limits, partly because
only the fraction fe ≈ 30% of electron neutrinos in the overall neutrino flux can be used to
search for first-generation LQs.

4.2 Vector bosons

For VB we consider two cases, an SU(2)L singlet (Z ′) and an SU(2)L triplet (XI). The Z ′

couplings to left- and right-handed quarks and leptons are all independent,5 and therefore it
is evident from eq. (2.6) that various combinations of Wilson coefficients can be generated.
In our phenomenological analysis we study the benchmark scenarios given in table 8, which
are shown in the Ce1u–Ce1d plane in figure 2. Even though the ATLAS bounds are more
stringent in case of constructive interference with the SM, allowing only masses above (5–
7)TeV (if the relevant BSM couplings are fixed to unity), we find that each scenario is
able to explain the CMS excess at the 1σ level. While the Z ′ does not affect the CAA,

4In principle, it would lead to too large effects in D0–D̄0 mixing, but these bounds can be avoided by
tuning against the (unknown) SM contribution or other NP effects.

5For a detailed analysis of the SU(2)L singlet coupling only to leptons see ref. [219]. EW constraints on
VBs have been studied in refs. [220, 221] and PV in refs. [222–225].
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Figure 2. Parametric plot of VB effects in the Ce1u–Ce1d plane, as well as the preferred regions from
PV and the corresponding prospects. The gray parts of the lines are excluded by the di-electron
searches of ATLAS (95% C.L.) and the preferred regions from CMS and the CAA (both 1σ) are
indicated by thick and black lines, respectively. The three different values for the VB masses (6TeV,
4TeV, and 2TeV), setting λ, κ = 1, are indicated by markers of different shapes, the cross denotes
the best-fit point of APV and Qweak, and the black circle the SM point.

XI generates a contribution to C(3)
`q , which can, for constructive interference, explain the

CAA and the CMS excess simultaneously (see figure 2). Concerning PV experiments, the
current APV and Qweak measurements yield already competitive bounds for some cases,
which would improve significantly with P2 and APV with Ra+. Assuming the central value
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EWPO CAA APV+Qweak

(95% / 68%) (68%) (95%)
U 3.6 4.4+1.0

−0.6 3.8
D 4.1 4.4+1.0

−0.6 2.4
Q1(ξu1) 2.4 * 2.7
Q1(ξd1) 1.7 * 3.8
Q5 1.6+3.3

−1.2 * 2.4
Q7 2.4+5.0

−1.7 * 3.9
T1 1.5+3.6

−1.1 − 2.2
T2 1.9+4.0

−1.5 − 3.2

Table 9. Ranges or lower limits for the masses of VLQ for |ξ| = 1 extracted from EWPO and PV
(95% C.L.). The first two representations can explain the CAA at the 1σ level for the given mass
rage, while − indicates that the fit is worsened with respect to the SM, and * denotes that the CAA
is not affected.

to be the same as from current APV and Qweak experiments, one could, e.g., disfavor XI

and only two scenarios for the Z ′ would be preferred.

4.3 Vector-like quarks

We first note that only the three representations U , D, or Q1 (with couplings to both up
and down quarks) can explain the CAA [1, 63–65] due to their mixing with the SM quarks,
while, on the other hand, T1 or T2 worsen the CAA. EWPO places multi-TeV mass limits
on the VLQs U , D, and Q1 (for couplings fixed to unity), which come close to ruling out the
best-fit regions from the CAA for U and D, while there is actually a small (1σ) preference
for the other representations (Q5,7 and T1,2) driven by R0

e and R0
µ. All these bounds are

collected in table 9 and shown in figure 3. While there have been several direct searches
for VLQs coupling to first-generation quarks, the mass limits are ∼ 1TeV [226–229] (or
perhaps as high as ∼ 1.4TeV in certain regions of parameter space for D or T2) and so are
currently weaker than any of the other observables considered in this paper.

Looking back at table 9 and figure 3 we also see that Qweak and APV currently provide
in several cases even better bounds than EWPO. Since the Q1 VLQ has two free param-
eters, as it can couple to both up and down quarks, we show the full parameter space in
figure 4. Concerning future prospects, a 1% accuracy is needed for an Ar-COHERENT-
type experiment to be relevant, but P2 and Ra+ would (assuming that the current central
value is confirmed) still allow the CAA to be explained by either the D VLQ or a Q1 VLQ
coupling to both u and d quarks.

4.4 Vector-like leptons

VLLs coupling to first-generation leptons are strongly constrained by EWPO from LEP
and the LHC [84–86, 230–234] as well as direct searches [235–237]. The direct search
bounds are ∼ 700GeV, ∼ 450GeV, and ∼ 150GeV for doublets, triplets, and singlets
respectively, while EWPO bounds are even stronger: doublets and triplets to masses above
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Figure 3. Parametric plot of VLQ effects in the Ce1u–Ce1d and Cνe
1u–C

νe

1d planes, as well as the
preferred regions from PV and the corresponding prospects. The gray parts of the lines are excluded
by the di-electron searches of ATLAS (95% C.L.) and the preferred regions from CMS and the CAA
(both 1σ) are indicated by thick and black lines, respectively. The three different values for the VB
masses (6TeV, 4TeV, and 2TeV), setting λ, κ = 1, are indicated by markers of different shapes.
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Figure 4. Preferred regions in the vξu1/MQ1–vξd1/MQ1 plane for the Q1 VLQ. “Combined” stands
for the statistical combination of Qweak, APV, EWPO, and the CAA.

∼ 5TeV and ∼ 4TeV respectively, while there is some preference for the SU(2)L singlet
VLL at around 7TeV (for a coupling fixed to unity), driven by the discrepancy in R0

e, R0
µ,

and Ae. They also cannot substantially improve the CAA, since only Vus as determined
from K`3 decays is affected, while all the other main determinations of Vus and Vud are
unchanged with only first-generation lepton couplings (see refs. [4–6, 85, 86, 238] for VLLs
explaining the CAA with coupling to different lepton generations.). Furthermore, the
EWPO bounds are so strong that PV cannot compete here, even taking into account
possible future improvements.

4.5 Limits and prospects from low-energy parity violation

NP limits from low-energy PV have already been formulated in terms of the NP scale Λ
for benchmark models in refs. [91, 129]. Here, we compare our results to the presentation
in ref. [91], where the combined limits from Qweak and APV are given as a function of
the angle θh = arctan

(
Ce,NP1d /Ce,NP1u

)
, as shown in figure 5. The first conclusion from

the simplified-model analysis is that only discrete values in θh arise, as indicated by the
vertical lines in figure 5. Depending on the angle, the limits on the respective LQ masses
can vary substantially, between 2.5TeV and 10TeV, see also table 7, as reflects the fact
that the different simplified models define a different trajectory in the Ce1u–Ce1d plane and
thus a different intersection with the current exclusion ellipse, see figure 1. The projection
for P2 + Ra+ then emphasizes the discriminating power of the combined analysis: if the
central values remained at the current APV+Qweak best-fit point, but errors were reduced
as projected, the combined data would prefer the green region in figure 5, and thus eliminate
most of the simplified models as suitable candidates.
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Figure 5. 95% C.L. exclusion limits from APV + Qweak for the different LQ representa-
tions. The angle θh refers to the phase of the NP contribution in the Ce1u–Ce1d plane, i.e.,
θh = arctan

(
Ce,NP

1d /Ce,NP
1u

)
. The couplings λLR2 , κLR2 and λ3, κ3 require a different normaliza-

tion, therefore the different scales on the right apply when reading off the scale Λ (corresponding
to the LQ mass). The black line refers to the current limit from APV +Qweak, the green region to
the preferred space assuming P2 + Ra+ precision and no change in the central values.
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The analysis in our paper is focused on the C1q coefficients, but we do keep the full
dependence also on C2q (in the case of Qweak) and studied the impact of the PVDIS
constraints including projected limits from SoLID, see section 3.1.3. Scenarios in which
C2q dominate are possible in Z ′ models upon tuning the couplings accordingly [239, 240],
but the same coefficients can also be probed in the LHC di-lepton searches. As show in
ref. [241] in the framework of SMEFT, the estimated SoLID sensitivity to NP is at most
of the same order as current LHC searches, and the simplified-model analysis yields the
same conclusion. However, in the combination with P2 and di-lepton searches, it could be
helpful in distinguishing different NP scenarios.

5 Summary and conclusions

NP related to first-generation fermions is not only very constrained, but also particularly
interesting due to the large variety of related observables, allowing one to probe many
complementary aspects of possible SM extensions. More recently, the observed deficit in
the first-row and -column CKM unitarity, known as the Cabibbo angle anomaly (CAA), as
well as the excess in non-resonant di-electron searches observed by CMS, further motivate
the study of NP effects in the first generation. Since, due to the large number of couplings
in SMEFT, fully model-independent relations among different processes are still scarce, the
identification of such correlations suggests the consideration of simplified models, especially
the four classes that can give rise to modified 2-quark-2-lepton interactions at tree level
(after EW symmetry breaking): leptoquarks (LQs), QCD-neutral vector bosons (VBs),
vector-like quarks (VLQs), and vector-like leptons (VLLs).

After performing the matching of these models onto the dimension-6 SU(2)L gauge in-
variant SMEFT, we analyzed all relevant observables related to these operators, including
β decays, EWPO, LHC bounds, and low-energy PV. In particular, we provided master for-
mulae for PVES, eq. (3.9), and CEνNS, eq. (3.27), that express the observables directly in
terms of the short-distance Wilson coefficients and the respective hadronic matrix elements.
Our main results are summarized in figure 6 and figure 7, illustrating the complementarity
of the different classes of observables. For instance, the LHC bounds obtained from the
CMS and ATLAS non-resonant di-electron searches only apply to LQs and VBs, while these
extensions are in general poorly constrained by EWPO. VLLs are by far best bounded by
EWPO, which is also the case for several VLQ representations. LQs, VBs, and VLQs can
have a significant impact on PV, but the actual constraint depends on the representation,
and, similarly, only a subset of the representations affects β decays and thus the CAA.

Concerning PV, different representations predict different trajectories in the Ce1q and
Cν1q planes departing from the SM point, which leads to different bounds given that the
present exclusion limits are not symmetric. This is illustrated for LQs in figure 5, as
a function of the phase θh = arctan

(
Ce,NP1d /Ce,NP1u

)
. Furthermore, future experimental

improvements could allow one to disentangle different representations, most notably with
next-generation PV experiments P2 and Ra+, as shown in figures 5, 6, and 7. In addition,
we find that for VLQs larger effects in PV than in the other simplified NP models are
possible, in such a way that future prospects for CEνNS also promise discriminating power.
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Figure 6. Graphical representation of the limits on the LQ and VB mass scale Λ for |λ| = |κ| = 1
and |ge| = |gq| = 1, respectively. Scenarios that worsen the agreement with CAA (CMS) data
compared to the SM are indicated with black (yellow) minus signs next to the coupling label. The
hatched regions indicate the P2 and Ra+ exclusion prospects, assuming that the current central
value remains unchanged.

Altogether, figures 6 and 7 show the complementarity of low-energy precision observ-
ables and LHC searches in constraining NP related to first-generation quarks and leptons.
If, further, the CAA and/or the CMS excess in di-electrons were confirmed, PV and EWPO
could be used to disentangle different NP models even in case the masses were so heavy that
a direct discovery would require a center-of-mass energy only available at future colliders.
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Figure 7. Graphical representation of the limits on the VLQ (VLL) mass scale Λ for |ξ| = 1
(|λ| = 1). The hatched regions indicate the P2 and Ra+ exclusion prospects, assuming that the
current central value remains unchanged. For VLL only the bounds from EWPO are relevant.
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