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Abstract In this paper, thick branes generated by the
mimetic scalar field with Lagrange multiplier formulation are
investigated. We give three typical thick brane background
solutions with different asymptotic behaviors and show that
all the solutions are stable under tensor perturbations. The
effective potentials of the tensor perturbations exhibit as vol-
cano potential, Poöschl–Teller potential, and harmonic oscil-
lator potential for the three background solutions, respec-
tively. All the tensor zero modes (massless gravitons) of the
three cases can be localized on the brane. We also calculate
the corrections to the four-dimensional Newtonian poten-
tial. On a large scale, the corrections to the four-dimensional
Newtonian potential can be ignored. While on a small scale,
the correction from the volcano-like potential is more pro-
nounced than the other two cases. Combining the specific
corrections to the four-dimensional Newtonian potential of
these three cases and the latest results of short-range grav-
ity experiments, we get the constraint on the scale parameter
as k � 10−4eV, and constraint on the corresponding five-
dimensional fundamental scale as M∗ � 105TeV.

1 Introduction

The nature of dark matter is one of the most mysterious fields
in the modern theoretical physics [1,2]. Over the last century,
the theoretical physicists have made many attempts to reveal
the mask of dark matter [3–18]. One possible approach is
that the general relativity should be modified at large scale
[19–30]. Recently, a Weyl-symmetric extension of general
relativity which is named as mimetic gravity has attracted
more and more attention [31,32].

In the mimetic gravity model, the physical metric gμν is
determined by an auxiliary metric g̃μν and a scalar field φ

a e-mail: liuyx@lzu.edu.cn (corresponding author)

with the relation of gμν = −g̃μν g̃αβ∂αφ∂βφ [31]. In such a
setup, the conformal degree of freedom is separated with a
covariant way, and the extra degree of freedom can be deemed
to dynamic and mimic cold dark matter. The mimetic model
could be transformed into a Lagrange multiplier formula-
tion with a potential of the mimetic scalar field. With these
methods, one can obtain a viable theory confronted with the
cosmic evolution. It was pointed out that this model can also
drive the late-time acceleration and early-time inflation [33].
In Ref. [34], the authors pointed out that the mimetic gravity
is free of ghost instability only for a positive energy den-
sity. Then, Chaichian et al. proved that the mimetic gravity
based on tensor–vector theory or tensor–vector–scalar the-
ory is free of ghost instabilities [35]. For more recent works
about mimetic gravity, see Refs. [36–50].

On the other hand, since the brane world theory can
address the hierarchy problem [51,52] and the cosmological
constant problem [53] successfully, it has attracted more and
more attention in the last decades. In the brane world theory,
our observable universe is supposed as a 3-brane embedded
into a higher-dimensional bulk. The elementary particles in
the standard model should be localized on the brane and grav-
ity can propagate into the extra dimension. According to the
energy distribution of the brane along the extra dimension,
brane models can be divided into thin brane models and thick
brane models. For a thin brane model, the energy distribution
is a Dirac delta function [54–62]. For a thick brane model,
the energy distributes along the extra dimension but local-
izes around some narrow regions [63–78]. Figure 1 shows
the shapes of thin brane [52] and thick brane [79].

It is known that there is no dynamic for a thin brane.
For investigating the dynamical generation of a brane and
its internal structure, thick brane models were presented. A
typical mechanism is that the thick brane can be generated
by one or more background scalar fields coupled with grav-
ity. It means that the features of the background scalar fields
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Fig. 1 The shapes of energy distributions of thin and thick branes

can influence the construction of the thick brane, namely,
different scalar field can generate thick brane with different
structure.

Note that, once we consider the brane world theory, a
series of massive particles beyond the standard model of par-
ticle physics will be predicted, e.g., massive gravitons and
massive vector particles. These massive particles will cor-
rect the forms of the four-dimensional Newtonian potential
and Coulomb potential. For example, a massive graviton will
contribute a correction term to the four-dimensional Newto-
nian potential with a form of Yukawa potential, and the cor-
responding total contribution depends on the mass spectrum
of the gravitons.

Furthermore, many researches on the brane world theory
show that the effective potentials, where the KK graviton
modes trapped in, depend on the structures of brane world.
It means that the different brane world structures will lead to
different mass spectra of the KK gravitons, and these differ-
ences will eventually be reflected in the correction behavior
to the Newtonian potential.

For the mimetic gravity, the conformal degree of freedom
can be separated as a scalar field which can be considered
as the cold dark matter, and the conformal formulation can
also be transformed into a Lagrange multiplier formulation. It
turns out that the mimetic gravity not only provides an extra
degree of freedom, but also modifies the equations of the
motion. Recently, in Refs. [80,81], the authors promoted the
four-dimensional mimetic gravity into the brane world the-
ory and constructed some thick branes with richer inner struc-
tures which are excluded in the high-dimensional general rel-
ativity. Besides, such thick branes with different structures
result in different characters of the gravitational resonances
and the correction to the Newtonian potential. Based on their
results, we can see that the properties of the mimetic grav-
ity can relax the constraint for constructing a thick brane, it
means that the thick branes with richer structures can be more
easily constructed in the high-dimensional mimetic gravity.
Combining the properties of the mimetic gravity, we can con-
sider the influence of the thick brane structures on the cor-
rection to the four-dimensional Newtonian potential by con-
structing three thick brane models with different structures

in the higher-dimensional mimetic gravity. Then, by combin-
ing the current gravitational inverse-square law experiments
[82–84], we can obtain the fundamental energy of the brane
world in mimetic gravity.

The organization of this paper is as follows. In Sect. 2,
we briefly introduce the mimetic theory in the brane world
scenario and obtain the corresponding thick brane solutions.
Then, we analyze the stability of the brane solutions under the
tensor perturbations and check the localization of the mass-
less graviton in Sect. 3. After that, we derive the correspond-
ing correction to the four-dimensional Newtonian potential,
for which the final constraints about the mimetic thick brane
are given in Sect. 4. Finally, the conclusion and discussion
are given in Sect. 5.

2 The model

In this section, we consider the five-dimensional mimetic
gravity with the following action

S =
∫

d5x
√−g

(
R

2κ2
5

+ λ
[
∂Mφ∂Mφ −U (φ)

]
− V (φ)

)
,

(1)

where κ2
5 = 1/M3∗ with M∗ being the five-dimensional fun-

damental scale and λ is a Lagrange multiplier. For simplicity,
we chose the natural unit with κ2

5 = 1.
In this paper, we set the thick brane to be static and flat.

In the brane world theory, the thick brane can be gener-
ated by a five-dimensional background scalar field. On the
one hand, for a static thick brane, the background filed φ

should not be a function of time. On the other hand, for a
flat brane, the four-dimensional Lorentz symmetry should
be satisfied on the brane. Therefore, the scalar field φ should
only depend on the extra dimension, which means that there
is no kinetic energy term of φ and the mimetic thick brane
is free of ghost instability. In such setup, we can see that
U (φ) = gMN ∂Mφ∂Nφ = e−2A

(
∂zφ

)2
> 0.

By varying the action (1) with respect to gMN , φ, and λ,
respectively, we get the equations of motion (EoM) as

GMN + 2λ∂Mφ∂Nφ − LφgMN = 0, (2)

2λ�(5)φ + 2gMN ∂Mλ∂Nφ + λ
∂U

∂φ
+ ∂V

∂φ
= 0, (3)

gMN ∂Mφ∂Nφ −U = 0. (4)

Here, Lφ = λ
[
gMN ∂Mφ∂Nφ −U

] − V (φ), and the five-
dimensional d’Alembert operator is defined as �(5) =
gMN∇M∇N . The Latin indices (M, N = 0, 1, 2, 3, 5) stand
for the five-dimensional coordinate indices, and the Greek
indices (μ, ν = 0, 1, 2, 3) represent the brane coordinate
indices.
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We consider the following brane world metric with four-
dimensional Poincaré invariance

ds2 = e2A(z)
(
ημνdx

μdxν + dz2
)
, (5)

where eA(z) or A(z) is called as the warp factor. Then, Eqs.
(2)–(4) can be rewritten as

e−2A(3A′2 + 3A′′) + V (φ) + λ
(
U − e−2Aφ′2) = 0, (6)

6A′2 + e2AV (φ) + e2Aλ
(
U + e−2Aφ′2) = 0, (7)

λ

(
6A′φ′ + 2φ′′ + e2A ∂U

∂φ

)
+ 2λ′φ′ + e2A ∂V

∂φ
= 0, (8)

e−2Aφ′2 −U = 0, (9)

where the prime denotes the derivative with respect to the
extra-dimensional coordinate z. The above equations are not
independent of each other. Combining them we get three
largely simplified equations for λ, U (φ), and V (φ)

λ = 3(A′′ − A′2)
2φ′2 , (10)

U (φ) = e−2Aφ′2, (11)

V (φ) = −3e−2A(A′2 + A′′). (12)

Generally, in order to get the solutions of thick brane,
we can use the super-potential approach by setting a related
variable for the brane model with two independent equations
and three variables, more details can refer Refs. [64,85]. In
this model, we get three independent equations, and five vari-
ables e.g, A(z), φ, λ, V (φ), andU (φ). Inspired by the super-
potential approach, we need to constraint the two variables
of them. Note that all the expressions of λ, U (φ), and V (φ)

depend on the warp factor A(z) and the mimetic field φ(z).
So, once A(z) and φ(z) are given, the profiles of λ,U (φ), and
V (φ) could be determined. Besides, we can see that only the
variable A(z) can affect the perturbed tensor equation (31).
On the one hand, there are no constraints on A(z) and φ(z)
from the equations of motion, so they can be chosen arbitrar-
ily in principle. However, on the other hand, a viable thick
brane world model should satisfy the minimal requirement,
namely, the localization of massless tensor mode (massless
graviton). Therefore, not all the choices of A(z) and φ(z) are
achievable. Here, we will consider three typical solutions.

2.1 Volcano (VO) type thick brane

Firstly, we consider the case of the warp factor eA(z) as a
power function of the extra-dimensional z, and the mimetic
field φ(z) is a kink function. The solutions can be given as

eA(z) = 1√
k2z2 + 1

, φ(z) = v

(
kz√

1 + k2z2

)γ

, (13)

where k is the scale parameter which controls the thickness of
the brane, γ is a positive integer, and v is a positive parameter
determining the limit of the scalar field. The corresponding
expressions of λ, U (φ), and V (φ) can be expressed as

λ = −3

2

(k2z2 + 1)γ

γ 2v2(k2z2)γ−1 , (14)

U (φ) = (kvγ )2Φ2−2/γ
(
Φ2/γ − 1

)2
, (15)

V (φ) = −3k2(3Φ2/γ − 1), (16)

where Φ = φ/v. Such brane solution will give a volcano
type effective potential of the tensor perturbations.

2.2 Pöschl–Teller (PT) type thick brane

Then, we come to the hyperbolic function form of the warp
factor eA(z) and a different kink form of the mimetic field
φ(z). The expressions of warp factor and mimetic field can
be given as

eA(z) = sech(kz), φ(z) = vtanhγ (kz), (17)

for which the other functions can be solved as

λ = −3 sinh2(2kz) tanh−2n(kz)

8γ 2v2 , (18)

U (φ) = (kvγ )2 Φ2−2/γ
(
Φ2/γ − 1

)
, (19)

V (φ) = 3k2
(
2Φ2/γ − 1

)
Φ2/γ − 1

. (20)

2.3 Harmonic oscillator (HO) type thick brane

Finally, we choose an exponential warp factor and a kink
mimetic field:

eA(z) = e−k2z2
, φ(z) = v

(
kz√

1 + k2z2

)γ

. (21)

The specific expressions of λ, U (φ), and V (φ) are solved as
follows

λ = −3
(
2k2z2 + 1

) (
k2z2 + 1

)γ+2

γ 2v2
(
k2z2

)γ−2 , (22)

U (φ) = (kvγ )2Φ2−2/γ
(

1 − Φ2/γ
)3

e
2Φ2/γ

1−Φ2/γ , (23)

V (φ) = 6k2
(
3Φ2/γ − 1

)
Φ2/γ − 1

e
2

Φ−2/γ −1 . (24)

The shapes of these three kinds of warp factors and the
two kinds of mimetic scalar fields are shown in Fig. 2. Fig-
ure 2a and b show that if γ is an odd integer, the mimetic
scalar field would be a single-kink (the black dashed lines)
for γ = 1, and it will become a double-kink (the red lines)
with γ ≥ 3. Besides, if γ is an even integer, the scalar field
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(a) (b) (c)

Fig. 2 The shapes of the mimetic field φ(z), and the warp factors eA for all cases

(a) (b) (c)

Fig. 3 The shapes of the scalar potentialsU (φ) and V (φ) from the action, and the equivalent potential Vequ for the canonical version of the mimetic
field

will be not a kink configuration (the blue dashed line) any-
more. For a general thick brane model, the background scalar
field should be a kink configuration. While, in mimetic thick
brane model, due to the Lagrange multiplier which can cause
excess degrees of freedom, the non-kink scalar field can also
generate a thick brane. Although these solutions have the
same limit of eA|z→∞ → 0, they differ with the asymptotic
behaviors at infinity of the extra dimension, with the attenu-
ation intensity HO > PT > VO (see Fig. 2c).

Figure 3 shows that for the three cases of the thick brane
solutions, the potentialsU (φ) andV (φ) are everywhere well-
defined and extend along the extra dimension with different
behaviors. From Fig. 3a, we can see that the potentials U for
the VO and PT cases extend along the extra dimension but
localize around z = 0. For the HO case, the potential U dis-
tributes along the extra dimension as a harmonic-oscillator-
like potential. For the potential V of the VO case, Fig. 3b
shows that it tends to a constant at z → ±∞ (the black dashed
line). While, for the PT and HO cases, we have V → −∞ at
z → ±∞, which seems indicate an instability of the scalar
profile. However, it should be noted that the scalar field is
not canonical. By combining the process from Eq. (24) to
Eq. (29) in Ref. [86], we can rewrite the EoM of the scalar
field into a canonical form as

φ̂′′ + 3A′φ̂′ = ∂Vequ

∂φ̂
, (25)

where

φ̂ =
∫

e3( Â−A)φ′dz, (26)

Â =
∫

A′A′′ − 3A′3 + A′′′

3
(
A′2 − A′′) dz, (27)

Vequ =
∫

e6( Â−A)
(U ′

2
+ V ′Ue2A

3(A′′ − A′2)

)
dz. (28)

Figure 3c shows the shapes of the equivalent potential Vequ

for the three cases. From Fig. 3c, we can see that there are no
singular boundary behaviors at z → ±∞ for the three cases,
which means that the profile of the background scalar field
is stable for all the cases.

3 linear perturbations and localization

In this section, we consider the linear perturbations of the
metric and their localization. It is well known that the linear
perturbations of a background metric can be decomposed
into three parts: the transverse-traceless tensor modes, the
scalar modes, and the transverse vector modes (the so-called
scalar–vector–tensor (SVT) decomposition), for which the
three kinds of modes decouple with each other [87].

According to the Bardeen formalism for metric fluctua-
tions [88], the extra dimension part of the metric fluctuations
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can be expressed as a scalar mode. In the brane world theory,
the linear field equations of the tensor mode, vector mode,
and scalar mode of the perturbation of the background space-
time are decoupled. The localized tensor zero mode of the
perturbation describes the four-dimensional massless gravi-
ton which reduces the four-dimensional Newtonian potential.
While the localized scalar zero mode of the perturbation will
result in the fifth force. It has been shown in Ref. [89] that
for the brane world model in mimetic gravity, the scalar zero
mode can not be localized on the brane and has no contri-
bution to the four-dimensional effective potential. Therefore,
there is no additional fifth force. Thus we can only consider
the tensor zero mode in this paper, and focus on the influence
of the structure for thick brane on the correction to the New-
tonian potential. By combining the short-range experiments,
we obtain the constraint of the mimetic gravity. For the tensor
perturbations, it can be set as follows

ds2 = e2A(z)
[
(ημν + hμν)dx

μdxν + dz2
]
. (29)

Here, hμν = hμν(xμ, z) depends on all the coordi-
nates. Combining the specific perturbed metric (29) and the
transverse-traceless (TT) condition, i.e., ∂μhμν = ημνhμν =
0, we can simplify the perturbed Ricci tensor as

δRμν = −1

2

(
�(4) + ∂2

z + 2A′′ + 6A′2 + 3A′∂z
)
hμν, (30)

δR55 = 0, (31)

where the four-dimensional d’Alembertian is defined as
�(4) ≡ ημν∂μ∂ν . Besides, the tensor perturbations of the
equations of motion (2) can be expressed as the following
form

δRMN = 2

3
δgMN (λU + V ). (32)

Then, by combining Eqs. (10), (11), (12), and the perturbed
metric (29), the right hand side of Eq. (32) can be simplified
as
2

3
δgμν(λU + V ) = −(A′′ + 3A′2)hμν, (33)

2

3
δg55(λU + V ) = 0. (34)

Therefore, the perturbed tensor equation can be obtained as

−1

2
�(4)hμν − 1

2
h′′

μν − 3

2
A′h′

μν = 0. (35)

Next, we make a KK decomposition with the following
form as

h̃μν =
∑

ε(n)
μν (x)Ψ̃n(z), (36)

where the polarization tensor εμν also satisfies the TT con-
dition ∂μεμν = ε

μ
μ = 0. Bringing the KK decomposi-

tion into the perturbed tensor equation (35), we can get a

four-dimensional massive Klein–Gordon equation for the
polarization tensor εμν(x) and an equation for the extra-
dimensional part Ψ̃n(z):(

�(4) − m2
n

)
ε(n)
μν (x) = 0, (37)

−Ψ̃ ′′
n (z) − 3A′Ψ̃ ′

n(z) = m2
nΨ̃n(z). (38)

Furthermore, by redefining the extra dimensional part as

Ψ̃n(z) = e− 3
2 AΨn(z), we obtain a Schrödinger-like equation

for the new function Ψn(z) of the extra-dimensional part:

− ∂2
z Ψn(z) + Vt (z)Ψn(z) = m2

nΨn(z), (39)

with the effective potential Vt (z) given by

Vt (z) = 3

2
A′′ + 9

4
A′2. (40)

We should note that with this effective potential (40),
the above Schrödinger-like equation can be rewritten as
HΨn(z) = m2

nΨn(z), where the Hamiltonian operator is
given as H = Q+Q, with Q = −∂z + 3

2∂z A. Since the
eigenvalue of the Hamiltonian operator H is positive defi-
nite, there do not exist negative m2

n modes, namely, there are
no tachyonic tensor modes.

The abstract expression of the effective potential Vt (z)
shows that it only depends on the warp factor A(z), namely,
different asymptotic behaviors of the warp factor A(z) can
result in different properties of the effective potentials. We
will discuss the properties of the effective potentials with the
warp factors A(z) given in Sect. 2.

Shapes of three kinds of effective potentials Vt (z) are
shown in Fig. 4. From Fig. 4a, we can see that the effective
potential Vt (z) of case VO is a volcano-like potential with
a single potential well, and the potential well becomes nar-
rower and deeper with the parameter k increases. The asymp-
totic behavior of the volcano-like potential shows that there
are no other bound states except the zero mode, and the mass
spectrum of the massive excited states is continuous from
mn > 0. Figure 4b describes the shape of effective potential
Vt (z) for case PT. It shows that the second warp factor A(z)
leads to a PT potential behavior as Vt (z)|z→±∞ = 9k2/4.
The scale parameter k determines the width and the depth of
the potential well. For this PT effective potential, there are
two bound states, i.e., the zero mode with m0 = 0 and the
first excited state with m1 = √

2k, and the mass spectrum
is also continuous from mn ≥ √

2k. For case HO, Fig. 4c
shows that the effective potential Vt (z) has the behavior of a
harmonic-oscillator potential with the parameter k controls
the the mass spectrum. For the harmonic-oscillator potential,
all of the states are bound states with mass mn = √

6nk, the
index n means n−th eigenstate. These different potentials
lead to different mass spectra of massive gravitons, which
can result in different corrections to the Newtonian poten-
tial.
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At the end of this section, we consider the zero mode of
the tensor perturbations by setting m2

n = 0 in Eq. (39). It is
easy to get the solution of the zero mode:

Ψ0(z) ∝ e
3
2 A(z). (41)

One can verify that the zero modes for the above three dif-
ferent types of warp factors are square-integrable and hence
all the zero modes are localized around the brane. Thus, the
four-dimensional Newtonian potential can be realized on the
brane.

4 The correction to Newtonian potential

In the above section, we have considered the tensor pertur-
bations and obtained the Schrödinger-like equation (39), we
also demonstrated that the zero mode can be localized on the
brane for all the cases to recover the four-dimensional grav-
ity. In this section, we consider the massive KK modes of the
gravitons which can cause the correction to the Newtonian
potential in four-dimensional theory.

In the thick brane scenario, the energy density of the
brane has a distribution along the extra dimension. Therefore,
for simplicity, Refs. [63,90–93] considered the gravitational
potential between two point-like sources of mass M1 and M2

located at the origin of the extra dimension, i.e., z = 0. We
can express the gravitational potential between two masses
on the brane as

V (r) = − M1M2

M2
pl

1

r
− M1M2

M3∗

∑∫
n �=0

e−mr

r
|Ψn(0)|2

= −M1M2

M2
pl

1

r

(
1 + M2

pl

M3∗

∑∫
n �=0

Δu(r)
)
, (42)

where Mpl and M∗ are the effective four-dimensional Plank
scale and the five-dimensional fundamental scale, respec-
tively.

∑∫
n stands for summation or integration (or both) with

respect to n, depending on the respective discrete or contin-
uous character of the massive KK modes. Besides, we set
Δu(r) = e−mr |Ψn(0)|2.

We can focus on the curvature term of the action (1) from
which we will derive the effective four-dimensional scale
Mpl :

M3∗
∫

d5x
√−gR ⊃ M2

pl

∫
d4x

√
−g(4)(xμ)R(4)(xμ).

(43)

Therefore, the relation between the effective Planck scale
Mpl and the fundamental scale M∗ is given by

M2
pl = M3∗

∫ +∞

−∞
dz e3A. (44)

So, the gravitational potential between two masses on the
brane can be simplified as

V (r) = −M1M2

M2
pl

(1

r
+ ΔV (r)

)

= −M1M2

M2
pl

1

r

(
1 + ΔU (r)

)
, (45)

ΔU (r) =
( ∫ +∞

−∞
dz e3A

)∑∫
n �=0

Δu(r), (46)

whereΔV (r) = 1
r ΔU (r) is the correction term to the Newto-

nian potential, ΔU (r) the relative correction term and Δu(r)
the correction factor. Next, we calculate the corrections to the
Newtonian potential for the three cases.

Case VO: We substitute the warp factor (13) into
the Schrödinger-like equation (39), and get the reduced
Schrödinger-like equation

− ∂2
z Ψn + 3k2

(
5k2z2 − 2

)
4

(
k2z2 + 1

)2 Ψn = m2
nΨn . (47)

To solve the above equation, we consider the behavior of the
effective potential at infinity of the extra dimension:

V (z) ∼ 15

4z2 . (48)

The approximate solution is given by a linear combination
of Bessel functions as

Ψn(z) = √
z
(
C1J2(mnz) + C2Y2(mnz)

)
, (49)

where C1 and C2 are arbitrary constants, J2(mnz) and
Y2(mnz) are the first and second Bessel functions, respec-
tively. In Ref. [63], the authors calculated the expression of
Ψn(0):

Ψn(0) ∼
(mn

k

)1/2
. (50)

So, the correction factor Δu(r) to the Newtonian potential
with a massive graviton mn is

Δu(r) = e−mnr |Ψn(0)|2 = mne−mnr

k
. (51)

From Fig. 4a, we can see that the spectrum of the massive
gravitons is continuous. Therefore, the relative correction
term to the Newtonian potential resulted by all the massive
gravitons is

ΔU (r) =
( ∫ +∞

−∞
dz e3A

) ∫ ∞

0
dmΔu(r) = 2

k2r2 . (52)

The correction to the Newtonian potential for case VO is
the same form as that of the Randall–Sundrum brane model
ΔV (r) = 1

r ΔU (r) ∼ 1/k2r3.
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800

(a) (b) (c)

Fig. 4 The effective potentials Vt (z) of the tensor perturbations for all cases

Case PT: For this case with the warp factor (17), the cor-
responding effective potential turns into

Vt (z) = 9

4
k2 − 15

4
k2sech2(kz), (53)

and the Schrödinger-like equation can be expressed as

(
− ∂2

z − 15

4
k2sech2(kz)

)
Ψn = EnΨn, (54)

where En = m2
n − 9

4k
2. It can be shown that there are two

bound states in this potential. The first one is the ground state
Ψ0(z) with E0 = − 9

4k
2, and it is in fact the zero mode since

the mass is zero: m0 = 0. The second one is the first excited
state Ψ1(z) with E1 = −k2/4, which represents a massive
graviton with mass m1 = √

2k. The two bound states wave
functions are

Ψ0(z) = C0sech3/2(kz), (55)

Ψ1(z) = C1sinh(kz)sech3/2(kz). (56)

Here C0 and C1 are the normalization constants. We should
note that Ψ1(0) = 0 which means that the first excited state
does not contribute to the correction of the Newtonian poten-
tial.

The continuous spectrum starts at En = 0, corresponding
to m2

n ≥ 9k2/4. These excited states asymptotically turn into
plane waves, and represent delocalized KK massive gravi-
tons. Their explicit expressions can be given in terms of the
associated Legendre functions of the first kind:

Ψn(z) =
∑
±

Cn±P±σ
3/2 tanh(kz), (57)

where Cn± are mn-dependent parameters and

σ =
√

9

4
k2 − m2

n . (58)

In order to calculate the correction from the continuous
modes, we need to compute the normalization constants Cn±.
According to Refs. [93–95], we can reduce the constants Cn±

as

Cn+ = Cn− = 1√
2π

|Γ (1 + σ)|, (59)

where Γ (1 + σ) is the gamma function. So, Ψn(0) can be
expressed as the following form

Ψn(0) = Γ (1 − σ)

Γ (− 1
4 − σ

2 )Γ ( 7
4 − σ

2 )
, (60)

and for a massive graviton Δu(r) is

Δu(r) = e−mnr |Ψn(0)|2

= e−mnr | Γ (1 − σ)

Γ (− 1
4 − σ

2 )Γ ( 7
4 − σ

2 )
|2. (61)

Although we have obtained the parsed expression of the New-
tonian potential for a massive graviton, it is cumbersome for
the final result to integrate (61) directly. So, our approach
is to use |Ψn(0)|2 as a fitting function with its approximate
behavior, i.e.,

|Ψn(0)|2 ≈ a1 tanh
(
a2(m − m0)

) + a3, (62)

where a1 = 26903
100000 , a2 = 13

40 , a3 = 4937
100000 , and m0 = 3k/2.

The relative correction to the Newtonian potential for all the
massive gravitons is

ΔU (r) =
∫ +∞

−∞
dz e3A

∫ ∞
3
2 k

dmΔu(r)

= b1
πe− 3

2 kr

kr

[
− b2krψ

(0)(b1kr) − b3

+b2krψ
(0)

(
b1kr + 1

2

)]
. (63)

where b1 = 10
13 , b2 = 26903

100000 , b3 = 35711
250000 , and ψ(0)(x) is the

logarithmic derivative of the Gamma function: ψ(0)(x) ≡
d
dx ln Γ (x). Note that the term in the square bracket of (63)
is almost a constant, we can get an approximate expression
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of the relative correction term of the Newtonian potential:

ΔU (r) ∝ e− 3
2 kr

kr
. (64)

Case HO: The corresponding Schrödinger equation (39)
for case HO can be expressed as the following form

−∂2
z Ψn + (9k4z2 − 3k2)Ψn = m2

nΨn . (65)

The normalized solution is given by

Ψn = 4

√
3

π

√
1

n!2− n
2 e− 3

2 k
2z2

Hn

(√
3kz

)
, (66)

where n is a positive integer and Hn is Hermite polynomial.
The corresponding mass spectrum is mn = k

√
6n, which

means that the mass gap decreases with the mass. The expres-
sion of wave function Ψn at z = 0 can be rewritten as

Ψn(0) =
4
√

3π2n/2

√
n! Γ ( 1−n

2

) . (67)

Then, Δu(r) for a massive graviton is

Δu(r) = e−mnr |Ψn(0)|2

= e−k
√

6nr

√
3π2n

n!Γ 2
( 1−n

2

) . (68)

Note that Δu(r) = 0 for an odd n. Therefore, the odd modes
of the massive gravitons do not contribute to the correction of
the Newtonian potential. In order to calculate the correction
to the Newtonian potential for all the massive gravitons, we
should do some tedious but simple steps. The Δu(r) for this
case can be rewritten as

Δu(r) = e−mnr |Ψn(0)|2 = e−2k
√

3ar

√
3π22a

(2a)!Γ ( 1−2a
2 )2

≈ e−2k
√

3ar

√
3

π
√
a

,

(
a = n/2 = m2

n

12k2

)
, (69)

However, it is cumbersome to sum Δu directly. From Fig.
5, we can see that

∑
a Δu can be fitted by

∫
Δuda. For

simplicity, we replace sum with integration and obtain the
following approximate result

ΔU (r) =
∞∑
a=1

Δu(r) ≈
∞∑
a=1

e−2k
√

3ar

√
3

π
√
a

≈
∫ ∞

1
e−2k

√
3ar

√
3

π
√
a
da = e−2

√
3kr

πkr
. (70)

Figure 6 shows the correction factor Δu of the massive
gravitons (plot as Δu1/3) and the relative correction terms
ΔU contributed by all the massive gravitons for the three
cases, respectively. From Fig. 6a, we can see that the cor-
rection factor Δu is smaller for larger graviton mass, and the

Fig. 5 Plot of the correction term ΔU (kr) for case HO. The dashed
black line is the result of

∑10000
a=1 Δu, and the blue line the result of∫ 10000

a=1 Δu

(a) (b)

Fig. 6 The correction factor Δu of the massive gravitons (plot as
Δu1/3) and the relative correction ΔU for the three cases. The parameter
kr in (a) is set as kr = 1

attenuation trends of the three cases are slightly different. On
the one hand, the different forms of |Ψn(0)|2, the square of
the massive graviton mode on the brane, are given by

|Ψn(0)|2 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mn/k, case VO;
a1 tanh

(
a2(mn − m0)

) + a3, case PT;√
3π2n

n! Γ
(

1−n
2

)2 , n = m2
n

6k2 , case HO.

(71)

On the other hand, for different models, the mass range of the
massive gravitons which dominate the correction to the grav-
itational potential are different, i.e., (0 ∼ ∞), [3k/2 ∼ ∞),
[2√

3k ∼ ∞) for the three cases, respectively. Note that for
case VO and case PT the mass spectra are continuous, while
the mass spectrum of case HO is discrete. These differences
lead to different forms of the relative correction terms ΔU ,
which are shown in Fig. 6b. From Fig. 6b, we can see that on
small scales ΔU > 1, which means that the correction term
dominates the Newtonian potential, and on large scales the
relative correction term decays to zero rapidly. That is to say,
the effect of all massive gravitons on the Newtonian potential
can be ignored on large scales. We note that the correction
term ΔU of case VO is more remarkable than the others.

So far, we have obtained the expressions of the three cor-
rections to the Newtonian potential. Then, we can obtain the
constraints on the parameters of our models by combining the
latest tests of the gravitational inverse-square law [82–84].
In these experiments, the authors considered the following
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Table 1 Constraints of the scale
parameter k and the
fundamental M∗ for the three
cases at r = 210µm

Model ΔU r̃ kmin(eV) M∗ Mmin∗ (TeV)

Case VO 1/k2r2 14.1 6.7 × 10−3 k
2 M

2
pl 7.9 × 105

Case PT e− 3
2 kr

kr 1.6 7.4 × 10−4 2k
π
M2

pl 4.2 × 105

Case HO e−2
√

3kr

πkr 1.0 4.8 × 10−4 √
3/πkM2

pl 4.1 × 105

Table 2 Constraints of the scale
parameter k and the
fundamental M∗ for the three
cases at r = 52µm

Model ΔU r̃ kmin(eV) M∗ Mmin∗ (TeV)

Case VO 1/k2r2 4.5 8.6 × 10−3 k
2 M

2
pl 8.6 × 105

Case PT e− 3
2 kr

kr 0.7 1.4 × 10−3 2k
π
M2

pl 5.1 × 105

Case HO e−2
√

3kr

πkr 0.5 1.0 × 10−3 √
3/πkM2

pl 5.3 × 105

four-dimensional gravitational potential

V (r) = VN (r)
[
1 + α exp(−r/λ)

]
, (72)

where the parameter r is the separation between two masses,
λ and α are the length scale and strength of the Yukawa type
correction. As shown in Refs. [83,84], the corresponding
values of α, λ, r are

{α, r, λ} = {1, 210µm, 48µm}, (73)

{α, r, λ} = {0.45, 52µm, 38.6µm}, (74)

and the magnitudes of the corresponding Yukawa correction
term are

αe−r/λ ∼
{

0.01, r = 210µm,

0.1, r = 52µm.
(75)

Note that, the magnitude of the correction term of the grav-
itational potential should be independent of its form. There-
fore, it is natural to set the same magnitudes for the correction
terms of our models when we choose the same separations
as the separations in Refs. [83,84]. Obviously, the Yukawa
type correction α exp(−r/λ) can be considered as a form of
ΔU in our models. To get the constraints on the parameters,
we can set that the upper limit of the correction term ΔU is
the same with the magnitude of αe−r/λ, which means that
ΔU < 0.01 for r = 210µm or ΔU ≤ 0.1 for r = 52µm.

By using the above assumptions, we get the critical points
with ΔU (r̃) = 0.01 with the separation r = 210µm [83]
and ΔU (r̃) = 0.1 for r = 52µm [84], where r̃ = kr .
After calculation, we get the critical values of r̃ for the three
cases. Note that the relative correction term ΔU (r̃) decreases
monotonically with r̃ , in other words, to make sure ΔU is
less than the critical points for the test experiments, the scale
parameter k should satisfy the relation k > r̃/r . Besides, we
can get the constraints on the five-dimensional fundamental
scale M∗ based on Eq. (44).

We give the constraints on the parameter k and the funda-
mental scale M∗ of our three models in Tables 1 and 2. Com-
paring these results, we can see that the constraints of param-
eters k and M∗ based on the experimental data in Ref. [84]
are stronger than the constrains by Ref. [83]. Here we should
note that the specific correction to the Newtonian potential
depends on the structure of brane, namely the warp factor
A(z) of the thick brane model. Combining Eqs. (44), (71),
and Fig. 6, we can see that the warp factor not only affects
the mass spectrum of massive gravitons and the expression of
|Ψn(0)|2, but also affects the relation between Mpl and M∗.
In other words, the specific limits of k and M∗ are also model-
dependent. Therefore, comparing our three thick brane mod-
els, the limits of k and M∗ of case VO are stricter than other
two cases for both the two experimental data. Then, we can
get the conclusion that the critical value of the scale parameter
k is at least 10−4eV, and the five-dimensional fundamental
scale M∗ should be at least 105TeV.

5 Conclusion

In this paper, we considered the thick brane model gener-
ated by a mimetic scalar field with the Lagrange multiplier
formulation. With the existence of excess degrees of free-
dom, we constructed three background solutions. Although,
these three solutions have the same limit of eA|z→∞ → 0,
the asymptotic behaviors of these three cases are different
with HO > PT > VO. These different asymptotic behaviors
cause different effective potentials of tensor perturbations,
which lead to different corrections to the Newtonian poten-
tial by the massive KK gravitons.

We got the specific expressions of the effective poten-
tials for the three cases. They are volcano-like potential, PT
potential, and harmonic oscillator potential. We showed that
all the solutions are stable under the tensor perturbations and
the zero modes of tensor perturbations can be localized on the
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branes. Therefore, the four-dimensional Newtonian potential
can be recovered.

We also calculated the corrections to the Newtonian poten-
tial for the three cases. For case VO, the relative correction
term ΔU ∝ 1/(kr)2 is the same as the RS model [52].
Although, the relative correction terms ΔU of case PT and
case HO have the same form with ΔU ≈ exp(−βkr)/kr ,
the specific values β = −3/2 and β = −2

√
3 will lead to

big difference on a small scale. For the corrections to the
Newtonian potential of these three cases, the results show
that the four-dimensional Newtonian potential can be recov-
ered on large scales. On a small scale, the three cases have
different behaviors, the correction to the Newtonian poten-
tial of case VO is more pronounced than the other two cases.
Combining the specific correction terms to the Newtonian
potential for these three models and the latest experiments
of the gravitational inverse-square law [83,84], we obtained
the constraints that the scale parameter k is at least 10−4eV,
and the corresponding five-dimensional fundamental scale
M∗ should be at least 105TeV.
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