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ABSTRACT: We revisit the relation between the anomalies in four and six dimensions and
the Chern-Simons couplings one dimension below. While the dimensional reduction of chi-
ral theories is well-understood, the question which three and five-dimensional theories can
come from a general circle reduction, and are hence liftable, is more subtle. We argue that
existence of an anomaly cancellation mechanism is a necessary condition for liftability. In
addition, the anomaly cancellation and the CS couplings in six and five dimensions respec-
tively determine the central charges of string-like BPS objects that cannot be consistently
decoupled from gravity, a.k.a. supergravity strings. Following the completeness conjecture
and requiring that their worldsheet theory is unitary imposes bounds on the admissible
theories. We argue that for the anomaly-free six-dimensional theories it is more advan-
tageous to study the unitarity constraints obtained after reduction to five dimensions. In
general these are slightly more stringent and can be cast in a more geometric form, highly
reminiscent of the Kodaira positivity condition (KPC). Indeed, for the F-theoretic mod-
els which have an underlying Calabi-Yau threefold these can be directly compared. The
unitarity constraints (UC) are in general weaker than KPC, and maybe useful in under-
standing the consistent models without F-theoretic realisation. We catalogue the cases
when UC is more restrictive than KPC, hinting at more refined hidden structure in elliptic
Calabi-Yau threefolds with certain singularity structure.
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1 Introduction and discussion

A large class of odd-dimensional theories can be obtained by circle compactification of a
chiral theory one dimension higher. This paper is about the way the consistency conditions
of these chiral theories manifest themselves in the lower dimensional theories.

In this context, the first question about a three- or five-dimensional theory (with
or without gravity) is how to determine whether the theory does indeed have a higher
dimensional origin and hence can be lifted one dimension higher (we will call such theories



“liftable”). For M-theory compactifications on Calabi-Yau three- or fourfolds, a liftability
condition is well-known and captured by the structure of the internal manifold. When
the CY in question is elliptically fibered, the M-theory compactification is dual to a circle
reduction of F-theory on the same elliptically-fibered CY [1]. Of course such strict duality
holds for smooth CY manifolds where all the gauge fields in the effective theory are Abelian.
If the elliptic CY on which F-theory is compactified is singular, the even-dimensional theory
has a non-Abelian gauge sector. Compactifying with Wilson lines amounts to at least
partial desingularisation, and generically the elliptic structure is lost [2, 3]. Hence, the
elliptic fibration of the internal CY manifold X is a necessary condition only for being able
to formulate the even-dimensional theory as F-theory on X, and it is a sufficient condition
for being liftable for M-theory on X.

For concreteness, let us take X to be a CY threefold, and recall that M-theory on X
in addition to the gravity multiplet, comprising graviton, gravitino and a vector field, has
hyper and vector multiplets. All vector fields arise from the three-form field of M-theory
expanded in H!'(X,R) [4, 5]. The elliptic structure simultaneously ensures two different
conditions. Due the to presence of at least a single two-form in H'!(X,Z) without triple
self-intersection, at least one of these vectors does not have a Chern-Simons cubic self-
coupling in five dimensions. Hence it can be dualised to a two-form [6]. Existence of such
a form is a necessary condition imposed by six-dimensional supersymmetry. Much more
non-trivially the ellipticity of X ensures that the six-dimensional minimally supersymmetric
theory obtained from F-theory on X is anomaly-free.! The anomalies (in even-dimensional
theories) and the Chern-Simons couplings (in odd dimensions) are going to be central to
our general discussion.

One should suspect that something interesting happens when a chiral theory with a
GS term is put on a circle. By construction, the GS couplings are not invariant under the
gauge symmetry and/or diffeomorphisms on spacetime Ms,. Upon a general dimensional
reduction on a circle they will continue being non-invariant. The (factorised) anomaly
which these terms are supposed to cancel is due to the presence of chiral fields in the
spectrum which don’t exist in the odd-dimensional theory on Ms,_1. The non-invariant
part of the reduced GS terms is now cancelled by explicitly local non-invariant one-loop
couplings generated by integrating out massive KK modes of the chiral fields on My,_1 %
S' in the loop. In a series of papers [12-16] it was shown how the even dimensional
conditions for a factorised anomaly, and hence for existence of GS terms, translate into
correct coefficients for these new non-invariant terms needed for the cancellation. The
calculations that have appeared so far are based on a specific regularisation scheme. Here
we advocate a somewhat different point of view based on a more abstract argument. It
can be shown how an anomaly reduced on a circle can always be written as a variation of
a local term. Hence it can be fixed by an addition of a local counterterm. Schematically

'In F-theory constructions, the anomaly polynomial should be automatically sum-factorisable, and the
necessary Green-Schwarz (GS) terms are induced in the reduction [7, 8]. The coefficients appearing in
these terms satisfy certain integrality properties, which from the effective theory point of view are seen
as necessary for global anomaly cancellation [9]. A review of much of the needed background material on
six-dimensional theories and F-theory can be found in [10] and in [11] respectively.



this can written as:

Map—1xS1 Map—1

Here A/ A and F/F are fields and their curvatures in 2n and 2n—1 dimensions respecitvely,
€ is the variation (gauge or diffeomorphism) parameter, ® is the Wilson line along the cir-
cle, and the - here implies a trace over group indices. As we shall explain, X (A, F) is
derived from the Bardeen-Zumino polynomial [17]. For gauge theories in a trivial gravity
background, when the gauge group G is preserved by the reduction, the equality is exact.
When the gauge group is broken or in the case of diffecomorphism (where Diff(Ma,,) is nec-
essarily reduced to Diff(Ma,—1)), A and ® are in the unbroken group, there are correction
terms denoted by ellipsis.

In 2n — 1 dimensions the non-invariance in (1.1) can always be cancelled by a local
counterterm —® - X, which can never be lifted to d = 2n. However, it may be possible to
add a different counterterm which cancels this non-invariance, which then can be lifted to
the chiral theory. This is only possible when the latter admits a GS coupling. Hence the
anomalies present an obstruction to liftability, and existence of a cancellation mechanism
is a necessary condition for liftability. It should be interesting to find sufficient criteria.

There are other interesting questions that can be asked in this context that are beyond
the scope of our paper. For the gauge anomaly reduction we have only considered the
situation when the gauge group G is the same before and after reduction. The argument
can be augmented to include generic Wilson lines. For the gravitational theories on the
contrary the reduction of the structure group is unavoidable. The proof of formula (1.1)
for the gauge theory without Wilson lines in a trivial gravitational background as well as a
sketchy discussion for gravitational anomalies can be found in appendix A. Finally, when
starting from the lower odd-dimensional theory the question of lifting should be framed in
terms of a more general obstruction theory, something that can hopefully be done in the
near future.

Local anomaly cancellation is not the only consistency condition one can impose on
six-dimensional minimal supergravities. A more recently developed criterion is based on
the completeness conjecture of the spectrum of the charged BPS objects in supergravity
theories. In six dimensions, there are string-like BPS objects that cannot be consistently
decoupled from gravity (we shall follow [18, 19] and call them “supergravity strings”),
provided certain conditions on their charges are satisfied. These will be spelled out in
section 4. These BPS strings support two-dimensional (0, 4) superconformal theories on the
worldsheet, whose central charges are completely fixed by the bulk anomaly cancellation,
i.e. the coefficients of different couplings in GS terms. They couple to the gauge fields in the
bulk for gauge group G = []; G;, and hence the unitarity of the worldsheet theory requires
that the total central charge associated with the current algebras of G; is not larger than
the left moving central charge:

ZC(G,) < Cl, (1.2)

7
The consequences of this bound for six-dimensional theories have been analysed in [18]. In
contrast, the five-dimensional theories, even those that are obtained from a circle reduction,



have a different way of packaging the information, and the expression for the (0,4) central
charges is rather different. We find that the five-dimensional view on the supergravity
strings is somewhat more convenient and leads to constraints that are slightly more strin-
gent. Interestingly, for the theories that come from a circle reduction the constraints are
still associated with the (reduced) six-dimensional supergravity strings rather than strings
carrying KK charges.?

Of course, it is natural to compare any ostensibly consistent minimally supersymmetric
theory in six dimensions to F-theory constructions. In addition to the requirements imposed
by physical considerations, these are subject to additional constraints that are associated
with the geometry of elliptic fibrations. These constraints can be formulated either in
terms of the data of the effective theory or in geometrical language. In the F-theory
picture, the non-Abelian gauge groups G; arise from D7-branes wrapping singular gauge
divisors S; in the base manifold B. The CY condition, i.e. the triviality of the canonical
bundle of the elliptic fibration, relates K, the canonical divisor of B, to the locus of singular
fibers. In addition the Kodaira positivity condition (KPC) states that a residual divisor
Y = —12K — ), 2;5; should be effective. The coefficients x; are given by the vanishing
order of the discriminant on S;. These can be found in table 1 in section 5. In particular
this means the non-negativity of the intersection

D-<—12K—Za;isi)zp-yzo, (1.3)

for any nef divisor D (nef divisors, by definition, intersect every effective divisor non-
negatively). The supergravity strings in F-theory models originate from D3-branes wrap-
ping D.

The unitarity conditions (UC) are formulated directly in terms of the data of the
effective theory. Assuming that there is an underlying elliptic CY3 the five-dimensional
UC that we derive here can be geometrised, and cast as bound on intersection forms with
any nef divisor D. It can also be reformulated as an extra constraint on the residual
divisor Y:

D-Y >3- (zi—y)D-S; (1.4)

(2

where y; = dl‘%%l and h;/ is the dual Coxeter number of G;. Comparative values of x; and
y; (as we shall see for any group G;, x; —y; > 1) and the details of the analysis of the
condition (1.4) can be found in section 5.2. A word of caution is due. This is the strongest
form of the unitarity constraint, where the value of the coefficients y; has been computed
under the assumption that D -.S; = 1 holds. In the vast majority of cases this bound is
automatically satisfied if (1.3) holds. If it is violated, the validity of D -S; = 1 needs to be
checked before concluding that UC indeed imposes additional constraints on the residual
divisor Y3 In section 5.2.3 we catalogue all the cases where UC imposes extra constraints.

2Based on the anomaly inflow and local counterterms in the bulk, we can see a mismatch of BPS string
spectrum in 6d and 5d supergravities, as discussed in section 3. As we shall argue this is explained by
noticing that the 5d BPS strings, carrying KK charges, are lifted to certain geometric background (Taub-
NUT space) that preserves half of the supersymmetry rather that BPS strings in 6d supergravity.

$We have found examples where (1.4) fails, but so does the condition D - S; = 1.



Notice that an example where the implications of six-dimensional UC were stronger
than those imposed by KPC was already presented in [18]. We find that in generic situa-
tions 5d UC is more constraining than 6d UC and has the advantage of being cast in a form
directly comparable to KPC. In general it is less constraining than KPC, and hence can
be useful in delineating the boundaries of the region between the six-dimensional F-theory
models and the swampland (which is likely to contain a finite number of theories [20]).
The fact that it does in special situations impose additional constraints allows for the in-
triguing possibility of finding more refined structure in elliptic CY3 with certain singularity
structures. Both cases would deserve further study.

The rest of the paper is organised as follows. In section 2 we review the one-loop cal-
culation showing how the 4d anomaly reappears as Chern-Simons-like terms in 3d effective
theory and discuss how to understand (perturbative) anomalies in compactifications from
the point of view of local counterterms. We then explore the possibility of moving in the
other direction and try to interpret anomalies as obstructions of the liftability problem.
All of this is done in a trivial gravitational background while the rest of the paper is set in
supergravity. Details of the comparison between the 6d and 5d BPS spectra are discussed
in section 3. In section 4, we present a five-dimensional view on the unitarity constraints.
In section 5, we compare the five-dimensional unitarity condition with Kodaira positivity
condition and find that it is weaker in general cases. We also catalogue the special cases
where the unitarity condition is stronger and may impose finer conditions on elliptic CY 3.

2 Anomalies in compactification and local counterterms

In this section we discuss theories in a flat gravitational background. We discuss the relation
between theories in even and odd dimensions if the former have anomalies. Related to this,
we also address the question about the liftability of a given theory. See [12-16] for earlier
discussions.

2.1 Compactification of 4d anomalous QFT on R3 x S!: general considerations

Assume we have a 4d QFT* with global flavour symmetry Gr. The anomaly is captured
by the anomaly polynomial I5(A, F') where F' is the field strength of a background gauge
field A which gauges Gr. Then anomaly is the non-invariance of the partition function in
the presence A,

Z1A] = exp <27ri / (e, A)> Z1A] (2.1)
My
where € is the parameter of gauge transformations and I il) is obtained from Ig by the

descent procedure.
For example consider Gy = U(1). In this case I 4(1) = NeF A F where the normalisation
depends on the field content. For instance, for a positive chirality fermion with flavour

charge ¢, N = %. We now consider this theory on My = M3 x S'. If we take the

4The restriction to d = 4 is for simplicity of presentation. We will generalize to any even dimension below.



components of A along M3 and the gauge parameter € to be independent of the coordinate
along S! and if we define ¢ = [ Asda?, then (2.1) becomes

Z A%, 6] = exp <2m' - 2N/ Ccdg A dA) Z[A, ¢ (2.2)

M

A is now the gauge field on M3, ¢ is a scalar and
A=A+ de, N0 (2.3)

We now consider this from the point of view of a three-dimensional QFT which was obtained
by compactification on a circle, whose radius is taken to zero. While in the four-dimensional
parent theory the anomalous behaviour of the partition function cannot arise from the
variation of a local term — otherwise the anomaly could be removed by adding a local
counterterm— in the compactified theory it arises as the variation of®

Lo=-2mi-2NGAF (2.4)

whose variation produces the anomaly reduced on the circle in the presence of the Wilson
line ¢(x). This is the unique term with this property if we require it to be local and to
depend only on the background fields.

As long as the U(1) symmetry is not to a gauge symmetry, this term causes no problem.
It just incarnates the 't Hooft anomaly viewed from the compactified 3d QFT. However, if
we gauge this anomalous U(1), which means A and ¢ become dynamical fields of the QFT,
this term will break the gauge symmetry explicitly. This indicates that the gauge anomaly
of the 4d theory will reappear as anomalous Chern-Simons terms in the 3d effective theory.
This argument generalizes to the non-Abelian case and also to higher dimensions.

In fact one can proof a general result. We start from the consistent anomaly 13, (¢, A, F)
of a 2n-dimensional theory, as derived from the anomaly polynomial I5,12(A, F') via the
descent procedure. If we compactify on a circle and turn on a Wilson line ¢ along the
circle, the following is true:

/ e A =6 [ 6 X(AF) (2.5)
M2'n71 xSt M2'n71
X is the Bardeen-Zumino polynomial

0

and the dot implies a trace over group indices. Here A = A 4+ ¢ dy where A is a one-form
on Ms,_1, y is the coordinate along S' and Jg1pdy = ¢. We have assumed that the
gravity background is trivial. It straightforwardly generalizes if there are several gauge
group factor, each with its own Wilson line.

What this result, whose proof will be given in appendix A, shows is that the compact-
ified anomaly can always be written as the variation of a local term, i.e. it can be removed

5This term can also be derived as the compactification of the non-local term in the four-dimensional
generating functional, whose variation gives rise to the anomaly.



by adding an appropriate counterterm. This is, of course, no surprise, given the fact that
odd-dimensional theories have no chiral anomalies, but it might be convenient to have a
general expression.

A simple example is to start with Is = trF® from which one obtains, via descent, IV =
tr (AF2 —1A3F + %A5> and in I} = tre (AdA + %A?’). Then, up to a total derivative
ind=3,

1
/ e, A, F) = 6,tr <¢ (FA +AF — 2A3)> (2.7)
Sl
Restricted to the Abelian case, this agrees with what we found before.

2.2 Anomalous Chern-Simons terms

We now want to discuss how (2.4) can be obtained from the three dimensional theory. It is

6

well known that in three dimensions® massive fermions induce one-loop exact Chern-Simons

terms which, for a collection of U(1) factors is of the form

Los = gy P AL A} (2.8)

The level ky, of the CS interaction is obtained from the parity odd part of the two-point
function 1

(a(@) 73 (=0)) = 1 Kave " ax + .. (2.9)

It is equally well known that when compactifying from four to three dimensions, massless
4d fermions give rise to an infinite tower of massive Kaluza-Klein states, where the sign
of the mass depends on the 4d chirality. To obtain the Chern-Simons level one needs to
sum the contributions of all the KK modes. For a constant diagonal A4 background this
calculation was done in [12] whose results we summarize here. The non-zero background
has two effects: it breaks the gauge group G to U(l)rank(G) and shifts the KK masses of
the 4d fermions which transform in a non-trivial representation R of G. One finds

. n o
7;ZSIgn (L + 27I'L> (2 10)
= —trg ({1, T7}7°) ¢ + trg (T°T" sign o) '
R

kap = Z trr TeT?
R

where the sum has been done in (-function regularisation. 7% and T? are generators in
the unbroken Abelian subgroup, i.e. in the Cartan subalgebra of G and the sum is over
all representations of (left handed) fermions under the gauge group G. ¢ = 2rLA, is the
Wilson line and |¢¢| < 7 was assumed.

Of course this result, which was computed in a gauge invariant three-dimensional
theory, is gauge invariant, but it contains the information whether the 4d theory was
consistent. Indeed, the first part only vanishes if the Wilson line belongs to an anomaly free
symmetry group, i.e. if the contributions to the anomaly of the 4d theory from the various
fermions cancel. If this part does not vanish and if the symmetry was a gauge symmetry,
the four-dimensional theory was inconsistent, unless the anomaly can be cancelled via the

A similar discussion is possible in any odd dimension in e.g. in d = 5 other fields than spin 1/2 fermions
contribute; for details see [13].



Green-Schwarz mechanism. This will be further discussed below. Here the inconsistency
can be seen that for generic values of ¢, the CS term would not be invariant under large
gauge transformations.

The second part of (2.10) has two contributions. One combines with the first part and
the other arises from the piece in sign(¢r) which is proportional to the unit matrix. This
part is generically non-zero, even for a good 4d theory.”

The calculation of the Chern-Simons level, for the case G = U(1), was reconsidered
in [15], with the aim of reproducing the anomalous CS term whose variation reproduces
the compactified anomaly. Here the starting point was the regularised theory in d =
4. One then has to include the KK modes of the Pauli-Villars regulator fields. The
introduction of the PV fields leads to the anomaly in d = 4 and their symmetry breaking
effect trickles down to the compactified theory. To obtain a result which is not invariant
even under infinitesimal gauge transformations, one needs to include fluctuations d¢(z)
around a constant background value ¢ and compute also the three-point function (5% 57 j4),
where the coupling is 6¢ j4. The two-point function in a constant background reproduces
the previous result, up to its normalisation. The three-point function leads to the gauge-
variant CS term (2.4) with ¢ = d¢(z). A similar calculation in the set-up of [12] would
give zero contribution from the three-point function.

2.3 GS mechanism and local counterterms

We have just discussed how the compactification of anomalous theories gives rise to Chern-
Simons terms with field dependent CS level. However it may happen that while the fermion
content of the original, i.e. the uncompactified theory, is anomalous, their anomaly can be
cancelled via the Green-Schwarz mechanism. This requires that the anomaly polynomial
has a factorised form and that there are other fields present with inhomogeneous transfor-
mation under the gauge symmetry.

As an explicit simple example consider a factorised anomaly polynomial of the form®

Is = fa N Xu(f) (2.11)

where f4 is the field strength of a U(1) factor and f of a non-Abelian gauge field and
X, = tr(f?). At this point, there are different ways to proceed with the descent. We can
shift the anomaly into the non-Abelian or to the Abelian gauge group or a combination of
both. If we put the anomaly entirely into the Abelian gauge symmetry, it is I} = e X4(f)
where das = de. This anomaly can be cancelled by the Green-Schwarz mechanism if the
theory contains a scalar field ¢ with an inhomogeneous transformation under U(1) gauge
transformations d¢ = €. Then adding the local term”

Las = —p Xa(f) (2.12)

to the Lagrangian, the anomaly is cancelled.

"It has the structure of a U(1)-G-G anomaly where the fermions in representation R of G are given U(1)
charge trr (sign ¢)/dim(R).

8We use small letters a and f for dynamical gauge fields as compared to capital letters for background
fields.

Tt is assumed that all other terms in the action contain ¢ only through its field strength dep.



As discussed before, compactifying this theory on a circle leads to the one-loop gener-
ated term

LE = —2aatr(of) (2.13)

where ¢ is the non-Abelian Wilson line. The compactification of the GS counterterm gives

L = 2dptr(f9) (2.14)

such that their sum is gauge invariant. This is how the GS mechanism works in the
compactified theory.

More generally, if an anomalous theory in four dimensions is compactified on a circle
in the presence of a Wilson line, the anomaly will manifest itself in three dimensions as
the non-invariance of terms in the action which are generated by fermionic KK modes.
These terms can also be obtained by representing the anomaly, compactified to 3d, as the
variation of a local term. The non-invariance of the action can be trivially removed by
adding the negative of these terms as local counterterms. If the anomaly of the 4d theory
can be cancelled by a GS term, the same mechanism also works in 3d. This generalizes to
higher dimensions.

2.4 Liftable theories

The space of (2n — 1)-dimensional theories has a subspace which consists 2n-dimensional
theories compactified on a circle. We can then turn the question around and ask which
theories in d = 2n — 1 dimensions can be lifted to a consistent theory in one dimension
higher, i.e. whether it is in this subspace. More precisely, we call a theory liftable, if we can
find a consistent theory in one dimension higher whose compactification on a circle leads
to the theory we started with, where we have to take into account the effect of the towers
of Kaluza-Klein modes, as we have discussed before. This question is meaningful even for
non-Lagrangian theories, but it is easier if a Lagrangian description exists. But even in
this case we do not know the complete set of sufficient conditions for non-liftability, but
some are obvious.

One is based on representations of the relevant symmetry groups. For instance a pure
gauge theory in d = 3 cannot be lifted to d = 4 as vectors in d = 3 do not lift to vectors
in d = 4. We need to add at least some massless scalars in the adjoint of the gauge group
in d = 3. Furthermore, the reconstruction of the 4d spectrum from the 3d spectrum is
not unique, because e.g. the information about chirality in 4d is lost when one reduces to
3d. An example where this simple representation theoretic problem can be avoided are
N = 2 supersymmetric theories in 3d. In this case, all gauge and matter multiplets can be
obtained from A = 1 multiplets in d = 4 by dimensional reduction. For instance, vector
multiplets in d = 4 reduce to vector multiplets on d = 3, and likewise for chiral and anti-
chiral multiplets. It follows that A" = 2 SQCD with gauge group SU(N¢) and Ny massless
chiral multiplets in the fundamental representation cannot be lifted to d = 4.

A less trivial example related to liftability is ' = 2 SQED in d = 3 with a CS-term
at level k, with N; pairs of chiral multiples ¢;, ¢; and no superpotential. This theory was
studied in [21, 22]. The chiral multiplets have charge (4+1,—1). The theory also has a



global symmetry U(1)4 under which the chiral multiplets have charge (+1,41). When
lifted to four dimensions this symmetry is broken by an ABJ anomaly. There is also an
(unbroken) U(1)g symmetry. The theory flows in the infrared to an interacting SCFT. As
was shown in [23] (and reviewed in [24]), at the IR fixed point, the U(1) symmetry is
a mixture of U(1)2Y and U(1)4. This is, however, not a symmetry in d = 4 due to the
anomaly. This seems to mean that A/ = 2 SQED is not liftable. However, such a U(1)4
may be an emergent symmetry in the 3d theory after compactification. If this happens the
ABJ anomaly may not be able to serve as a decisive obstruction.

The general principle underlying liftability we discussed here is as follows: given a
UV theory in 4d, we compactify on a circle with radius r. At high energies it looks four-
dimensional but at low energies it flows to an effectively three-dimensional theory in the
IR. Alternatively we compactify the 4d UV theory on this circle and integrate out all
Kaluza-Klein modes to arrive at a 3d UV theory. We then let this flow to the IR. The
two IR theories should agree if the 3d UV theory is liftable to the given 4d UV theory (the
energy scales should be well separated as A%dv > % > A%dv > A%g)

We end this discussion with two final remarks on obstructions of liftability. One is the
possibility that two 3d UV theories might flow to two 3d SCFTs in the IR which are dual to
each other. Could it be that one of the UV theories is liftable while the other is not? The
second is, could some obstruction to liftability be derived by noticing that the 3d N = 2
SUSY algebra admits a non-trivial central extension, while 4d N' = 1 SUSY algebra does
not? We hope to further investigate these questions in the future.

This notion of liftability is also compatible with the 6d vs 5d supergravity theories
which we will discuss in the rest of the paper. If we consider F theory an elliptic CY3 and
compactify on a circle to five dimensions or M theory on the same elliptic CY, they should
both flow at low energies to the same 5d supergravity theory.

3 BPS strings in six and five dimensions

We should now turn to supergravity theories and also switch dimensions. As we shall see
there are some common features with the previous discussion. When a pair of theories is
related by a circle reduction (in general with Wilson lines) the anomaly cancellation and
the gauge and diffeomorphism invariance of Chern-Simons-like couplings in five dimensions
is intimately related to the anomaly cancellation of the six-dimensional parent theory. As
we argued, anomaly cancellation in six dimensions is a necessary condition for liftability.

Six and five-dimensional theories - even those related by a simple circle reduction -
have a rather different way of packaging geometric information. For example, for reductions
of F and M theory on elliptic Calabi-Yau manifolds, the trilinear couplings of the former
correspond to only a part of the intersection form of the CY manifold (where one of the two-
forms is necessarily the pull-back from the base of the elliptic fibration), while the latter
sees the entire intersection form. In a similar way, we shall argue that five-dimensional
theories offer a better (and more geometric) view on the consistency of siz dimensional
theories (after compactifying on a circle).
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In this section, we study the spectrums of BPS strings in 6d and 5d minimal super-
gravity (eight supercharges) and point out some of the differences between them. Then
we offer one way to relate the BPS strings in 6d and their counterpart in d = 5 after

compactification on a circle.

3.1 BPS stings in six and five-dimensional theories with 8 supercharges

We consider six-dimensional theories with minimal A/ = 1 supersymmetry with ny tensor
multiplets, Yang-Mills multiplets with a group G = [[; G; and hypermultiplets in different
representations of the gauge group. A necessary condition for the Green-Schwarz anomaly
cancellation mechanism is the sum-factorisation of 6d N’ = 1 anomaly polynomial:

1
Is = 5Q0p xgx? (3.1)

where o, 8 = 0,1,...n7 and €,g is the symmetric inner product on the space of tensors
with signature (1,n7), and'’

X§ = éaatrR2 +> b?ﬁTrAdef (3.2)
7 (2
The vectors a,b; € RV"T are determined by the field content of the theory. The anomaly
cancellation condition ensures that all mutual inner products are integers. A GS term is
added to the six-dimensional action to cancel the anomaly encoded in Ig via the descent
formalism.

In the presence of solitonic strings, which are the dyonic sources for self dual tensor
fields, both the Green-Schwarz couplings and the Bianchi identities for the tensor fields are
modified: A

dH* = X§ +Q* [[ 6 (z%) da”, (3.3)
a=1
where H® satisfy a self-duality condition. The 4-form distribution is the Poincaré dual to
the string source and Q are string charges.

In addition to the standard lack of invariance under gauge transformations and diffeo-
morphisms, the GS term will lead to anomalous terms restricted to the string worldsheet
Wy in the presence of such a BPS solitonic string. They must cancel the anomaly of the
worldsheet theory. One should bear in mind that in (3.3) the string source term is given
in a particular representation of the Thom class ® for ¢ : Wy < Mg, and in general it fol-
lows from the Thom isomorphism that the pull-back i*® = x(NN), where for the SO(4) ~
SU(2)1 xSU(2) structure group of the normal bundle x(N) = c2(SU(2)1)—c2(SU(2)2) is the
Euler class of the normal bundle N of the string. Using trR?|rw, = —2p1(TWs) —2p1(N)
and p1(N) = —2(c2(SU(2)1) + c2(SU(2)2)), one infers that the anomaly two-form on Wy is
obtained via descent from

Ii = —Qup Q% (Xéf(M«s)!Wz + %QBX (N)> (3.4)

= _i Q05Q" (@’p1(TW3) =2 (Q7 +a”) e3(SU(2)1) +2 (@7 = ) e5(SU(2)) + ..

90ur normalisations of the curvatures R and F' are such that they contain a factor 1/27.

- 11 -



The ellipsis stands for the pullback of the YM part in (3.2) which is not needed for the
following analysis.

The theory on the worldsheet flows in the IR to a (0,4) SCFT and the information
about the left and right central charges as well as the level of the SU(2) R-symmetry
current algebra is contained in . As discussed in detail in [18], the SCFT splits into a free
center of mass SCFT and an interacting SCFT. The former consists of a hypermultiplet
with left and right central charges 4 and 6, respectively. Its R-symmetry group is not
contained in the SO(4) from the normal bundle as the four scalars, which are neutral
under the R-symmetry, transform as a vector of SO(4). From the point of view of the
worldsheet theory it is an accidental symmetry. The contribution of the c.o.m. part to
Iy is —5p1(TWs) — ¢2(SU(2)1). In particular it does not interfere with the R-symmetry
of the interaction part of the SCFT, which is SU(2)2. Using the (0,4) relation cgp = 6 kg
between the central charge and the level of the R-current algebra, we can read off ¢B! from
the c2(SU(2)2) part of Iy and ¢lf* — P from the coefficient py (T'W2) of the gravitational
anomaly. Adding the contribution of the c.0.m. part one finds

Cf, — CrR — —GQagaaQﬁE—(SQ'a
cR=3sQ"Q% —6Q,5a°Q° +6=3Q-Q—-6Q -a+6 (3.5)

We have defined here an inner product denoted by - using the metric on the space of
tensors £2,3.

Following [18, 19] we shall be interested in supergravity strings,'! whose worldsheet
R-symmetry descends from the structure (sub)group of the normal bundle. This condition
restraints the values of the admissible ) charges. Once such restrictions are imposed, the
worldsheet SCFT should be unitary, i.e. the central charge ¢y, should serve as a bound for
the contribution of the left moving current algebra for G at level k:

k; - dim G;
Z

o <ecp—4 (3.6)

where for Abelian gauge factors h" = 0.

So far we have discussed solitonic strings in d = 6. Most of the subsequent analysis will
be five-dimensional, and we shall in particular be interested in the five-dimensional solitonic
strings obtained via circle reduction, when the S is transverse to the six-dimensional string.
To get the anomaly formula of the resulting (0,4) SCFT on the string, we simply let the
normal bundle be R? x S'. To go to five dimensions, we take c2(SU(2)1) = c2(SU(2)2) =
c2(N), where N is the S? normal bundle fiber inside R®. Imposing this in (3.4) leads to

cp=2cp=—-12Q5a°Q° = -12Q - a (3.7)

preserving the difference ¢y, — cg (3.5). Such five-dimensional solitonic strings with cen-
tral charges linear in ) are magnetic sources for the U(1) gauge fields obtained from the
reduction of the six-dimensional tensor fields.

17 e. BPS strings that cannot be consistently decoupled from gravity.
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We now turn to the generic string sources in five-dimensional N' = 1 supergravity.
Such a BPS string also hosts a (0,4) 2d SCFT on its worldsheet, hence we can obtain
cr, cr for this 2d SCFT via anomaly inflow caused by 5d bulk Chern-Simons terms:

1 1
%alAltr(R AR)— 6CUKA] ANFIAFT (3.8)
From these Chern-Simons terms we obtain [19, 25, 26]
1
cr = CLuxQ'Q7Q" + 5(11@[

cr = CukQ'Q7QN + a;Q' (3.9)
The index I runs over all d = 5 vectors. In 6d language, I =1,...,npr + ny + 1.

The structure of central charges of (0,4) SCFTs hosted on 5d BPS strings is very
different from 6d ones. While in general for 6d strings the leading behaviour for both cr,
and cp is quadratic in @, due the quadratic terms in the anomaly polynomial (3.1), in five
dimensions it is generally cubic. Moreover, in five dimensions the anomaly inflow cannot
produce central charges with quadratic scaling in Q.

For the vector fields originating form six-dimensional tensors, the coefficient of the
gravitational coupling does not renormalise upon reduction and the triple self-intersection
does not get generated. One recovers the central charges as in (3.7) linear in @ and with
cr, = 2cg. So the conclusion would be that for the 5d BPS strings from 6d BPS string
compactified on a transverse circle, the central charge cr,cr on the (0,4) SCFT it hosted
will have vanishing cubic term (i.e. Cr7xQTQ7Q% =0 in (3.9)).

For the remaining U(1) vectors in 5d A/ = 1 supergravity, including the graviphoton
A integrating out of the massive KK tower in general cases generates the gravitational
couplings with coefficients a; and the trilinear self-intersections with (non-zero) coefficients
Cryk. The central charge of these strings in general have a cubic dependance on ). We
shall refer to these types of BPS strings as linear(central charge with vanishing cubic term
CrikQ'Q’Q¥ = 0) and cubic for the cases in the subsequent discussion.!?

In sections 4 and 5 we shall concentrate on the linear strings, and re-examine the uni-
tarity constraints of the six-dimensional theories from five-dimensional view-point. Given
the change in the nature of ¢y, in passage form six to five dimensions, the unitarity con-
straints, as we shall see, are different both in substance (they are in general a bit stronger)
and in form (they appear to be more geometric). We did not find the cubic strings to be
amendable to such analysis and to produce useful constraints. However in the remainder
of this section we shall elucidate their six-dimensional origin.

We close this section with addressing two points about the central charge formula (3.9):

o We assume the (0,4) superconformal algebra to be the small superconformal algebra
(hence the relation cg = 6kg) rather than the large ones.!® This is reasonable

12 A little clarification is due. “Linear strings” can have trilinear dependance in the central charges which
can however be set to zero by appropriate choices of the charge vector. This is the case with the self-dual
string in A/ = 1 theory after circle reduction. As we shall see, their central charges can acquire contributions
~ Q%xQ. However Qxk can be consistently taken to zero. The cubic strings, on the contrary, are charged
with respect to vector fields that have a cubic self-coupling.

13We thank the referee for raising these points.
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since the large (0, 4) superconformal algebras have SU(2); x SU(2)2 as (part of) their
R-symmetry and exotic BPS conditions [27], which make them unlikely to be the
candidates of the (0,4) superconformal algebra on the BPS strings at IR.

o We assume the SU(2) R-symmetry of the (0,4) superconformal algebra is associated
with the normal bundle of the BPS strings. For supergravity BPS strings, which are
the objects discussed in this paper, the 6d bulk is always a theory of gravity and
no global symmetries can appear. Therefore there is no ambiguity in identifying the
R-symmetry that come from some other SU(2) symmetries in the bulk.

3.2 5d strings from 6d geometry

We will now argue that the five-dimensional cubic strings originate from the six-dimensional
geometry RY! x Mry, i.e. when the circle on which the theory is reduced is non-trivially
fibered. Moreover, every cubic string should carry some KK (magnetic)charge. As we shall
see this argument is consistent with F-theoretic considerations.

We have already seen that the reduction of six-dimensional strings, which are charged
under the tensor fields, yields only linear strings. Hence the cubic strings can only be
charged under the vectors that come from the reduction of six-dimensional vector multiplets
or under the KK vector g,5. One could wonder if there is a solitonic object (a membrane)
in six dimensions that is charged under the U(1) fields and whose reduction yields the
cubic strings. If so, the (0,4) SCFT on the 5d string should arise from 3d NV = 2 QFT
on the membrane compactified on a S'. This generally cannot produce a chiral theory
in two dimensions (notice that our 2d theory is obtained from a compactification of a 3d
theory on a circle, not via restriction to the boundary of a 3d theory). Also, obviously
the magnetic sources for the KK vector after circle compactification do not arise from any
wrapped object in 6d either as the 6d theory itself does not have the KK vector.

To find the 6d origin for the cubic BPS strings after circle compactification, let us recall
that for five-dimensional supergravities obtained from the compactifications of M-theory
on an elliptically fibered CY3, the (0,4) cubic strings arise from M5 branes wrapping
a smooth ample divisor.'* So let us have a closer look at ample divisors in a smooth
elliptically fibered CYs:

E, - CY3 — B. (3.10)

These can comprise the base B and 7~ !(%;), which are pullbacks of curves in the base,
and an expectional divisor X. Hence the generic ample divisor D can be written as

D=aB+br () +X. (3.11)
It follows from the Nakai-Moishezon ampleness condition for D, which implies

D-D-D>0 and D-C>0 (3.12)

1411 order to see the microscopic origin on the central charge formula in terms of the zero modes of the
fields on M5 one should assume that the divisor is very ample [28].
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for any effective curve C, that a # 0, i.e. any ample divisor in a smooth CY3 necessarily
contains some copies of the base. Indeed, this follows immediately if we take C to be the
intersection of two 771(¥;), and use that

) N ) T (ER) =0 and (%) () - X =0. (3.13)

Moreover, in the M theory picture, an M5 brane wrapping the base is a magnetic source for
the KK vector. So from the M/F theory points of view, the cubic string should carry some
magnetic charge of the KK vectors. In general this implies that the six-dimensional coun-
terpart of these strings should contain the KK monopole configuration, which is naturally
given by Euclidean Taub-NUT geometry (see e.g. [29]):

dst = —dt* + dy? + ds> (3.14)

with

-1
ds2 = (1 + QTRO) <dr2 - r2d92) + R? (1 - QTRO) (2dy +Q A)? (3.15)
Here Q) = Q«x, the KK monopole charge, is a integer; we will restrict to the positive integer
case for simplicity and without loss of generality. dA = d{2s is the volume element on the
unit 2-sphere and ¢ ~ 1) + 2 7. The TN space is a S! fibration over R? (except the locus
where the S! fiber shrinks to zero size). Far away from the origin the space is S' x R3
where the radius of the circle is 2Rg. This is the circle we want to compactify on. It shrinks
to zero size at the origin at r = 0 where the space has a Ag_; singularity. This is the limit
of an Q-centered TN space where all centers coincide (here at the origin r = 0).

For a fixed small distance r = €, we can neglect the constant in the harmonic function
and the metric becomes that of an S! fibration over S? (a cyclic Lens-space)

St 83 - g2 (3.16)

It is characterised by the first Chern number of the KK vector

FKK
15% 52 Tom QKK (3.17)

The argument that 5d cubic strings should come from the 6d theory on a Taub-NUT
background after compactification on the circle fiber, can be generalised to include six-
dimensional U(1) vector fields following the generalised Taub-NUT solution in [30]. These
will give solitonic string-like objects which carry both KK as well as the related U(1)
magnetic charges after compactification on the circle. As the Taub-NUT metric is a grav-
itational instanton, half of the supersymmetry is preserved by this background, just as it
is expected for the string solitons with (0,4) worldsheet supersymmetry.

Finally this picture also accounts qualitatively for the chirality of the theory on the
string worldsheet. Given that the six-dimensional theory has a self-dual tensor field in the
gravity multiplets and np anti-self-dual tensors in tensor multiplets, their decomposition
along the basis of self-dual and anti-self-dual (1,1) forms on My yield two-dimensional
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modes b(t,y), where (¢,y) denote the coordinates along R'!, i.e. the string worldsheet,
such that

(O F 9y) b(t,y) = 0. (3.18)

Note this is only part of the spectrum and this analysis is on the 6d UV side. So we
cannot use this argument to determine ¢y, and cg of the resulting (0,4) SCFT individually.
However the chirality of spectrum implies ‘t Hooft anomalies, which match between the
UV and the IR. Hence the resulting solitonic string from Taub-NUT reduction should
support a chiral spectrum in the IR. The more direct argument is using anomaly inflow of
the compactified five-dimensional theory, as we did before.

We can consider more general configurations. Six-dimensional A/ = 1 supergravity
theory in a (generalised) Taub-NUT background and a BPS string at the locus where the
S fiber shrinks to zero size (the two objects preserve the same set of supercharges), after
compactification yields five-dimensional supergravity with solitonic BPS strings. Moreover,
these 5d BPS strings carry magnetic charges for the U(1) gauge fields as well as the KK
charge. Since upon such reduction cubic self-couplings of the U(1) fields are generated
these string configuration will, in general, have cubic central charges.

In summary, we have argued that cubic BPS strings in 5d N = 1 supergravity obtained
from minimal 6d supergravity originate from a (generalised) Taub-NUT background.

3.3 On graviphoton couplings in five dimensions

The claim that in five-dimensional theories, obtained via circle reduction of six-dimensional
N = 1 supergravity, the cubic solitonic strings arise from non-trivial geometric back-
grounds, immediately leads to the following requirement:

e Since we can always turn on a purely geometric Taub-NUT background with arbitrary
KK monopole charge, there should always be a solitonic string which only carries KK
magnetic charge and supports a (0,4) or (4,0) SCFT.'® The superconformal algebra
and unitarity then require cg (or cp) = 6 ksy(2), € Z+-

To this end, it suffices to consider the Chern-Simons-like couplings to the KK vector in
five dimensions. For the S' reduction of the Taub-NUT background, the magnetic string
charged under the KK vector is at the position where the S' shrinks to zero size. Far away
from this string, the five-dimensional physics can be derived by just putting a (0, 1) theory
on a circle. So the corresponding Chern-Simons level can be obtained by integrating out
the massive charged modes in a one-loop Feynman diagram calculation [13]. The relevant
couplings are given by

kr

%AKK A trR? (3.19)

k
ECS:—EOAKK/\FKK/\FKK—F

15To determine (0,4) vs (4,0) is by looking at the SU(2) R-symmetry part of the anomaly polynomial
which is +krc2(SU(2)r). Here kr is the level of the SU(2)r current algebra, which unitarity requires to
be positive. For the minus sign we have a (0,4) and for the plus sign a (4,0) SCFT on the string worldsheet.
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and the ensuing central charges ¢y, and cg are obtained from the inflow arguments (for a
(0,4) SCFT on the string) as

k
cr = koQ2y + 7’*"@“ cr = ko Q3 + kr Qi (3.20)

where Qxk is the KK string charge.
The coefficients kg, kg depend on the six-dimensional field content. They have been

calculated in [13]:
ko = ) *4”T, kp = 4(12 — ny) (3.21)

where we have indicated that one should be careful to accept these results in the present

context.

Indeed, for cp to be the central charge of a (0,4) SCFT, it should be an integer
divisible by 6, as unitarity constrains the level kgy(z), of the SU(2)r current algebra to
be a (positive) integer. It is easy to verify that this is not the case for general np and
Qxk. On the other hand, a large range of values for ny and Qxk is allowed. For instance,
for N/ = 1 theories obtained from F-theory, generically ny can be shifted by 1 through
blowing-up or blowing-down a rational curve on the base with self-intersection number —1.
Furthermore, in a phase transition proposed in [31], we can trade one tensor multiplet for
29 hyper multiplets by blowing down an exceptional divisor on the Hirzebruch surface F}
to get P2. And the value of Qg is free (except that it should be large, as will be discussed
later). Furthermore, the value of ko in (3.21) is generically not an integer, violating the
quantisation condition of the CS level discussed in [31].

We will now argue that (3.21) should be replaced by

ko=2(9—nr),  kr=8(12—nr) (3.22)

which obviously solves the problems just discussed and cg (or cp) = 6ksu(2), € 6Z+
is satisfied.

Consider the Taub-NUT metric (3.15) with a unit magnetic charge Qux = 1. It
interpolates between R3 x S! for large r and R* for small . There the metric on R* is
given in polar coordinates where the S2 at fixed r is parametrised by Euler angles (6, ¢, 1),
except that we have rescaled ¢ such as to give it periodicity 27 rather than 47. 6 and ¢
are coordinates on S2, i.e. dQy = df? + sin? 0 d¢?. Besides the 27 periodicity of 1, this
parametrisation of S® is invariant under the combined transformations

(¢, 0) ~ (¢ + 27,9 + 7), (3.23)

After compactification, in the five-dimensional effective theory we can explicitly impose
¢ ~ ¢+ 2m, but then the condition ¥ ~ 1 + 7 is lost. As a result, for a consistent
compactification, we need to impose these two conditions on the fields separately. For
example, for a fermion field A\%(¢,) in this background, we require not only A5%(¢, 1)) =
N4(p,4p 4 27), but also A%(¢, 1) = N6(p 4 27, 4) + 7). In fact, fixing the magnetic KK

charge Qxk = 1, implies that all electric KK charges take even values.'®

16 Conversely, had the electric KK charge been fixed at unity, all magnetic KK charges would have to take
even values to satisfy the quantisation condition as proposed in [31].
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Imposing that the magnetic charges take values in Z, we need to require ¥ ~ ¥ +

rather than ¢ ~ 1 + 27. Consequently the decomposition of six-dimensional fields is

A6 — > A3 exp(2mi x 2na)) (3.24)

n

This means that all fields carry even electric KK charge due to the existence of a KK
magnetic monopole of charge 1. The triangle diagrams with the tower of charged KK
modes in the loop, which was computed in [13] and which leads to the Chern-Simons
terms (3.19), therefore has to be modified accordingly. There is an additional factor of two
for each coupling to the KK gauge field. This gives (3.22).

This has a very natural counterpart in the M/F theory framework. As shown in [13],
assuming (3.21) is an equality, leads to the identification of the KK vector in M-theory on
a CY3 with the eleven-dimensional three-form along the shifted two-form PD(B)+ 3c1(B).
Here B is the base of the elliptic fibration, ¢ (B) its first Chern class and PD(B) its Poincaré
dual. The string charged under the KK vector is to be identified with an M5 wrapping the
corresponding divisor B + %[cl(B)]. But in a generic geometry, an M5 brane cannot wrap
%[cl(B)}, and the corresponding magnetic charge should be obtained by an M5 wrapping
this formal divisor as a result 2n times. This is exactly the requirement that the magnetic
charge takes values in 2Z. Keeping the standard quantisation [F] € H?(Ms,Z) we need
to reinstate this factor of 2 elsewhere. In particular, we can identify the KK vector as the
mode of the M-theory three-form along 2PD(B) + ¢;(B). In particular an M5 brane can
wrap the corresponding divisor 2B + [¢1(B)] once, leading to a unit magnetic charge.

4 Five-dimensional view on the unitarity condition

Six-dimensional gravitational and gauge anomalies in 6d minimal supersymmetric theories
allow not only to read off the central charges of stringy objects with (0,4) worldsheet
supersymmetry, but also the level k;, of the current algebra that couples to the left-movers.
The condition that the left-moving central charge is large enough to allow for a unitary
representation of the current algebra at level k1, was used in [18] as a consistency condition
of quantum gravity in order to rule out some anomaly-free 6d minimal supergravity theories.
We shall re-examine these constraints, for which we shall use the shorthand “unitarity
conditions”, from a five-dimensional perspective.

As mentioned previously, the chiral two-dimensional theories that live on the string
worldsheet are (0,4)(or (4,0)) SCFT, i.e the SU(2)g symmetry inherited from the normal
bundle of this string belongs to the right-moving (left-moving) sector. Unitarity of the
worldsheet theory requires that the central charges are positive. This should in particular
be true for the string charged under the KK vector for which cgp = 6 kg (or ¢, = 6kg) is
given in (3.20). However a closer look at this expression seems to lead to a puzzle:

o for np < 9, the string SCFT has (0,4) supersymmetry and cg = 6kr =
2(9 — np)@Q3 + 4(12 — nr)Qux > 0 for Qux > 0;

o for np > 12, the string has a (4,0) worldsheet SCFT and ¢, = 6 kr = 2(nr — 9)Q3, +
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e for np = 10,11, something unpleasant happens. Take ny = 10 for example,
then 2(9 — nr)Q3, + 4(12 — n7y)Qxx = —2Q%, + 8Qxxk, which gives 6,0,—30 for
Qxx = 1,2,3, respectively. This would seem to indicate that the string has (0,4)
supersymmetry for Qxx = 1 and (4, 0) supersymmetry for Qxx = 3. But if this KK
monopole string indeed originates in the Taub-NUT background in six dimensions,
all positive values of Qkx should be allowed, and it is hard to imagine such changes
from a change in the value of Qkk.

The puzzle is resolved by realising that our considerations of the BPS strings have
implicitly assumed that Qxx is sufficiently large. Indeed, the Taub-NUT metric (3.15)
has an intrinsic scale, the radius of the compactification circle 2Ry. Therefore, the five-

dimensional supergravity description can only be trusted below the energy scale A4 sucra =2
1
2Ro

a smeared-out version of the Bianchi identity dF' = %dp(r) A ez, see [25, 26] for relevant

. On the other hand, the anomaly inflow calculation leading to (3.8) and (3.9) required

details, which involves a function p(r) of the distance away from the string. As this bump
function, which interpolates between —1 and 0, hides UV physics which is not visible in
the 5d supergravity description, its radial compact support should be of the order 2Ry. On
the other hand, in the 5d supergravity description which we used above, the string source
should be treated as a J-function in the directions transverse to its worldsheet. In other
words its thickness dr should go to zero. Using the explicit form of the TN metric (3.15),
this translates into the condition

or
/ 1+ RoQuarc g, 2Ry  with  §r —0 (4.1)
0 x

This leads to dr ~ Qlf(OK — 0 for fixed Ry, i.e. Qkx should be large. It is under this condition

that the values of the central charge derived from bulk anomaly inflow can be trusted.

In the M-theory picture, where the string arises from an M5-brane wrapping a divisor,
this translates into the very ampleness condition on the divisor [28].

The argument for large (xk is supported indirectly by considering specific six-
dimensional theories. Take for example an anomaly free 6d minimal supergravity theory
with np = 10 or np = 11, n, = rk(G) (for some suitable gauge group G) and Qyxx = 1.
Then the value of the left-moving central charge on the KK string is ¢;, = 14 or ¢, = 4 re-
spectively, and hence the unitarity of the worldsheet SCFT would require rk(G) < ¢, = 14
or 4.'7 This requirement is obviously too strong. Heterotic string on K3 with 9 or 10
five-branes respectively and an SU(2) instanton (with instanton number 15 or 14) easily
provides counterexamples to this. Given the cubic dependance of ¢y on Qxk this require-
ment is easily satisfied for larger charges.

As a result, we have shown that we only have to distinguish two situations depending
on the value of np

o ny <9, KK monopole string supports (0,4) supersymmetry

o np > 9, KK monopole supports (4,0) supersymmetry.

"Note that in five dimensions couplings ~ AXK A FP A F7 (,7 =1,...,1k(G)) are generated at one loop,
and the KK string couples to the gauge sector.
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Note that the value of np = 9 is somewhat special. For the F-theory models on elliptically-
fibered CY3 X, np = 94 x(X)/60 where x(X) is the CY Euler number. When y vanishes,
ie. np =9, the effective theory has another set of hidden supersymmetries (and can be
thought of as a gauged supergravity theory with 16 supercharges) [32]. Correspondingly
one would expect that the solitonic supergravity string may also display extra worldsheet
supersymmetry and be enhanced to (0,8). If so the superconformal algebra will require
cr € 12Z. The KK monopole strings satisfies this requirement, as one easily sees from (3.20)
and (3.22) with np = 9.

There is an immediate consequence of the large Qxk requirement for the unitarity
analysis. Due to the presence of Q3.x, the left-moving central charge cj, grows very fast,
and hence does not give strong constraints. As we have argued, every cubic string in five-
dimensional theories (obtained from a circle compactification of 6d supergravity) carries
KK charge. It being large renders a generic cubic string rather useless as far as the unitarity
constraints go. Of course this is not the case for the linear strings that come from the six-
dimensional supergravity strings. Hence our five-dimensional unitarity analysis will be
applied to the very same objects that have been analysed in [18].

One can argue quite generally that the dimensional reduction should not be imposing
any new consistency conditions (even if, as it is the case here, it can repackage these in
a new and useful fashion). Although we know that sometimes IR properties can be used
to constrain the possible UV completion (e.g. c-theorem in 2d, or a-theorem in 4d, or the
obstructions of liftability discussed previously), this is not the case in the current 5d/6d
context. Here we know both the 6d UV side and 5d IR side, as well as the correspondence
of the extended objects on both sides. Since the Taub-NUT background does not cause
any inconsistencies on the six-dimensional UV side, no inconsistencies should be generated
along the RG flow.

4.1 One loop Chern-Simons couplings

In this subsection we want to discuss Chern-Simons couplings which are generated in five
dimensions after integrating out the massive KK modes which arise upon compactification
on a circle; see also the discussion in section 2. In general Wilson lines can be switched on,
and this is the case of interest for us. Before turning to it, we will briefly review the case
without Wilson lines. We will only consider Abelian gauge groups here.

By extracting the parity-violating part of one-loop triangle diagrams with three exter-
nal gauge bosons and a massive spin 1/2 KK fermion of mass m in the loop [14, 31|, one
obtains the following contribution to the low energy effective action:

signm

o1 ) )
— quqjqk G /AZ ANFINFF (4.2)

where the fermion couples with charge ¢; to the gauge-field A’. When the fermion arises
as a KK mode of a chiral fermion in six-dimensions, the sign of KK mass is correlated
with its chirality: positive for positive and negative for negative. In the context of this
discussion, the charged fermions contributing to the CS level arise only from hypermulti-
plets. They have negative chirality. Below, when we consider non-Abelian gauge groups
and Wilson lines, we also need to include the fermions from vector multiplets. They have
positive chirality.
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The CS level, defined via
1 . A f
—kijkg/Az/\Fj/\F (43)

is obtained by summing over the KK spectrum. This sum diverges and needs to be regu-
larised. We will use (-function regularisation. We will comment on this bellow.

We now compute the CS levels &, for a collection of hypermultiplets Hy, I =1,...,ng
with charge vectors 7 = (g}, .., q}) under U(1)". We find

kijr = —2- ;(Z%ﬂﬁ) (i 1) : (4.4)
I n=1

Here n € Z4 is the KK level. We have used that each hypermultiplet contains a pair of

negative-chirality MW-fermions, hence the overall factor of 2 and sign(m,) = —1. Using
St 1 = —1 we obtain
1 .
Kijk = 5 > draia} - (4.5)
I

After this review, we now consider the general relation between five and six-dimensional
theories in the M/F theory framework. Non-Abelian gauge groups appear due to singulari-
ties of the elliptically-fibered CY manifold on which the theory is compactified. It is known
that, in general, resolving the singularities does not preserve the elliptic structure. On the
M-theory side, nothing special happens, and one simply moves along the Coulomb branch,
where at a generic point the non-Abelian gauge groups are broken to their maximal tori,
and the theory has only U(1) factors. This theory does not seem to have a naive F-theory
dual, however it can be seen as the six-dimensional N' = 1 theory compactified on S*
with Wilson lines turned on. Indeed, the motions on the five-dimensional Coulomb branch
are parametrised by the scalars in 5d vector multiplets. Their six-dimensional origin is as
Wilson lines of 6d vector multiplets, which themselves have no scalar component, when
compactified on S'. Therefore, turning on a Wilson line on the F theory side naturally
translates into resolving singularities of the internal space on the M theory side.

The simplest yet not entirely trivial case allows to verify this understanding. Consider
an A; singularity along a genus g curve on the base of an elliptically fibered CY3. This
yields a six-dimensional theory with one SU(2) gauge multiplet and g hypermultiplets in
the adjoint representation. Now we turn on a Wilson line of type diag(—¢,0, ¢), where
0 < ¢ < Z, and r is the radius of the S'. This breaks SU(2) to U(1). The resulting
KK spectrum and the respective contributions to five-dimensional Chern-Simons terms
comprise:

o ¢ massive hypermultiplets with U(1) charge ¢ = 2. Their KK masses are (—¢, —¢ —
27”, —¢ — 47”, ...). They induce a Chern-Simons term with level'®
ki =—4g (4.6)

""Here we use y ~~“sign(n + x) = ((0,2) = 3 — x for 0 < < 1 and we drop the ¢ dependent part
(contained in x). We know that the theory is anomaly free and this part will cancel via the GS mechanism.

See also the discussion in section 2.2.
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o g massive hypermultiplets with charge ¢ = —2 and the KK mass spectrum (¢ —
27 _A4r

o =F,...). The induced Chern-Simons term has level

k= —4g. (4.7)

o Positive chirality fermions in the vector multiplet with U(1) charges £2. Their con-
tribution to the Chern-Simons term is obtained from that of the hypermultiplets
by taking into account an overall minus sign due to opposite chirality and therefore
opposite sign of the KK masses and that their multiplicity is one rather than g.

Summing all contributions results in
1
8(1—yg) <—6A ANF A F) . (4.8)

This one loop calculation can be matched by a geometric one on the M theory side
if we consider the Calabi-Yau manifold after resolving the A; singularity. Denoting the
resolution divisor be F, one computes the coefficient of the corresponding Chern-Simons as
E-E-E = 8(1—g) [33]. Moreover, it should also be clear that the geometric counterpart of
changing the sign of the Wilson line diag(—¢, 0, ¢) — diag(¢, 0, —¢), which reverses the sign
of the one-loop calculation of the Chern-Simons level 8(1 —g) — 8(g — 1), is an elementary
transformation on the resolved Calabi-Yau side. This interpretation is compatible with the
fact that the singular CY3 we start from should be thought of as sitting on the boundary
of the Kéhler cone on the M theory side.

Even though we consider compact elliptically fibered CY3, the result is essentially
the same as in [33], where five-dimensional SYM was obtained from M-theory on non-
compact CY3.

A final remark is in order. In above calculations we used a specific regularisation, and
the values of the Chern-Simons couplings depend of this choice. The regularisation must
be such that they are properly quantised. When using a different regularisation scheme,
this corresponds in the dual picture to a shift of the corresponding divisor £ — F + B
where B is a (Q-)divisor! as already remarked in [13]. On the UV side (i.e. the full M/F
theory picture) we know that the KK vector corresponds to the Poincaré dual PD[B], while
on the IR side, the result obtained by applying zeta-function regularisation, corresponds
to a shifted divisor. As explained in section 3.3, the correct shift respecting the standard
U(1) quantisation F' € H?(Mj,Z) is given by 2PD[B] + ¢1(B). However, on the CY3 side,
E-FE-FE =38(1— g) appears to be ‘rigid.

4.2 Unitarity condition for linear BPS strings

Before considering five-dimensional theories in detail, we recall the unitarity condition for
6d N = 1 supergravity theories proposed in [18]. The anomaly polynomial for the world-
sheet theory, which can be computed from anomaly inflow from the bulk, was already given

198pecial attention needs to be paid to the quantisation condition related to the corresponding magnetic
charge.
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in eq. (3.4). From this we need to subtract the contribution of a free (0,4) hypermulti-
plet, whose bosonic components describe the position of the string in the four transverse
directions:

ree 1
Ifree = — 3P (TW3) — ¢2(1) . (4.9)

Recall that c2(1) and c2(2) correspond to the subbundles of the normal bundle SO(4) =
SU(2)1 x SU(2)2. We identify SU(2); with the SU(2)g-symmetry of the interacting (0, 4)
SCFT in the IR. The anomaly polynomial of the interacting theory is then (cf. also
section 3.1 for further details on the notation)

ln 1 1
it — —5(362 ca—1)p1 (TW2) + ZQ : bimTrAdj(Féi)

‘%(Q-Q—Q-a)o<1>+§<Q-Q+Q-a+2>cz<2> (4.10)

1
D — o (cR" = ") pr(TWa) +Zk

21 TrAdJ(FG ) — kr c2(SU(2)Rr) -

4hv

Note that the positivity of the central charge of the SU(2)2 current algebra requires
Q-Q+Q-a+2>0.
This leads to the expression for the central charges of the interacting SCFT
ettt — _6Q-a+2
cp'=6kr=3(Q-Q-Q-a)

and to the unitarity requirement

Z@ééizfiﬁf <A =3Q.Q-9Q-a+2 (4.11)

where we have used the relation between the levels k; = @ - b; of the left-moving current
algebras and their contribution to the central charge. In general, eq. (4.11) gives strong
constraints when the charge @) is small.

As discussed in section 3.1, when putting this 6d supergravity on a circle transverse to
the string, we identify ca(1) = c2(2) = c2(SU(2)®). The resulting central charges are then:

cr=06kr=—-6Q a and c, =—12Q -a.
Again, subtracting the free part of the central charge, we have
M= _6Q-a—6, Mt = _12Q-a—3. (4.12)

On the other hand, the gauge anomaly should not be changed by compactifying our theory
on a circle. Since if a 6d theory is good, it should also be good after S' compactification,
so we derive the following unitarity condition:

> B <~ 120003, (4.13)
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A remark is in order here. Notice that the above central charge calculation in 5d
differs from the 6d case. First, in 6d there is a second SU(2) on the right moving side
while in 5d generically we only have SU(2)g symmetry. Second, the —3 contribution which
appears in 5d central charge ciLnt is due to the fact that for the 5d strings we only have three
transverse bosons on the left moving side. The left moving compact boson from compact
transverse circle may belong to the interacting part of the CFT. However, due to the (0,4)
supersymmetry, the right moving compact boson should sit in the free hypermultiplet

together with the other three right moving transverse bosons.

4.3 Charges of supergravity strings

In order to use the unitarity condition (4.13), we must find a way to single out supergravity
strings [19] (i.e. strings that cannot be consistently decoupled from gravity). In order
to read off the central charge of the (0,4) SCFT on the BPS string, it is essential to
indentify the SU(2)r symmetry of the (0,4) 2d SCFT with the structure (sub)group from
the normal bundle. However, as [18, 19] already pointed out that for the BPS strings that
can be consistently decoupled from gravity (i.e. BPS strings in 6d/5d SCFT ), the SU(2)zr
symmetry of the (0,4) 2d SCFT may no longer come from the structure (sub)group of the
normal bundle (for example, it may be mixed with the SU(2) R-symmetry from the bulk
in the SCFT limit).

The conditions for the six-dimensional A/ = 1 theory to have a well defined moduli
space were analysed in [18], and can be summarise using a (1,n7) vector j (related to the
Kéhler form on the base of the elliptic fibration B) on the tensor branch of the theory

j-j>0, j-b;>0, j-a<O. (4.14)

In order for the string to have a non-negative tension, j - ¢ > 0 also needs to be imposed.
Finally, unitarity of the (0,4) 2d SCFT hosted on the BPS string imposed

Q-Q+Q-a>—-2, Q-a<0 and @Q-b;>0 (4.15)

as k; = @ - b; is the level of affine current algebra on the left moving side of the (0,4)
SCFT and cg = —6Q - a for the (0,4) 5d BPS strings that comes from (0,4) BPS strings
in 6d after circle compactification. Any five-dimensional theory obtained from a circle
reduction should also be subject to these constraints. As our main interest is in BPS
strings in 6d N' = 1 supergravity and their counterpart in 5d AN/ = 1 supergravity after
circle compactification, we shall impose the above conditions (4.14) and (4.15).

Now we shall argue that non-negative @) - ) is a sufficient condition for a BPS string
to be identified as a supergravity string. This argument is carried out in two steps:

o First, notice that the strings which can be decoupled from gravity (i.e. not super-
gravity strings) must go tensionless at some point of the Kéahler moduli space.

e Then we argue the strings with @ - @ > 0 can never go tensionless on the Kéhler
moduli space at any finite distance point.
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As a byproduct of this discussion, we can show that all the 5d U(1) gauge fields from 6d
tensors associated with supergravity strings, can never be enhanced to non-Abelian gauge
fields in 5d supergravity. When gravity is decoupled, the U(1)’s related to the supergravity
strings will also decouple. The U(1)’s sourced by the other strings may be enhanced to
non-Abelian gauge fields in the field theory limit.

Which strings can be consistently decoupled from gravity? The energy scale
associated to a magnetic string is given by its tension 7', while gravity sets the energy
scale Mp,. In order for a string to decouple from gravity, it should be possible to take
the limit MLPI — 0, where the backreaction of the string can be neglected. Working in the
supergravity regime, we may chose to keep Mp, fixed and, as a result, need to have T' — 0
in the decouplings limit. One may equivalently state:

Any string that can be decoupled from gravity, must go tensionless at some
point of the Kéhler moduli space.

For six-dimensional theories obtained from F-theory on a Kéhler base B of a elliptically
fibered Calabi-Yau manifold, this can be also understood geometrically. The string source
is given by a D3-brane wrapping a curve D C B, and the two energy scales

T ~ VOI(D), Mp] ~ VOI(B) (416)

Usually in order to go to the field theory (decoupling) limit, one takes vol(B) — oo, i.e.
the internal manifold is taken to be non-compact. Here instead we take vol(B) = 1 (which
is j-j =1for j a (1, ny) vector which parameterizes the Kéhler moduli space in 6d N' =1
supergravity language). Then the decoupling is achieved by

vol(D) — 0, (4.17)

which indicates that the submanifold D on which D3 wraps should be shrinkable. This is
equivalent to D - D < 0 and translates into the condition @ - ) < 0 for the BPS string
charge @. Such strings should be excluded from our analysis.

On the contrary, when a D3 brane wraps a semi-ample divisor, we expect to have a
supergravity string [19] that cannot be decoupled from gravity consistently and is subject
to the unitarity constraints. An semi-ample divisor is not shrinkable while keeping the
base being an algebraic surface, and has the property D-D >0 < @Q-Q > 0. We also
assume the divisor which the D3 brane wraps is irreducible.

Strings with Q - Q > 0 are supergravity strings. In order to see that strings with
@ - Q > 0 will not become tensionless on the Kahler moduli space, first recall that the
string tension is given by j - Q. We have fixed j - j = 1, and can now choose the inner
product and Kéhler parameter to be respectively:

Q = diag(1,~1,...,-1), and j=([jP+1,7). (4.18)

If Q- Q >0, we may take:
Q= (VI +m.q) (4.19)

where m is a non-negative integer.
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Now the tension can be evaluated directly:

i Q=VIiR+1- 10k +m-G- 7> IiR+1-VI0r+m—17- 1G] >0 (420)

and is strictly positive on the Kéhler moduli space. One may, of course, have |;| —
oo at infinite distance at the boundary of the moduli space. However, there the entire
effective supergravity description may break down and the full stringy picture needs to
be considered, very much in analogy with the distance conjecture. As a result, in the
supergravity theory, that we are considering, these BPS strings cannot go to tensionless
limit and cannot be consistently decoupled from gravity. An alternative proof of this is
given in appendix B.

We close this section with two remarks. The first concerns the comparison of the
condition of non-negativity of Q)-(Q that we imposed with the conditions which appeared in
the analysis of [18], The second addresses the possibility of symmetry enhancement in five-
dimensional theories obtained from a circle reduction of (0, 1) theories in six dimensions.

Strings with Q - Q = —1. It was pointed out in [18] that the positivity of the right-
moving central charge and the positivity of the central charge associate to the SU(2),
current algebra yield Q- Q — Q-a >0, and Q - Q + Q - a > —2 respectively. This leads to
the necessary condition @ - @Q > —1 for the unitarity of the worldsheet SCFT.

We have already seen above that @ - QQ > 0 corresponds to supergravity strings, and
may now consider BPS strings with string charge @ - Q = —1. The unitarity condition is
not applicable since such strings may be consistently decoupled form gravity, As a result,
the SU(2)r symmetry of the related (0,4) SCFT may not be identifiable with the SU(2)
from normal bundle, as it was already pointed out in [18].

As our central charge formula holds for supergravity strings and may not be applied
to BPS strings that can be consistently decoupled from gravity, we will focus on BPS
strings with charge @ - @ > 0. We will also see in the next section that this property
has a clear counterpart on the elliptic CYg for the F-theory model. It translates into the
requirement that the divisor D on the base of the elliptically-fibered CY 3, which is wrapped
by a D3-brane, is nef (or semi-ample). We can also see why strings with charges satisfying
Q@ - Q = —1 may be consistently decoupled from gravity in F-theory models: in this case
the corresponding divisors that D3 branes wrap are shrinkable on the base.

Supergravity strings and gauge symmetry (non)enhancement after circle re-
duction. When the six-dimensional (0,1) theory is put on a circle, the resulting five-
dimensional supergravity theory has a memory of the original SO(1,nr) symmetry [6].
But other than that, the reduction of each self-dual tensor field yields a U(1) gauge field
that is not very different from other vector fields. Hence one may wonder if there are
special points in the moduli space where this U(1)"” symmetry maybe enhanced.

Let us assume that such enhancement is possible, and that one can have a theory
with gauge group G. If so, moving on the Coulomb branch of the 5d theory away from
the special locus, the gauge group will break to its maximal torus G — U(l)rk(G). This
process will produce electric BPS particles carrying charges +@Q which belong to the root
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lattice of the gauge group G. The simplest example of this type is N' = 1 SU(2) gauge
theory, where the corresponding electric BPS particles are W-bosons with charges +2

On the other hand, if any of these U(1)s originate from 6d tensors, we should be able
to identify these 5d electric BPS particles with charge +@Q as 6d BPS strings with charge
+@Q wrapping the circle. So in the six-dimensional spectrum, BPS strings with both @
and —(Q should appear. As mentioned, the non-negativity of the string tension requires
j-@Q > 0. And the only consistent way to reconcile these conditions is to have j-Q = 0
at some points of the Kéhler moduli space, which means these strings can be consistently
decoupled from gravity. So such enhancement is only possible in the field theory limit.

Since the U(1) gauge fields, under which the supergravity strings are charged, cannot be
decoupled from gravity, any symmetry enhancement involving these will not be compatible
with the six-dimensional BPS spectrum. Thus, these U(1)’s cannot be enhanced to non-
Abelian gauge groups in the supergravity regime.

As we shall see, due to the absence of the quadratic piece QQ-Q in the unitarity condition,
the five-dimensional unitarity condition is in general stronger than the six-dimensional
condition of [18]. The only exception to this is when @ - Q + @ - a = —2. When this holds,
the 6d unitarity condition imposes slightly stronger constraints than the 5d one.

5 Unitarity condition as a weak Kodaira positivity condition

In the F-theory framework, the upper bound on the rank and the type of non-Abelian
gauge groups in six-dimensional N' = 1 theories arises naturally, and is due to the purely
geometric condition, the Kodaira positivity (KPC), on the elliptically fibered threefold.
The purpose of this section is to compare the implications of the KPC with the unitarity
condition (UC) discussed in section 4. This comparison will be complete for the theories
without Abelian gauge groups. This does not lead to a significant loss of generality due
to the fact that generally U(1) factors in F-theory models appear due to Higgsing of a
non-Abelian gauge group as argued in [36].2
In order to carry out this comparison we should rewrite the UC (4.13)

b)) - dim G

in a more convenient form. This is possible due to the fact that it involves —12 Q- a. In the
F-theoretic models, when mapping the anomaly data to the geometric data of elliptically-
fibered CY3, a is mapped to the canonical divisor K. The fact, that the elliptic fibration
requires that all the gauge divisors should be contained in the effective divisor —12 K, hints
at a possible interpretation of the UC as a physical counterpart of the purely geometrical
KPC. If the six-dimensional minimally-supersymmetric theory is obtained from F-theory
on an elliptically-fibered CY3, the comparison is direct (as we shall see in section 5.2).
However, the UC should apply without any assumption on the model having a F-theory
realisation.

20The bounds on the number of U(1) factors were studied in [34, 35].
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A remark on notation: in F-theoretic models, we are interested in the BPS strings that
originate from D3-branes wrapping effective divisors in the base manifold B. As we shall
see these BPS objects correspond to supergravity strings when the divisor in question is
semi-ample, i.e. the linear system associated to a positive power of this divisor is base-point
free. On the other hand, all effective nef divisors, i.e. the divisors that have a nonnegative
intersection with every curve in B, are semi-ample. Since we are discussing only the effective
divisors wrapped by D3-branes we just use the label nef divisors, hopefully without causing
any confusion.

5.1 Rewriting the unitarity condition

The Kodaira positivity condition states that all singular divisors should be contained in the
divisor of the discriminant of the Weierstrass model.2! This requires the residual divisor
Y given by
Y =-12K - > ;5 (5.2)
i

to be effective.

Here S; are the divisors with singular elliptic curve that host non-Abelian gauge
groups [37] and z; is the vanishing order of the discriminant on S; (i.e. ord(A) in table 1).
Every effective divisor satisfies

iB - (12szisi) =jp-Y >0, (5.3)
i
where jp is the Kéhler form on the base B. In fact, the following

D-<—12K—insi):p-yzo, (5.4)

holds for any nef (or semi-ample) divisor D, as nef divisor should intersect every effective
divisor non-negatively.

One can recast this condition in a form that just uses the data of six-dimensional
supergravity, notably the four-form X§ entering the anomaly polynomial, and does not
invoke the elliptically fibered CY3 explicitly [§]

J- ( —12a — Z :cS) >0 (5.5)

*'We are using the standard conventions for the elliptic fibrations with section (see e.g. [10, 11]). The

elliptical fiber on a CY3 is defined by an equation
y* =2 + fu,0)x + g(u,v)

in an affine patch of the weighted projective space WPs 3 1, with u and v, one set of affine coordinates on
the base B, fixed. Note, f € I'(—4K) and g € I'(—6K). The degeneration loci of the elliptic fiber are given
by zeros of the discriminant:

A = 4f%(u,v) + 27¢° (u, v),

and, A € I'(—12K).
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where j is a (1, n7) vector on the tensor branch of our six-dimensional theory which satisfies
j-3>0,7-b; >0, j-a<0. For any 6d minimal supergravity theory not obtained from an
elliptically-fibered CY3, condition (5.5) would appear to be not physically motivated and
does not have to be satisfied.

On the other hand, the condition (5.1) follows from the worldsheet unitarity of super-
gravity strings and is expected to hold for all 6d minimal supergravity theories that are
consistent at quantum level. When applied to an F-theoretic model, it can be rewritten as

dim G;
D- (-12}( ZSD S+hv>23' (5.6)

One has to bear in mind that the divisor D is wrapped by a D3-brane, and is required
to be nef as we are talking about supergravity strings. To see why this is so, recall that
the direct analogue of @ - @Q > 0 for the supergravity charges is given by D - D > 0 for an
irreducible effective divisor D. Irreducibility of D will be assumed throughout this paper.

Without assuming that the 6d minimal supergravity theory has an F-theoretic origin,
one still needs to augment (5.1) by the following:

R-Q+Q-a+2>0, k=0 -b;>0 and —-Q-a>0 (5.7)

These can be interpreted as constraints on admissible values of the charge @, in addition to
Q- Q > 0. The first two conditions are the requirements that the levels of current algebras
are larger than 0, while the last one is the positivity of the right-moving central charge of
the (0,4) worldsheet theory (recalling cr = —6Q) - a after the circle compactification).

It is not hard to see that the strongest constraints following from (5.1) are when
Q@ - b; = 1 in the denominator (although @ - b; = 1 may not be achieved as intersection of

divisors of a base B when we consider F theory model). In the following we shall compare
the KPC with the following

dimGi
Q.<—12a—;bi<1+hy>>23. (5.8)

Indeed when this condition is satisfied, (5.1) will hold also for @ - b; > 1.

The failure of the (5.8) to hold does not immediately signify any inconsistency. Indeed,
one has to first verify that Q - b; = 1 is possible.?? We shall see that in general (5.8)
is weaker than KPC, and hence it may serve as a useful measure for the 6d minimal

supergravity theories that have no F-theoretic realisation. On the contrary, for the 6d
theories originating from F theory, (5.8) may provide finer information about the effective
divisor Y = —12K — )", x;5; in some special cases, where the constraints imposed by the
UC turn out to be stronger than those following from KPC.

22We will do the full comparison between UC (rather than its strongest version as here) and KPC in 5.2.2.
So the UC in the strong form (5.8) serves as a red flag: if the strong condition fails, UC as given in (5.1)
should be checked. In fact we have found situations where it fails, but @ - b; = 1 fails as well.
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type ord(f) | ord(g) | ord(A) sing. g split Y= (}f}ff K-type
Iy >0 >0 0 — - - -
I 0 0 1 — — — —
II >1 1 2 — — — —
111 1 > 2 3 A | su(2) 1 K,
sp(1) vns 1
A% >2 2 4 Ay Ky
su(3) Ivs 2
m ns m] _ 3[%
Im 0 0 m Am sp([Q]) Im 2[2] [%]+2 Kl/KQ
su(m) Iz m—1 K
go I5ne 14/5
Ig > 2 >3 6 Dy 50(7) Ia‘ss 7/2 Ky
s0(8) I3° 4
I -, so(dn —3) | 1325 2n — 3/2
=5 2 3 2n+1 | Dony ( )| Bons / K,
n>3 so(dn —2) | I35 5 2n—1
I3 , so(4n — 1 e 2n —1/2
A N R T e L
n>3 so(4n) Ls_, 2n
IV*TLS r2 10
e >3 4 8 B |7 52/ Ky
e Iv=s 6
117~ 3 >5 9 Er er 7 Ky
Ir* >4 5 10 Ey es 8 K>
non-min. >4 >6 >12 non-can. | — — —

Table 1. The left side of this table summarises the Kodaira-Tate data for singular fibers of the
Weierstrass model. The Weierstrass data f, g and A define the type of singularity. Some of the
singularities can lead to different gauge algebras. This is governed by the refined Tate fiber type
(see e.g. [11] for details). In the last column of the left side of the table, ns, s and ss stand for
non-split, split and semi-split respectively. In our context the most important column is ord(A)
which defines the x; multiplicities of the divisors with singular fibers S;. The right side of the
table summarises the values of y; multiplicities that appear in the UC. The last column, K-type,
is determined by the difference x; — y; (see also table 2).

5.2 Comparing KPC and UC

It is useful to recall the types of singularities present in the elliptically fibered CY3 and

the ensuing local gauge groups. These are conveniently summarised by the Kodaira data

and can be found in table 1, which we have augmented by some data entering the UC.
We can directly compare the quantity y; = %(? and the Kodaira multiplicity z; =

ord(A) one by one:
e For E6,7,87 we have yEGms = xE6,7,8 —2= 6, 7, 8;

¢ For SU(n > 2), we have ysuy(n,) = n — 1 = x5y, — 1 for type I, and ysyp) = 1 =
zgy(2) — 2 for type I11,1V;
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Type of gauge algebra | z; — y; Gauge algebra
K <2 su(m), sp(1), sp(2), sp(3) in Kodaira type I
Ky > 2 All other groups in table 1

Table 2. Classification of gauge groups in table 1 based on the minimal value of x; — y;. Notice
that sp(1), sp(2), sp(3) in the first row come from I, I, Ig respectively.

« For Fy,Go, we have yr, g, = %, % while g, ¢, = 6,8;

e For SO(2n + 1),n > 3, we have ygo(ont1) =1 + %, while TSo(2n+1) = N+ 3;
o For SO(2n),n > 4, we have yso(2n) = 1, While 2g0(2n) = 1 + 2;
o For Sp(k), we have ys, ) = 2k — k%]fgvﬂfSp(k) =2k, 2k + 1.

_ dimG*

From above, we see z; > y; = T+, hence we naturally have on any elliptic CY3:

D- <—12K—Zy¢5¢) >D- (—12K—in5i> (5.9)

for any nef divisor D.
Given the respective forms of our unitarity condition

D- ( - 12K > yiSZ-) >3 (5.10)
i
and the Kodaira positivity condition:
D.<12szisi>:D-Yzo (5.11)
i

few more steps are needed to see which one leads to stronger constraints. The Kodaira
positivity is a necessary condition that is satisfied in all elliptically fibered CY3. In cases
where our unitarity constraints turns out to be weaker, we are not learning much new in
the context of elliptically fibered CY3.?2 When they are stronger, it should follow that the
CY3 in question should satisfy extra hidden conditions.

To proceed, notice that when the gauge algebra is su(m), as well sp(1), sp(2), sp(3)
when these are in Kodaira type I (as opposed to sp(1) in Kodaira type IV, su(2) in type
I1T and su(3) in type IV), we have y; + 1 < z; < y; + 2. We label gauge groups of this
type as K7. For all other gauge groups we have x; > y; + 2, and we label these as type Kbo.
In the subsequent analysis we shall label the gauge group as G = { K7, K2} when it can be
of any type, either K; or Ky (see table 2).

The UC applies to any supergravity theory, but the comparison to KPC requires to
adapt it to the elliptically fibered CY3, where it can be formulated as a condition on divisor
D in the base B, wrapped by a D3-brane. B is a smooth algebraic surface. In addition to

ZThese cases are important however for understanding the part of the not-swamped landscape of theories
not covered by F-theory constructions.
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an irreducible effective divisor D it has the gauge divisors S;. The gauge divisor S; should
also be an effective divisor so that it can be wrapped by D7 branes.

We may recall that the charges for the supergravity strings @) should satisfy j-Q > 0,
Q-b; > 0and Q-a < 0. We shall also impose @ - @ > 0 (and comment on @ -Q = —1 case
momentarily). These conditions can be translated into geometric statements for the D

D-D>0, D-S>0, D-K<O0. (5.12)

These conditions already contain a great deal of information: D is a nef divisor, and hence
it intersects any effective divisor E on the base non-negatively D - E > 0.2

Q@ - @ = —1 case: notice that we have restricted @ so that @ - @ > 0. Before turning
to the analysis of the conditions on D, we comment on @ - Q = —1 case. For this case,
we have D- D+ D-K =—-2as D-D = —1and D- K < 0, and hence D is a rational
curve with self intersection —1. So it corresponds to blowing up a point on a smooth base
o : B — B’, which means that this exceptional divisor can be smoothly shrunk to zero size.
As a result, the corresponding string could be tensionless and be consistently decoupled
from gravity (actually the metric on B which gives zero size for this exceptional divisor can

be interpreted as a metric on B’. See [38, 39] and also [40] for a related physical discussion).

5.2.1 Ample divisor D

We shall start with the simplest case when D3 wraps an ample divisor D in the base
manifold B. These divisors have nice numerical properties given by:

D-S>1, D-K<-1, D-D>1. (5.13)

thanks to the Nakai-Moishezon ampleness condition.
Using these, the Kodaira positivity condition (KPC) and the unitarity condition (UC)
yield the following;:

D.<—12K—insi> =D-Y >0

D- (— 12K—inS,~> >3- (@i—yi)D-S; (5.14)

and hence the following (in)equality
3= (@i—y)D-Si<D-Y (5.15)

should hold.
There are three distinct cases:

e Case 1: the entire gauge group is given by a product of three or more groups, G X
Go X ... x G with k > 3, or is a product of two factors, one of which is necessarily
of Ky type, G x Ks. Since D - S; > 1 and z; — y; > 1 in general (and z; —y; > 2 for
a Ks-type group), 3 — > ;(x; —yi)D - S; <0. Given D -Y > 0, the condition (5.15)
is automatically satisfied. In this case, KPC imposes stronger constraints than UC.

Z4Note that the condition Q - Q + Q - a + 2 > 0 is automatically satisfied in F-theory models due to the
adjunction formula.
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e Case 2: the entire gauge group is of type K1 x K;i:

— When the groups are Sp(2) x Sp(2), Sp(2) x Sp(3) and Sp(3) x Sp(3), UC is not
stronger than KPC as (5.15) is trivially satisfied.

— For other Ky x K; groups, when D - Sy =D - Sy =1 (5.15) imposes D - Y > 1.
e Case 3: the entire gauge group is a single factor G:

— ForGe Ky with2<z—-y<3and D-S =1 (5.15) imposes D -Y > 1.
— For G € K, when D - S =1 (5.15) requires D - Y > 2.
— For Sp(1) and SU(m) only, when D - S = 2, (5.15) requires D - Y > 1.

As we see, Case 2 and Case 3 may contain examples where D - Y is strictly positive, as
opposed to being simply non-negative as required by KPC. These would be at the center
of our attention. Notice that in all these cases a small value of D - .S; is required. When
D - S; =1, the strong version of UC (5.8) and the general UC (5.1) coincide. D - S; = 2,
which applies only to G = Sp(1) and G = SU(m), requires special care. Here we see that
analysing the general UC (5.1) leads to further refinement. For a single factor G € Kj,
with D-S =2, D-Y >1 only for Sp(1) ~ SU(2) and SU(3).

We shall consider in greater detail the situation when UC leads to stronger constraints
than KPC. Note that KPC D-Y > 0 can be interpreted as the statement that the singular
loci of the entire elliptically fibered CY3 are contained inside the degeneration loci of
the elliptic fiber. We see that for CY threefolds with some special types of singularity
structures, UC requires that D-Y > 1, hence contains finer information about the residual
divisor Y. In these cases, UC indicates that the singular loci of the elliptically fibered CY3
cannot sweep out the entire degeneration loci of the elliptic fiber.

Case 2. For a gauge group of type K7, the vanishing orders for f, g and A in Weierstrass
data are given by (0,0, m). Recall also that (f,g,A) € (I'(-4K),I'(—-6K),I'(—12K)).

Let us assume that UC does not hold and we can take Y to be numerically equivalent
to 0, i.e. have zero intersections with any curve in B. Then —12K = 2151 + x255. Since f
and g do not vanish along the gauge divisors S and So, we have:

S K=8-K=0=K- K. (5.16)

This implies
2151 - S1 + 2951 - So = 2151 - S9 + 2955 - 59 =0. (5.17)

Using the correspondence between the geometric data and the coefficients of the anomaly
polynomial (see section 5.1), we have?

K-K=0—~a-a=9—np=0 (5.18)
The adjunction formula yields:
Sl . Sl = 291 — 2, and SQ . SQ = 292 -2 (5.19)

where g1 ad g9 are the genera of the corresponding curves.

25We will use the full set of standard anomaly cancellation conditions which can be found e.g. in [10].
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There are two possibilities:

A: divisors S7 and S are not in the same class. Since they are represented by curves,
S1-852 > 0. If S1-55 > 0, we obtain S; - 51 < 0 and Ss - Sy < 0. Applying the
adjunction formula finally yields S1-51 = S3-52 =291 —2=2g2—2= -2, 51-52 =2
and 1 = 9. When S; - S5 = 0, we obtain the same conditions as in the case B.

B: divisors S7 and S5 are in the same class. Then we have g1 = go =1 and S; - S2 = 0.

For case A, let us analyse the example with gauge group SU(m) x SU(m) for illustra-
tion.?® Note that 21 = o = m. We also have g; = go = 0, hence the gauge divisor is given
by a rational curve.

Using the anomaly cancellation conditions once more, we can see that in order to cancel
the irreducible gauge anomaly ~ trF}}, 2m fundamental hypers are needed for each SU(m).
The condition S7 - So = 2 tell that in fact there are 2 bifundamentals. To summarise,
this case corresponds to a minimal supergravity theory with ny =9, YM multiplets with
SU(m) x SU(m) gauge group and two hypermultiplets in bifundamental. This example has
appeared in [18]. Notice that the six-dimensional unitarity condition of [18] in this case
is also stronger than KPC. Based on this it was conjectured that unitarity condition may
teach us something about elliptically fibered CYs3.

If —12K = m.S1 + mSs corresponds to an elliptic CY3, then UC can be violated by
a F theory model. This does not seem to be very reasonable. Hence we should conclude
if this supergravity is to be realised by an elliptic CY3, the effective divisor cannot be set
numerically to zero. There necessarily should be extra contributions from non-singular (of
the entire elliptic CY3) degeneration (of the elliptic fiber) loci which do not intersect S or
Sy and are not detected by the low-energy spectrum.

For case B, the analysis and conclusion would be the same as case A: uC requires the
remaining effective divisor not numerically equivalent to 0 for corresponding elliptically
fibered CY3 to exist.

Case 3. The divisor Y = —12K — xS cannot be numerically equivalent to 0. Assuming
it does, would lead to —12K = xS. There will be a single gauge group G, and the
number of the adjoint hypers is given by the genus of the corresponding curve gg. This is
not very constraining for the groups that have vanishing trF* (i.e. Egrg, G2, Fy, SU(2),
SU(3) and SO(8)). For all others the vanishing of the irreducible gauge anomaly requires a
hypermultiplet in the adjoint, and hence g4 = 1. Using the adjunction formula S-K+4S5-S =
2gs — 2, one obtains

S-Sf%S~S:2gsf2:0 (5.20)

— For §-5 =0, we have K - K =9 —np = 0. As in Case 2, an analysis along the
same leads to a similiar conclusion that UC is slightly stronger than KPC and hints
at a hidden structure in the related elliptic CY (if it exists): the residual divisor YV

26We can further restrict to gauge group SU(6m) x SU(6m) or SU(6) x Sp(3) by a more refined analysis
(see section 5.2.2).
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cannot be numerically 0. (A more detailed analysis in section 5.2.2 tells that UC is
stronger than KPC only for SU(12n) and SU(12n — 1)).

— For S-S # 0, eq. (5.20) gives x = 12. According to table 1, this can only happen
for Io and I§ singularities. The corresponding gauge groups are SU(12), SO(19),
SO(20) and Sp(6). A detailed analysis, presented in the next section, leads to the
conclusion that UC is stronger than KPC and hints at a finer information on the
residual divisor Y.

— Finally we turn to gauge groups Es 78, G2, Fy, SU(2), SU(3) and SO(8). For all of
them x < 12, and hence D - S = _THD - K being an integer leads to D - S > 2. As a
result (x —y)D - S > 3 and for these cases UC is weaker than KPC. For example in
the SU(3) case we see © = 3,4 (see table 1) and D-S = —4D - K and —3D - K > 3.
Hence (x —y)D-S >3 asx—y > 1.

The further analysis of these special cases of gauge groups is presented in the next
section where we study general nef divisors.

5.2.2 General nef divisor D

We can now turn to the general case, where we require only that D is a nef divisor and
analyse KPC and UC more carefully with a purpose of singling out the cases which KPC
is satisfied coarsely (if we just ignore the effective divisor Y = —12K — 3, x;5;) while UC
is violated. These are the cases where UC should be revealing a hidden finer structure in
the elliptic CY3 involved.

Let us start by collecting a slightly rewriting KPC and UC (in its general form, and
not the strong form (5.8)):

—-12D-K =D-Y +>» x;D-S;

dim G;
LD S =3+ Y D 5; (5.21)

—12D-K >3+ ——o—
; D-S;,+h

where as before G; is the (non-Abelian) gauge group hosted on (singular) gauge divisor S;,
and we have defined u; = %ﬁiy. When D - S; =1, u; = y;, otherwise u; < y;. Replacing
i by y; result in the strongest version of UC (as already notice, in some cases this strong
version may fail, while the UC (5.8) actually holds).

Note that —12D - K € 127, and hence:

> #D-S;<D-Y+>» ;DS =-12D-K =12n

2

3+> wD-S;<-12D-K =12n (5.22)
%

for a positive integer n. It is not hard to see that there are three possibilities

o If for all gauge divisors, D - S; = 0, the two conditions are equivalent trivially. This
is very unlikely to happen in a base B.
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o If at least three gauge divisors S} 23 have the property that D - Sj 23 > 0 (this holds
for a generic S;), then even the strongest version of UC is weaker than KPC. The
same conclusion holds for the case of at least two gauge divisors where at least one
yields a K type gauge group (due to x; — p; > z; — y; > 2 for Ky type).

e For the remaining cases, let us notice that positive integer solution for D - .S; exist
only when

12n—3<Y pD-S; <12n = (i — wi)D - S; (5.23)

(2

is satisfied. This condition implies that while KPC is respected, UC is violated. For
these cases, UC can lead to stronger constraints than KPC and Y = —12K -}, ;5;
cannot be numerically 0 in order for F-theory models not to violate UC.

Obviously we are interested only in the last situation, where we can divide the nontrivial
solutions of condition (5.23) into two cases:

o There are two gauge divisors S1 and S3 in gauge groups of type Ki, and D - Sy > 0.
The cases are where UC is more constraining than KPC are:

— SU(n) x SU(m) with m+mn € 12Z and D - Sy = 1.

— SU(12n—2)xSp(1), SU(12n—4)xSp(2) and SU(12n—6) xSp(3) with D-S; » = 1.
Here Sp(1), Sp(2) and Sp(3) should come from Is, Iy and Is type singularities
(see table 1).

For these gauge groups we need to impose a further condition on the effective divisor
D -Y > 1 in order for UC not be violated by F-theory models.

e There is only a single gauge divisor S with the property D -5 > 0. UC can be more
constraining than KPC only for the gauge groups

— SU(12n), SU(12n — 1) with D - S = 1.
— SO(24n —5), SO(24n —4) and Sp(6n) with D -S = 1. Here Sp(6n) should come
from I19, type singularity (see table 1).

In all these cases p; = y;. Only when the divisor ¥ = —12K — ), ;5; satisfies
D-Y >2for SU(12n —1) and D -Y > 1 for the rest, UC is not violated in F-theory
models.

For completeness, we can present an example of a group where no extra constraints emerge.
For Eg, UC would be stronger than KPC only if we have a solution for

12n—3<uE6D~SE6 < 12n—(SCE6 _,U/Ea)D'SEg‘ (5.24)
This would require
3> (JZEG — ,UEg)D . SE6 > (‘TEG — yEG)D . SEG =2D- SEG —D- SEG =1 (525)

leading to pgs = ygs = 6. However, then 12n—3 < ug,D-Sg; < 12n— (vgy — pEs) D - SEq
becomes 12n — 3 < 6 < 12n — 2 which doesn’t have a solution! Similar arguments can be
applied to other cases.
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5.2.3 Special cases where UC is stronger than KPC

Following the discussion in the previous section, we can give a precise statement about
what UC may teach us about elliptic Calabi-Yau threefolds through F-theory models:
For F-theory on an elliptic CY3 over base B, only when there exist gauge (singular)
divisors {S;} and a nef divisor D on the base B, which satisfy some (very special) numerical
conditions, UC hints at a finer information than contained in KPC, on the effective divisor
Y =-12K — .%'ZSZ
There are three types of models where this can happen:

A: There exists one gauge divisor S; € {5;} hosting a gauge group SU(12n) or SU(12n—
1), and a nef divisor D satisfying D -S; =1 and D -S; = 0 for all other i # 1, as well
as —D - K € Z4. Then such a nef divisor D should satisfy D -Y > 1 for SU(12n)
and DY > 2 for SU(12n — 1) in order for UC to be satisfied by F-theory models

B: There exists one gauge divisor S; € {S;} hosting a gauge group SO(24n—>5), SO(24n—
4) or Sp(6n) (which comes from I3, type singularity), and a nef divisor D satisfying
D-Si=1and D-S; =0foralli# 1, as well as —D - K € Z,. Then such a nef
divisor D should satisfy D-Y > 1 in order for UC to be satisfied by F-theory models

C: There exist two gauge divisors S1, S2 € {S;} hosting gauge group SU(a) xSU(12n—a),
Sp(1) x SU(12n —2), Sp(2) x SU(12n —4) or SU(12n — 6) x Sp(3)(where Sp(1), Sp(2)
and Sp(3) come from I, Iy and I type singularities) and a nef divisor D satisfying
D-Sio=1and D-S;=0forall¢# 1,2, as well as —D - K € Zy. Then such a nef
divisor D should satisfy D-Y > 1 in order for UC to be satisfied by F-theory models

Note that an example in class C has been discussed in section 5.2.4, and has appeared
previously in [18], where it was pointed out that (six-dimensional) unitarity condition can
lead to stronger constraints than KPC.

To conclude, in a generic F-theory model UC leads to weaker constraints than KPC.
Under some special conditions UC hints at finer information about the possible elliptic
CY3 than KPC on the remaining effective divisor ¥ = —12K — }, x;5; on the base.

In the next section we shall briefly discuss some examples, but we finish this section
with some remarks.

e In all special cases, where UC is stronger than KPC, the numerical constraints on
the gauge divisors and on the residual divisor Y are rather strong. We have not
studied if and how many non-trivial realisations of these conditions exist in elliptic
CY threefolds.

o A general lesson provided by UC in all above special cases for elliptic CY3 is that the
residual divisor Y on the base of the elliptic CY3 should have nontrivial numerical
properties and not be numerically equivalent to 0, and in general the gauge divisors
do not sweep out the entire —12K.

o All cases where UC is stronger than KPC involve at most two gauge divisors (of
fixed type) intersecting the nef divisor D. The corresponding supergravity models
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can however contain more than two gauge factors. The extra gauge groups should
come from singular divisors that do not intersect D.

o Only in one special case, 6d UC in [18] is stronger than the 5d UC discussed in this
paper. This happens when an additional condition D - D + D - K = —2 is satisfied,
and the nef divisor D is a genus 0 curve. For this very special situation, we need to
decrease the upper bound of UC by 1.27

e Further compactification on a circle to four dimensions does not lead to further
unitarity constraints.

5.2.4 Examples

In order to illustrate the previous discussion, we may consider three examples of elliptic
CY3 which are fibrations over Hirzebruch surfaces IF,, (the details of the geometry of these
examples can be found in e.g. [10]). For all these examples, we shall see that the residual
divisor Y is indeed numerically nontrivial (its intersections with all nef divisors are strictly
positive). Our forth example has already appeared in the text and in [18], and, to the best
of our knowledge, has no known F-theoretic realisation. We shall see that if such realisation
exists, it would require Y to be numerically nontrivial.

First we collect some data on F,,, which will be useful in the first three examples. The
effective divisor is spanned by D, and Ds. Their intersection data are

D, -Dy=-m, D, -Ds=1, D,-Ds=0 (5.26)
and the canonical divisor K satisfies
— 12K =24D, + 12(m + 2)D; . (5.27)

Example 1. 6d supergravity with a single SU(/N) can be modelled on base Fy. These
types of F-theory models have some overlap with special case A in section 5.2.3. In these
cases, gravity anomaly cancellation requires N < 15. The gauge divisor on Fy is S = D,,
and the residual effective divisor Y is given by

Y = —12K — ND, = (24 — N)D, + 48D, (5.28)

Hence any nef divisor D with D - D, > 0 has to have the form aD, 4+ 8D for some
integers a and 8 with § > 2a. Requiring in addition that D - K <0 and D - D > 0 yields
a >0, > 0. So any such nef divisor will have D -Y = (24 — N)5 + 2Na > 9.

27 As in the case when the nef divisor is a rational curve, it is not hard to see from (4.11) that the upper
bound set by 6d UC is —12D - K — 4 rather than —12D - K — 3 set by 5d UC. In this case, UC is stronger
than KPC only when there exist positive integer solutions for D - S; satisfying 12n — 4 < ZZ wiD - S; <
12n—3 " (xi—pi)D-Si. As aresult, since the lower bound is relaxed by 1 when compared with (5.23), some
new special cases will appear. The conclusion will still be the same: for these cases Y = —12K — ZZ i S;
should satisfy some numerical properties in order for F-theory models not to violate UC.
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Example 2. 6d supergravity with gauge group SO(16) x SU(4) x SU(4) is modelled over
F4. The gauge divisors are S; = D, So = D, + 4D, and S3 = D, + 8D;. The residual
effective divisor is given by:

Y = —12K — 10D, — 4(D, + 4D,) — 4(D,, + 8D,) = 6D,, + 24D, (5.29)

It is not hard to see that the conditions o« > 0, 8 > 0, 8 > 2« are required in order for
any divisor D = aD,, + 8D to satisfy D-D >0, D- K < 0and D -.S; > 0. As a result,
D-Y=682>6.

Example 3. 6d supergravity with gauge group U(1) x SU(8) is modelled on Fy. For our
purposes, we can ignore the Abelian factor. The relevant gauge divisor is .S = 2D, + 2Dy,
and the residual effective divisor Y is given by

Y = —12K — 8(2D, + 2D,) = 8D, + 8D, (5.30)

Any nef divisor D = aD,, + Dy satisfies D - K < 0,D - (2D, +2Ds) > 0,D - D > 0 only
provided that o+ 8 > 0 and aff > 0. As a result, D -Y = 8a + 85 > 8. Notice that this
theory passes the unitarity test even with the additional U(1) included (since any U(1)
factor can only contribute 1 to the central charge).

UC and KPC criteria can also be translated to conditions on some physical data of
general 6d anomaly free minimal supergravity without knowing whether it can be realised
in F-theory or not. The following is one example of applying UC and KPC to a 6d anomaly
free minimal supergravity model.

Example 4. 6d supergravity with SU(/V) x SU(N) with two bifundamentals and 9 tensor
multiplets is an anomaly free theory [18]. The relevant data (the constant vectors in the
GS couplings) are given by:2

1 = diag (—i—l, (—1)9) , a= (—3, (—1—1)9)

by = (1,—1,—1,_1,06), by = (2,0,0,0, (_1)6) . (5.31)

Choosing the string charge as @ = (1,0,0,0,—1,0...,0)., we obtain Q- Q =0, @ -a = —2
and @ - by = @ - by = 1. The unitarity condition (5.8) gives us:
2N —1) < 24— 3. (5.32)

Note that in this case @ - Q + @ - a = —2, and thus the 6d unitarity condition of [18] is
slightly stronger than 5d UC: a shift by 1 on right hand side is needed and 2(N—1) < 24—4.
Either way, the bound is N < 11, while the Kodaira positivity condition yields:

2N <24 - N < 12. (5.33)

*8Note that the string charge here is different from the one used in [18]. The choice of @ in [18] leads to
Q- K =Q-Q = —1 and the putative corresponding divisor D on the base B of elliptic Calabi-Yau side
would no longer be nef.
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We see that in this case UC is slightly stronger than KPC. Also notice that SU(12) x SU(12)
case, which satisfies KPC but violates UC, belongs to case C, enumerated in section 5.2.3.

Assuming that this theory has an F-theoretic realisation and that there is an underlying
elliptic CY3, the residual effective divisor would be

Restricting for simplicity to the case N > 4, the singular divisors are of type Iy (see
table 1).2 Then we have S; - K = So- K = 0. Since there are two hypers in the
bifundamental and no hypers in the adjoint, we should take S; - 51 = —2 = S5 - Sy and
S1 59 = 2, while np = 9 translates into K - K = 0. If we just follow KPC and set the
residual effective divisor Y to be numerically 0, we get exactly case A which we discussed
in section 5.2.1. Based on the above discussion, we can see that the new lesson UC offered
in this case is that the relation

— 12K =128 + 125, (5.35)

cannot be realised on the base B of an elliptic Calabi-Yau threefold with the required
singularity structure, and the residual effective divisor ¥ = —12K — 1257 — 1255 has to be
numerically non-trivial.
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A Reduced anomalies and Bardeen-Zumino counterterms

To prove equation 2.5, we first recall the general descent procedure (cf. [41] for review).
For this it is sufficient to consider anomaly polynomials of the form

Inpig = P(F™Y) (A1)

where P is a invariant symmetric polynomial of order n + 1. Then one can write Is,10 =
dIS, ., where

1
Buy = (n+1) [ P rp) (4.2)

where F;, = tF + (t* — t)A?. From this one finds 6.9, = dI3, with

L, =n(n+1) /01 dt(t — 1)P(de, A, F'™1) (A.3)

2We explude SU(2) and SU(3) gauge groups since they may also be realised by I11,IV-type singularities.
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which solves the Wess-Zumino consistency condition, i.e. it is a possible (consistent)
anomaly in 2n dimensions. The Bardeen-Zumino polynomial [17], which was constructed to
modify the current in order to satisfy a covariant anomalous conservation law (i.e. covariant
anomaly), is defined as3’

¢-X =n(n+1) /01 dtt P(é, A, F1). (A.4)

This is a 2n — 1 form. We need its gauge variation. This is straightforward to work out
using 0A = de + [A, €] and J¢ = [¢, €], with the result

n(n +1) /01 dt{t P(de, ¢, F ™) + #2(t = 1)(n — 1)P(4, ¢, {de, A}, F/"2)} . (A5)

We have to compare this with the compactified anomaly, i.e. with

1
n(n + 1)/ di(t — 1) / P(de, A, E7) (A.6)
0 St

where the hatted quantities are in 2n dimensions while the unhatted ones are in 2n — 1

dimensions:
A=A+ o =¢dy /Slcp=¢ (A7)

and

F=F+do+{A ¢}, Fy = F+tdp+t*{4,¢} (A-8)

y is the compact coordinate, A is a one-form, ¢ and € are zero-form in 2n — 1 dimensions.
In (A.6) only the piece linear in ¢ survives the integration over y (we moved dy all the
way to the right):

 P(de, A Fn7Yy = P(de, ¢, FI™Y) + (n — 1) P(de, A, tdp + t2[A, ¢], F2) . (A.9)
S
We first consider the term t P(de, A, d¢, Fj*~?). Using
dP(de, A, ¢, F~?) = —P(de,dA, ¢, F{' %) + P(de, A, do, F{"*) + P(de, A, ¢, dF?)
(A.10)
and
dF™2 = (n —2)dF, F" 3 = (n — 2)t [F}, A F* 3 (A.11)

which is valid inside P we obtain, up to a total derivative,3!

t P(de, A,d¢, F['"?) =t P(de,dA, ¢, F/™2) + (n — 2)t> P(de, A, ¢, [A, Fy], F/™3) . (A.12)
To eliminate the last term, use the invariance of P, i.e.

0=P({A,de}, A, ¢, F""%) — P(de, {A, A}, ¢, F*™?)

! - (A.13)
+ P(de, A, [A, @], F'72) + P(de, A, ¢, [A, F'?))

30In [17) BZ used a one form B instead of ¢.
3TAT expressions should be understood to be valid up to a total derivative in Map_1.
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Collecting terms we find

/S1 P(de, A, F'™1) = P(de, ¢, F'™ 1) — 12 (n — 1) P({A, de}, A, ¢, F*~1)

(A.14)
+t(n—1)P(de,dA+2t A%, ¢, F7%) .

The commutator term in (A.9) has cancelled. Using dA + 2t A% = %Ft this becomes

d
P(de, ¢, F'™1) —t2(n —1)P({A, de}, A, ¢, F"™2) + t—P(de, 9, Fr1. (A.15)
We need to multiply this by n(n + 1)(¢t — 1) and integrate over t. Collecting terms, which

involves a partial integration where the boundary terms vanish identically, one finally finds

A A

I (e, A F)
Sl

—n(n+1) /01 dt{t P(de, o, F'™") + 2(t = 1) (n — 1)P({A, de}, A, 6, F'%)} (A.16)

which is the same as (A.5) and therefore completes the proof.

The above proof holds when the gauge group G is the same in 2n and 2n—1 dimensions,
and in principle can be generalised to the case when Wilson lines are turned on. For the
gravitational anomalies, this is always the case since upon reduction Diff(My,,) is reduced
to Diff(Ma,—1). We shall not attempt general proofs here and simply consider the mixed
U(1)-gravitational anomaly in d = 4. Starting from a six-form Iy = FAtr(RAR) descending
along the U(1) leads to an anomaly given by

I} = etr(RAR) (A.17)

€ is as before the gauge variation parameter.

We can now explicitly compute the reduction of I} along a circle, by assuming there
is isometry direction and all the fields depend on three coordinates only.?? Denoting the
KK vector by A° and its curvature two-form by 7',3% the Wilson line is given by

1
Pap = —5Tas (A.18)

where «a, 8 are the three-dimensional tangent space indices. It can be verified explicitly that

where the three-dimensional component of the curvature two-form is given by RoP =
Reb —1reh — 1o T — L DT A0, Moreover

tr(PXpz) — /51 I} = iA nd ((T0T,5) A°) . (A.20)

32For simplicity we just consider here the Lorentz anomaly and the reduction from SO(3,1) to SO(2,1).

33The curvature two-form of the U(1) fibrations T € H?(Ma,-1,Z) can be written using the three-
dimensional vielbeins as T' = dA° = 1T.5e* A e?. We shall treat T,p as an SO(2, 1)-valued zero-form and
also use a one-form T* = Tg el
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This term is covariant both under the U(1) gauge transformation and the 3d Lorentz gauge
transformation SO(2,1). Furthermore, as one should expect, this term is not covariant un-
der the U(1) gauge transformation of the KK vector A°. This is due to the compactification
Ansatz explicitly breaking this part of gauge symmetry inherited from the 4d Lorentz gauge
symmetry SO(3,1).

This calculation can be extended to arbitrary dimensions (including the case of purely
gravitational anomalies in 2n + 2 dimensions). The general formula will always contain a
KK U(1) non-covariant part. This is the part denoted by ellipsis in (1.1).

B Alternative proof that strings with Q - Q > 0 and Q -b; > 0 are
supergravity strings

Here we present an alternative proof of the statement that a 6d string with charge Q which
satisfies @) - @ > 0 and @ - b; > 0 is a 5d supergravity string after compactifying to 5d on
a circle. Or, in other words, those strings do not become tensionless on the entire Kahler
moduli space.

First we identify the Kidhler moduli K of 6d NV = 1 supergravity. Recall that the BPS
charges of the solitonic strings live on an integral lattice Agpg of signature (1,n7). The
Kahler moduli can then be defined as

,C:{jEABps®ZR|j-j:1,j'a<0,j'bi>0}. (Bl)

The scalar j - j belongs to the universal hypermultiplet and since we study the tensor
branch, we set j-j = 1. The condition j - b; > 0 is required to have positive kinetic terms
for the Yang-Mills action. For the supergravity theories with their origin in F-theory
compactifications, the requirement j - ¢ < 0 translates to a necessary requirement that the
total space of the fibration is CY3. In general supergravity theories the justification of this
condition is a bit more speculative.

We will use the notation CXC to denote the cone over K, i.e. when extending C to
CKC, we replace the condition j -7 =1 by j -4 > 0. In the F-theory context, this corre-
sponds to the Kéhler cone of the base, i.e. to those Kéahler forms which lead to good 6d
supergravity theories.

Next, we choose a lattice point @ inside CK. As a result, a BPS string with charge
vector () satisfies

Q-b;>0 Q-a<0. (B.2)

Since @ is inside CK, one can show that in the Kédhler moduli space K, i.e. in the region
j -7 =1, we always have
Q-7>0. (B.3)

Indeed, since @ is a lattice point inside CXC, we have

Q-Q=m>0 — exr. (B.4)

Sle

43 —



Since j € K, we can always write

j=Y_rEi, 1:>0. (B.5)
[

Here E; are lattice points on the boundary of CK, the closure of CIC. Due to the condition
j+j =1, not all 7;> 0 can vanish simultaneously.

Now, since - € K is a point not on the boundary of I, we have that for every ¢

vm

9 g0 (B.6)

vm

is strictly positive. As not all r; can approach 0 at the same time even at the boundary of
the Kéhler moduli space (recall j-j = 1), we find that

j-Q:;x/ﬁmﬁm-Ei>o (B.7)

is strictly positive on the closed Kéhler moduli space K. Therefore, the corresponding BPS
string is a supergravity string after compactification on a circle, due to the fact that it
cannot become tensionless at any point on the entire closed Kahler moduli space.

With all our conditions satisfied, we are describing the set of strings S with the fol-
lowing charges:

S:{SQ‘QGABPS7Q'Q>07Q'a<07Q'bi>0}' (BS)

If we compare it with
CK={jeApps®@zR|j-7>0,j-a<0,5-b; >0} (B.9)

we see these string charges are exactly the lattice points inside the cone CK.

As a result, since the BPS strings with @ - Q > 0 and @ - b; > 0 cannot go tensionless
on the entire closed Kihler moduli space IC, they belong to the set of supergravity strings
after compactfication on a circle, and hence cannot be decoupled from gravity consistently.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[2] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl.
Phys. B 473 (1996) 74 [hep-th/9602114] [iINSPIRE].

[3] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl.
Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

— 44 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602022
https://doi.org/10.1016/0550-3213(96)00242-8
https://doi.org/10.1016/0550-3213(96)00242-8
https://arxiv.org/abs/hep-th/9602114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602114
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603161

[4]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity
compactified on Calabi- Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144]
[INSPIRE].

S. Ferrara, R.R. Khuri and R. Minasian, M theory on a Calabi- Yau manifold, Phys. Lett. B
375 (1996) 81 [hep-th/9602102] [INSPIRE].

S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on
Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].

A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau
threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] NSPIRE].

V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N =1
supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] INSPIRE].

S. Monnier and G.W. Moore, Remarks on the Green-Schwarz terms of siz-dimensional
supergravity theories, Commun. Math. Phys. 372 (2019) 963 [arXiv:1808.01334] INSPIRE].

W. Taylor, TASI lectures on supergravity and string vacua in various dimensions,
arXiv:1104.2051 [INSPIRE].

T. Weigand, F-theory, PoS(TASI2017)016 [arXiv:1806.01854] [INSPIRE].

E. Poppitz and M. Unsal, Index theorem for topological excitations on R* x S' and
Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].

F. Bonetti, T.W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five
dimensions, JHEP 07 (2013) 043 [arXiv:1302.2918] [INSPIRE].

F. Bonetti, T.W. Grimm and S. Hohenegger, Fxploring 6D origins of 5D supergravities with
Chern-Simons terms, JHEP 05 (2013) 124 [arXiv:1303.2661] [INSPIRE].

P. Corvilain, T.-W. Grimm and D. Regalado, Chiral anomalies on a circle and their
cancellation in F-theory, JHEP 04 (2018) 020 [arXiv:1710.07626] [INSPIRE].

P. Corvilain, 6d N = (1,0) anomalies on S* and F-theory implications, JHEP 08 (2020) 133
[arXiv:2005.12935] [NSPIRE].

W.A. Bardeen and B. Zumino, Consistent and covariant anomalies in gauge and
gravitational theories, Nucl. Phys. B 244 (1984) 421.

H.-C. Kim, G. Shiu and C. Vafa, Branes and the Swampland, Phys. Rev. D 100 (2019)
066006 [arXiv:1905.08261] [INSPIRE].

S. Katz, H.-C. Kim, H.-C. Tarazi and C. Vafa, Swampland constraints on 5d N =1
supergravity, JHEP 07 (2020) 080 [arXiv:2004.14401] [InSPIRE].

H.-C. Tarazi and C. Vafa, On the finiteness of 6d supergravity Landscape, arXiv:2106.10839
[INSPIRE].

C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms,
unitarity, and F-mazimization in three-dimensional superconformal theories, JHEP 10
(2012) 053 [arXiv:1205.4142] [INSPIRE].

C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on
Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218]
[INSPIRE].

45 —


https://doi.org/10.1016/0370-2693(95)00891-N
https://arxiv.org/abs/hep-th/9506144
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506144
https://doi.org/10.1016/0370-2693(96)00270-5
https://doi.org/10.1016/0370-2693(96)00270-5
https://arxiv.org/abs/hep-th/9602102
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602102
https://doi.org/10.1016/0550-3213(96)00268-4
https://arxiv.org/abs/hep-th/9604097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604097
https://doi.org/10.4310/CNTP.2012.v6.n1.a2
https://arxiv.org/abs/1109.0042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.0042
https://doi.org/10.1007/JHEP11(2010)118
https://arxiv.org/abs/1008.1062
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.1062
https://doi.org/10.1007/s00220-019-03341-7
https://arxiv.org/abs/1808.01334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.01334
https://arxiv.org/abs/1104.2051
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.2051
https://arxiv.org/abs/1806.01854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01854
https://doi.org/10.1088/1126-6708/2009/03/027
https://arxiv.org/abs/0812.2085
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.2085
https://doi.org/10.1007/JHEP07(2013)043
https://arxiv.org/abs/1302.2918
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.2918
https://doi.org/10.1007/JHEP05(2013)124
https://arxiv.org/abs/1303.2661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.2661
https://doi.org/10.1007/JHEP04(2018)020
https://arxiv.org/abs/1710.07626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.07626
https://doi.org/10.1007/JHEP08(2020)133
https://arxiv.org/abs/2005.12935
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12935
https://doi.org/10.1016/0550-3213(84)90322-5
https://doi.org/10.1103/PhysRevD.100.066006
https://doi.org/10.1103/PhysRevD.100.066006
https://arxiv.org/abs/1905.08261
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08261
https://doi.org/10.1007/JHEP07(2020)080
https://arxiv.org/abs/2004.14401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.14401
https://arxiv.org/abs/2106.10839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.10839
https://doi.org/10.1007/JHEP10(2012)053
https://doi.org/10.1007/JHEP10(2012)053
https://arxiv.org/abs/1205.4142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.4142
https://doi.org/10.1007/JHEP09(2012)091
https://arxiv.org/abs/1206.5218
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.5218

[23] D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159
[arXiv:1012.3210] [INSPIRE].

[24] S.S. Pufu, The F-Theorem and F-Mazimization, J. Phys. A 50 (2017) 443008
[arXiv:1608.02960] [INSPIRE].

[25] D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for
M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

[26] J.A. Harvey, R. Minasian and G.W. Moore, Non-Abelian tensor multiplet anomalies, JHEP
09 (1998) 004 [hep-th/9808060] [INSPIRE].

[27] M.R. Gaberdiel and R. Gopakumar, Large N = 4 holography, JHEP 09 (2013) 036
[arXiv:1305.4181] [INSPIRE].

[28] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12
(1997) 002 [hep-th/9711053] [INSPIRE].

[29] A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165
[arXiv:1208.4814] [INSPIRE].

[30] M. Dunajski and S.A. Hartnoll, Einstein-Mazwell gravitational instantons and five
dimensional solitonic strings, Class. Quant. Grav. 24 (2007) 1841 [hep-th/0610261]
[INSPIRE].

[31] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195
[hep-th/9603150] [iNSPIRE].

[32] A.-K. Kashani-Poor, R. Minasian and H. Triendl, Enhanced supersymmetry from vanishing
Euler number, JHEP 04 (2013) 058 [arXiv:1301.5031] [INSPIRE].

[33] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge
theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56
[hep-th/9702198] [INSPIRE].

[34] S.-J. Lee and T. Weigand, Swampland bounds on the Abelian gauge sector, Phys. Rev. D 100
(2019) 026015 [arXiv:1905.13213] [INSPIRE].

[35] A. Grassi and T. Weigand, Elliptic threefolds with high Mordell-Weil rank,
arXiv:2105.02863 [INSPIRE].

[36] D.R. Morrison and W. Taylor, Sections, multisections, and U(1) fields in F-theory,
arXiv:1404.1527 [INSPIRE].

. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa,

37] M. Bershadsky, K.A. Intrili S. Kachru, D.R. Morri V. Sad d C. Vaf
Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215
[hep-th/9605200] [INSPIRE].

[38] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kdhler manifolds and algebraic
geometry, I, Acta Math. 213 (2014) 63 [arXiv:1206.2609].

[39] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kihler manifolds and algebraic
geometry, I, J. Diff. Geom. 107 (2017) 327 [arXiv:1507.05082] [INSPIRE].

[40] L. Bhardwaj, M. Del Zotto, J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, F-theory
and the Classification of Little Strings, Phys. Rev. D 93 (2016) 086002 [Erratum ibid. 100
(2019) 029901] [arXiv:1511.05565] [INSPIRE].

[41] R.A. Bertlmann, Anomalies in quantum field theory, Oxford University Press, Oxford U.K.
(1996).

— 46 —


https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3210
https://doi.org/10.1088/1751-8121/aa6765
https://arxiv.org/abs/1608.02960
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02960
https://doi.org/10.4310/ATMP.1998.v2.n3.a8
https://arxiv.org/abs/hep-th/9803205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803205
https://doi.org/10.1088/1126-6708/1998/09/004
https://doi.org/10.1088/1126-6708/1998/09/004
https://arxiv.org/abs/hep-th/9808060
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808060
https://doi.org/10.1007/JHEP09(2013)036
https://arxiv.org/abs/1305.4181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.4181
https://doi.org/10.1088/1126-6708/1997/12/002
https://doi.org/10.1088/1126-6708/1997/12/002
https://arxiv.org/abs/hep-th/9711053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711053
https://doi.org/10.1007/978-3-642-25947-0_5
https://arxiv.org/abs/1208.4814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.4814
https://doi.org/10.1088/0264-9381/24/7/010
https://arxiv.org/abs/hep-th/0610261
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610261
https://doi.org/10.1016/0550-3213(96)00212-X
https://arxiv.org/abs/hep-th/9603150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603150
https://doi.org/10.1007/JHEP04(2013)058
https://arxiv.org/abs/1301.5031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.5031
https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702198
https://doi.org/10.1103/PhysRevD.100.026015
https://doi.org/10.1103/PhysRevD.100.026015
https://arxiv.org/abs/1905.13213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.13213
https://arxiv.org/abs/2105.02863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.02863
https://arxiv.org/abs/1404.1527
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.1527
https://doi.org/10.1016/S0550-3213(96)90131-5
https://arxiv.org/abs/hep-th/9605200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605200
https://arxiv.org/abs/1206.2609
https://doi.org/10.4310/jdg/1506650422
https://arxiv.org/abs/1507.05082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.05082
https://doi.org/10.1103/PhysRevD.93.086002
https://arxiv.org/abs/1511.05565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05565

	Introduction and discussion
	Anomalies in compactification and local counterterms
	Compactification of 4d anomalous QFT on R**3 x S**1: general considerations
	Anomalous Chern-Simons terms
	GS mechanism and local counterterms
	Liftable theories

	BPS strings in six and five dimensions
	BPS stings in six and five-dimensional theories with 8 supercharges
	5d strings from 6d geometry
	On graviphoton couplings in five dimensions

	Five-dimensional view on the unitarity condition 
	One loop Chern-Simons couplings
	Unitarity condition for linear BPS strings
	Charges of supergravity strings

	Unitarity condition as a weak Kodaira positivity condition
	Rewriting the unitarity condition
	Comparing KPC and UC
	Ample divisor D
	General nef divisor D
	Special cases where UC is stronger than KPC 
	Examples


	Reduced anomalies and Bardeen-Zumino counterterms
	Alternative proof that strings with Q.Q > 0 and Q.b(i) >0 are supergravity strings

