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We study the differential cross section of the single inclusive eþe− annihilation to the hadrons via
γ-production, in the different kt-factorization frameworks. In order to take into account the transverse
momenta of the incoming partons, for the first time, we apply the Kimber et al. (KMR) method to calculate
the unintegrated parton fragmentation functions (UFFs) from the ordinary integrated one, i.e., the parton
fragmentation functions (FFs), which satisfy the similar Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations, such as those of parton distribution functions (PDFs). Also, by utilizing
the different angular ordering constraints the results corresponding to the Martin et al. (MRW) in the
leading order (LO) and the next-to-leading-order (NLO) are obtained. The LO sets of DSS library for the
input FFs is used. The numerical results are compared with the experimental data in the different energies
which are reported by the different collaborations, such as TASSO, AMY, MARK II, CELLO, DELPHI,
SLD, ALEPH and Belle with the other QCDþ fragmentation models such as PYTHIA6.4 and 8.2 parton
showers. The behaviors of the normalized differential cross sections and the multiplicity versus the
“transverse momentum” (p⊥) are discussed. The final results demonstrate that the KMR and MRW UFFs
give a good description of data and there is not much significant difference between the above three
schemes. On the other hand, our results become closer to the data for the lower values of p⊥ and the higher
values of center of mass energies.

DOI: 10.1103/PhysRevD.104.114004

I. INTRODUCTION

The discovery of the partonic structure of hadrons based
on quarks and gluons is one of the most interesting topics in
the theoretical and experimental high energy physics. The
parton distribution functions (PDFs) represent the densities
of these fundamental particles which initially depend on the
Bjorken variable x and the hard scale μ2 by Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tions [1–4]. However, the experimental data of hadron-
hadron colliders show that the significant information is
embedded in the transverse momentum of the initial hadron
constituents. So the important inputs are the unintegrated
parton distribution functions (UPDFs). The UPDFs can be
interpreted as number densities of partons that are carrying
a fraction x of the momentum of parent hadron with the
transverse momentum kt at the hard scale μ2. These

transverse dependent functions extensively were investi-
gated in the Drell-Yan and the semi-inclusive deep inelastic
scattering (SIDIS) processes and unlike the collinear ones,
they are still highly debated subjects [5–7]. Theoretically,
various methods are utilized to generate these fundamental
quantities, and among them, the Kimber et al. [8] and Martin
et al. [9] formalisms are more simplistic ways to describe
these UPDFs. The general behavior of these prescriptions
was investigated in Refs. [10–14].
Of equal importance is the hadronization mechanism of

the generation of mesons and baryons from partons. To
reach a comprehensive description of these processes the
fragmentation functions (FFs) are required [15–19]. These
nonperturbative fundamental quantities mean the proba-
bility of carrying the light-cone fraction z of the fragment-
ing parent parton by hadron H, and can be measured in
SIDIS and single- or double-inclusive hadron production
in the electron-positron annihilation processes. While FFs
are necessarily coupled to the PDFs in SIDIS, the single
inclusive annihilation provides a golden channel and a
cleanest electromagnetic probe to study FFs, because there
is no contribution from hadronic effects in the initial states
[20]. At the first order and c.m. energies below the Z0 mass,
this process can be interpreted as eþe− → HX, via a single
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virtual photon, which can subsequently fragment into the
hadrons (H). The direction of the fragmenting back to back
qq̄ pair is identified by the jet axis resulting from each eþe−
scattering, and the detected p⊥ represents a direct meas-
urement of the transverse momentum of the final hadron
with respect to the fragmenting parent parton.
Some data upon polarized Collins FFs were achieved by

the BABAR collaboration [21,22] and some literature on
this subject is presented [23–25]. But, a little experimental
information exists on the unpolarized transverse momen-
tum dependent FFs. Although a thorough knowledge of
these functions would be of fundamental importance for
studying the transverse motion of hadrons, because of lack
of data on p⊥ distribution of eþe− unpolarized cross
sections, limited studies were performed over these func-
tions [26–34]. However, in this paper, we concentrate on
the data for single-inclusive hadron cross section in the
eþe− annihilation process, eþe− → HX, from the TASSO
collaboration at PETRA (DESY) [35,36]. The advantage of
these datasets, which are integrated over z with a small
average value of zH, hzHi, is delivering measurements at the
different c.m. energies. They provide the differential cross
sections in terms of p⊥, normalized to the fully inclusive
cross section which has interesting features to be studied
under the kt-factorization scheme. In this work, the cross
section data as a function of p⊥ distributions, integrated over
the energy fraction z of the detected hadron H, for all
charged particles production in the different c.m. energies
between 14 and 44 GeV are considered. Moreover, we also
consider the MARKII [37], AMY [38] and CELLO [39]
collaboration data collected at the SLAC storage ring PEP,
the KEK collider TRISTAN and at the PETRA, respectively.
Also, the eþe− unpolarized cross sections are discussed for
PYTHIA6.4 and PYTHIA8.2 parton showers [40] in comparison
with those of DELPHI [41], SLD [42] and ALEPH [43]
collaborations data at c.m. energy 91 GeV.
Although these data are old and limited to the p⊥

distribution, they represent extremely valuable and unique
information of a direct measurement of intrinsic transverse
momenta of the final hadrons with respect to the frag-
mented parent parton. These data in the nonperturbative
region, p⊥ < 1 GeV, are phenomenologically studied by
Boglione et al. [31–33], considering two functional forms,
i.e., the Gaussian and the power law, as models for fitting to
reproduce the behavior of data at small p⊥. There is also
the newer data from the Belle collaboration [44]. These
data provide the unpolarized cross sections of charged
pions and kaons based on z, p⊥ and event shape variable
(d3σ=dzdp⊥dT) in the

ffiffiffi
s

p ¼ 10.58 GeV Belle collabora-
tion [44]. In these datasets the transverse momentum of the
produced hadron is calculated relative to the thrust axis n̂
which maximizes the event-shape variable thrust T:

T ¼max
P

hjPc:m:system
h · n̂jP

hjPc:m:system
h j ;

in which the sum runs over all detected particles, and the
momentum of hadron h in the c.m. system, denoted by
Pc:m:system
h . It is shown in Ref. [44] that uds and charm

events have a peak at high thrust values. That is why in this
work, our results will be displayed in the 0.85 < T < 0.9
thrust bin. We also select high z bin datasets, because our
perturbative formalisms are valid for p⊥ > 1 GeV.
In this work, we intend to constrain our analysis to the

region of p⊥ > 1 GeV in which there are perturbative
effects. We apply, for the first time, the Kimber et al.
(KMR) and Martin et al. (MRW) formalisms in the leading
and next-to-leading order to test the capability of these
procedures in obtaining the unintegrated parton fragmen-
tation functions (UFFs), Dðz; p⊥; μ2Þ. It is essential to
emphasize that our goal here is not so much the determi-
nation of UFFs, which would require all possible processes,
but rather to explore, the application of the KMR and
MRW methodology for finding UFFs. So, we restrict
ourselves to the lowest order of QCD, and neglect all
terms related to αsðμ2Þ in the differential cross section
calculations.
The results are compared with distributions generated by

QCDþ fragmentation model programs via Monte Carlo
techniques such as the leading-logarithmic parton shower
(Lund PS) [45], the second-order matrix-element calcula-
tion (Lund ME) [46], and the model of the Gottschalk and
Morris (CALTECH II) [47] at the parton level. The main
approach of all these programs is utilizing a model with a
few free parameters in the fitting to the data processes. The
important features of these models are briefly discussed
in Refs. [37,38]. Beside these parton showers, there is also
the possibility of comparison of the result with those of
PYTHIA6.4 and PYTHIA8.2 [40].
The organization of our paper is as follows: In Sec. II, we

review briefly the basic formulas of the cross section of
eþe− annihilation into hadrons, kt-factorization approach,
and the KMR methodology to construct the UPDFs
and UFFs. In Sec. III we present the numerical results
and discussions. Finally, we summarize our conclusions
in Sec. IV.

II. THE FORMALISM

A. The cross section and the fragmentation functions

In this section, we present some theoretical aspects of the
cross section of the single inclusive hadron production in
the eþe− annihilation process into a single hadron H,

eþe− → γ → HX; ð1Þ

by considering unpolarized fragmentation function.
The cross section for such a process by including the
transverse momentum can be typically written in the
following form:
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1

σtot

dσH

dzd2p⃗⊥
¼ 1P

qeq
2
½2FH

1 ðz; p⊥; μ2ÞþFH
L ðz; p⊥; μ2Þ�;

ð2Þ

where eq is the charge of each quark flavor and the sum
runs over all active quark-antiquark flavors. The energy EH

of fragmented hadron with respect to the beam energy
ffiffi
s

p
2
is

presented by the parameter z ¼ 2pH:q=μ2 ¼ 2EH=
ffiffiffi
s

p
which, in the eþe− c.m. frame, is interpreted as the
momentum fraction of the parent quark carried by the
produced hadron. Details on the unpolarized timelike
structure functions FH

1 and FH
L in Eq. (2) can be found

in Refs. [48,49]. The total cross section for the eþe−
annihilation to hadrons is presented by

σtotðμ2Þ ¼
X
q

eq2σ0

�
1þ αsðμ2Þ

π

�
þOðα2sÞ; ð3Þ

where σ0 ¼ 4πα2

3s in which α ¼ e2=4π denotes the electro-
magnetic fine structure constant, and in the leading order in
αs, we have σtot ¼ 4πα2

3s

P
q eq

2.
The structure functions FH

1 in the leading order accuracy
are given by

2FH
1 ðz; p⊥; μ2Þ ¼

X
q

eq2½DH
q ðz; p⊥; μ2Þ þDH

q̄ ðz; p⊥; μ2Þ�;

ð4Þ

and FH
L has not any term in the leading order. In this

equation, the DH
q ðz; p⊥; μ2Þ is the ordinary unpolarized

single-hadron FFs. In our analysis, we restrict ourselves to
the leading order approximation in which the p⊥2=μ2 ≪ 1
limitation is applied. With these considerations, we may
simply write the differential cross section formula as
follows:

1

σtot

dσH

dzd2p⃗⊥
¼ 1P

qeq
2

X
q

eq2½DH
q ðz; p⊥; μ2Þ

þDH
q̄ ðz; p⊥; μ2Þ�: ð5Þ

After integrating Eq. (5) over z and also considering
d2p⃗⊥ ¼ 2πp⊥dp⊥, we have the final formula for the
differential cross sections in the leading order (LO) with
respect to p⊥:

1

σtot

dσH

dp⊥
¼ 2πp⊥

1P
qeq

2

Z X
q

eq2½DH
q ðz; p⊥; μ2Þ

þDH
q̄ ðz; p⊥; μ2Þ�dz; ð6Þ

and

1

σtot

dσH

dz
¼ 2π

1P
qeq

2

Z X
q

eq2½DH
q ðz; p⊥; μ2Þ

þDH
q̄ ðz; p⊥; μ2Þ�p⊥dp⊥: ð7Þ

B. The KMR and MRW prescriptions,
UPDFs and UFFs

In the KMR [8] method, by starting from the DGLAP
evolution equation and performing kt factorization pre-
scriptions, we obtain the UPDF of each parton which
depends on the transverse momentum kt, the fractional
momentum x at hard scale μ2 as

faðx; kt; μ2Þ

¼ Taðkt; μ2Þ
X
b

�
αSðk2t Þ
2π

Z
1−Δ

x
dzPð0Þ

ab ðzÞb
�
x
z
; k2t

��
;

ð8Þ
where the familiar double logarithmic Sudakov survival
factor Taðkt; μ2Þ is

Taðkt;μ2Þ¼ exp

�
−
Z

μ2

k2t

αSðκ2t Þ
2π

dκ2t
κ2t

X
b

Z
1−Δ0

0

dz0Pð0Þ
ba ðz0Þ

�
;

ð9Þ
where Pð0Þ

ab ðzÞ (b ¼ q; q̄ and g) denotes the usual LO
splitting functions and bðxz ; k2t Þ are the LO PDFs (the
Sudakov form factor becomes the equal one for kt > μ).
In this formula, the angular-ordering constraint (AOC)
[50–56], Δ (Δ0), is applied in the upper limit of the
integration, which is an infrared cutoff to prevent the soft
gluon singularities from rising from the splitting functions
and defined asΔ ¼ kt

μþkt
(Δ0 ¼ κt

μþκt
), which constrains the kt

ordering.
Similarly, we can obtain a formula for the quark UFFs by

starting from the complete (leading order) DGLAP evolu-
tion equation for the quark FFs in terms of quark and
gluons, see Fig. 1 (a similar equation can be written for the
antiquarks, throughout this report):

∂DH
q ðz; μ2Þ
∂lnμ2 ¼ αSðμ2Þ

2π

Z
1

x

dx
x

�
PqqðxÞDH

q

�
z
x
; μ2

�

þ PgqðxÞDH
g

�
z
x
; μ2

��
: ð10Þ

Note that in this formula, according to Refs. [15,19], the
functions Pgq are interchanged in comparison with that of
parton evolution equations. The relevant splitting kernels are

FIG. 1. The graphical representation of Eq. (10).

APPLYING DIFFERENT ANGULAR ORDERING CONSTRAINTS … PHYS. REV. D 104, 114004 (2021)

114004-3



PqqðxÞ ¼ CF

�
1þ x2

ð1 − xÞþ
þ 3

2
δð1 − xÞ

�
; ð11Þ

PgqðxÞ ¼ CF
1þ ð1 − x2Þ

x
: ð12Þ

By inserting these splitting kernels and using the plus
prescription in a straightforward way, one could have the LO
DGLAP equation evaluated at a scale kt:

∂DH
q ðz; k2t Þ
∂lnk2t ¼ αSðk2t Þ

2π

�X
a

Z
1−Δ

z
PaqðxÞDH

a

�
z
x
; k2t

�
dx

−DH
q ðz; k2t Þ

X
a

Z
1−Δ

x
Pqaðz0Þdz0

�
: ð13Þ

Here, Paq refer to the unregulated LO DGLAP splitting
kernels and DH

i ðz; k2t Þ ¼ zDH
i ðz; k2t Þ (i ¼ q; q̄ and g). The

two terms on the right-hand side correspond to real
and virtual emission, respectively. The virtual contributions
may be resummed to all orders by the Sudakov form
factor,

Tqðkt;μ2Þ¼ exp

�
−
Z

μ2

k2t

αSðκ2t Þ
2π

dκ2t
κ2t

X
b

Z
1−Δ

0

dz0Pð0Þ
qb ðz0Þ

�
;

ð14Þ

which is the survival probability that hadron H with trans-
verse momentum kt remains untouched in the evolution, up
to the factorization scale μ. Therefore, the UFFs become
dependent on the two scales, k2t and μ2 in the last step of
the evolution. So, in the kt-factorization framework, the
UFFs have the following forms:

DH
q ðz; kt; μ2Þ

¼ Tqðkt; μ2Þ
X
b¼q;g

�
αSðk2t Þ
2πk2t

Z
1−Δ

z
dz0Pð0Þ

bq ðz0ÞDH
b

�
z
z0
; k2t

��
;

ð15Þ

where DH
b ðzz0 ; k2t Þ are the collinear, unpolarized quarks and

gluons FFs. We use the LO set of DSS [57]. Note that in
general we set kt ¼ p⊥=z [31] for the UFFs to calculate
different differential cross sections.
By applying the AOC only on the terms which include

the on shell gluon emissions for the quarks and gluons,
we have the LO-MRW UFFs for quarks in the follow-
ing form:

DH;LO
q ðz; kt; μ2Þ ¼ Tqðkt; μ2Þ

αSðk2t Þ
2πk2t

Z
1

z
dz0

�
Pð0Þ
qq ðz0Þ z

z0
DH

q

�
z
z0
; k2t

�
Θ
�

μ

μþ kt
− z0

�
þ Pð0Þ

gq ðz0Þ z
z0
Dg

�
z
z0
; k2t

��
; ð16Þ

with

Tqðkt; μ2Þ ¼ exp

�
−
Z

μ2

k2t

αSðκ2t Þ
2π

dκ2t
κ2t

X
b

Z
1−Δ

0

dz0Pð0Þ
qb ðz0Þ

�
: ð17Þ

By expanding the MRW formalism to the NLO level, we have

DH;NLO
q ðz; kt; μ2Þ ¼

Z
1

z
dz0Tqðk; μ2Þ

αSðk2Þ
2πk2t

X
b¼q;q̄;g

P̃ð0þ1Þ
bq ðz0ÞDH;NLO

b

�
z
z0
; k2

�
Θ
�
1 − z0 −

k2t
μ2

�
; ð18Þ

where k2 ¼ k2t
ð1−z0Þ. In the above formula, the Sudakov form factor is defined as

Tqðk; μ2Þ ¼ exp

�
−
Z

μ2

k2

αSðκ2t Þ
2π

dκ2t
κ2t

Z
1

0

dz0z0½P̃ð0þ1Þ
qq ðz0Þ þ P̃ð0þ1Þ

qg ðz0Þ�
�
; ð19Þ

The higher order splitting functions are presented in the
Appendix.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we intend to present the kinematic and
theoretical aspects of our calculations. First, we calculate

the KMR UFF based on the kt-factorization scheme by
applying exactly analogous steps hold for the UPDF [8]
which was developed in Sec. II. The similar perturbative
calculation for both LO-MRWand NLO-MRW FF are also
implemented. It is important, however, to point out that the
crucial constraint for instructing any new UFF is the
normalization relation,
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DH
q ðz; μ2Þ ≃

Z
μ2

dp2⊥DH
q ðz; p⊥; μ2Þ: ð20Þ

In this article, we attempt to extract information about
the perturbative evolution region. So, we restrict our
analysis to the region of p⊥ > 1.0 GeV. Moreover, we
vary the scale μ between μ=2 and 2μ to assess the
uncertainty in the perturbative calculation.
The results of the above numerical calculations are

compared with the available experimental datasets of the
single inclusive hadron production in the eþe− annihilation
processes of the TASSO detector at PETRA (DESY)
[35,36] laboratories and the Belle detector at the KEKB
[44]. We use the data from different groups such as the
AMY, MARK II, and CELLO collaborations. The results
are demonstrated in Figs. 2–6 and compared with the
different collaborations data at different c.m. energies.
In Figs. 2–4, the numerical results related to the UFF
are shown by the solid, dash, and dot-dashed curves and
correspond to the result of different schemes, namely the
KMR, LO-MRW, and NLO-MRW, respectively.
We start by analyzing the cross sections related to

the low c.m. energies for
ffiffiffi
s

p ¼ 14, 22, 35 and 44 GeV.
The results of the normalized differential cross sections
ð1=σtotÞdσ=dp⊥ with respect to p⊥ are compared to the

experimental data of TASSO at the different c.m. energies
which are shown in Fig. 2. It is demonstrated that as the c.m.
energy is increased the differential cross sections evaluated by
using the three UFFs schemes, become near to each other,
especially in the case ofKMRandLO-MRW formalisms. On
the other hand, our results become closer to the data for the
lower values of p⊥ and the higher values of c.m. energies.
In Fig. 3(a), the normalized distribution of the multi-

plicity with respect to p⊥ for charged particles,

1

N
dN
dp⊥

¼ 2πp⊥
1P
qeq

2

Z X
q

eq2½DH
q ðz; p⊥; μ2Þ

þDH
q̄ ðz; p⊥; μ2Þ�dz; ð21Þ

is compared to the experimental data of CELLO [39] while
in panels (b)–(d), the normalized differential cross sections
with respect to p2⊥ are compared to the experimental data
of TASSO [36] at the different c.m. energies. The same
conclusion can be made for this figure as the one we made
for Fig. 2. It is also observed that the KMR and NLO-MRW
are closer to each other.
In Fig. 4, the normalized differential cross sections

with respect to p⊥ for charged particles is compared
to the experimental data of AMY [38] [panel (a)], and

(a) (b)

(c) (d)

FIG. 2. The normalized differential cross sections (1=σtot)dσ=dp⊥ with respect to p⊥ compared to the experimental data of TASSO
[36] at the different c.m. energies. The shaded uncertainty gray bands belong to the KMR prescription.
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MARK II [37] [panel (b)]. A comparison between our
results and some Monte Carlo techniques, i.e., the Lund
parton shower (Lund PS) (the dashed lines in both panels),
the Lund matrix elements (Lund ME) [the dotted line in
panel (a)] and the CALTECH II [the dotted line in panel
(b)] models are presented. It is observed that our results are

similar to those of QCDþ fragmentation function models.
It seems that the Lund parton shower model provides a
better description of data, since according to Ref. [38], the
total χ2 of the fits following this approach is the lowest
among the three models. However, the advantage of the
kt-factorization methodology is that the calculation is

(a) (b)

(c) (d)

FIG. 3. (a) The normalized distribution of the multiplicity with respect to p⊥ for charged particles is compared to the experimental data
of CELLO [39]. (b)–(d) The normalized differential cross sections with respect to p⊥ compared to the experimental data of TASSO [36]
at the different c.m. energies. The shaded uncertainty gray bands belong to the KMR prescription.

(a) (b)

FIG. 4. The normalized differential cross sections with respect to p⊥ for charged particles is compared to the experimental data of
AMY [38] (the left panel), of MARK II [37] (the right panel), and some “QCD þ fragmentation” models predictions. The shaded
uncertainty gray bands belong to the KMR prescription.
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completely perturbative and we do not use any fitting
procedure to have a prediction of the data.
In Figs. 5 and 6, our results of LO- and NLO-MRW are

compared with the differential cross section datasets of
pions from the Belle collaboration [44] as a function of
transverse momentum p⊥ for the indicated z bins and thrust
value 0.85 < T < 0.9. These figures show as the amount of
z bin increases, the result of NLO-MRW scheme becomes
closer to the data.

As we pointed out before, it is obvious that all three
approaches have similar behavior. Although near p⊥ ∼ 1,
there is not any significant preference between the results of
three schemes, but by increasing p⊥ they start to separate
from each other. According to these panels, our results
show a bit underestimate and overestimate in the low
and high p⊥ region. However, the uncertainty bands of
our calculations cover the experimental data. Thus, one
can conclude that our perturbative and straightforward

FIG. 5. The differential cross sections for pions as a function of p⊥ for the indicated z bins and thrust 0.85 < T < 0.9. The error gray
bands represent the uncertainties for LO-MRW formalism. The results are compared to the experimental data of the Belle collaboration
[44] in the

ffiffiffi
s

p ¼ 10.58 GeV center of mass energy.

FIG. 6. The same as Fig. 5.
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calculations (using the KMR and MRW methods) give a
good description of the data.
In different panels of Fig. 7, we compare our differential

cross section defined in Eq. (7), using the LO-MRW
formalism, with those of new PYTHIA6.4 and PYTHIA8.2

parton showers [40] as well as the DELPHI [41],
SLD [42] and ALEPH [43] collaboration data, at c.m.
energy 91 GeV. There is good agreement between our
prediction and the mentioned experimental data as well as
new parton showers, especially for the PYTHIA8.2 parton
shower [40].

IV. CONCLUSIONS

We presented the first analysis of the applicability of the
kt-factorization approach in the single inclusive hadron
production in the eþe− annihilation processes. We used the
transverse momentum dependent fragmentation functions
of three different prescriptions, i.e., KMR, MRW, and
NLO-MRW. We calculated several distributions of nor-
malized transverse momentum and multiplicity of the
charged fragmented hadrons in the leading order. In
addition, we obtained the uncertainty band for the cross
section distribution in the case of KMR by changing the
scale factor as illustrated in Sec. III. We found with a good

approximation, all three schemes give a similar and
acceptable description of data presented in this report.
In Ref. [58] the transverse-momentum-dependent FFs

(or UFFs) up to N3LO QCDwere calculated. However, it is
the first time that present formalism is applied to calculate
the unintegrated fragmentation functions up to the NLO
level and should be considered as the first step for
application of KMR and MRW formalisms. On the other
hand, we only considered the lowest order structure
functions for the evaluation of differential cross sections.
So, we hope by extending our formalism to the next-
leading order in the structure functions and improving of
the UFFs, we could get better accuracy, in the future works.

ACKNOWLEDGMENTS

M. Modarres and R. Taghavi would like to acknowledge
the research support of the University of Tehran and the
Iran National Science Foundation (INSF) for their grants.

APPENDIX: THE NLO SPLITTING FUNCTIONS

The NLO splitting functions are defined as [59]

P̃ð0þ1Þ
ab ðzÞ ¼ P̃ð0Þ

ab ðzÞ þ
αS
2π

P̃ð1Þ
ab ðzÞ; ðA1Þ

FIG. 7. The comparison of our differential cross section defined in Eq. (7), using the LO-MRW formalism, with those of PYTHIA6.4 and
PYTHIA8.2 parton showers [40] as well as the DELPHI [41], SLD [42] and ALEPH [43] collaborations data, at c.m. energy 91 GeV.
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with

P̃ðiÞ
abðzÞ ¼ PðiÞ

abðzÞ − Θðz − ð1 − ΔÞÞδabFðiÞ
abPabðzÞ; ðA2Þ

where i ¼ 0 and 1 stand for the LO and the NLO,
respectively. Δ can be defined as [9]

Δ ¼ κt
ffiffiffiffiffiffiffiffiffiffi
1 − z

p

κt
ffiffiffiffiffiffiffiffiffiffi
1 − z

p þ μ
;

and we have

Fð0Þ
qq ¼ CF; ðA3Þ

Fð1Þ
qq ¼ −CF

�
TRNF

10

9
þ CA

�
π2

6
−
67

18

��
; ðA4Þ

Fð0Þ
gg ¼ 2CA; ðA5Þ

Fð1Þ
gg ¼ −2CF

�
TRNF

10

9
þ CA

�
π2

6
−
67

18

��
; ðA6Þ

PqqðzÞ ¼
ð1 − z2Þ
1 − z

; ðA7Þ

PggðzÞ ¼
z

ð1 − zÞ þ
ð1 − zÞ

z
þ zð1 − zÞ: ðA8Þ
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