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Proper-time evaluation of the effective action: Unequal masses in the loop
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The Fock-Schwinger proper-time method is used to derive the effective action in the field theory with the
chiral U(3) x U(3) symmetry explicitly broken by unequal masses of heavy particles. The one-loop
effective action is presented as a series in inverse powers of heavy masses. The first two Seeley-DeWitt
coefficients of this expansion are explicitly calculated. This powerful technique opens a promising avenue
for studying explicit flavor symmetry-breaking effects in the effective field theories.
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I. INTRODUCTION

The heat kernel technique [1] was introduced to
quantum theory in works of Fock [2,3] and later pushed
forward by Nambu [4] and Schwinger [5]. In combination
with the background field method, this allowed DeWitt to
develop the manifestly covariant approach to gauge field
theory [6], and quantum gravity [7]. The method allows
the essentially nonperturbative and nonlocal extensions
[8-11]. It has been widely used in QCD to construct
effective meson Lagrangians [12,13], in chiral gauge
theories to study chiral anomalies [14], in cosmology to
calculate geometric entropy [15], in QED to find Casimir
energies and forces [16], etc.

In all above-mentioned cases and in many others [17], it
becomes necessary to calculate the determinant of a
positive-definite elliptic operator that describes quadratic
fluctuations of quantum fields in the presence of some
external or background fields and which in a compact form
contains all the information about the one-loop contribution
of quantum fields. The result is an asymptotic expansion for
the effective action of the theory in powers of the proper
time with Seeley-DeWitt coefficients a,,(x, y). These coef-
ficients are polynomials in the background fields and
describe, in the coincidence limit y — x, the local vertices
of the corresponding effective Lagrangian. It is remarkable
that each term of the expansion is invariant under the action
of the group of the internal symmetry, if the theory
possesses this symmetry. This follows from the general
covariance of the formalism.
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When quantum fields have large equal masses m, it is
easy to resort to an expansion in the inverse powers of
mass, which is valid when all background fields and their
derivatives are small compared to the mass of the quantum
field. In this case, the asymptotic coefficients a, do not
change. Such long wavelengths (1> 1/m) expansion
allows one to obtain an action that takes into account
effectively the leading low-energy effect of virtual heavy
states. This scenario is realized in theories with sponta-
neously broken symmetry, or in the theories with a large
bare mass. A typical example of the first type is the
Nambu—IJona-Lasinio (NJL) model [18,19], where ground
state in the strong-coupling regime is found to be separated
by a gap from the excited states (quasiparticles), which are
identified with nucleons. Reinterpreting nucleons as
quarks, one obtains a low-energy meson action from
one-loop quark dynamics [20]. The proper-time method
is especially useful here [12,13]. Examples of the second
type arise under extension of some effective field theory X
with symmetry group G to the other effective theory X',
when X’ contains heavy degrees of freedom belonging to
some representation of G. At present, such theories are
being actively studied in the context of extending the
standard model of electroweak interactions [21].

In realistic models one is often confronted with the
difficulty that the flavor symmetry is broken by large
unequal masses M = diag(m, m,, ..., m f). In this case the
complete factorization of M in the heat kernel is impossible
because M does not commute with the rest of an elliptic
operator. The consequence is that the Seeley-DeWitt
coefficients depend in a complex way on both the fields
and the mass-dependent constants of their interactions. The
treatment of such case is known to be an onerous task,
especially when both Bose and gauge fields are present in
the elliptic operator [22-24].

Recently [25,26], a new algorithm based on the proper-
time method has been proposed for deriving the effective
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action in a theory with heavy virtual fermions (or bosons)
of unequal masses belonging to some representation of the
symmetry group G. These short papers contain the main
idea and the final result. Nontrivial calculation details have
been omitted due to their complexity. The purpose of the
present contribution is to supply all necessary details of
such nontrivial calculations, without which it is difficult to
be convinced of the validity of the previously stated results.

The new algorithm generalizes the standard large mass
expansion of the heat kernel to the case of unequal masses
by the formula

e~ IMPHA) — p=tM? [1 + i(_l)nfn(t’A)] ’ (1)
=1

where M = diag(m,, m,, mf) is a diagonal mass
matrix; ¢ is the proper-time parameter; the expression in
the square brackets is the time-ordered exponential
OE[-A](1) of A(s) = e Ae™M | and A is a positive-
definite self-adjoint elliptic operator in some background
(its explicit form will be clarified later), accordingly

fn(t,A)—A dsl/) dsz...A ds,A(s1)A(s7)...A(s,).
(2)

If masses are equal, this formula yields the well-known
large mass expansion with standard Seeley-DeWitt coef-
ficients a,,(x, y) [14]. In fact, formula (1) is an extension of
the Schwinger method used to isolate the divergent aspects
of a calculation in integrals with respect to the proper time
[5,7] to the noncommutative algebra.

There is a simple heuristic argument that explains why
this formula is also relevant for describing the generalized
1/M series. Indeed, the 1/M expansion is known to be
valid when all background fields and their derivatives are

small compared to the mass of quantum fields. Therefore,

factoring ™™ one separates the leading contribution. The

remaining part of the heat kernel may be unambiguously
evaluated by expanding it in a power series in ¢ about r = 0.
As a consequence, the Seeley-DeWitt coefficients a,
receive corrections: a, — b, = a, + Aa,, where Aa,
vanish in the limit of equal masses.

Currently, there are two methods for deriving quantum
corrections induced by virtual states of unequal masses. In
[22-24], the heat kernel is evaluated on the basis of the
modified DeWitt Wentzel-Kramers-Brillouin (WKB) form.
This yields a different asymptotic series for the right-hand
side of Eq. (1), and, consequently, the different expressions
for Aa,. The approach proposed in [27-29] starts from
the formula (1), but afterwards an additional resummation of
the asymptotic series is applied. This essentially simplifies the
calculations, but changes the structure of the 1/M series. As a
result, one loses correspondence between a mass-dependent

factor at the effective vertex and a flavor content of the one-
loop Feynman diagram which generates the vertex. Here |
abandon this resummation.

The utility of the proper-time technique is that it reduces
the task of the large mass expansion to a simple algebraic
problem which requires less work than one needs for the
corresponding Feynman diagrams calculation in momen-
tum space. In the following, we consider a quite nontrivial
case of the chiral U(3) x U(3) symmetry broken by the
diagonal mass matrix M = diag(m,, m,, m3) to demon-
strate the power of the method. To find the two leading
contributions by (x, x) and b, (x, x) in the 1/M expansion of
the effective action, one requires to consider only four
terms of the series (1) that results in more than a hundred
effective vertices.

The effects of flavor symmetry breaking are currently
important in many physical applications: in studies of
physics beyond standard model to construct the low-energy
effective action by integrating out the heavy degrees of
freedom [21,30]; in two Higgs doublet models [31] to
address the problem of almost degenerate Higgs states at
125 GeV [32,33]; in the low-energy QCD to study the
SU(3) and isospin symmetry-breaking effects [34]. These
effects are known to be very important to explore the QCD
phase diagram [35], to study a formation of the strange-
quark matter [36,37], to study nuclear matter in extreme
conditions that arose in nature at the early stages of the
evolution of the Universe and in the depths of neutron stars
[38,39]. The method described below, in particular, can be
used for obtaining low-energy meson effective Lagrangian
in the framework of the NJL model, as an alternative to the
approaches developed in [13,40].

The paper is organized as follows. In Sec. II, we
formulate the method and present the basic steps required
to construct the desired 1/M expansion. Section III sets out
the necessary details related to the calculation of the first
two coefficients of the asymptotic series. In Sec. IV, we
present the effective Lagrangian describing the self-energy
and interactions of zero-spin and one-spin bosons in
Minkowski space-time induced by the intermediate one-
loop quark diagrams. A short summary and some conclud-
ing remarks are given in Sec. V. Many important technical
points related to our calculations are collected in six
appendixes.

II. PROPER-TIME EXPANSION

In this section we obtain the 1/M series of the effective
one-loop action in Euclidian space and explicitly single out
the structures necessary for calculating the first two
coefficients of this asymptotic expansion.

A. Determinant of the Dirac operator

The logarithm of the formal determinant of the self-
adjoint elliptic operator of the second order describes the
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one-loop radiative corrections to classical theory. In the
following, we are interested in the real part of the effective
action resulting from the calculation of the determinant of
the Dirac operator D in the background scalar s, pseudo-
scalar p, vector v,, and axial vector a, fields. The proper-
time method cannot be applied directly to fermions, since
the Dirac operator D is a first-order elliptic operator, and its
spectrum is unbounded both above and below. Instead, one
should consider the functional

dt i
Wg =1In | det DEl = —/ 2tptATI'( _IDL*DE>’ (3)
0

representing a real part of the one-loop effective action in
Euclidean space as the integral over the proper-time f.
Notice that the Hermitian operator D}D £ 18 a second-order
elliptic operator, unbounded above, so we can use the
proper-time method to regularize it precisely as for bosons.
The integral diverges at the lower limit; therefore, a
regulator p,, is introduced, where A is an ultraviolet
cutoff. Since we will carry out calculations in Euclidean
space (the subscript £ marks this), and the obtained result
will be analytically continued to Minkowski space, we will
adhere to certain rules of transition from one space to
another, which we collect in Appendix A.

For definiteness, suppose that one is dealing with the
effective action arising due to integration over light-quark
degrees of freedom. In this case, the Dirac operator D in
Euclidean four-dimensional space has the form

Dg = iyody — M + s + iysep. (4)
whered, = 0, + il'y, Ty = vy + ys5paq, a = 1,2,3,4. The
external fields are embedded in the flavor space through the
set of matrices 4, = (¢, 4;), where 4y = /2/3 and 4; are
the eight SU(3) Gell-Mann matrices; for instance,
s = S,44, and so on for all fields. The quark masses are
given by the diagonal matrix M = diag(m,, m,, ms) in the
flavor space. The symbol “Tr” denotes the trace over Dirac
(D) y matrices, color (¢) SU(3) matrices, and flavor (f)
matrices, as well as integration over coordinates of the
Euclidean space: Tr = tr; fd4xE, where I = (D, c, f). The
trace in the color space is trivial: it leads to the overall factor
N, = 3. The dependence on external fields in Dy after
switching to the Hermitian operator

DDy =M*-d*>+Y (5)
is collected in Y and the covariant derivative d,. In the
following we do not need an explicit expression for Y;
nevertheless, for completeness, we include this expression
in Appendix A.

If quarks were massless, the theory would have a global
U(3), x U(3) chiral symmetry. It is known, however, that
the ground state of QCD is not invariant under the action of

chiral group. As a result, the entire system undergoes a
phase transition accompanied by the appearance of a gap in
the fermion spectrum. Quarks get their equal nonzero
constituent masses.

Additionally, due to explicit breaking of chiral sym-
metry, realized through the mass terms of current quarks,
one can easily find that the inequality of current masses
after spontaneous breaking of chiral symmetry leads to the
inequality of constituent quark masses.

Thus, we arrive at a problem in which one needs to study
the properties of a system at large scales, i.e., one needs an
expansion of the effective action in the inverse powers of
large unequal masses of quarks:

( )jk_5 611{’ EE _6UE/ (6)

The matrix E; maps the point (u,d,s) of the three-
dimensional flavor space to the point («,0,0) if i =1, to
the point (0, d, 0) if i = 2, and to the point (0, 0, s) if i = 3.
Thus E; is an orthogonal projection onto the flavor space
which can be expressed through the A matrices:

1 1
E=4,=—F4+= /1 + —=1s, 7
1 \/6 0 3 2\/§ ()
By= Ay = ——dy—2as 4 ——12 (8)
2 = di\/g 0 2 3 2\/§ 8
1 1
Ey=4= %/10 —ﬁﬂs )

Notice also the following useful relations which are
important for our calculations. The first formula is a direct
consequence of the fact that the quark mass is given by the
diagonal matrix

3

M — Ze"mrgEi. (10)

i=1

The second formula reflects the projection property of the
E; matrices:

E,AE; = AjiE;j, (11)
where (E;;),,, = 8;n0;,, in particular, E;; = E;. Itis true for
any flavor matrix A whose entries are given by A;;. Note
that here and in the following we sum over repeated flavor
indices only when a symbol of the sum is explicitly written
out. The orthogonal basis E;; has the properties
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) = o dt
trp(Eij) = 8, J,(m?) :/ pomr e"mzpm. (18)
trr(E;;Ex) = 840k, 0
tr(EGEWE ) = 0in0jiOim, In the case of two subtractions p, , = 1 — (1 4 tA?)e™N at
............... the large scale A, one finds from (18)

tr Ei i El i) — 51'11'2 6i2i "'5i2 a1 12 A2
f( 10 -1 n) n iy n—2l2n— ( ) J0<m2) — A2 —m2In (1 + _2> ’ (19)

m

To advance in the evaluation of expression (3), we use

the Schwinger technique of a fictitious Hilbert space [5]. 5 A2 A2

Then, a matrix element of a quantum-mechanical operator Ji(m?) =In (1 + m2) A2+ m? (20)

can be treated as
Tr(e~'PiPr) = /d4xEtr1<x|e_’D+EDE|x>. (13)

The use of a plane wave with Euclidean 4-momenta k,
(x|k), as a basis greatly simplifies the calculations (details
are given in Appendix B) and leads to the representation
of the effective action as an integral over the four-
momentum k, :

[ f én?

o df
- / ?'Dl,/\trl [e~tM*+A)],
0
(14)
where

A=—d®-2ikd/\t+Y (15)
is a self-adjoint operator in Hilbert space, and the
summation over four-vector indices in (15) are implicit.

B. The case of equal masses

Before proceeding with our calculations, it is appropriate
to discuss the simplest case of the large-M expansion, i.e.,
the case when the mass matrix M is M = diag(m, m, m);
then [M,A] = 0 and we have

e~ I(MP+A) — =M ,— e~ Z a, (16)

Here a,,(x, x) are the Seeley-DeWitt coefficients a,, (x, y) in
a coincidence limit x =y, which depend on the back-
ground fields and their derivatives, except ag(x,x) = 1.
Integration over four-momentum and proper time in (14) is
straightforward and we obtain a well-known result,

Wi = /3277221”1 Dy a,(xx),  (17)

where the proper-time integrals J,,(m?) are

The choice of the regularization is closely related to the
specific problem under study. Various examples of the
proper-time regularization can be found in [14]. The Pauli-
Villars regularization we used is usually applied in the NJL
model, where the cutoff A is a scale of spontaneous chiral
symmetry breaking.

The functions J,,(m?), for n > 1, as m?> becomes very
large are asymptotically equivalent to m~=2("=1) that is, the
expansion (17) is in inverse powers of m?. For the series to
converge, it is necessary not only that the mass m be large,
but also that the background fields change slowly over
distances of the order of the fermion field Compton
wavelength 1/m. If these criteria are not met, then the
production of real quark-antiquark pairs becomes essential,
and the expansion is not suitable for applications.

C. The case of unequal masses

Let us return now to the formula (14) and show how one
can extend the above tool to the case [M, A] # 0. To make
progress in our calculations, we use the formula (1)
allowing to factorize the exponent with a noncommuting
diagonal mass matrix M. Under a flavor trace, it yields, for
instance,

3 3
trf(e_’Mz) = Z e_’m?trfEi = Z e"m?. (21)
i i=1

i=1

The result of calculations for the remaining terms can be
represented by the formula

2
trf(e M fn(t7A))
tn N./'
= Ciliy...iy
TR

(1)t (A Ay A), (22)

where n > 1 and the notation A; = E;A is used. The
coefficients ¢; ;, ; () are totally symmetric with respect
to any permutation of indices and are easily calculated. The
necessary details of such calculations and useful properties
of coefficients are collected in Appendix C.

To ensure the fundamental cyclic property of the trace
tr(AB) = tr(BA), we define
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trf(AhAl Z Alllelzlg l nl
cvclperm
<A1112A1213 Ainil > (23)

Here we used Eqgs. (11) and (12) to calculate the trace. The
sum over a cyclic permutation of A;; adds nothing to the
standard definition of a trace if A is a matrix. However, in
the case when A contains open derivatives, i.e., is a
differential operator, cyclic permutation in the trace may
change the result. This is why it is necessary to ensure the
guaranteed fulfillment of this fundamental property of the
trace, which we do with the formula (23).

It should be emphasized that here we will restrict
ourselves to considering only those terms that survive in
the limit M — oco. In the case of equal masses, this approxi-
mation corresponds to considering heat coefficients a; and
a,. To isolate such a contribution, it is necessary to limit
ourselves to the terms of order #* at most. It means that at the
level of A;-dependent expressions one should expand up to

and including the #* order, since A; has the term  1/+/%,

Zc (1) —ZZC ItrrA;

l

tI' —t (M? +A

3|chfk )tr(A;AA;)
1/k

a0 ZCUH tI'f<A A AkAl) + O(IS)
i,j.k,l
(24)
|

4
[ e st )
T

= G {0 = O Y = ) = S ey i i)

= i=1
2

i,j,k

3' ZCUH aﬂyétrf (E d E dﬁEkd Eldg)} + O(I3)

i.7,k,l

We put this result into (14) and calculate the integrals
over the proper time. Integration turns the coefficients
Ciip...i, () into functions J;; , depending on the
masses of the fermion fields and the cutoff A. These
functions describe the leading contributions in the 1/M?

Note that the series is of the mixed type, i.e., it has
also exponents depending on ¢, hidden in the coefficients
Ciiy...i, (1). In the limit m; = m, = m3 = m, these coeffi-
cients shrink to c¢(t) = exp(—tm?) and the mass-
dependent exponent is totally factorized. This way one
can recover the standard inverse mass expansion.

As it will be shown below, the term with the coefficient
Cii,...;, corresponds to the contact contribution of the
Feynman diagram with n internal quark lines. It means
that ¢; can be associated with the tadpole contribution, c¢;;
with the self-energy part, and ¢, and c;;; with the triangle
and box contributions. The indices contain also information
on the flavor content of such one-loop diagrams. For
instance, c¢,3(f) corresponds to the triangle originated
by propagators of up, down, and strange constituent quarks.

Now, one can substitute A; = E;A by its expression (15)
and integrate over four-momentum %, in (14) by using the

formula
d*k
/(2,;)46 k ko ke, . Kk,

It is evident that the corresponding integral of an odd
number of four-momentum k, is zero. Totally symmetric
tensor Gy,q,...q,, 18 determined by the recurrent relation

50: ...,
= 7(4‘;)222 . (25)

2n

2 : Q; .
= 50‘1 5(12...(1,-_”1,-“ o) (26)
i=2

0

ajay...a,

see also Eq. (B8) for details. This yields

22 ij trf

(Y —d?)E; (Y — d*)]

t
+3 > i)t [Eid,Eid E(Y — &) + E;d,E[(Y — &%) Eyd, + E(Y — &) E;d, Eyd,]

(27)

|
expansion of the corresponding one-loop Feynman
diagrams, to be precise, their local parts which dominate
in the limit M — co. Here we present the result of such
calculations. All necessary details can be found in
Appendix D.
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WE:

(Y = d)E;(Y - &?)]

22],/ter

+ E;d,E;(Y — d*)Eyd, + E;(Y — d*)Ed,Ed,)

l]k

=-— 32” detrDb X, X)

where the index 7 indicates the asymptotic behavior of
b,(x,x) at large masses, namely b, ~ M~2"=2) The co-
efficients b, (x, x) depend on the external fields and quark
masses, i.e., they contain information about both the
effective meson vertices and corresponding coupling con-
stants. If all masses are equal, the dependence on m is
factorized in form of the integral (18) and the field-
dependent part takes a standard Seeley-DeWitt form
a,(x, x).

III. LEADING TERMS OF THE 1/M EXPANSION

Consider the leading terms b; and b,. The case n = 0 is
of no interest because b, contains no fields and can be
omitted from the effective action. The coefficients with
n > 3 tend to zero in the limit of infinite masses; therefore,
they are small in comparison with b; and b, and, at the first
stage, can be neglected.

A. Coefficient b (xx)

Let us turn to the calculation of the coefficient b;. It is
given by a part of the expression (28), which is proportional
to the proper-time integrals J,(m?, m?) With the use of
Eq. (El), it can be rewritten as

ZJO trf

(Y —d?) + E;d,E;d,)

- 2210 m2)tey(Ed,E;d,). (29)
i<j
Noting that
d* = 9* +2iCd +i(or) — T2, (30)

and taking into account that the action of the open
derivatives in (29) on the implied unit on the right-hand
side of Eq. (28) gives zero, we find

trp[E;(Y — d?)] = up[E;(Y + T2 —iol)].  (31)

3277: { ZJO ter Y d2 ZJO

tI'Df(E daE d )

Zjukter [EidyE;d E (Y — d?)

Zszkléaﬂyﬁter[E d E; d/}Ekd Eldé]} + O(l/M2)
ljkl

(28)

Since the last term here is a total divergence which can be
omitted in the effective action, we conclude

trp[E;(Y — d)] = e [E;(Y +T2)] = Yy + (%), (32)

where in the last stage we used Eq. (12) and the fact that
matrix A may be written in a unique way as a finite linear

combination of elements of A in the bases E;;, namely
A=3%,  AuEy,. In the same manner, we find

This gives for Eq. (29)
by = —Zfo(m%)[yu +(I?);; — Targ]

+ 2210 m2)T4Te. (34)

i<j
Let us use now the easily verifiable relation

(I2); —Terg => Tere (35)

i i ijt jio

J#i

to obtain finally
- Yot

where AJo(m7,m3) is given by Eq. (D14). The latter
integrals can be collected in the symmetric 3 x 3 matrix
AJ,, which has zeros on the main diagonal. In particular,
when m; = m; = m, all elements of AJ, vanish. In this
specific case, the first term of (36) leads to the well-known
expression of the Seeley-DeWitt coefficient a (x, x) = —Y.

For convenience of writing the result of our calculations,
along with the usual matrix multiplication, we will use the
nonstandard Hadamard product [41], which is the matrix of
elementwise products

ll + ZAJO

i<j

2rere, (36

=g

(AoB), = A;By. (37)
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The Hadamard product is commutative unlike regular
matrix multiplication, but the distributive and associative
properties are retained. It has previously been proven to be
a useful tool when the mass matrices of the type (6) are
involved [42]. In terms of the Hadamard product the result
(36) can be written as

1
by =try | Joo (=¥) + 3 (AJgeT)I*|. (38)

where J is considered as a diagonal matrix with elements
given by (Jg);; = 8;jJo(m3). This matrix contains contri-
butions of the Feynman one-loop diagram, known as a
“tadpole.”

B. Coefficient b,(x x)

Consider the second coefficient b, (x, x). In accordance
with the general structure of the expression, we distinguish
three contributions differing in the degree of Y':

by = by + by + b5 (39)
which is explicitly indicated in the parentheses.

1. Quadratic part in Y: b<22)

The part of b, proportional to Y? is calculated most
simply:

b ZJ,]trf (E;YE;Y)

z :‘]U ij ﬂ

- %trf[(Jo Y)Y, (40)

where J is a symmetric 3 x 3 matrix, whose elements J;;
Ji(m;, m;) are logarithmically divergent parts (at A — oo)
of Feynman self-energy diagrams with masses of virtual
particles m; and m; [see Eq. (D6)].

2. Linear part in Y: bgl)

Let us consider now the linear in Y part of b,, i.e., bgl):

1
b&“ Y Zfijtrf(EidzEjY +EYE;d?)

4= Zl,jktrf (Eid,E;dyEY
l]k

+ Ed,E;YEd, + El-YEJ»daEkda). (41)

After evaluation of traces it gives

Z"Utlj + Z‘Iljktzjk» (42)

i.j.k

where

={(d)i. Y}, = (dGdiYu).  (43)

Next, let us use Egs. (E1) and (E6) of Appendix E. We
obtain

= ZJ, <tiii - ll> + ZJ’J i lJ

l<j

+3) Rijti; + 6J131(123)- (44)

i<j

To evaluate the first sum in this expression, we employ
the explicit form of ¢ coefficients (43)

1 1 1 1
foi — — . = deds — = (d? , dey de
iii — o i {3 ii%ii 2( )zz zz} +3 3 i

da

i’

[de., ;)] - Z{df;d;‘,,n}. (45)

‘|
6 J#t

The first term is now computed as

[, [d;. Y]] = 03Y . (40)

This is a four-divergence of a four-vector. Therefore, it can
be omitted from the effective action, because it does not
affect the dynamic characteristics of the effective theory.
Thus, we find

1
liii = 5 tii = ZFZFZ Yy, (47)
J#

where we used the cyclic permutation of the elements to
simplify the right-hand side of this expression, which is not
forbidden due to the trace, trp, in (28). In what follows, we
will always use the cyclic permutation property when
calculating the ¢ coefficients.

To evaluate the second sum in (44) we need to find the
difference 3t;§j — 1(;j)» Where i # j. Here we have
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1
3155 = 1) = 3ty + 10350 ) =5 i+ 12)

1 .

:[iij+tiji+tjii_§tij+(l<—>])

1 1 . .
:g({diidij+dijdjjvin}+dinjidn+dijjidij+{dijdijii}‘f'dtiiidu)—5{(Jl)ij7yji}+<l<—>J)
1 1 1 .
= _8[{d”du+dl/d11’ le} —z(dUled” +dij/ldlj)] +§({dljdjl’ Y”} +djlYUdlj> _E{dlkdk]’yjl}b(#l,]—i_ (l (—)]),

(48)

where, in the last stage, we took into account that
(dz)ij = Zdzqkd%' (49)
k

Noticing that expressions

{a’?;-d?j + dfd;, Y} - 2(d§?‘ij,-dZ- + d;-’ij,-df;), {d,“]dj’l Yi}— 2d5Ydf; (50)
vanish under the Dirac matrix trace in (28), we finally obtain
3th; — tuj) = —TET5Yu + TRILY i+ (i < ), (51)

where i # j # k.
Since the first term in (51) has the same form as (47), it follows that

1 . . aTa
Z:Ji (fm‘ - 5%‘) - Zjij[rijrjiyii + (i< j)] = Z(Ji = i)Y ;. (52)

i<j iJ

i#j
We need now to calculate the coefficient
_ 1 ..
i = Uiij) = Lji) = 3 [tiij + tiji + L — (i < J)]
1] & . .
= =3 |3 T80, + (T = T+ TR = G (53)

<~
where the left-right derivative is defined in a standard way, ['*0*Y = I'*0*Y — (0°T'*)Y. Then the third sum in (44) is
i <~
3> Riti; =—> Ry [5 (M%0,Y ;) + (D4re, —T4T%)Y; + rgr;?iyii] : (54)
i<j i

The coefficients 7(;,3) are required for the evaluation of the last term in (44). They can be obtained with the aid of the
easily verifiable relations,

tijk|i;éj;ék =I5 Y k. (55)
As a consequence, we have
1 1 'a (04
tis) = ¢ >t = G > T Y. (56)
i#j#k i#j#k
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If we take into account the existence of similar term in the coefficient (51), we obtain

6J1231(123) + ZJU CaIE Y+ (o )] =

i<j

i#j#k

Thus, the final result for bgl) is

1 a T a a ax ‘a (04
bl = S I = TpTETeY s + (i = T TS Y ] — ZRU[ (I a Yji) 4 (L99),Y ;i + TEI%Y

ik

i <~
= trf |:NY - g (R o F"‘)ﬁaY

where we introduce the notation

(LY),; = (0% £ 190 (59)
Note that elements of the matrix I'}; commute with each
other. In the last line of Eq. (58), R and N are the 3 x 3
matrices with elements

1
R;; = E(Jiij - Jjji)’
Nii:Z(Ji Jij = RIS,
i
In the limit of equal masses, the coefficient bgl) vanishes,

that is, it contains only contributions associated with an
explicit violation of chiral symmetry. Obviously, without
this term, the description of the manifest flavor symmetry
breaking would be incomplete.

3. Independent of Y part: b(zo)
The part of b, which does not depend on Y is

22']1/ d2 lj d2 Z‘]ljktljk += 6 Z‘]ljkltljkl
i,j.k i,j,k1l
(61)

Here the field-dependent ¢ coefficients are given by the
following formulas:

l]k <dada (dz) >

Gy lijk = 5(1/5y5<d7/d]kd£ld5> (62)

Before calculating (61) directly, we shall first handle the
case of equal masses m, = my; = my; = m, which can
easily be obtained from (61) after factorizing the common
factor Jy(m?) = Ji; = Jiii = Jiiii:

Z(Jij_‘]ijk)rljrjkyki' (57)
i#7k

lj ]l

(58)

L - (d“d“d2 +d*d*d” + d*d*d”)

~
—_
—~ |
S| =
3
~—

H
1
N =

1
6 ( dd® d/} d/i 4 de d/i d* d/i 4 de d/i d/)’ du)
1 1 5
= gtrf(dadﬂdadﬁ - dadﬁdﬂda) = Etrf[d“, dﬂ]

1 afrap
where we used Eq. (49), and

I = 9°1? — o1 + i[l*, 7). (64)

To obtain the exact result for (61) it is convenient to

consider separately the cases when the sum runs only over

the same index values, and then over two and three different
values of the flavors:

V=5 (65)

The part of bgo) that corresponds to a contribution with
coincident indices is

1 1
= J.|\=(d®)..(d?).. — 1. to | 66
> 3@ty =+ gt 60)
Introducing the notation

Qi = did§; — (&);; = (I?);; — T4T: (67)

[

we can rewrite (66) as

_ l 2_1 o a P12
_Z:Jz{z ii 6[dil’[ i’ Q”H [du’du} }

Now we benefit from the following easily established
relations:
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[dz’ [ i’ Qll]] = 82Qii’ (68)

[d%, db) = i(0°T), — T2 = iF? . (69)

That gives finally

_ l 2 i afi\2

To obtain this expression, we as before discarded a full
divergence of a four-vector 9%Q;;.

Now consider the terms of the sum (61) with two
unequal indices. These comprise the remaining terms of
the first sum and the corresponding contributions from the
second and third sums:

ZZ‘]U{ d2 ij? Jz)jz} 32 ij 11/ +Rl]tllj)

i<j i<j

+z[ ( LS )t + R

<j

+Z ij = 1 ll]] (71)

i<j

where §;; is given by Eq. (D26).
To evaluate the first sum, we note that

(d?);;(d?);; = (OTy) (0 ;;) + (%)5(T?)
+i(A0y)(T?);; = i(T?);(0T ;). (72)

Here we have omitted a full divergence of a four-vector, and
took into account that the action of the derivative that
reached the right end of the expression gives zero. In the
anticommutator {(d?);;, (d*);}, only the symmetric part of
Eq. (72) contributes to the sum. Therefore, the second line
of (72) has no influence on the result, and we obtain

ZJ,,{ (d?);j- (d?);;}

l<]

= Z‘]ij[(arij)(arji) +(r?

i<j

)T (73)

Recall again that elements of the matrix I' commute with
each other.
Combining

2 2 1
g% T liijj) =3 (tiiij + 150 + tigj) + 3 lijii (74)

where the properties of ¢ coefficients (F12)—(F14) have
been used, we learn that this sum does not contain the terms
with one derivative. Indeed,

tiiij +1 Jjji + tllj_] (8F1]>(8F]1) +5 (8&1’*/")(8(11’%)

+ By (T4 1“7 0%+ e rre

u- sy g JJJ]Ju g

+ Farﬂ F}/ Fo-)

u-y gyt

We also know from (F10) that

UU 5aﬂ70'rljrfl FJI/_/ sz (75)

Thus, only the coefficient 7}, ; contains terms with one
derivative. The expression for this coefficient is given in
Appendix F [see Eq. (F7)].

Before we turn to the full expression for the coefficient

ﬁéz) let us first collect terms with two derivatives in ﬂ(zz):

ﬁ§2>|8“ - Z‘IU arlj)(arjl) (aarfj)(aarfz)]

i<j

=2 ZJ,,Fj’fFaﬂ . (76)

i<j

Combined together with similar terms in ,Bg) they give
the kinetic term of spin-1 fields:

1
1 2 (07 (07
B+ = =5t PP (T o F )

: .

= -5t [T (JoT )] —l—%trf[F“ﬁ (JoTeI?)]
1

— AT (Jer )} (77)

In the case of equal masses, the first term coincides with the
standard result (63). It means that the last two terms of (77),
after combining them with other contributions to bg)),
should vanish when m, = m; = m, = m.

To see this we need to cons1der the contribution ﬂz .

Referring to Egs. (61) and (E7), we find

B =23 T = 6031y (78)

i#j#k
Jj<k

Using the explicit expression for the coefficients 7
(F19) and Eq. (D22), one can represent the first sum as

105019-10



PROPER-TIME EVALUATION OF THE EFFECTIVE ACTION: ...

PHYS. REV. D 104, 105019 (2021)

ZZJiijkt(iijk) = Zjiijkt(iijk)

— £
i ik

3 i#j#k

If we introduce the antisymmetric matrix K with elements
Kij = (Jjjik = Jiiji) i joek (79)

then the first part of the expression can be presented in the
index-free form

i
ot [(K 0 0°T) 7). (80)
where the off-diagonal elements of matrix E7’ are
E] =TI, (i#j#k). (81)

Due to Eq. (79), the diagonal elements of the matrix E7° do
not contribute to (80).

It is also clear from (79) that terms with one derivative
(80) vanish in the limit of equal masses. Therefore, they
cannot cancel the unwanted second term in (77).

Since the coefficient ?(123) is known from Eq. (F9), we

. . 3)
can give a complete expression for S, ':

3) 1 i
162 - géaﬂya Z |:§ (Jjjik

itk

lljk)(a F )F}]{kFZi

it ijv jk kj© ji ij© jit ik

~hin 3 [T

i#j#k

SRR P10 A A A A A S A A A ) )]

4 T (I2), } (82)

Now it is necessary to make sure that the terms linear in
F* vanish in the case of equal fermion masses. To this end
let us consider the corresponding contributions to bg()) from
tE:U in (71), from the second term of (77), and from 7;,3) of
Eq. (78). Combined together they give

Z [(J; = T DAL FL + (1, = J 103 DT i)
3

= gtrf(HaﬂFaﬂ), (83)

where the flavor matrix H*’ has elements

1 i
= Oupe D [5 (jjik = Jigji) QDL DL ATy (DT, T, T, + TS, T TG, +

| R4 v 10
it ij- jk kj jl ljrflrtkr ) .

HY =3 "(J; = 1;)Ter,
J#i

(H )|z¢1 (i —1123)E3'ﬂ~ (84)

One can see that all elements of this matrix vanish in the
limit of equal masses.

Our next step is to demonstrate the fulfilment of the
limiting condition for terms of the fourth order in I'. As we
already know, these terms should also vanish for equal-
mass case.

In the first step, we transform the following expression:

—ZJ 05 —Jins ZFU (M) + Zfij(W)ij(Fz)ji

i#j#k i<j
=Y TGTE(TG + T9)(I2),; + TET%(2), + (i < ).

i<j

Here the first sum is taken from ﬂgl) [see Eq. (70)], the

[the last term in Eq. (82)], and the

third and fourth sums are contributions from ﬂgz)
+
the first and 7} i terms of (71), correspondingly].
This expression can be made into a somewhat more

simple form:

second one from ﬂ(23)

[from

1
zterHaa Haa Fz

ZJ Lili)?  (85)

where the matrix H** is a particular case of (84), and the
elements of the matrix A% are

H = ZJ rere

ijrij jic

A1y = JTe (0% +T%) + J1p3 ESC. (86)

Under the flavor trace in (85), we explicitly singled out
the contribution H** that vanishes in the case of equal
masses. The last term in (85) is completely canceled by the
corresponding contribution from H%*. Indeed, it is straight-
forward to see
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1 aay?2
- Etr (H°T?) ZJ
er;r;’, (Cily) + J35(0%) ]
z#}
- —ZH““ (?);: (87)
i#]

At the second stage, we collect three contributions: the
part of ﬁ2 %) associated with the coefficient (74),

ZJ Fa Fﬂ .——ZJ” Fa Fﬁ]u[ra Fﬁ]ﬂ’ (89)

l<j

and the I'* part of ﬂf) from Eq. (82)

aﬁyo Z Jlljk

i#j#k

1'*(1 1'*/3 1'*}’ F(r

P
it ij jk F;lirlkry 1'%+

b ]l I Fﬂ FV l"rf )

ij© o jit ik
(90)

Together with the terms just considered in (87), they should

3 ﬁyﬂz Jurljrfl FJI/JFZ + 21“’,’,1“3’] +417T9),  (88) lead to a result that vanishes in the limit of equal masses.
iz Indeed, it is evident from the direct calculation of these
terms that the summation gives 33 independent combina-
the last term in Eq. (77), tions of I'’s, which can be collected in the following sums:
Q% = (85) + (88) + (89) + (90)
2 4 1
_Z{ |:_ +J/)_3J :|(Fljrjl) +E(2Jij i )(Furu)( Jji jl)}
i<j

i#j#k
Jj<k

3 @ =0y = T )T T) + (Ol ()]
+ Z { Jie +2J i) — Jm] (T3 Ti) (i) + (Cale) (T3]
i#j#k

Here, the expression in the parentheses (I';;I";) is understood to be summed over alpha I'};T%,.

masses (91) is zero, since all J-dependent factors vanish.

1
+ Z{ [ Jjx +2Jiij) +Ji = Jij = zk:| () (Tl + [g (Ji + 2Jiijk) + T je = 21123} (Tl ) (T lij)

1
+ 3 (2T = Ji = ij)(rijrik)(rkirji)}
(91)

;1'% In the case of equal quark

It remains to calculate the sums containing the coefficients R;; and S;; in (71). For that we need to know the coefficients

3t;j m] and tlll/ 3t (iijj)-

From Egs. (F8) and (F16) one finds

-~ i 5 g .
3tllj mj = E [8(8Fjl>( ) + FaﬂFZF£z+(Faﬂ + 980:1-‘/" )L/-&-(;t] + Lgoilj(rjkrki) + (Ft]F]z)(Fikrki) - (l < J)’ (92)
where it is assumed that k # i # j. Then, due to the antisymmetry of R;;, we find
- i 5 5
ZRJI 3tllj tlll] ZRIJ{E [8(8Fij)(rz)jz +F71F/11Fjlj/} + (FZ/ +98arﬂ )L{}S/] Lg‘;l (Flkrk]) + (Fjirij)(rjkrkj>}'
i<j i#]
(93)
Now, from Egs. (F16) and (F18) one obtains
1 3i by © Y
1y = 3y = 3 P +5 @)@ = (T = T (05T + (T 1) + (100 )
3
+ 8,0 (TR T, + T T T, — T4, T T~ 208, T 1), (94)

By virtue of the symmetry S;; = S;;, the required sum is

ji
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3i - - -
(13 aff o a o4 a P a
S8 (3t =t ) =3 S PR + 5 00)(00) — (T = TIToPTh) + (O] + (T4 )
i<j i#]
1
(¢4 (o) (04 /j c (04 /} (o3
+ Supyo (FHFUFZFJZ FHFUI_‘;JFJ[ - EFIJFJZFJZ/JFJI> } (95)

Now we have all the base ingredients that remain to be
assembled into a single whole.

4. Full result for by(x x)

Here we summarize the above results, collecting
them in a compact form convenient for further
applications. Namely, the result obtained for b, (x, x) can
be represented as

1 1
by =3ty |Y(Jo¥) =TV (JoT) | + Ay (96)

In the limit of equal masses, the first two terms in (96) yield
the well-known result [14], and the third one vanishes, that
is, it contains only contributions associated with an explicit
violation of chiral symmetry. Together with the second term
of Eq. (36), this is the main result of our work.

To write the full expression for Ab,, we distinguish four
different contributions:

2
Aby = b3+ Q. (97)
n=0

Here bgl) is the sum of all terms linear in Y, and Q" is
the sum of terms with n derivatives which consists of only
spin-1 fields, entering into I'*.

For b( ) we have [see Eq. (58)]

by = try |NY =2 (RoT™)0"Y | (98)
The terms with two derivatives are
1
Q2 = ﬂtrf[F“ﬂ(So FP) +6(0)(SoaD)]. (99)

The first term makes an additional contribution to the
kinetic part of the effective Lagrangian of spin-1 fields
described by the second term in (96). Recall that the
symmetric matrix S is defined by S;; = J;; — J;;;; (D26).
The shorthand OI" = 9°I'* implies summation over omitted
indices a. In applications, one can omit the second term in
(99) to ensure that the energy of the massive spin-1 field is
positive definite.

The terms with one derivative can be collected in the
expression

i Q Q 1 14 (<
ol = 30 {H PF + 2 Supyo(K 0 0TV ) EY }

F AV I
+122R,, (OT)(T?) + (F37 + 90T )L"S,

i#]
ZS,] (re —

1;&1

+ T PP+

JUu J/

x [(reorTh) — (rjf,.aﬁrfj) +(ThoeTh)], (100)

which represents the effective three-particle vertices describ-

ing the local interaction of vector and axial-vector fields.
The term without derivatives Q) which is a sum of the

terms  I'*, we represent in the form

0 0
Q0 =% 1+ Q) (101)
where Q§°> is given by Eq. (91), and
Z Ri[(L2) ;i (Talay) + (Tly) (Tl )]
l#ﬁék
4= 50,,37625,] (C&D T, T, — Ter, T T,
i#]
1
T/ T 1), (102)

T i

Here, the expression in the parentheses (I';,I";;) is under-

ijtji
stood to be summed over alpha I'{;I".

IV. CONTINUATION TO MINKOWSKI SPACE

Let us write the Lagrangian of the effective theory arising
from the considered 1/M expansion (28) after continuation
to Minkowski space-time

N [s+]
Legt = —32—;2 ; trpb, (x, )|y

(103)
The index M explicitly indicates that coefficients b, belong
to Minkowski space. The rules of such continuation are
given in Appendix A.
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The coefficient b (x, x) given by Eq. (38) in Minkowski
space-time has the following form:

V,p=0,p—iv, p]+{a,s—M}. (109)

The coefficient b, (x, x) in Minkowski space-time can be

1 .
bily = try |[Joo (=Y) = (AJgoT!)T, | (104) written as
1 1
boly = =tr;|Y(Jo¥) = —T"(JoT,,)| + Aby.  (110)
In particular, I'* = v* + ya*, and 2 6
) 5 s where
Y=s*—{s,M}+p*+iy’[s—M,p]
; [ = QUTY — OMT¥ — i[[#, TV (111)
— [yt ¥ 5 ik 5
4[}/ 0w+ an) =i (Vs +iyVyp), - (105) is a representation of (64) in Minkowski space-time. For the
contributions to Ab, we have
where
) _ L Romo,
v/ﬂ/ — aﬂvy _ ay/uﬂ [Uﬂ, v ] [aﬂ’a ] (106) 2 |M - trf NY 3 (ROF )aﬂY (112)
a, = 0,a, — 8,a, —ilv,. a,] - ila, v,), (107) In a similar way we find
uv nYv vhu o Yy wr Yuls
@ _1 v
Vﬂszaﬂs—i[vﬂ,s—M]—{aﬂ,p}, (108) QlM _ﬂtrf[Fﬂ (SOFﬂD)+6(8F)(508F)], (113)
where (OI') is understood now as 0,I'*, and
1 I v 1 v v v v\71Y v v
Q) = —3 {HWF” + 5 9o (K 0 0T EF ] ZR,] (OT3)(I2) ;= (FY + 90MT% ) LY T T P
t#}
3 ;SIJ Fﬂ ayrv Q)= (Fj'liayri'/j) + (F?jaﬂrlfi)}a (114)
i#]

where 9,5 = 9uiv + Gup9vs + Gy G- We will not write
out here an expression for Q) which contains the terms
o I'*, since here, to go to the Minkowski space, it is
sufficient to replace the indices, while the sign in front of
any term remains unchanged.

V. CONCLUSIONS

Above, a new method for obtaining the effective low-
energy Lagrangian in a theory with heavy particles of
unequal masses and a nontrivial flavor symmetry group has
been presented in full detail. Unlike [22], where authors use
the modified DeWitt WKB form and solve recurrent
Schrodinger-like equations to determine the heat coeffi-
cients, our calculations are based on the formula (1), which
allows us to resum the proper-time series in accordance
with the contributions of corresponding one-loop Feynman
diagrams with the required number of external fields. As a
result, we arrive at an effective action (28), in which each of
the heat coefficients can be calculated independently, and
corresponds to a certain order in 1/M? expansion. We have
explicitly calculated two leading coefficients b (x, x) and
by(x,x) for the case of the broken U(3) x U(3) chiral
symmetry. The result can be used to study the conse-
quences of SU(3) symmetry violations, for instance, in the

[
framework of the NJL-type models, where, until now,
rather rough approximations are used to describe this
important effect. Although we have limited ourselves to
a particular example, the proposed approach can be easily
extended to the case of an arbitrary internal symmetry
group, for example, to study an explicit and spontaneous
symmetry violation within the context of effective field
theories beyond the Standard Model.
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APPENDIX A: THE WICK ROTATION TO THE
EUCLIDEAN SPACE-TIME

In this Appendix, we collect some useful formulas and
conventions made to perform a Wick rotation of the time
axis to transit from Minkowski space-time with the metric
tensor g, = diag(1,—1,—1,~1) to Euclidean space with
metric 8,5 = diag(1,1,1,1) and back. Here the first two
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letters of the Greek alphabet a, f are used to enumerate the
coordinates in Euclidean space a, f =1, 2, 3, 4; on the
contrary, the letters y, v, run over the set y, v = 0, 1,2, 3 in
Minkowski space-time.

For coordinates x* and the Lorentz four-vector v* we
apply the following correspondence rules with the
Euclidean coordinates x, and the vector components v,,:

W= (x%X) = x, = (¥, x4), = —ix,. (A1)
0, = (00,V) = 0, = (V,8,), 89— idy. (A2)
' = (02, %) = v, = (¥, v4), 0 = —ivy.  (A3)
It follows then from (A2) and (A3) that
V', = 05—V > —vi — U = -0, (A4)
W0, = 090y + TV = 140, (A5)

For the Dirac y-matrices we use the following

conventions:

=007 2 va=Fora). P =i (A6)
Our choice corresponds to the case when O(4) gamma
matrices y, in the four-dimensional Euclidean space are
anti-Hermitian. Indeed, from the standard property y*' =
(y°,—7) and definitions made above, one finds that
yl = —y,. As a consequence, the Euclidean Clifford
algebra emerging from {y*,y*} =2¢"¥ necessitates a
change in the defining equation {y,.ys} = —25,5. We
have also that y#0, — 7,04, 7"V, = —VaVq-

The other consequence is that y° = —iy%y!'y?y® matrix
can be defined in Euclidean space as ysg = 71727374 It
follows then that y°> — ysz, and both matrices are
Hermitian.

For the Dirac operator

D =iy*d, — M+ s+ iy’p, (A7)

where d, = 9, —il',, and I', = v, + y°a,, one finds
D — DE = iyada -M + 5+ inEp’ (Ag)

where d, = 0, + il'y, Ty = vy + v5£a,.
This yields

DDp = —d + (s = M)> + p* + iysg[s — M. p]

1 . .
+7 [Var 7alldas dg] + ilYo(s + iyspep — M), d,]
=M>-d*+7, (A9)

where d*> = d,d,,

Y =52 {s.M} + p*+iysgls — M, p]

i

+ 1 Vo V5l (Vap + V5EQap)
= i7a(Ves + iyseVap), (A10)
and the chiral-covariant objects are
Vop = OqVp — Oy + 1[0y, V5] + iy, ag], (A11)
Aop = Oty — Opay + i[Vy, ap] + ilay, vg), (A12)
Vs = 0ys +i[vg. s = M) +{a,. p}.  (Al3)
Vap = 0op + ilvg, pl = {ag, s - M}, (Al4)

We have given these well-known formulas here both for the
completeness of our presentation and to clarify notations
used in the main text of our work.

APPENDIX B: THE MODULUS OF THE
DETERMINANT

This is a summary of the standard steps to evaluate the
modulus of determinant (3). The self-adjoint elliptic oper-
ator A = DTED £ can be treated as an operator acting on a
fictitious Hilbert space, where the quantum-mechanical
algebra of coordinates and momenta is realized, i.e., where
|x) is an eigenvector of a commuting set of Hermitian
operators %, such that %,|x) = x,|x) and (x|y) = §(x — y).
The Hermitian operators, p, = —id,, which are conjugate
to %,, obey canonical commutation relations: [%,, p] =
iﬁa/}v [52(1756/5] = [ﬁav ﬁ[)’] =0.

Let us consider an eigenket |p) of p,. Its representative
in the Schrodinger picture is (x|p) = (27)72 exp(ix,py).-
Using this plane-wave basis one can describe the action of
the operator e~ on the Hilbert space by the heat kernel
function of A:

hw%oszﬂwzjﬁ%mfwm@m. (B1)

Taking into account the relations (x|p,|p) = pa{x|p) =
—i0%(x|p) and (x|%,|p) = x,(x|p), one can proceed:

<W“M—/fm%wmwm

4
:/(‘21 1)74 e~iPY o= 1A pipx
T

4
_ / d p eip(x—y) (e—ipxe—leeipx),

(2m)* (B2)

where A, is the operator A in the coordinate representation.
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Now note that

v —tA i (=) . ,
e~ iPxp tAxelpx — Z e sz(Ax)nesz

“~ nl
(=) .
=3 E mp ey, ()
n!
n=0
where
IPTA i — A, — [ipx, A] + - [ipx, [ipx, A]]
X - =x pX, By 2' DX, [IpX, By
= Ax - 2ipada + p2‘ (B4)
Since the operator A, contains derivatives of at

most second order, its higher-order commutators with
ipx are equal to zero. At the last stage we used
Eq. (A9), namely
lipx,A] = [ipx,M* —d*> + Y] =—[ipx,d*]
=—[ipx, 0%+ 2iT,0,)
= —[ipx,04)0, — 0glipx,04] — 2iT,[i px,0,)
=2ip,d,,
[ipx, [ipx, A]] = [ipx,2ipad,]) = 2p3.

As a result we obtain

d* . )
ey = [ T8 iy e enracind

(2z)*
— (46:1:2’;)2 e—p2+ﬁp(x—y)e—t<Ax—z%‘)’ (BS)
or, for the trace
Tr(e ) = /d“xtr,(x\e"ﬂx)
= /%e“’zme—t( *_%), (B6)

where tr; means the trace over color, isospin, and Dirac
indices. Expanding the last exponent in the series in the
proper time, one can take the integrals over four-momenta
with the help of the formulas

/d4p €_p2p » ) :5a]a2...a2n
(2”)4 o ottt o, 2”(477;)2 .

(B7)

Note that only the even number of internal momenta p,
contribute; the odd number, obviously, gives zero. The
totally symmetric tensor &y,4, 4, 18 a product of
Kronecker’s deltas 6y, 4,044, --0a,, a,, Plus all possible
permutations of indices; there are (2n — 1)!! terms in total.
For example,

Soyoyasay = Ot Oa; + 00, + 0a0r,-  (BB)

Finally, combining (3) and (B6) we come to Eq. (14).

APPENDIX C: PROOF OF THE FORMULA (22)

Here we present some details related to obtaining of
Eq. (22). Let us first consider the case when n = 1,

tr/ e (1, A)]

3 ) t 22
= Z e / ds es(mf_mk>trf(E,»EjAEk)
ik 0

= Zte"’”%trfA,-.
i
Hence,
ci(t) = e,

For n = 2 we have

3 t s
e pa(na) =3 [Ny [
ij

% e(sl—sz—t)m?e(sz—sl)mﬁtrf(AiAj)

—tm? —tm?

3 m; —tm?
e e ;=€ i
o < Aji Ajj

t
:ZK

ij Ji

2
(e —e™ ™)t (AA)).

(C3)

Here A;; = m? — mf and in the last stage we used that

trace is symmetric under an exchange i <> j. It gives

Ciyi, (1) :lz(jll—(t)

perm Afzil

(C4)

The sum includes two terms obtained by cyclically permut-
ing the indices (i, i) = (is, ;).
For n =3
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3
trf[e_’szg(t,A)]:Z/ dsl/ dsz/ dssels1=ss=0m? (527515 o (sy=s2)m ktrf(AAA )
0 0

i)k

3
1 t C~ —c;(t i) — t
_Z( Cz( i j()+cl( )2 Ck (>>tl’f(AAAk) (CS)
i.j.k A A AzkAkJ
Since the trace is symmetric with respect to the cyclic 2! c; (1) c6
permutation of matrices, one can add to this expression Ciyiziy () = 2 Z A A (Co)
two others, obtained by cyclic permutations of indices perm
(i,j, k) = (j,k,i) and (i,j, k) = (k,i,j), and the result
should be divided by three. As a result, only the first term in
pgrentheses will .lead to the.: nonzero COIltI'l.bPltIOIl. This Consider the case n — 4. Here we have
yields the following expression for the coefficient:
tl'f[ —1M? f4 t, A / dSl / dSz/ dS3/ dS4€ S1=S4=1)m S7 si)m /e(“ s2)m Ae(‘4 s3)m ltrf(A A AkAl)
ij.k,l
3
C- 1) —c;(t t)—c;(t t i
Z( (0= alt) | el =al) )~ c())trf(AAAkA) -
= \4; Ak,AI, A? ARA AGARA i AZALA
I
By using again the cyclic permutation property of trace, one Z I 0 (1)
can easily find out that only the first term in parentheses — A, o
will contribute with a nonzero result. Here we have four ’
cyclic permutations of indices; correspondingly it gives
four terms for the coefficient 1 —o, (12)
e (1) perm Aizil i3i
l Ipi3l. % (C8)
o 4 I;n 1211 Alsll Aull
Continuing the above procedure, we can find by induc- 1 ~0 (C13)
tion an arbitrary coefficient in formula (22): port Api A B -

Ciyiiy (1) = (ntn__ll)' Z c;, (1)

perm Aizil A1‘351 e

—. ()

Il

Although the sum includes n terms obtained by cyclically
permuting the indices iy, i,, ..., I, it is easy to show that the
coefficients c¢; ;, ; are totally symmetric.

One can also establish a recurrence formula relating
coefficients of order n, ¢;;, ; (t), for n > 1, with coef-
ficients of order n —1:

n—1
tA;

Un—1ln

[Ci,iz...in,zi,,(f) (C10)

Ciriy...i, (1) = — Ciyiyi, (1))

This relation follows from the following easily verified
identities:

Recurrent formula (C10), inter alia, simplifies the proof
of the relations

ci(t) = c;i(t) = cij_i(t). (C14)
Indeed, one has, for instance,
) e—tm? —e [mlz
ci(t) = im cij (1) = Jm Y
etA,-j -1
= lim ™™ = ¢;(1). C15
Jim et = ) (cts)

Using (C10) we can extend this to any c;; ;(f) case.
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APPENDIX D: INTEGRALS OVER
PROPER TIME

If the masses of the Fermi fields are nondegenerate,
integration over the proper time leads to expressions
depending on the specific masses of the constituent quarks
in the corresponding Feynman diagram. Accordingly, the
number of different loop integrals increases. We will
classify the integrals in accord with the number of internal
quark lines presented in the loop diagram. Since we are
dealing with a 1/M expansion, the integrals presented
below give only the leading terms of this expansion. Along
with separating the main divergences of the Feynman
diagrams, such integrals contain finite contributions that
vanish in the case of equal quark masses. These finite
contributions are uniquely determined by the coefficients
Cii,...;, that are completely symmetric with respect to the
permutation of any two indices.

1. Tadpole diagrams

The diagrams with only one internal quark line (tadpole)
are associated with the proper-time integral:

[ puncitt) = doomd). (1)

We will use Pauli-Villars regularization corresponding to
two subtractions at the mass-scale A:

pin=1—(141A2)e N, (D2)
In this case, it follows that
A2
Jo(m?) = A2 —=m?In (1 + W) (D3)
1

This obviously coincides with (19).

2. Self-energy diagrams

The quark-loop self-energy graphs are described by the
proper-time integrals:

dt
/ﬂ——"/’t,ACij(’) = Jn(mzzm?) (D4)

Due to the symmetry of the coefficients ¢;; = c;; the result
of integration is symmetric with respect to the replacement
m; <> m;. Indeed, in the case n = 0, we have

N A+ m?
—_ ni

1 A? A?
4 4
_2Aij [mi In (1 +m12) —mjIn <1+mf>]’

A2 A*
Jo(m%,m?) =—

where A;; = m} —m3. In the coincidence limit n; — m;,

lim Jo(mf, m3) = Jo(m7).

The other integral for n = 1 is given by the difference of the
tadpole contributions:

1
Ji(mi, m3) = A Vo(m3) = Jo(m7)]
ij
1 A? A?
=— {m%ln <1 +—2) —m?In (1 +_2)]
Aij n; J m]

Since we also have expressions for the similar J;-type
contributions coming from the triangle and box diagrams,
we will collect them together in one formula:

J,’j - dt Cij(t>
Jip | = / —pin | cijelt) (D7)
0 I3
Jiiji Ciiji(t)
From Eq. (C14), it follows that
Jii = Jiii = Jiiii Jl(m%)EJz (D8)

The integrals take this form when all quark masses in the
loop are equal.

3. Triangle diagrams

The proper-time integral

dt
/TPt,Acijk(t) =Jy(mi,m;,mp) =Jy (DY)

describes a local part of the diagram with three internal
quark lines. As before, the full symmetry of the coefficient
cijr allows one to conclude that this integral does not
change when any two fermion masses are exchanged. To
verify this, we use the formula (C10), which at the first
stage of calculations leads to a seemingly asymmetric
result:

2
Jijk :T[Jo(m?,m%) = Jo(m;,m3)],  (DI10)

jk

where Jo(m7, m7) is given by Eq. (D5). However, the direct
calculation of the right-hand side of this expression shows
explicitly its total symmetry:
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1 A+ m} A+ m?
Jy(mi,m5, mg) = 7[A4<m%l an k+ 2In Z—I—m%ln
ny

A? A2 /\2
— | +mtAIn( 1+ + mi{A;; In — 1.
m2 J m2 k m2

i j my

AijA kA

+ miAy; ln<l +

Az—i—m?
A+ m?

J AZ

(D11)

This expression allows us to obtain a particular value corresponding to the cases with two equal masses:

[ o(mi.m3) = Jo(m7)]

1

1 A2 o A A2 A2+m,2

It should be noted that in the theory considered, there are
only three different flavor states of quarks: u, d, and s.
Therefore, Eq. (D12) describes the six possible cases: uud,
uus, ddu, dds, ssu, and ssd. Notice also that a contribu-
tion, for instance, of uus triangle differs from ssu one. The
difference is antisymmetric with respect to the replacement
m; <> mj,

2

ij
where
AJo(m7,m3) = 2Jo(m7, m3) = Jo(m7) = Jo(m3). (D14)
This value is finite at A — oo. The sum is
Jiij +Jjji = 201 (mf. m3). (D15)
As a consequence, we have
Ji(mi,mi,m3) = Jy(mi,m3) + R(mi, m3),  (D16)

where the antisymmetric part of this expression is defined
as

AJo(m2, m?
R(m2 m2) :70( ! J) =R

1 ]
Aij

g (D17)

1
Jiijk = ———
! AjjAi

1

i

J i

4. Box diagrams

Consider the last of the divergent-type expressions that
arise when one calculates the quark box diagrams with
external meson fields. These are given by the integrals of
the form

dt
/TPI,ACijkl(t) = Jy(m}, m7, mi, mp).  (D18)

Since quarks have only three flavors, at least two indices in
cijir coincide. Therefore, we actually need to calculate the
master integral:

dt

TPt,ACiijk(t) = Jiijk- (D19)

To this end, we again use the formula (C10), which in this
case takes the form

3
_Kkj[('iij(t) -

ci(1)]. (D20)

ciiji(t)

The quadratic divergences arising when one integrates each
of the coefficients c;;;() are canceled in the difference
(D20). As a result, we arrive at a logarithmically divergent
(at A — o0) expression:

AZ
[Sm? In <1 + —2> - A2(2A% + m,z)]
m

A2—|—m]

+— LIy 1+—A2 °1 1+—A2 + A*(2A% +3m?) In
m: in —m:; In ms
Ay LAY L m? / m? PN+ m

1

1 A?
e {m?ln <1 +W) —mSIn (1

A
+ —2) + A*(2A% +3m?) In
my

J
2

A2+ m
m] } (D21)
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Notice that in full accord with (D20) we have

J

iijk =

Jiikj- (D22)

Cases with two different types of flavors can be obtained from this expression by passing to the corresponding limits of

equal masses. There are two of them: J;;;; and J;;

iijj iiij*

1 m3
ij )

As a result, we have

A2 2 AZ
—2> +m <1 —2’"—) In (1 +—2>

2 A+ m?
—N2(4A2 + m2 + m?) = A*|34+—(2A2 +3m?)| In——2L }, D23
(4A% + m? + m?) [ +A,-,-( + m])} N (D23)
1 A2 . A2 2 A2
Jiij=-—4méIn [ 14+— | =mlIn (1+— )+ A ;A’(2A* — m; +2m)
J A3 ! m2 J
ij L J
AZ A2+m2
2,2 409 A2 2 J
From (D6) and (D23) we find the relation
Jijj=Jij — S(m%’m?)’ (D25)
where
(A% + m7)m;

The latter expression is symmetric under exchange of
masses and finite at A — oo.

Equation (D24) describes the six possible variants of the
distribution of quarks along the inner lines of the box
diagram; these are uuud, uuus, dddu, ddds, sssu, and
sssd. In particular, it follows that

Jiii—J

iiij ijs
where R;; is given by (D17). On the other hand, the sum of
these 1ntegrals is

Jiiij + 5 = 201 (m]

mf) + S(m?, mjz) (D28)

APPENDIX E: MIXED SUMS FOR b, (x.x)

In the main text we make use summations which contain
both the mass-dependent remnant, J;; ;, of one-loop
quark integrals and the corresponding field-dependent
coefficients 7T;; ;. The result of such summations
depends on the propenies of J,..;, which were estab-
lished in Appendix D. Here some important results on these
sums are presented.

2
’2+A4[4A2+3(m +m?)]1In

A +mi) A2
} (4A% + m} 4 m3).

A+ m? A2
(D26)
I
The simplest case is given by the sum
> JiyTy= ZJ iT )
L]
’;
Z JiTii +2Y 5T, (E1)
i=1 i<j
where
1

Consider now the sum related to the triangle diagrams.
The corresponding one-loop integral induces at leading
order of its large mass expansion the function J; ., which is
known to be completely symmetric under any exchange of
masses. Due to this symmetry we have

ZJ ik Lije= ZJ i (ijk)
ik ik

_ZJ Tm +3Z‘]11]T (iij) +6J123T (123)» (E3)
i#]
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where

[a—

Tijpy = 5 (Tije + Tjig + Tij + Tigi + Trij + Trji)  (E4)

is a totally symmetric function of quark masses. The sum
has 3+ 3 x 6 + 6 = 27 terms in all, as it should be. Now
we make use of Eq. (D16) to obtain

Z-IiijT(iij) = Z(Jl/Tszr] + Rl]Tllj) (ES)
i#] i<j
where lef] = T(iijy = T(jji)- As a result we finally have
Z‘Il]lejk - ZJ Tlll + 32 Jl]Tszrj +Rl]TnJ)
i,j.k i<j

+ 641237 (123)- (E6)

The next sum describes the contribution of the fermion
box diagrams with external spin-1 fields to the coefficient
by(x,x). Here we have

Zjijleijkl = Zjijle(ijkl)

ikl ikl
= zJiTiiii + 4z-liiijT(iiij) + 6ZJiijjT(iijj)
i i#] i<j
+ 12ZJWkT(”]k> (E7)

i#j#k
Jj<k

This formula is written for the specific case when each of
the indices i, J, k, [ takes only three possible values 1,2, or 3
(we consider fermion fields with three flavors), so T, has
at least two equal indices. As a result, the sum (E7) has
34+44x6+6x3+12x3 =281 terms, and we need to
know only the following coefficients:

T (iiij) (Tlll]+Tlljl +lell+T]lll)

1
T(iijj) 6 (TUJ] + T]]ll + lel] + T]ljl + Tl]jl + TJllj)’
1
Tiijiy = B (Tiije+ Tiinj + Triij + Tjiie + T jrii + Tjii
+Tijix + Tigij + T jiri + Triji + Tijii + Tigji)- -~ (E8)

With the use of (D27) and (D28) one can set apart the
divergent part of the proper-time integral J;;; in the form
J;:, and as a result to obtain that

iiij
ij>

ZjiiijT(iiij)—Z< ij T3 Sq) iiij 2ZRU Giij

i#j i<j i<j

(E9)

where T”” T(iiij) + T(]JJ’) and S’J = S(mlz, mjz)

Thus, finally (E7) can be expressed as a sum

ZJ ijki Tijia

i.j.kl

1 3
= ZJiTiiii + 42 |:(Jij + ESU) iiij T ZRUTZU}

i<j
+6Z ij — lljj +122Jn/kT (iijk)+

< i#j#k,
i ‘l j<k

(E10)

APPENDIX F: PROPERTIES OF ¢ COEFFICIENTS

It is the purpose of this Appendix to establish some
important properties of ¢ coefficients which have been used
in the computation of the effective action.

We begin from the coefficient 7;;, given by Eq. (62). For
that we need the following expressions:

df; = 6,;0" +il'Y;

lj’
— a (01
= E :dikdkj
k

= §,;0° + 2iT%0" + i(0°TY) — (1%),;.  (F2)

(F1)

Then for the products we have

dd (&) = 8 (i) [(O ;) 4 (1) ]
= T¢I [i(O0) = (T2) 4, (F3)

d?k(dz)kldtj - 5kl(6ﬂF7k)(aﬂFZ>
+ iF{i(FZ.aﬁFj‘ ) + T6T%(I?),;.  (F4)
(dz)ki ?jdyk = 5i'(arjk)[(arki) - i(rz)ki]

+TET%[i(0T) + (02),], (Fs)

where a total divergence and open derivatives on the right-
hand side were omitted. It gives

R 1

lijk =3 [6;(OT'4) (OF ji.) + 6, (9T;;) (O ki)

+ 81 (DTG () 4 i(84 0T — 6,00 i) (02,

+ir? (raaﬁra )] + TET(I2),.. (F6)
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From this formula, in particular, one finds

35y = lij +yji + Ljig + (i < )
%(ar,-j)(arﬁ) %wﬂr?})(aﬁ ) +§[F P (00— T2 )4 FPTe) ] 41908 4+ T9) (12),, + TSI (1), + (i <> )
(F7)
and
315 = Tij + Liji + L — (i < )
= 2 (O0 )0, + S FETG + 1) 4 FTED] 4 T (0 = ) (1), + TG, = (). (FS)

From (F6) it follows also that in the case of three different masses, m; # m, # mjs, the t coefficient ?(123) is

[ (
f123) = Z rgrﬁk W T (T2 (F9)
6!#/#

Now consider the coefficient #;;; given by Eq. (62). Up to a total divergence it can be rewritten as

1
Lijr = 4 aﬁy6[4l“f‘]1"fkl“y I + 0jx0u (aﬂr?j)(ayrzﬁ) + 5kl5li(8yrfk)(8gr?) + 6,0 u(@"Fiz)(a“Ffw + 8i; /k(aaFZ)@ﬁr )

+ i(Sk,F?j(F‘l’i@Vka) + iéjkl“‘[i(l“zlé‘ﬂl“?) +i6y; ]k(l“" 8"Fy )+ 6,1 (Fﬂ 5‘“1“")] (F10)
Hence, we have

tii = 2(0T3)? + (0°T7,)? + 3(T4T%)%, (F11)

Further, from the definition of the coefficients and the property of the cyclic permutation, it follows that

Liiij = Lijji = Lijii = jiii = Uiij)> (F12)
Liijj = tijji = Ljjii = Ljiijs (F13)
Lijij = jiji- (F14)
Therefore,
1
t(iiij) 4 aﬁyo[(aara )(aﬁFY ) +4FZF€FZF7; + l(aal"a )Fu ij (aﬁr)’ )szr(tlz]
= 1{2(31“1-,-)(3%) + (07T (0°T%) + 05 [(TF,0°T°%) = (T,0°T°%) + (T4 PT%) ]} + (i) (T )+ 2(TT ) (Tl )
(F15)
From (F15), we obtain
i < <~ <
fiiij = 0+ [(OT)(O0 ) + 5 (G“Ffi)(a"ffi) +7 (T, F D)) [(I,00T%) = (I,0°T%) + (I%0°T%)]
+ (T3 (T ) + 2(0u0 ) (Tl ) £ (i< )]s (F16)

where 6,, =1, and 6_, = 0.
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Next, we calculate the coefficient #;;;;

Q| =

Liijj)
The formula (F10) gives now

1
3

(213355 + tijij)-

. Using the formulas (ES8), (F13), and (F14) it is easy to establish that

(F17)

2

1
Liijj) = 7 {(Fiirij)(rjjrji) + (L) () + (0T ) (T ) + (010 4 5 () (T ;0)

2

+ AT + (Ff,.garfj,.) + (T + (i < ) }

(F18)

Finally, consider the coefficient #(;;j;). In accord with the definition (E8) and the cyclic property (62) we have

Hiijk) = 3 (i + tinj + tinij)

—_ | =

= 5 60:/};/6

! kj~ ji

i s i “
PATGIRIY + DAL + TETGTG + L T (TG0 4+ 2T 0T)

(F19)

In conclusion, we recall that the coefficients depending on Y: ¢;; and 7;;;, were calculated in the main part of the work.
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