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Abstract

In this paper, we adopt the so-called Buonanno-Kidder-Lehner (BKL) recipe to estimate the final spin 
of a rotating binary black hole merger in STU supergravity. According to the BKL recipe, the final spin 
can be viewed as the sum of the individual spins plus the orbital angular momentum of the binary system 
which could be approximated as the angular momentum of a test particle orbiting at the innermost stable 
circular orbit around the final black hole. Unlike previous works, we consider the contribution of the orbital 
angular momentum of the binary system to the final spin by requiring the test particle to preserve the 
scaling symmetry in the Lagrangian of supergravity. We find some subtle differences between two cases 
corresponding to whether the symmetry is taken into account or not. In the equal initial spin configuration, 
when the initial black holes are non-spinning, the final spin of the merger is always larger than that in 
the case in which the symmetry is not imposed although the general behaviors are similar. The difference 
increases firstly and then decreases as the initial mass ratio approaches unity. Besides, as the initial spins 
exceed a threshold, the final spin is always smaller than that in the case where the scaling symmetry is 
not considered. The difference decreases constantly as the equal initial mass limit is approached. All these 
features exist in the merger of a binary STU black hole with different charge configurations. We also study 
the final spin’s difference between different charge configurations and different initial spin configurations.
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1. Introduction

The evolution of the coalescence of a binary black hole (BBH) system is widely accepted 
to include three stages: inspiral, merger and ringdown. The early inspiral and ringdown stages 
can be well explained by the post-Newtonian approximation [1] and the black hole perturbation 
theory [2–5], respectively. Since the late inspiral and merger stages are highly nonlinear, only 
numerical relativity simulations could provide an accurate description of the dynamical prop-
erties of the whole process [6]. The numerical simulations have been widely used in the study 
of the discovered gravitational-wave (GW) events, such as those in Refs. [7–11]. However, full 
simulations have been known to be highly-costly, and take a lot of time. This inspires one to look 
for some reliable though may-not-so-rigorous methods to reproduce reasonably accurate results 
compared with those from available numerical simulations. One expects that such a method not 
only can give some useful predictions for the final state, but also is helpful to providing an accu-
rate analytic template. In this regard, the Buonanno-Kidder-Lehner (BKL) recipe [12] provides 
a simple first-principles-derived method to estimate the final spin of the merger which is one of 
the most important properties of the remnant black hole that could help detection [13,14] and 
distinguish the BBH from other exotic objects [15]. The advantage of the recipe is that it can be 
applied to the merger of a BBH with arbitrary initial masses and spins. Based on the approximate 
conservation of mass and angular momentum of a BBH system during the merger and ringdown 
phases, and some other simple assumptions, the BKL recipe can be used to straightforwardly and 
accurately estimate the final angular momentum as a sum of the individual spins plus the orbital 
angular momentum of the binary system which could be approximated as the angular momentum 
of a test particle orbiting at the innermost stable circular orbit (ISCO) around the final rotating 
black hole. This point-particle approximation captures the key aspects of two-body dynamics, 
and the method is also supported by the numerical simulations [16–24].

By considering that the test particle is charged, the BKL recipe has been generalized to es-
timate the final spin of the binary charged black hole merger in the Einstein-Maxwell (EM) 
theory [25], as well as in the Kaluza-Klein (KK) theory [25] and the low energy limit of the 
heterotic string theory [26]. With the BKL recipe, the estimates for the final spin of a binary 
black hole merger in different modified gravities are expected to be different, and thus could be 
constrained by the observations. Although recent observations have been found to support gen-
eral relativity, some subtle deviations may be probed as the higher signal-to-noise ratio will be 
achieved in the near future. So, the final spin of a BBH merger may provide a possible way to 
test the string theory and other modified gravities near strong gravitational regimes.

In this work, we would like to revisit the details of the generalized BKL recipe to estimate 
the final spins of a binary charged black hole merger. In the previous work [25], the Lagrangian 
of the charged test particle in the KK theory is taken the same as that in EM theory. However, 
it is worth noting that symmetry plays a very important role when we study the black hole in 
the framework of string theory and supergravities [27–29]. For example, after performing a di-
mensional reduction [30,31] on S1 from five-dimensional pure Einstein gravity, the resulting 
four-dimensional Einstein-Maxwell-dilaton theory with a special coupling constant, i.e. the KK 
theory, has an extra scaling symmetry, namely a constant shift of the dilaton accompanied by an 
appropriate constant scaling of the Maxwell potential. This symmetry can be understood in terms 
of Rn(n = 1) [32]. If we further reduce the four-dimensional KK theory to the three-dimensional 
theory, the corresponding global symmetry SL(3, R) can help us to explore solutions of the KK 
theory. So, it is worth examining the outcome from the BKL recipe when the Lagrangian de-
scribing the motion of the test particle also preserves the same symmetry [33]. In this case, the 
2



S.-L. Li, W.-D. Tan, P. Wu et al. Nuclear Physics B 975 (2022) 115665
angular momentum of the test particle may be modified. It is natural to ask whether the revised 
method could improve the precision of the estimation by comparing with the numerical simula-
tions [34,35]. As a first step, we will study the difference of the final spin estimations between 
the two cases, i.e., the case where the scaling symmetry is taken into account and the one which 
is not.

On the other hand, it is worth noting that compared with Kerr-Newman (KN) black hole in EM 
theory, black holes in supergravities and string theory have extra scalar charges. When we study 
the binary dynamics in supergravities and string theory, it is necessary to consider the effects of 
scalar fields [33] apart from those of electromagnetic fields and gravitational fields. This could 
be achieved by writing the Lagrangian of test particle in an appropriate metric frame.

The four-dimensional EM theory, the KK theory and the low energy limit of the heterotic 
string theory can be viewed as the special cases of a more general supergravity, i.e. STU super-
gravity [32,36–38], which has an SL(2, R)3 symmetry and also the so-called “S-T-U” triality 
symmetry under permutations of the three SL(2, R) factors, and can be obtained from higher 
dimensional string theory and carries four independent electromagnetic fields. To be specific, 
STU rotating black holes carrying four equal charges, two equal charges and a single charge are 
equivalent to the KN black hole, the Einstein-Maxwell-dilaton-axion (EMDA) black hole (which 
is equivalent to Kerr-Sen black hole in the low energy limit of the heterotic string theory) [39]
and the KK black hole [40] respectively. Here we will estimate the final spin of the binary STU 
black hole merger by using the BKL recipe and requiring the Lagrangian of the test particle to 
preserve the scaling symmetry in STU supergravity. Let us note here that a binary charged black 
hole could possibly be the source to produce the counterpart electromagnetic signal to the merger 
of BBH, which could be used to explain the signal recently observed by the Fermi Gamma-ray 
Burst Monitor (GBM) group [41–46]. So it is meaningful to explore the final spin of the merger 
of a binary charged black hole, at least BBH with weak charges (Q � M).

The organization of the paper is as follows. In section 2, we review the rotating black hole in 
the four-dimensional STU supergravity. In section 3, we review the BKL recipe and reconsider 
the contribution of the orbital angular momentum of the binary system to the final spin by re-
quiring the test particle to preserve the scaling symmetry in STU supergravities. In section 4, we 
first study the ISCO of the test particle, and then estimate the final spin of binary STU rotating 
black holes with different charge configurations in different initial spin cases such as equal initial 
spins, unequal initial spins and generic initial spins. We conclude in section 5.

2. STU supergravity

The four-dimensional Lagrangian for the bosonic sector of the N = 2 supergravity coupled 
to three vector multiplets, also called the STU model, is given by [32,37,38]

LSTU = R � 1 − 1

2

3∑
i=1

(�dϕi ∧ dϕi + e2ϕi � dψi ∧ dψi) − 1

2
e−ϕ1

(
eϕ2−ϕ3 � F̂1 ∧ F̂1

+eϕ2+ϕ3 � F̂2 ∧ F̂2 + e−ϕ2+ϕ3 � F̂1 ∧ F̂1 + e−ϕ2−ϕ3 � F̂2 ∧ F̂2)
−ψ1

(
F̂1 ∧ F̂1 + F̂2 ∧ F̂2) , (2.1)

where ϕi and ψi are dilatons and axions respectively. The four field strengths can be written in 
terms of potentials as

F̂1 = dÂ1 − ψ2dÂ2 , F̂2 = dÂ2 + ψ2dÂ1 − ψ3dÂ1 + ψ2ψ3dÂ2 ,
3
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F̂1 = dÂ1 + ψ3dÂ2 , F̂2 = dÂ2 . (2.2)

The rotating STU black hole solution is given by [37]

ds2 = −ρ2 − 2mr

W
(dt +B)2 + W

(
dr2

�
+ dθ2 + � sin2 θdφ2

ρ2 − 2mr

)
,

Â1 = A1 + σ1B + σ1dt , Â2 = A2 + σ2B + σ2dt ,

Â1 = A1 + σ3B + σ3dt , Â2 = A2 + σ4B + σ4dt ,

ψ1 = 2mu(c13s24 − c24s13)

r1r3 + u2 , ψ2 = 2mu(c14s23 − c23s14)

r2r3 + u2 ,

ψ3 = 2mu(c12s34 − c34s12)

r1r2 + u2 ,

ϕ1 = ln
r1r3 + u2

W
, ϕ2 = ln

r2r3 + u2

W
, ϕ3 = ln

r1r2 + u2

W
, (2.3)

where

B = 2m(a2 − u2)(rc1234 − (r − 2m)s1234)

a(ρ2 − 2mr)
dφ ,

A1 = −2muc1s1�dφ

a(ρ2 − 2mr)
, A2 = −2mu(a2 − u2)((r − 2m)c2s134 − rc134s2)dφ

a(ρ2 − 2mr)
,

A1 = −2muc3s3�dφ

a(ρ2 − 2mr)
, A2 = −2mu(a2 − u2)((r − 2m)c4s123 − rc123s4)dφ

a(ρ2 − 2mr)
,

σ1 = 2mu

W 2

(
(rr1 + u2)(c234s1 − s234c1) + 2mr1s234c1

)
,

σ2 = 1

W 2

(
2mc2s2(r1r3r4 + ru2) + 4m2u2e2

)
,

σ3 = 2mu

W 2

(
(rr3 + u2)(c124s3 − s124c3) + 2mr3s124c3

)
,

σ4 = 1

W 2

(
2mc4s4(r1r2r3 + ru2) + 4m2u2e4

)
,

e2 = c134s134(c
2
2 + s2

2) − c2s2(s
2
13 + s2

14 + s2
34 + s2

134) ,

e4 = c123s123(c
2
4 + s2

4) − c4s4(s
2
12 + s2

13 + s2
23 + s2

123) ,

W 2 =
4∏

i=1

ri + u4 + 2u2

⎛
⎝r2 + mr

4∑
i=1

s2
i + 4m2(

4∏
i=1

cisi −
4∏

i=1

s2
i ) − 2m2

4∑
i<j<k

s2
i s2

j s2
k

⎞
⎠ ,

� = r2 − 2mr + a2 , ρ2 = r2 + a2 cos2 θ , ri = r + 2ms2
i , u = a cos θ ,

c1...n = cosh δ1 . . . cosh δn , s1...n = sinh δ1 . . . sinh δn , (2.4)

where parameters (m, a, δ1, δ2, δ3, δ4) characterize mass, angular momentum, and four electric 
charges respectively.

The four-dimensional theory (2.1), which can be obtained from the one in six-dimensions by 
reducing the bosonic string on T 2, has a global symmetry SL(2, R)3, realized nonlinearly on the 
scalar coset (SL(2, R)/U(1))3 [37]. It is worth noticing that the local general coordinate sym-
metry in the six-dimensional bosonic string involves coordinate reparameterizations by arbitrary 
4
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functions of six coordinates, while the local general coordinate symmetry and U(1) gauge trans-
formations in four dimensions involve arbitrary functions of only four coordinates. Actually the 
theory has another symmetry, namely a constant shift of the dilaton fields ϕi , accompanied by an 
appropriate constant scaling of the axion fields ψi and the Maxwell potentials:

ϕ1 → ϕ1 + α1 , ϕ2 → ϕ2 + α2 , ϕ3 → ϕ3 + α3 ,

ψ1 → ψ1e
−α1 , ψ2 → ψ2e

−α2 , ψ1 → ψ3e
−α3 ,

Â1 → Â1e
α1−α2+α3

2 , Â2 → Â2e
α1−α2−α3

2 ,

Â1 → Â1e
α1+α2−α3

2 , Â2 → Â2e
α1+α2+α3

2 , (2.5)

which is important to studying the supergravity and the solutions of the theory. For our purpose 
to study the binary STU black hole merger, we would also like to consider the effect of the 
symmetry on the final spin estimation of the remnant black hole. For simplicity, we focus on some 
special cases of the binary STU rotating black holes with different charge configurations. First, 
we consider the STU rotating black hole with a single non-zero charge, i.e. δ4 = δ �= 0 (sinh δ =
s, cosh δ = c), δ1 = δ2 = δ3 = 0. The solution reduces to the KK rotating black hole (the full 
solution is given in the Appendix A), and the corresponding theory is described by

LKK = R − 1

2
(∇ϕ)2 − 1

4
e−√

3ϕF 2 , (2.6)

where the canonically-normalized electromagnetic field F = F2, ϕ = √
3ϕ1 = √

3ϕ2 = √
3ϕ3, 

ψ1 = ψ2 = ψ3 = 0, F1 = F1 = F2 = 0, and we have for the physical mass M , charge Q, and 
angular momentum J ,

M = m

2
(2 + s2) , Q = msc

2
, J = mac . (2.7)

The corresponding scaling symmetry is given by

ϕ → ϕ + α , A → Ae

√
3

2 α . (2.8)

Second, we consider the STU rotating black hole with two non-zero equal charges, i.e. δ2 = δ4 =
δ �= 0, δ1 = δ3 = 0. The solution reduces to the EMDA rotating black hole (the full solution is 
given in the Appendix A), and the corresponding theory is governed by

LEMDA = R − 1

2
(∇ϕ)2 − 1

2
e2ϕ(∇ψ)2 − 1

4
e−ϕF 2 − 1

8
ψεμνρσ FμνFρσ , (2.9)

where εμνρσ is the Levi-Civita tensor, the canonically-normalized electromagnetic field F =
F2/

√
2 = F2/

√
2, ϕ = ϕ1, ψ = ψ1, F1 = F1 = 0, ϕ2 = ϕ3 = 0, ψ2 = ψ3 = 0, and we have

M = mc2 , Q =
√

2

2
msc , J = mc2a . (2.10)

The corresponding scaling symmetry reduces to

ϕ → ϕ + α , A → Ae
1
2 α , ψ → ψe−α . (2.11)

Third, we consider the STU rotating black hole with four non-zero equal charges, i.e. δ1 = δ2 =
δ3 = δ4 = δ �= 0, the solution reduces to the KN black hole (the full solution is given in the 
Appendix A) after making a coordinate transformation r → r + 2ms2 and applying the electro-
magnetic duality, and the corresponding theory is described by
5
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LEM = R − 1

4
F 2 , (2.12)

where the canonically-normalized electromagnetic field F = F1 = F1 = F2 = F2, ϕ1 = ϕ2 =
ϕ3 = 0, ψ1 = ψ2 = ψ3 = 0, and we have

M = m(s2 + c2) , Q = msc , J = m(s2 + c2)a . (2.13)

There is no similar scaling symmetry in the EM theory because all of the dilatons and axions 
vanish.

3. BKL recipe in STU supergravity

In this section we will first review the BKL recipe and consider the contribution of the or-
bital angular momentum of the binary system to the final spin by requiring the Lagrangian of 
the test particle to preserve the scaling symmetry mentioned before. Then we will examine the 
Newtonian limit of the motion of the test particle orbiting the final black hole.

The BKL recipe [12] was proposed to estimate the final spin of a BBH merger with arbitrary 
initial masses and spins based on first principles and a few safe assumptions. One assumes that the 
BBH system evolves quasi-adiabatically, and radiates much angular momentum, which causes 
the binary orbit to become smaller gradually during the inspiral stage until it reaches the ISCO. 
Once the ISCO radius is reached, the binary orbit becomes unstable and a “plunge” occurs, 
resulting in the BBH merger, and then the final black hole forms quickly. The loss of mass and 
angular momentum with respect to the total mass and angular momentum of the binary system is 
small during the merger stage, and so it is reasonable to argue that mass and angular momentum 
are conserved approximately. One can also assume that the magnitude of the individual spins of 
the black holes remains constant because both spin-spin and spin-orbit couplings are small, and 
the radiation falling into the black holes affects the spins by a small amount. Therefore, the mass 
M of the final black hole can be given by

M = M1 + M2 , (3.1)

where M1 and M2 are the masses of initial black holes. The final mass M can also be described 
by a more accurate expression [47]. As mentioned before, the loss of the mass is small during 
the whole stages and this is a good approximation to the first order in the gravitational wave 
observations [7–11]. Moreover, the contribution of the orbital angular momentum to the final 
angular momentum of the black hole remnant can be described by the angular momentum of a 
test particle orbiting around the final rotating black hole at ISCO. The conservation of angular 
momentum at the moment of plunge implies that

MAf = Lorb + M1A1 + M2A2 , (3.2)

where Af is the spin of the final black hole, A1 and A2 are spins of initial black holes, and 
Lorb is the orbital angular momentum of the binary system which is represented by the angular 
momentum of a test particle with reduced mass μ = M1M2/M orbiting around the final black 
hole at ISCO. The final spin can be written as

Af = Lν + Mχ1

4
(1 + √

1 − 4ν)2 + Mχ2

4
(1 − √

1 − 4ν)2 , (3.3)

where L = Lorb/μ is the angular momentum of the test particle with unit mass, χi = Ai/Mi(i =
1, 2), and ν = μ/M .
6
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The contribution of the orbital angular momentum of the binary charged black hole to the final 
spin can be effectively described by the angular momentum of a charged test particle orbiting 
around the final black hole [25]. Furthermore, it is worth considering that the charged test particle 
preserves the symmetry in the Lagrangian of gravities when we discuss the particle motion in the 
framework of supergravity [33]. Once the symmetry is taken into account, the particle motion 
and the orbital angular momentum are expected to be modified. Now we examine the Newtonian 
limit and identify reasonable mass and charge assignments for our consideration.

Generically, the motion of a relativistic particle of mass μ coupled to the Maxwell field A
with charge q is governed by the action

S0 =
∫

dτ

(
−μ

√
−gλνẊλẊν − 1

4
qAνẊ

ν

)
, (3.4)

where τ and X represent the proper time and coordinate respectively, and the dot denotes the 
derivative with respect to τ . For our purpose to consider the test particle that preserves the sym-
metry, the action should be given by [33]

S1 =
∫

L1dτ =
∫

dτ

(
−μ

√
−eβϕgλνẊλẊν − 1

4
qAνẊ

ν

)
. (3.5)

Compared with S0, the action S1 has the symmetry

ϕ → ϕ + α , Aν → Aνe
1
2 αβ . (3.6)

It is worth noting that this type of symmetry is akin to a homothety. Under the homothetic trans-
formation (3.6), the action S1 will have an overall factor eαβ/2. In order to match the symmetry 
in previous cases, the values of β are

KK : β = √
3 , EMDA : β = 1 , EM : β = 0 . (3.7)

The related geodesic equation becomes

μ
(
Ẍμ + �μ

ρσ ẊρẊσ
) − μβ

2
(∂μϕ + ∂λϕẊλẊμ) = 1

4
qe− 1

2 αβẊνFν
μ (3.8)

which is invariant under the transformation (3.6). Note that the action S1 is difficult to quantize 
because it contains a square root, and cannot be used to describe a massless particle. Classically, 
this action S1 is equivalent to

S2 =
∫

L2dτ =
∫

dτ

(
1

2
ξ−1eβϕgλνẊ

λẊν − 1

2
μ2ξ − 1

4
qAνẊ

ν

)
. (3.9)

where ξ(τ ) is the auxiliary field. The homothetic symmetry for action S2 becomes

ϕ → ϕ + α , Aν → Aνe
1
2 αβ , ξ → ξe

1
2 αβ . (3.10)

We can introduce a new metric

g̃λν = eβϕgλν , (3.11)

where the conformal factor eβϕ takes into account precisely the effect of the dilaton. The weights 
of (g̃λν, g̃λν, Aν, Aν, ξ) are (1, −1, 1/2, −1/2, 1/2), respectively. Here g̃λν and g̃λν have oppo-
site weights, and we will let g̃λν and g̃λν raise and lower the indexes in the remaining discussions. 
By varying the action S2 with respect to the auxiliary field ξ , the corresponding equation of mo-
tion is found to be
7



S.-L. Li, W.-D. Tan, P. Wu et al. Nuclear Physics B 975 (2022) 115665
ξ2μ2 + g̃λνẊ
λẊν = 0 . (3.12)

Solving the above equation for ξ and substituting the solution back into S2 gives the original 
action S1. Varying both actions S1 and S2 with respect to Xμ yields the same equation of motion

μ
(
Ẍλ + �̃λ

ρσ ẊρẊσ
)

= 1

4
qẊνF̃ν

λ , (3.13)

where �̃λ
ρσ denotes the affine connection defined by the metric g̃μν . Here we have chosen a 

gauge for the shifting symmetry (3.6) such that g̃λνẊ
λẊν = −1. Notice that we consider the 

binary STU black holes carrying a small amount of charges (Q � M). To be specific, we con-
sider the STU black holes with a single charge (KK), two equal charges (EMDA), and four equal 
charges (KN). Substituting the solutions (A.1), (A.3) and (A.5) into above equation, and express-
ing the resulting equation in terms of the physical mass M and charge Q, one can obtain the same 
standard radial equation of motion

μ

(
d2r

dt2 + M

r2

)
= qQ

r2 , (3.14)

for different values of β by imposing the Newtonian limit conditions. This can be seen as the 
equation of motion of two interacting charged massive particles

M1M2

M1 + M2

d2r

dt2 + M1M2

r2 = Q1Q2

r2 , (3.15)

where μ = M1M2/M and q = Q1Q2/Q can be seen as the reduced mass and the charge of the 
test particle. We have now identified the mass and charge assignments for the BKL recipe by 
imposing the scaling symmetry in supergravities.

4. Final spin estimation

Now we apply the BKL recipe to estimate the final spin of merger of a binary rotating STU 
black hole with different charge configurations and different initial spin configurations, i.e., equal 
initial spins, unequal initial spins, and general initial spins. As the first step in exploring whether 
the revised method could improve the precision of estimation, we will study the final spin’s dif-
ference between two cases corresponding to whether the scaling symmetry is taken into account 
or not.

4.1. ISCO

As mentioned before, the particle motion will be modified if the scaling symmetry is taken 
into consideration. We will study the ISCO which is related to the test particle motion. The 
conjugate momentum with respect to Xλ is given by

Pλ = ∂L2

∂Ẋλ
= μg̃λνẊ

ν√
−g̃λνẊλẊν

− 1

4
qAλ = μg̃λνẊ

ν − 1

4
qAλ , (4.1)

where we have used the gauge

g̃μνẊ
μẊν = −1 = g̃t t ṫ

2 + g̃rr ṙ
2 + g̃θθ θ̇

2 + g̃φφφ̇2 + 2g̃tφ ṫ φ̇ , (4.2)
8
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Fig. 1. The radius rISCO/M against the charge to mass ratio e in different cases. We set Af = 0.5M for simplicity. 
The blue, orange and green lines represent the Q = 0, Q = 0.05M , and Q = 0.1M cases respectively. The solid lines 
represent the cases in which the Lagrangian of test particle preserves the scaling symmetry, and the dashed lines represent 
the cases in which the symmetry is not imposed. Left: EMDA; middle: KK; right: the lines in same color represent the 
KN, EMDA and KK cases respectively from top to bottom.

Now we consider the motion of a charged massive particle in the equatorial plane of the KK 
rotating black hole, determined by θ = π/2 and θ̇ = 0. The energy E and angular momentum L
of the test particle with unit mass are given by

E = −Pt

μ
= −g̃t t ṫ − g̃tφφ̇ + 1

4
eAt , (4.3)

L = Pφ

μ
= g̃φφφ̇ + g̃tφ ṫ − 1

4
eAφ , (4.4)

where e = q/μ represents the charge to mass ratio of the test particle. We can obtain

ṫ = (4L+ eAφ)g̃tφ + (4E − eAt )g̃φφ

4�̃r

, (4.5)

φ̇ = − (4L+ eAφ)g̃tt + (4E − eAt )g̃tφ

4�̃r

, (4.6)

where �̃r = g̃2
tφ − g̃t t g̃φφ . Substituting Eqs. (4.5) and (4.6) into (4.2), we can define the effective 

potential

Veff ≡ ṙ2 = (4L+ eAφ)2g̃t t + (4E − eAt )
2g̃φφ + 2(4L+ eAφ)(4E − eAt )g̃tφ − 16�̃r

16�̃r g̃rr

.

(4.7)

The ISCO can be found by imposing the following conditions

Veff = 0 , V ′
eff = 0 , V ′′

eff = 0 , (4.8)

where the prime denotes the derivative with respect to r . We plot the rISCO against e in the 
EMDA and KK cases in Fig. 1. First, as the charge to mass ratio e varies from negative to 
positive, the ISCO radius gradually reduces to a minimal value, and then begins to increase if the 
black hole carries nonzero charge. Second, we find that the ISCO radius will be smaller when 
we require the test particle to preserve the scaling symmetry in both KK and EMDA cases. As 
the black hole carries more charges, the difference becomes larger of the ISCO radius between 
two cases corresponding to whether the symmetry is taken into account or not. From the right 
9
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Fig. 2. The angular momentum of the test particle with unit mass LISCO/M against the charge to mass ratio e in different 
cases. We set Af = 0.5M . The blue, orange and green lines represent the Q = 0, Q = 0.05M , and Q = 0.1M cases 
respectively. The solid lines represent the case that the Lagrangian of test particle preserves the scaling symmetry, and 
the dashed lines represent the case that the symmetry is not imposed. Left: EMDA; middle: KK; right: the lines in same 
color represent the KN, EMDA and KK cases respectively from left to right.

plot of Fig. 1, we observe that for the final STU black hole carrying a certain number of charges, 
the ISCO radius of the orbiting test particle gets smaller in the order of an STU black hole with 
four equal charges (KN), two equal charges (EMDA) and a single nonzero charge (KK). One can 
also understand the variation of the ISCO radius as due to the variation of the coupling constant 
β from zero to 

√
3. We also plot the orbital angular momentum LISCO/M against e in EMDA 

and KK cases in Fig. 2. First, as the charge to mass ratio varies from negative to positive, the 
angular momentum gradually decreases if the black hole carries nonzero charge. This can be 
understood physically as a result of the fact that an attractive electric force helps to increase the 
angular momentum while a repulsive one does the opposite. Second, we find that the angular 
momentum will be larger if the test particle is required to preserve the scaling symmetry in both 
KK and EMDA cases. As the final black hole carries more charges, the difference of the angular 
momentum between two cases corresponding to whether the symmetry is taken into account or 
not becomes larger. From the right plot of Fig. 2, we can see that for the final black hole that 
carries a certain number of charges, the angular momentum of the orbiting test particle becomes 
smaller in the order of STU black hole with four equal charges, two equal charges and a single 
nonzero charge. One can also attribute this decrease of the orbital angular momentum to the 
increase of the coupling constant β from zero to 

√
3.

4.2. Equal initial spins

Now we apply the BKL recipe to estimate the final spin. In this subsection, we assume that 
the initial spins of the BBH are equal, i.e. χ1 = χ2 = χ . According to Eq. (3.3), the final spin can 
be rewritten as

Af = Lν + M(1 − 2ν)χ . (4.9)

Because we consider the merger of a BBH with weak charge, it is natural to consider the test par-
ticle carrying weak charge too. We set e = 0.1 for simplicity. (actually the test particle carrying 
different charges has similar behaviors, and so we do not consider the effect of the value of e on 
the final spin.) Given Q, χ and ν, we can solve the final spin. We plot Af against ν for different 
initial spins χ from zero to 0.98 (χ = 0 and χ = 0.98 represent a non-spinning black hole and 
a near extreme black hole, i.e. a rapidly-spinning black hole, respectively) and different charges 
10
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Fig. 3. The blue and orange lines represent Q = 0.05M and Q = 0.1M cases respectively. We set e = 0.1. Top: The final 
spin of the remnant black hole with unit mass against ν in the EMDA (left) and KK (right) cases. The initial spin χ of 
the lines in same color is 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98 respectively from bottom to top. Bottom: the 
final spin’s differences δAf of remnant black holes between the two cases corresponding to the symmetry is taken into 
account or not in EMDA (left) and KK (right) cases. The initial spin χ of the lines in same color is 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 0.98 respectively from top to bottom.

Q = 0.05M and 0.1M in Fig. 3 respectively. Notice that ν ∼ 0 and 0.25 represent the extreme 
initial mass ratio and equal initial masses respectively.

From the top plots in Fig. 3, we find that some features of the final spin estimated by the 
BKL recipe while the symmetry is imposed in the binary charged black hole merger case are 
similar to that in the neutral case [12] and charged case in which the symmetry is not taken 
into account [25]. First, the largest final spin for the remnant black hole is achieved for a binary 
extreme black hole merger with extreme initial mass ratio, which can be viewed as a charged 
particle falling into a charged rapidly-spinning black hole, regardless of the amount of charge 
carried by black hole. Besides, regardless of the amount of charges carried by the binary system, 
the final spin for the merger of binary non-spinning charged black holes with extremely high 
mass ratios is zero. Third, there is a critical value for the initial spins, below which, as the mass 
ratio approaches that of the equal-mass case (ν = 0.25), the final spin increases. And above the 
11
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Fig. 4. Left: Q = 0.05M ; right: Q = 0.1M . The blue line represents the final spin’s difference δAf of the remnant KK 
black hole (STU black hole with single charge) and KN black hole (STU black hole with four equal charges). The orange 
line represents the final spin’s difference δAf of the remnant EMDA black hole (STU black hole with two equal charges) 
and KN black hole (STU black hole with four equal charges). We set e = 0.1. The initial spins χ of the lines in same 
color are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 respectively from top to down.

critical value, the final spin decreases as ν increases. Fourth, the final spin will be smaller as the 
BBH system carries more charges.

From the bottom plots in Fig. 3, we find some subtle differences between two cases cor-
responding to whether the symmetry is taken into account or not. First, there is no difference 
between the two cases if the initial mass ratio is extreme. Second, while the initial black holes 
are non-spinning, the final spin estimated by the BKL recipe in which the symmetry is imposed is 
always larger than that in which the symmetry is not taken into account. The difference increases 
firstly and then decreases as the initial mass ratio approaches unity. Third, there is a threshold 
for the initial spins, above which, the final spin estimated by the BKL recipe in which the sym-
metry is imposed is always smaller than that in which the symmetry is not taken into account. 
All these features exist in different charge configurations of STU supergravity (both the KK and 
EMDA cases). It is worth comparing the final spin given by the BKL recipe with numeric sim-
ulations [34], and exploring if the BKL recipe could provide more accurate prediction of the 
final spin by requiring that the Lagrangian of the test particle preserves the scaling symmetry in 
supergravity.

We also study the final spin’s difference δAf between different charge configurations of STU 
supergravity with a certain small number of charges. To be specific, we plot the final spin’s differ-
ence between the KK and KN black holes, and between the EMDA and KN black holes in Fig. 4. 
We find that the final spin’s differences between the cases of different charge configurations have 
similar features as that between two cases corresponding to whether the scaling symmetry is 
taken into account or not. As mentioned in previous subsection, the difference can be also ex-
plained by the coupling constant in STU supergravity. First, there is no difference between the 
cases of different charge configurations (different coupling constant) if the initial mass ratio is 
extreme. Second, while the initial spins are zero, the final spin in the case of the single charge 
configuration (the coupling constant is 

√
3) is always larger than that in the cases of other charge 

configurations (the coupling constant is smaller than 
√

3). The difference increases firstly and 
then decreases as the equal mass limit is approached. Third, there is also a critical value for the 
initial spins, above which, the final spin in the case of the single charge configuration (the cou-
12
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Fig. 5. Left: KN; middle: EMDA; right: KK. We set e = 0.1 for simplicity. The blue lines and orange lines represent 
Q = 0.05M and Q = 0.1M cases respectively. The solid lines and dashed lines represent positive and negative initial 
spin χ respectively. The value of χ of the lines in same color is 0.5, 0.4, 0.3, 0.2, 0.1, -0.1, -0.2, -0.3, -0.4, -0.5 respectively 
from top to bottom.

pling constant is 
√

3) is always smaller than that in the cases of other charge configurations (the 
coupling constant is smaller than 

√
3). The difference decreases gradually as the initial mass ra-

tio approaches unity. All these results may provide a potential way to test different supergravites 
near strong gravitational regimes. Let us note that the final spin’s difference between the two 
cases corresponding to whether the symmetry is taken into account or not is small because we 
only study the merger of a BBH with weak charges according to previous astronomical observa-
tions. If we consider the merger of a BBH with a greater amount of charges (we plot this case 
in the appendix B), the difference would become large similar to the result in [25]. We hope that 
the final spin’s difference could be detected by future precise detectors, and could be used to test 
supergravities.

4.3. Unequal initial spins

In the previous works [25,26], the final spin estimation of the charged BBH merger was only 
considered in the equal initial spins case. Here, we will estimate the final spin of the BBH merger 
with unequal initial spins, i.e. χ1 = χ, χ2 = γχ , in this subsection, and study the generic case in 
next subsection. Now, the final spin estimation formula can be rewritten as:

Af = 1

4
(L+ Mχ + γMχ) . (4.10)

For simplicity, we assume that the initial black holes have equal masses (ν = 1/4), weak charges 
(Q = 0.05M and 0.1M) and small spins |χi | ≤ 0.5. From the above equation, it follows that if 
the initial spins of two black holes are equal and opposite, the final spin is determined totally 
by the angular momentum L of the test particle regardless of the initial spins. The final spin 
increases when χ is positive and decreases when χ is negative. We plot the final spin Af against 
initial spin ratio γ for different initial spins in the EM, EMDA and KK cases in Fig. 5. We impose 
that the test particle preserves the symmetry in all cases. Note that similar behaviors occur in the 
cases where the symmetry is not taken into consideration, So, we do not plot them here. From 
Fig. 5, we find that the final spin will be smaller as the BBH system carries more charges, which 
is same as that in the equal spin configuration. These properties exist in all cases irrespective of 
whether the test particle preserves the symmetry or not. We also study the difference of the final 
spin between two cases corresponding to whether the test particle preserves symmetry or not, and 
13
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Fig. 6. In left and middle plots, the final spin’s difference between two cases corresponding to whether the symmetry 
is taken into account or not in the EMDA (left) and KK (middle) theories. The blue lines and orange lines represent 
Q = 0.05M and Q = 0.1M respectively. In right plot the green lines and red lines represent the final spin’s difference 
between the KK and KN cases and between the EMDA and KN cases. In right plot, the symmetry is taken into account 
and the charge Q = 0.05M . We set e = 0.1. The initial spin χ of the lines in same color is 0.5, 0.4, 0.3, 0.2, 0.1, -0.1, 
-0.2, -0.3, -0.4, -0.5 respectively from bottom to top.

plot the final spin’s difference against γ in the EMDA and KK cases in Fig. 6. The difference is 
subtle. While the initial spins are opposite, the final spin estimated by the BKL recipe in which 
the symmetry is imposed is larger than that in which the symmetry is not imposed. For positive 
initial spins, the final spin estimated by BKL recipe in which the symmetry is imposed can be 
smaller than that in which the symmetry is not imposed.

4.4. Generic initial spins

In this subsection, we consider a more generic initial spin configuration, i.e. the orbit at the 
ISCO can be inclined with respect to the final total angular momentum. Following Ref. [12], we 
assume the initial masses, spins and unit orbital angular momentum (M1, M2, 
S1, 
S2, L̂orb) at 
some point of the inspiral are known. On the other hand, we assume that the magnitude of the 
total spin 
Stot = 
S1 + 
S2 and angle ϑLS between total spin and unit orbital angular momentum 
L̂orb remain constant. The total angular momentum 
Jf = MAf = 
Lorb + 
Stot, which could be 
written explicitly as [12]

Lorb cosϑ + Stot cos(ϑLS − ϑ) = MAf , (4.11)

Lorb sinϑ − Stot sin(ϑLS − ϑ) = 0 , (4.12)

where Lorb = | 
Lorb| and Stot = |
Stot|. For simplicity, we adopt the simple fit formula given in 
Refs. [12,48,49]. The orbital angular momentum of the inclined orbit is given by

L = 1

2
(1 + cosϑ)Lpro + 1

2
(1 − cosϑ)|Lret| , (4.13)

where ϑ is the inclination angle, representing the angle between final spin and the orbital angular 
momentum, and Lpro and Lret represent the angular momentum of the prograde orbit and retro-
grade orbit respectively. Here we only consider the merger of a BBH with equal masses, spins 
and charges. The final spin can be rewritten as

Af = 1

8

(
Lpro + |Lret| + (Lpro − |Lret|) cosϑ

)(
cosϑ + cos(ϑLS − ϑ)

sin(ϑLS − ϑ)
sinϑ

)
. (4.14)

We plot the final spin Af against the total spin Stot for different inclined angles ϑLS in the EM, 
EMDA and KK theories in Fig. 7 by requiring the particle to preserve the symmetry. Behaviors 
14
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Fig. 7. The solid lines and dashed lines represent Q = 0.05M and Q = 0.1M respectively. Left: KN; middle: EMDA; 
right: KK. We set e = 0.1. The inclined angle in solid lines or dashed lines are 0, 30◦, 45◦, 60◦, 90◦ respectively from 
left to right.

are similar to those in the case when the particle is not required to preserve the symmetry. We 
do not plot them here. From Fig. 7, we find that the final spin will be smaller as the BBH system 
carries more charges which is again the same as the feature in equal spin configuration. Besides, 
we find that final spin increases as the inclined angle increases in all charge configurations.

5. Conclusion

In this work, we study the final spin of a BBH merger in the framework of STU supergravity 
by using the BKL recipe. Comparing with the previous work [25], we reconsider the contribution 
of the orbital angular momentum of the binary system to the final spin by requiring that the test 
particle preserves the scaling symmetry in Lagrangian of supergravity. As a first step to explore 
whether the revised method could improve the precision of the final spin estimation, we study 
the final spin’s difference in different initial spin configurations. In the equal initial spin config-
uration, we find that the difference is subtle. First, there is no difference between the two cases 
corresponding to whether the symmetry is taken into account or not if the initial mass ratio is 
extreme. Second, for the static BBH merger, the final spin estimated by the BKL recipe in which 
the symmetry is imposed is always larger than that in which the symmetry is not imposed. The 
difference increases firstly and then decreases as the equal mass limit is approached. Third, there 
is also a critical value for the initial spins, above which, the final spin is always smaller. The 
difference decreases constantly as the equal mass limit is approached. All these features exist in 
the merger of a binary STU black hole with different charge configurations (both the KK and 
EMDA cases). We also study the final spin difference between different charge configurations of 
STU supergravity with a certain number of charges. We find that the final spin differences be-
tween the cases of different charge configurations have similar features as that between two cases 
corresponding to whether the symmetry is imposed or not. It is worth comparing, in the future, 
the final spin given by the BKL recipe with numeric simulations [34], and exploring if the BKL 
recipe could provide more accurate prediction of the final spin by requiring the Lagrangian of 
the test particle preserves the scaling symmetry in supergravity. Besides, our result may provide 
a potential way to test string theory and supergravities near strong gravitational field regimes. We 
also study the final spin of a charged BBH merger in a case with unequal initial spin configura-
tion and an even more generic spin configuration which was not studied in previous works. We 
obtain results similar to the equal initial spin case.
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Finally, it is worth noting that we can also extract extra information in the merger stage by 
studying the null geodesic orbits for massless particle, known as light ring, in the final black 
hole. For a massless particle, the geodesics is eβφgμνẋ

μẋν = 0 which could be obtained from 
Eq. (3.12). It is easy to see that the conformal factor eβφ plays no role in the corresponding 
calculation. So the scaling symmetry has no effect at the ringdown stage, and we do not study 
the light ring in this work.
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Appendix A. Black hole solutions

The KK rotating black hole solution is given by

ds2
KK = − �(cdt − a sin2 θdφ)2

√
H(s2(r2 + a2) + ρ2)

+ √
H

[ρ2

�
dr2 + ρ2dθ2

+ sin2 θ(adt − c(r2 + a2)dφ)2

s2(r2 + a2) + ρ2

]
,

A = 2mrs

ρ2 + 2mrs2 (cdt − a sin2 θdφ) , ϕ = −
√

3

2
lnH , H = 1 + 2rms2

ρ2 , (A.1)

where Â2 = A, Â1 = Â2 = Â1 = 0, ϕ1 = ϕ2 = ϕ3 = ϕ/
√

3, ψ1 = ψ2 = ψ3 = 0. The parameters 
(m, δ, a) can be written in terms of the physical quantities M , Q, and A = J/M as

m = 3M

2
− 1

2

√
M2 + 8Q2 ,

c2 = M2 + 2Q2 + M
√

M2 + 8Q2

2(M2 − Q2)
,

a =
√

2MA
2 2

√
2 2 1/2

, (A.2)

(M − 4Q + M M + 8Q )
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Fig. 8. Left: KK; right: EMDA. We set e = 0.1, initial spins χ = 0.1, and consider the initial black holes have equal 
masses (ν = 1/4).

where Q ≤ M .
The EMDA rotating black hole solution is given by

ds2 = −ρ2 − 2mr

ρ2H

(
dt + 2mrac2 sin2 θdφ

ρ2 − 2mr

)2

+ ρ2H

(
dr2

�
+ dθ2 + � sin2 θ

ρ2 − 2mr
dφ2

)
,

A = 2
√

2mrsc

ρ2 + 2mrs2 (dt − a sin2 θ dφ) , ϕ = − lnH , ψ = 2ma cos θs2

ρ2 ,

Â1 = Â1 = 0 , ϕ2 = ϕ3 = 0 , ψ2 = ψ3 = 0 , (A.3)

where the parameters (m, δ, a) can be written as

m = M − 2Q2

M
, a = A , c2 = M2

M2 − 2Q2 , (A.4)

where Q ≤
√

2
2 M .

The KN black hole solution is given by

ds2 = −�r

ρ2 (dt − a sin2 θdφ)2 + ρ2

�r

dr2 + ρ2dθ2 + sin2 θ

ρ2 (adt − (r2 + a2)dφ)2 ,

A = 4Qr

ρ2 (dt − a sin2 θdφ) , �r = r2 − 2Mr + a2 + 4Q2 . (A.5)

Appendix B. Final spin of BBH with large charges

In this appendix, we would like to show that our approach will provide some manifestly 
different results if we consider the merger of binary charged black hole with large charges. In 
Figs. 8, we plot the final spin’s difference δAf /(Af 1 +Af 2) between the two cases that the 
scaling symmetry is taken into account or not verse the electric charge Q in both KK and EMDA 
black holes where Af 1 represents the symmetry is taken into account and Af 2 represents the 
symmetry is not taken into account. We find the difference is about 6% and 3% in KK and 
EMDA black holes with charge Q ≈ 0.52M respectively.
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[37] Z.-W. Chong, M. Cvetič, H. Lü, C.N. Pope, Charged rotating black holes in four-dimensional gauged and un-
gauged supergravities, Nucl. Phys. B 717 (2005) 246, https://doi .org /10 .1016 /j .nuclphysb.2005 .03 .034, arXiv :
hep -th /0411045.
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