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Abstract: We consider  the  positivity  bounds  on  dimension-8  four-electron  operators  and  study  two  related  phe-
nomenological aspects at future lepton colliders. First, if positivity is violated, probing such violations will revolu-
tionize our  understanding of  the fundamental  pillars  of  quantum field theory and the S-matrix theory.  We observe
that positivity  violation  at  scales  of  1-10  TeV can  potentially  be  probed  at  future  lepton  colliders  even  if  one  as-
sumes that dimension-6 operators are also present. Second, the positive nature of the dimension-8 parameter space
often allows us to either directly infer the existence of UV-scale particles together with their quantum numbers or ex-
clude them up to certain scales in a model-independent way. In particular, dimension-8 positivity plays an important
role in the test of the Standard Model. If no deviations from the Standard Model are observed, it allows for simultan-
eous exclusion limits on all kinds of potential UV-complete models. Unlike the dimension-6 case, these limits apply
regardless of the UV model setup and cannot be removed by possible cancellations among various UV contributions.
This thus consists  of  a  novel  and universal  test  to  confirm the Standard Model.  We demonstrate  with realistic  ex-
amples  how  all  the  previously  mentioned  possibilities,  including  the  test  of  positivity  violation,  can  be  achieved.
Hence, we provide an important motivation for studying dimension-8 operators more comprehensively.
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I.  INTRODUCTION

After assuming that the UV completion of the Stand-
ard  Model  Effective  Field  Theory  (SMEFT)  satisfies S-
matrix and quantum field theory (QFT) axiomatic proper-
ties, such as Lorentz invariance, unitarity, analyticity, and
locality,  one  can  show  that  the  SMEFT  dimension-8
Wilson  coefficients  must  satisfy  the  so-called  positivity
bounds  [1-6]  (see, e.g.,  Refs.  [7-11]  and  the  references
therein  for  generic  discussions).  While  these  bounds
could guide experimental searches for physics beyond the

Standard  Model  (SM),  one  might,  conversely,  consider
them to test the axiomatic principles of QFT experiment-
ally [12]. If the measurements of the values of the Wilson
coefficients  violate  the  positivity  bounds,  the  underlying
UV  model  must  violate  at  least  one  of  those  principles.
Therefore, new  ideas  beyond  conventional  model  build-
ing approaches are required.

Another interesting feature of the dimension-8 coeffi-
cient  space  is  that,  by  exploiting  its  positive  nature,  we
can  either  infer  the  existence  of  UV  states  and  their
quantum  numbers  [3]  or  exclude  them.  This  originates
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from the positivity bounds that carve out a geometric ob-
ject  in  the  parameter  space  of  the  Wilson  coefficients,
namely a  convex  cone  whose  “edges ”  (to  be  more  pre-
cisely  defined  later)  are  closely  related  to  the  properties
of the  UV states  lying in  specific  irreducible  representa-
tions  (irreps)  of  the  SM  symmetry  group.  This  relation,
when combined  with  the  positive  nature  of  the  dimen-
sion-8 coefficient  space,  can  often  provide  striking  in-
formation about the new physics states living in the UV.

As  an  extreme  example,  one  could  imagine  that  one
succeeds in measuring the vector of dimension-8 Wilson
coefficients with  sufficient  precision.  If  this  vector  coin-
cides with one of the “edges” of the cone, the UV states
generating  the  corresponding  operators  can  be  uniquely
determined in  the  sense that  they must all  lie  in  a  single
irrep of the SM symmetries. If the UV completion is as-
sumed to  be  tree-level  and  weakly  coupled,  one  con-
cludes that the underlying theory must be a “one-particle
extension” of the SM. This provides an answer to the “in-
verse  problem ”  [13-15] that  can  be  summarized  as  fol-
lows. Given the measured values of the coefficients at the
electroweak  scale,  how  can  we  possibly  determine  the
nature  of  the  new  physics  beyond  the  SM?  Similarly,  if
the measurement agrees with the SM value to a sufficient
precision,  one  can  simultaneously  exclude  the  existence
of  any  potential  new  physics  state  up  to  certain  scales.
This exclusion is guaranteed by the positive nature of the
Wilson coefficients and cannot be removed by arranging
the UV states in specific patterns that cancel each other's
effects. Therefore, this would provide a model-independ-
ent  confirmation  of  the  SM,  which  is  not  possible  when
truncating the SMEFT at dimension-6.

Dimension-8  SMEFT  operators  [16, 17] have  re-
cently  attracted  increasing  attention,  in  particular  as  the
LHC accumulates more data. Various motivations for go-
ing beyond a truncation of the SMEFT Lagrangian at the
dimension-6  level  have  correspondingly  been  presented,
for  example,  in  Refs.  [4, 6, 18-24]. In  addition,  observ-
ables that can be used to disentangle the effects of dimen-
sion-8  operators  from  those  of  dimension-6  have  been
proposed  and  studied,  as  for  example,  in  Refs.  [25, 26].
However, positivity-related topics, including the possible
tests of its violation and the option of inferring/excluding
the existence  of  states  in  the  UV,  have  not  been  dis-
cussed using realistic phenomenological examples.

This study aims to present some initial results in this
direction in the context of future lepton colliders. In par-
ticular, we are interested in the following questions:

1.  To what extent can we test  any potential  violation
of the positivity bounds?

2. For  realistic  measurements  (including  the  associ-
ated  experimental  errors),  to  what  extent  can  we  learn
about the existence of UV states and their  properties us-
ing  the  positive  nature  of  the  dimension-8  coefficient
space?

The first point has been discussed in Ref. [12] but not
in the  SMEFT  framework,  and  no  realistic  collider  ana-
lysis has been presented. In contrast, the second point has
not been discussed in literature.

Several proposals  for  a  future  electron-positron  ma-
chine  are  currently  discussed,  including  the  CEPC  [27],
FCC-ee  [28, 29],  ILC  [30, 31],  and  CLIC  [32]  projects.
These  colliders  present  an  ideal  means  to  perform  high
accuracy  measurements,  particularly  as  they  are  planned
to  be  operated  at  various  center-of-mass  energies.  Thus,
they could  allow  us  to  distinguish  the  effects  of  dimen-
sion-8 operators from those of dimension-6 on a large set
of observables, thus creating new opportunities to access
to information on the SMEFT dimension-8 operators. Let
us note that in addition to the energy dependence, the an-
gular momentum can also be used as a discriminant [25].

2→ 2

e+e−→ e+e−

e+e−→ f f

e2 f 2 e4 f 4

e+e−→ e+e−

e4

For  a  first  step  in  this  direction,  we  consider  the
simplest  process that  could  occur  at  a  lepton  col-
lider and  that  is  expected  to  be  one  of  the  most  accur-
ately  probed processes, ,  and  investigate  the
impact of the SMEFT four-fermion operators. We ignore
other  channels  with  other  final-state  fermion
species,  as  the  corresponding  positivity  bounds  involve
not only  operators but also  and  operators. On
the  contrary,  is  self-contained  in  the  sense
that  only  operators  are  relevant,  and  their  positivity
bounds do not involve other operators at leading order. A
more comprehensive study including more operators and
processes can  be  undertaken,  but  we  leave  it  for  the  fu-
ture.

e4

e+e−

The  remainder  of  this  paper  is  organized  as  follows.
In Section II, we list the  dimension-6 and dimension-8
operators relevant to our study. In Section III,  we derive
the  positivity  bounds  on  these  operators  by  using  the
elastic scattering of arbitrarily superposed states. We pro-
pose a variable to quantify the amount of potential posit-
ivity  violation  in  Section  III.1  to  connect  the  collider
reaches with  the  underlying  physics  and  discuss  its  pos-
sible interpretations in Section III.2. Then, in Section IV,
we  briefly  discuss  how to  infer/exclude  the  existence  of
UV states using dimension-8 positivity. Subsequently, in
Section  V,  we  study  the  phenomenological  aspects  of
positivity for several  collider scenarios. Finally, we
summarize our main findings in Section VI.

II.  EFFECTIVE OPERATORS

The SMEFT Lagrangian is generically defined as

LSMEFT =LSM+
∑

i

C(6)
i

Λ2 Oi+
∑

i

C(8)
i

Λ4 Oi+ · · · , (1)

Ciwhere  the  parameters  represent  the  various  Wilson
coefficients associated with the higher-dimensional oper-
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Oi Λ

e+e−→ e+e−

ēeZ ēeγ

e+e−→ X

ators , and  denotes the cutoff scale of the theory. At
the tree level, two classes of effective operators are relev-
ant for  scattering. The first one involves four
electron  fields  (four-fermion  operators),  and  the  second
one  involves  two  electron  fields  (e.g., the  operators  af-
fecting the  or  vertices) or fewer (e.g., the operat-
ors modifying  the  electroweak  boson  two-point  func-
tions).  For  a  feasibility  study,  we  solely  focus  in  this
work  on  four-fermion operators,  assuming that  the  other
potentially relevant  operators  can  be  determined  or  con-
strained  by  the  study  of  other  channels.  We
also  ignore  any possible  loop-level  correction within  the
SMEFT framework.

e4There are three four-fermion  operators that arise at
dimension-6 [33],

Oee =(ēγµe) (ēγµe) ,

Oel =(ēγµe) (l̄γµl) ,

Oll =(l̄γµl) (l̄γµl) , (2)

e+e−→ e+e− Cee Cel
Cll

and  all  of  which  provide  independent  contributions  to
 scattering.  We  use  the  notations ,  ,

and  below to denote their dimensionless Wilson coef-
ficients.

Ψ4D2

Ψ4H2

Ψ4DH

The  full  basis  of  dimension-8  operators  has  been
presented  recently  [16, 17].  Three  types  of  four-electron
operators  are  relevant  to  our  study  and  are  of  the  forms

 (four-fermion operators including two derivatives),
 (four-fermion operators including two extra Higgs

fields), and  (four-fermion operators including one
derivative and one extra Higgs field).

Ψ4D2
In  this  study,  we  are  mainly  interested  in  operators

 of the first category, as they are subject to positiv-
ity bounds. There are five such independent operators for
which we choose the following basis:

O1 = ∂
α(ēγµe)∂α(ēγµe) ,

O2 = ∂
α(ēγµe)∂α(l̄γµl) ,

O3 = Dα(ēl) Dα(l̄e),

O4 = ∂
α(l̄γµl) ∂α(l̄γµl) ,

O5 = Dα(l̄γµτI l) Dα(l̄γµτI l) , (3)

τI

O4 O5 e+e−→ e+e−

C1 C2
C4+C5 Ci

Oi
C5 = 0

where the  matrices are the Pauli matrices. The operat-
ors  and  contribute  identically  to ;
therefore, this  process  is  only  sensitive  to  the  four  inde-
pendent  coefficient  combinations , , C3,  and

, where  denotes the Wilson coefficient associ-
ated  with  the  operator .  Consequently,  in  the  collider
discussions  below,  we  will  always  set .  This  is
equivalent to restricting our discussion to four independ-

S U(2)L

ent degrees of  freedom in the considered process,  ignor-
ing the fact that the left-handed electron and neutrino live
in the same  doublet.

e+e−→ e+e−

Ψ4H2

Ψ4D2

Ψ4DH U(3)5

Similar  to  a  model-independent  SMEFT  framework,
the other two classes of dimension-8 operators should be
included as well. However, in the context of 
scattering, the  operators act like dimension-6 oper-
ators (after replacing the two Higgs fields by their vacu-
um expectation value). Thus, these operators can only be
disentangled from  those  of  dimension-6  when  more  ob-
servables  are  included,  such  as  those  related  to  neutrino
DIS  experiments.  In  our  study,  these  operators  can  be
fully captured  by  shifting  the  three  dimension-6  coeffi-
cients  of  Eq.  (2).  Once  the  latter  are  marginalized  over,
they have  no  impact  on  the  determination  of  the  dimen-
sion-8  operators  of  the  first  category .  Finally,  the

 operators can be omitted by assuming a  fla-
vor symmetry.

Ψ4D2

In  summary,  our  collider  analysis  only  incorporates
the  effects  of  the  dimension-8  operators  of  the  first  type

.  In  what  follows,  we  frequently  refer  to  a  vector
notation for the Wilson coefficients,

C⃗(6) = (Cee,Cel,Cll), C⃗(8) = (C1,C2,C3,C4) . (4)

O(Λ−4)
This  allows  for  a  parameterization  of  (differential)  cross
sections up to  as

σ = σSM+
∑

i

C(6)
i

Λ2 σ
(6)
i +

∑
i

[C(6)
i ]2

Λ4 σ
(6)
ii +

∑
i

C(8)
i

Λ4 σ
(8)
i , (5)

C(6)
i C(8)

i
C⃗(6) C⃗(8)

me→ 0

σ

1/Λ

C(6)
i C(8)

j

C(8)
i

where  and  run through all the components of the
vectors  and  .  This  expression  includes  the  fact
that, in the (adopted) limit of , there is no interfer-
ence  between  two  different  dimension-6  operators.  We
have  computed  the  different  terms  both  analytically
and  by  using  FeynRules  [34]  to  generate  a  UFO  library
[35] to be used within MadGraph5_aMC@NLO [36]. To
assess  the  impact  of  truncating  the  expansion,  we
also include the next  order  terms in  some of  our  results.
Equivalently,  we  add  interference  terms  involving  a

 product  and  the  quadratic  contributions  in  the
 coefficients.

III.  POSITIVITY BOUNDS

Positivity bounds can be derived from a dispersion re-
lation and the optical theorem, which are based on funda-
mental  QFT  principles  including  unitarity,  analyticity,
locality,  and  Lorentz  invariance.  This  is  a  very  active
field with  a  vast  and  growing  literature,  and  in  this  re-
gard,  we  refer  to  Refs.  [7-10]  and  the  references  therein
and to Refs. [1-6] for specific SMEFT applications.
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The  conventional  approach  to  derive  positivity
bounds utilizes forward and elastic scattering amplitudes
(see, e.g., Ref. [1]). Briefly, it requires that the second or-
der s-derivative of the elastic amplitudes (with poles sub-
tracted) be  positive.  For  instance,  for  the  process  con-
sidered in this study, it is given by

d2

ds2 M(e+e−→ e+e−) ⩾ 0. (6)

Ψ4D2
The l.h.s.  of  this  equation  consists  of  a  linear  combina-
tion of the considered  operator coefficients, and the
above requirement  determines  the  sign  of  this  combina-
tion.  More  specifically,  different  bounds  can  be  derived
by  choosing  different  fermion  species  and  chiralities,  as
for example with

M(eReR→ eReR) C1 ⩽ 0● : ;

M(eLeL→ eLeL) C4+C5 ⩽ 0● : ;

M(eRēL→ eRēL) C3 ⩾ 0● : ;

M(eLνL→ eLνL) C5 ⩽ 0● : .

However, the above list of bounds is not complete, as, by
defining states through the superposition of different fla-
vors and chiralities, one can consider extra elastic scatter-
ing  processes  [37].  According  to  this  approach,  the  best
bounds  are  derived  in  Appendix  A  from  the  scattering
amplitudes presented in Appendix B,

C1 ⩽ 0, (7)

C4+C5 ⩽ 0, (8)

C5 ⩽ 0, (9)

C3 ⩾ 0, (10)

2
√

C1(C4+C5) ⩾C2, (11)

2
√

C1(C4+C5) ⩾ −(C2+C3). (12)

While the first  four bounds are obtained without consid-
ering any superposition, those in Eqs. (12) and (13) arise
from the superpositions

| f±⟩ ≡
(C4+C5)1/4[

(C4+C5)1/2+C1/2
1

]1/2 |eR⟩

±
C1/4

1[
(C4+C5)1/2+C1/2

1

]1/2 |ēL⟩, (13)

f± f∓→ f± f∓ f± f±→
f± f±
and  the  scattering  processes  and 

, respectively.  Moreover,  these  two  bounds  are  ho-
mogenous  and  written  as  quadratic  inequalities  of  the
Wilson coefficients.

The above approach is  sufficient  for the study of the
four-fermion  operators  considered  in  this  paper.
However,  in  general,  it  is  insufficient  to  obtain  the  best
possible bounds. Accordingly, a new and better approach
has  been  proposed  recently  [3].  The  idea  is  to  construct
the  allowed  Wilson  coefficient  parameter  space  region
directly  as  a  convex  cone,  which  is  a  convex  hull  of  its
extremal rays, and the latter can be identified using group
theoretical considerations.

This new approach has at least two advantages. First,
it  always provides the tightest  constraints  available from
the  dispersion  relation.  They  may  be  tighter  than  those
that can be obtained by relying on the conventional elast-
ic  positivity  approach,  as  for  example,  for  the  scattering
of a pair of W-bosons. Second, more relevant to this study
(see Section IV), it reveals a connection between the pos-
itivity bounds and the existence of new physics states in
the  UV. In  order  for  this  connection to  be  manifest,  one
needs to determine the exact shape of the parameter space
allowed by the bounds, which cannot always be achieved
with  the  conventional  approach  for  complicated  cases.
We have verified that, for the operators under considera-
tion,  the  two  methods  yield  the  same  set  of  bounds  of
Eqs. (7)–(12).

We devote  the  remainder  of  this  section  to  a  discus-
sion on the possible violation of positivity and its physic-
al implications.

A.    Quantifying positivity violation
A  positivity  violation  would  imply  a  breakdown  of

the fundamental principles of QFT. Hence, if such a viol-
ation is observed at a future collider, it would be mandat-
ory  to  study  the  physics  behind  it.  To  this  end,  we  first
need  a  model-independent  way  to  quantify  the  observed
amount of violation, which can be connected later to pos-
sible physics scenarios.

M(s, t = 0)

ϵi = (ai,bi,ci)

The physical quantity to consider for probing a poten-
tial positivity violation is the second order s-derivative of
the  studied  amplitude  with  poles  subtracted, .
Introducing the explicit  dependence on the fermion mix-
ing parameters  of Eq. (64), we can define

−∆−4 ≡min
[
min
ϵ1,ϵ2

1
2

d2M(s, t = 0)(ϵ1, ϵ2)
ds2 ,0

]
, (14)

∆

ϵi

∆ =∞
|ϵ1,2| = 1

so that  has a mass dimension 1 and indicates the max-
imal  amount  of  positivity  violation  reached  when  the 
mixing parameters vary. Thus, if positivity is always sat-
isfied, . For  the  amplitude  to  be  physical,  we  im-
pose  the  constraints .  Generically,  there  will  be
several  contributing operators,  so that  it  is  convenient  to
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consider the level of the amplitude directly instead of that
of the Wilson coefficients. Ultimately, the amplitude con-
tains  the  essential  physical  information  of  the  theory,
whereas  the  operators  in  the  Lagrangian  are  subject  to
ambiguities originating from field redefinitions.

∆

ΛBSM

ΛBSM ∆

∆

While  the  physical  interpretation  of  the  quantity
will be discussed in Section III.2, we briefly comment be-
low  on  its  relation  with  the  scale  of  new physics .
Let us  assume that  a  set  of  Wilson  coefficients  is  meas-
ured,  and  both  and  can  be  estimated/computed
from these coefficients. Intuitively, we expect the scale 
to be larger, as a deviation from the SM does not neces-
sarily imply positivity violation. On the contrary, the lat-
ter implies that beyond the SM (BSM) physics must exist.

ΛBSM = Λ/
4
√

C

ΛBSM

One often estimates  ,  where C repres-
ents  a  typical  dimension-8  Wilson  coefficient.  However,
if multiple coefficients are nonzero, it is instead more nat-
ural to infer  from the amplitude that is physical and
basis-independent. It  is  desirable  to  use  the  largest  pos-
sible  amplitude  obtained  when  varying  the  initial-state
and final-state superpositions,

Λ−4
BSM =max

ϵ1,ϵ2

∣∣∣∣∣∣12 d2M(s, t = 0)(ϵ1, ϵ2)
ds2

∣∣∣∣∣∣ , (15)

ΛBSM ≲ ∆

where the  second-order  derivative  allows  for  the  extrac-
tion  of  the  dimension-8  deviations  from the  SM.  Hence,

 is as intuitively expected.
∆

ϵi

1
2

d2M
ds2

∆

To  compute  the  positivity  violation  measure ,  a
simple  option  is  to  find  the  set  of  mixing  parameters
that  saturates  to  the  bounds  of  Eqs.  (7) –(12).  These
bounds  can  be  considered  as  the  supporting  planes  of  a
convex cone representing the set of points in the Wilson
coefficient parameter space that can be UV-completed [3].

Thus, for any point located outside the cone,  is re-

lated to the distance to any supporting plane of the cone
(or in other words, the  parameter). This yields

∆−4 =
δ(C⃗8)
Λ4 , (16)

with

δ(C⃗(8)) ≡−min
[
0,−4C1,−4(C4+C5),C3,−8C5,

Θ[C2−2max(C1,C4+C5)]
C2

2−4C1(C4+C5)
C1−C2+C4+C5

,

Θ[−C2−C3−2max(C1,C4+C5)]

× (C2+C3)2−4C1(C4+C5)
C1+C2+C3+C4+C5

]
, (17)

Θ[x]
∆−1 δ(C⃗(8))

Λ−4

where  is  the  standard  Heaviside  function.  One  can
then use either  or  to assess the amount of pos-
itivity violation. The former is dimensionful and directly
connected  to  the  scale  at  which  the  fundamental  QFT
principles are  violated,  whereas  the  latter  is  dimension-
less and intended to be combined with .

ϵi

∆

However, it is not necessarily sufficient to derive the
 values yielding the six bounds of Eqs. (7)–(12). A pri-

ori,  there  might  exist  a  supporting  plane  that  provides  a
larger amount of positivity violation, although as a posit-
ivity bound, it can be positively decomposed into a com-
bination of  Eqs.  (7)–(12).  Therefore,  it  is  redundant  and
discarded.  The  rigorous  way  to  estimate  is  to  rely  on
the  definition  of  Eq.  (14)  and  minimize  its  right-hand
side.  We  have  numerically  checked  that,  for  more  than
90%  of  the  parameter  space,  the  difference  between  the
exact  method  and  the  approximation  of  Eq.  (17)  is  less
than 10%. Therefore, we consider the latter as a conveni-
ent estimate.

δ(C⃗(8))

Ci

δ(C⃗(8)) = 0

As an illustration, Fig. 1 shows the dependence of the
quantity  on the different considered Wilson coeffi-
cients. We focus on several two-dimensional slices of the
parameter  space  that  we  define  by  setting  the  irrelevant
coefficients  to  0.  Thus,  the  white  areas  for  which

 satisfy  positivity.  We  can  observe  that  the
amount of violation increases as one moves further away
from the positive regime.

 

δ(C⃗(8))

Fig.  1.    (color  online)  Amount  of  positivity  violation  in  the
studied  dimension-8  Wilson  coefficient  parameter  space.  We
consider  several  two-dimensional  slices  of  the  parameter
space that we define by setting all Wilson coefficients but two
to  0.  Positivity  violation  is  estimated  through  the  quantity

 of Eq.  (17),  so  that  the  white  areas  correspond  to  re-
gions compliant with positivity.
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B.    Physical interpretations
What  do  possible  violations  of  positivity  bounds

mean? It is known that the forward positivity bounds are
derived by assuming that  the scattering amplitudes com-
puted in the UV-completed theory are unitary, Lorentz in-
variant, polynomially bounded in momenta and analytic-
al  in  the  complex s plane,  apart  from  certain  poles  and
branch  cuts.  The  unitarity  of  the S-matrix  indicates  that
the quantum mechanical probabilities of all possible scat-
terings add up to 1, which results in the optical theorem,
or that the imaginary part of the UV amplitudes is posit-
ive in the physical region.

s ln2 s
s→∞

Violations of unitarity, such as the existence of (bad)
ghosts [38] in the UV, will lead to catastrophic instabilit-
ies in the theory (and thus should be avoided), unless the
ghosts  only  appear  in  the  effective  field  theory  context
and  with  a  mass  at  or  greater  than  the  cutoff  scale.
Lorentz  invariance  has  been  tested  at  very  high  energy
scales via  various  experiments,  although  certain  proper-
ties  are  only  weakly  constrained  [39]. Analyticity  is  im-
plied  by  causality  and  can  be  proven  to  be  valid  at  any
perturbative  order,  although  it  has  never  been  proven
non-perturbatively.  The  polynomial  boundedness  of  the
amplitudes in the momentum space originates from local-
ity,  the  lack of  which would result  in  ill-defined Fourier
transforms  and  non-locality  in  real  space.  In  addition,
polynomial boundedness, analyticity, and unitarity can be
used to  prove  the  Froissart  bound  that  implies  that  for-
ward  UV  amplitudes  should  grow  slower  than 
when  [40].  This  allows  for  the  derivation  of  the
dispersion  relation  (another  important  element  to  derive
the positivity bounds).

In  terms  of  the  Wilson  coefficient  parameter  space,
the  observation  of  small  violations  of  the  positivity
bounds would indicate regions not too far away from the
positive  regime  (e.g.,  the  yellow/orange  areas  in Fig.  1)
and would imply that some of the fundamental principles
of  QFT are  violated at  certain  energy scales. A high ex-
perimental precision is  required to detect  those small  vi-
olations. In  contrast,  the  observation of  a  stronger  viola-
tion of  the  positivity  bounds  would  indicate  regions  fur-
ther  away  from  the  positive  regime  (e.g.,  the  purple/
black areas in Fig.  1) and imply violations of  the funda-
mental principles of QFT at more accessible energies.

∆

∆

Λ∗
Λ∗

On dimensional grounds, the quantity  introduced in
Section III.1 regulates the amount of positivity violation.
However, how well does  connect to the actual positiv-
ity violation scale? To investigate this issue, we consider
a  scenario  in  which  the  fundamental  principles  of  QFT
are violated at some energy scale . In this case, we can
only push the dispersion relation up to the scale  in the
complex s plane,  rather  than  to  infinity  where  the  semi-
circular contour integrations vanish by virtue of the Frois-
sart  bound  (see, e.g.,  Ref.  [2]).  Such  an  earlier  cutoff
could  be  due,  for  instance,  to  some  new  singularities  at

|s| = Λ∗
Λ∗

MBSM

 lying away from the real axis. If we additionally
assume  that  is  parametrically  greater  than  the  mass
scale  of new particles living in the UV, the disper-
sion relation can be written as

1
2

d2M(s = 2m2
e , t = 0)

ds2 =

∫ Λ2
∗

4m2
e

ds′

2π
ℑ[M(s′,0)]
(s′−2m2

e)3

+

∫
C′

ds′

2πi
M(s′,0)

(s′−2m2
e)3
, (18)

C′
|s| = Λ∗

C′

where  denotes  the  two  semi-circular  contours  at
.  The  integral  around  the  branch  cuts  along  the

real  axis  is  positive  by  the  usual  argument  of  positivity
bounds, so that the violation of positivity could be estim-
ated by evaluating the integral along the  contour.

|s| = Λ∗

e+e−→ e+e−

gBSM ≃ 1

To  estimate  the  integrand  at ,  we  focus  on
simple  tree-level  UV-completions  in  which  the

 scattering is mediated by the exchange of a
heavy  scalar  or  vector  boson  coupling  with  a  strength

. This leads to two distinct cases.

M(s′,0) ∼ g2
BSM

s′

s′−M2
BSM

1. , which corresponds to an

s-channel scalar or vector exchange. This yields the viola-
tion ∫

C′

ds′

2πi
M(s′,0)

(s′−2m2
e)3
≃ 1
Λ4
∗
. (19)

M(s′,0) ∼ s′g2
BSM/M

2
BSM = s′/Λ2

BSM2. , which  corres-
ponds  to  a t-channel  scalar  or  vector  exchange.  This
yields the violation∫

C′

ds′

2πi
M(s′,0)

(s′−2m2
e)3
≃ 1
Λ2
∗Λ

2
BSM

. (20)

Λ∗
∆ Λ∗

∆ =
√
ΛBSMΛ∗

∆ > ΛBSM ∆

Λ∗ ∆ ΛBSM
Λ∗

∆2/ΛBSM

We should  emphasize  that  these  simple  scenarios  do
not  lead  to  any  positivity  violation.  We  are  solely  using
them  as  rough  estimates  for  the  potential  size  of  the
boundary  term  in  Eq.  (18),  assuming  that  the  Froissart
bound approximately holds below . This shows that, in
the first case, we can use  as an estimate of the scale 
at which the fundamental principles of QFT are violated.
In  contrast,  in  the  second  case, .  As  we
have  argued  that  (see  Section  III.1),  is  thus
lower than the actual scale . As both  and  can
be inferred from a measurement,  one can estimate  as

.
Λ∗

∆

The  fact  that  is  either  around  (first  scenario)  or
above  (second  scenario)  is consistent  with  the  asser-
tion  of  Ref.  [12].  However,  any  further  determination
beyond this  rough  estimation  is  difficult  without  an  ap-
parent  characterization  of  the  BSM nature.  But  what  are
the possible  scenarios  in  which  positivity  may  be  viol-
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ated? There  are  several  possibilities  that  will  be  (incom-
pletely) enumerated in the following.

e+e−→ e+e−

s2

First, for the UV completions of the SM that are inter-
twined with the massless graviton, the  scat-
tering amplitude contains a t-channel pole with an  de-
pendence,  and  it  blows  up  in  the  forward  limit  (see e.g.
Ref.  [41]). Therefore,  the  usual  twice-subtracted  disper-
sion  relation  and  the  second-order s-derivative  bound  of
Eq.  (6)  cannot  be  directly  used.  It  is  observed  that  the
standard positivity bounds, which merely require the sub-
traction of the infinite t-channel pole, can be violated, as
shown  in  some  explicit  examples  in  Refs.  [42, 43]  (see
also  the  work  of  Ref.  [41]  for  the  opposite  argument).
This  violation  is  conjectured  to  be  suppressed  by  the
quantum gravity scale, which is usually the Planck scale,
although  it  could  be  much  lower.  For  example,  in  ADD
models  [44, 45] with  two  extra  dimensions,  the  funda-
mental scale for gravity is around the TeV scale.

If one assumes that the UV theory follows the Regge
behavior,

ℑ[M(s→∞, t→ 0)] = f (t)
(
α′s
4

)2+ j(t)

, (21)

α′ = M−2
swhere  is  the “string scale” of  gravity,  one can

exactly quantify positivity violation [46],

d2M
d2s
>− fα′2

4π

[
f ′

f j′
+ ln

(
α′M2

∗
4

)]

+
fα′2

4π

[
j′′

2( j′)2 +O
(

1
α′M2

∗

)]
. (22)

t = 0 M∗
In this expression, the primed quantities refer to a de-

rivative with respect to t, evaluated at , and  rep-
resents the scale at which the Regge behavior is first ob-
served.  In  this  sense,  a  test  of  positivity  violation  would
allow us to probe the quantum gravity scale and study the
implications of low scale gravity.

Second, one  could  devise  a  simple  example  demon-
strating how  unitarity  violation  leads  to  positivity  viola-
tion in the Effective Field Theory (EFT). One such popu-
lar model having an interesting bearing for inflation con-
sists  of  the  so-called  DBI  model  [47],  whose  effective
Lagrangian is given by

LEFT = εΛ
4−εΛ4

√
1− ε(∂ϕ)

2

2Λ4 , (23)

ε = 1 (∂ϕ)2 = 0
ε(∂ϕ)4/(32Λ4)

ε = −1

with . Expanding around , the leading inter-
action  term  is  given  by  , and  the  corres-
ponding forward positivity bound is satisfied. In contrast,
if we choose instead  in Eq. (23), we obtain the so-
called anti-DBI model [48] that features positivity viola-

tions. To view this from a UV perspective, we recall that
the DBI and anti-DBI models can be derived from a two-
field (partial) UV theory [49], whose Lagrangian is given
by

LpUV =
(∂χ)2

2
+
εe

χ

M (∂ϕ)2

2
−Λ4

(
cosh

χ

M
−1

)
, (24)

ε Λ
χ

ϕ ε = −1
ϵ = 1 Λ4 −Λ4

ϕ χ

where , ,  and M are  constants.  At  low  energies,  the
heavy field  is frozen. Neglecting its kinetic term and in-
tegrating it  out  semi-classically,  we obtain the Lagrangi-
an of Eq. (23). From the Lagrangian of Eq. (24), we ob-
serve  that  the  field  is  a  ghost  (with ). Alternat-
ively,  we  can  choose  and  send  to  in  Eq.
(24),  which  again  leads  to  the  anti-DBI  model.  In  this
case,  is  not  a  ghost,  but  now  is  a  tachyon [50],  and
the potential is unbounded from below. As ghosts or run-
away potentials lead to some of the worst instabilities in
QFT [38], positivity violations originating from this type
of UV pathologies appear unlikely.

Then, which of these QFT axiomatic principles is the
weakest  link?  Arguably,  it  might  be  the  polynomial
boundedness/locality.  Indeed,  it  is  widely  believed  that
gravity  is  non-local,  and  the  UV completions  of  general
relativity,  such  as  string  theories,  violate  polynomial
boundedness [51]. This is intimately linked to the obser-
vation that black holes are formed in high-energy scatter-
ings with  gravity  included,  and  their  horizon  radius  in-
creases with the scattering energy. Moreover, there are no
local gauge invariant observables in gravity.

When  contemplating  UV  completions  for  the
SMEFT,  one  may consider  that  general  relativity  is  also
an EFT that needs to be UV completed and which might
a  priori be  interconnected  to  the  UV  theory  of  the
SMEFT.  Hence,  the  SM  and  gravity  may  be  (partially)
UV  completed  together,  potentially  at  an  energy  scale
such as  the  TeV  scale  as  in  models  with  large  extra  di-
mensions. However,  polynomial  boundedness  is  also  vi-
olated in some innocent looking (Minkowski space) field
theories  derived  by  taking  certain  low-energy  limits  of
gravitational  theories.  For  example,  the  galileon  theory
consists of a scalar EFT whose Lagrangian is given by

L = 1
2
∂µπ∂µπ+

α

Λ3 ∂
µπ∂µπ∂

ρ∂ρπ+ · · · . (25)

π→ π+ c+bµxµ bµ

(∂µπ∂µπ)2

s2

This  Lagrangian  possesses  a  generalized  shift  symmetry
when the galileon field , with c and  be-
ing constants [52].  Such a setup arises in the decoupling
limit of either the DGP braneworld model [53] or dRGT
massive gravity [54]. As the  term is forbidden
by  the  generalized  shift  symmetry,  the  2-to-2  scattering
amplitude of this theory does not contain any  term, so
that the  forward  positivity  bound  is  automatically  viol-
ated.
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Discussions on  positivity  bounds  and  their  implica-
tions have recently restarted in the context of the galileon
theory [7].  As the violation is  marginal,  adding a  softly-
breaking mass term for the galileon allows one to satisfy
the  forward positivity  bounds [8, 11, 55, 56].  Moreover,
at least in some parameter space region, generalized, t-de-
rivative,  positivity  bounds  [9, 57, 58]  are  fulfilled.
However,  further  generalized  positivity  bounds  exclude
the entire parameter space [59].

An important feature of the galileon theory along with
the DGP model and the dRGT model is that they embed
the  so-called  Vainshtein  mechanism  (see  Ref.  [51]  and
the  references  therein).  It  has  been  argued  that  theories
including  the  Vainshtein  mechanism  should  not  have
standard UV  completions  whose  low-energy  EFT  satis-
fies the positivity bounds. Instead, the high-energy beha-
vior is characterized by a phenomenon called classicaliza-
tion,  where  semi-classical  contributions  dominate  [51,
60] (see ref. [61] for discussions on classicalization in the
anti-DBI  model).  Examples  of  those  non-standard  UV
completions also appear in gauge theories, in the context
of chiral perturbation theories [62].

Lorentz invariance is also at risk of being violated at
high energies. After all, our intuition of Lorentz invariance
comes from low energy and weak gravity  environments.
In general relativity, Lorentz invariance still holds in loc-
al inertial frames, but this may just be a prejudice. Hence,
Lorentz violating models are widely discussed in several
contexts  [63],  including  Horava-Lifshitz  gravity  [64].
In this case, gravity is Lorentz violating in the UV, so that
the  theory  is  potentially  renormalizable  and  flows  to
Lorentz-invariant  general  relativity  at  low  energies  (so
that it may be relevant for collider physics).

∆

Finally, one last possibility that could justify a posit-
ive  quantity  may  be  the  existence  of  new  states  at  or
not  too  far  above  the  TeV  scale,  making  the  SMEFT
framework invalid. Naively, in such cases, one expects to
either directly produce the new states or observe large de-
viations in various channels. Depending on the UV mod-
el, it might still be possible that this “positivity violation”
is a first indication that BSM physics exists at low scales,
invalidating the SMEFT framework.

∆ > 0

∆

Λ∗

In  this  study,  we  take  an  agnostic  approach,  leaving
all  these  possibilities  open,  and,  as  a  first  step,  focus  on
the phenomenological feasibility of probing positivity vi-
olation effects. If  can be verified experimentally, it
implies that  either  at  least  one  of  the  fundamental  prin-
ciples is violated at the TeV scale or not too far above (so
that  unconventional  new  physics  is  required,  as  shown
above  in  this  subsection),  or  that  the  SMEFT  is  invalid
(which is also a useful guidance). In the first case, the lo-
gical follow-up requires  exploring  specific  scenarios  un-
der which the violation occurs by using the scale  as an
instructive handle connected to . The precise pin-down

of  this  violation  scale  in  connection  with  specific  UV
models is nevertheless left for future works.

IV.  INFERRING THE EXISTENCE OF NEW
PHYSICS STATES IN THE UV

The possibility of inferring the existence of new phys-
ics states in the UV by virtue of the positive nature of the
dimension-8 Wilson coefficient parameter space has been
recently  demonstrated  [3].  It  relies  on  convex  geometry,
and some of its basic concepts are listed below.

C x ∈ C
−x ∈ C x = 0

●  A convex  cone (or  cone)  is  a  subset  of  a  vector
space  that  is  closed  under  additions  and  positive  scalar
multiplications. A salient cone is a cone that contains no
straight line. Thus, if  is salient,  having both  and

 implies .
C0

x ∈ C0 C0
x = y1+ y2 y1,y2 ∈ C0

x = λy1 x = λy2 λ

● An extremal ray of a convex cone  is an element
 that is not a sum of two other elements in . If we

can  write  an  extremal  ray  as  with ,
we must have  or ,  being a real constant.
For  example,  the  extremal  rays  of  a  polyhedral  cone are
its edges.

X
X

● The convex hull of a given set  is the ensemble of
all  convex combinations of  points  in ,  where a convex
combination is  defined as a linear combination of  points
where  all  the  combination  coefficients  are  non-negative
and add up to 1.

X
X

X X
X

● The conical hull of a given set  is the ensemble of
all  positive  linear  combinations  of  elements  in , de-
noted  by  cone( ).  The  extremal  rays  of  cone( )  are  a
subset of .

C
●  The Krein-Milman  theorem [65] states  that  a  sali-

ent cone  is the convex hull of its extremal rays.

i j→ kl
Mi jkl

We  now  begin  with  the  second-order s-derivative  of
the forward elastic scattering , which we denote by

 and is  related  to  the  UV  amplitude  via  the  disper-
sion relation [3]

Mi jkl =

∫ ∞

(ϵΛ)2

dµ
∑
Z in r

′ |
⟨
Z|M|r|2

⟩
π
(
µ− 1

2 M2
)3 Pi( j|k|l)

r . (26)

∑′
Z ∈ r

r
S O(2)

Pi jkl
r ≡∑

αCr,α
i, j (Cr,α

k,l )∗

r Cr,α
i, j

ri⊗ r j
ri(r j) α

r i( j|k|l)
j, l M2

As more extensively detailed in Ref. [3],  denotes a
summation  over  all  possible  intermediate  states
along  with  their  phase  space,  and  runs through  all  ir-
reps of the  rotations around the forward scattering
axis  and  the  gauge  symmetries  of  the  SM.  Moreover,

 represents  the  projective  operators
of , where  are the Clebsch-Gordan coefficients rel-
evant  for  the  direct  sum  decomposition  of ,  with

 being  the  irrep  of  the  particle i (j)  and  with  la-
beling the states included in . The parentheses in 
indicate that the  indices are symmetrized. Finally, 
is the sum of the four interacting particle squared masses.
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C⃗(8) Pr

c⃗ (8)
r

The l.h.s. of Eq. (26) can be expanded in terms of the
dimension-8  Wilson  coefficients ,  whereas  each 
projector on the r.h.s. can also be written in terms of the
Wilson  coefficients  as .  Positivity  arises  because  all
the other factors in Eq. (26) are positive definite, so that

C⃗(8) ∈ cone
({⃗

c (8)
r

})
≡ C . (27)

CA nontrivial feature is that  is a salient cone [3] whose
vertex is  at  the origin of the Wilson coefficient  space so
that the cone does not cover the entire space. Thus, not all
possible values  for  the  dimension-8  coefficients  are  al-
lowed, which leads to the positivity bounds.

C {⃗
c (8)

r
}

c⃗ (8)
r′

c⃗ (8)
r r , r′

C⃗(8)

r′
C⃗(8) C⃗(8)

C

As a consequence of the Krein-Milman theorem, this
cone  is a convex hull of its extremal rays, the latter be-
ing  a  subset  of .  Geometrically,  an  element  that  is
close to some extremal ray  cannot be decomposed as
a positively weighted sum of other  with .  This
has an interesting physical consequence: if  the measured
value of  is close to an extremal ray, then we can in-
fer that UV states in the  irrep must exist and generate
the dominant contribution to . Alternatively, if  is
observed to be consistent with 0, then we can exclude the
potential  existence  of  any  UV particle,  regardless  of  the
model setup, up to certain scales depending on the preci-
sion of  the  measurement.  This  originates  from  the  ex-
tremality of the origin in , as the cone is salient.

C⃗(6)

This new physics inference or exclusion would not be
possible  at  the  dimension-6  level  due  to  the  absence  of
any  positive  nature.  For  example,  even  if  is ob-
served  to  be  consistent  with  0,  UV  particles  might  still
exist.  In  this  case,  the  dimension-6  effects  would  cancel
each  other  out,  either  accidentally  or  consequently  to
some symmetry [15] (or be suppressed compared with the
dimension-8 ones [4, 18, 20]).  In  other  words,  positivity
implies both  that  the  leading BSM effects  might  not  ap-
pear at dimension-6, and that they must not vanish at di-
mension-8. Therefore,  excluding  the  presence  of  dimen-
sion-8 effects  in  observables  is  a  definitive  way  to  con-
firm the SM ultimately.

For illustration  purposes,  a  weakly  coupled  UV  the-
ory whose EFT manifestation is generated by integrating
out some heavy states at the tree level is considered. Nev-
ertheless,  the  conclusions  obtained  in  the  following  are
valid for loop-level and non-perturbative cases as well, as
the  positive  nature  of  the  dimension-8  parameter  space
originates  from  the  dispersion  relation  of  Eq.  (26)  that
holds in general.

r

We thus extend the SM in the UV by several genera-
tions of the new states shown in Table 1, each of them be-
ing identified by a different set of quantum numbers spe-
cified by an irrep . These states couple to the SM elec-
trons through the interaction Lagrangian

Lint =gDiL̄eDi+gMLiL̄cϵLMLi+gMRiēceMRi

+gVi

(
L̄γµL+ κiēγµe

)
Viµ+gV ′i(ēcγµL)V ′†i

+h.c., (28)

κi gX

gD

gML

gMR

gV gV ′

φ S1 S2 B L3

S U(2)L W
O5

O5

e+e−→ e+e−

where the index i is a generation index and the paramet-
ers  are  arbitrary  real  numbers.  The  couplings cor-
respond  to  a  Dirac-type  scalar  coupling  ( ),  Majorana-
type  scalar  couplings  to  left-handed  ( )  and  right-
handed  ( )  fermions,  and  vector  couplings  involving
same-chirality ( ) and opposite-chirality ( ) fermions.
Under moderate assumptions, these represent all possible
tree-level interactions that can generate dimension-6 four-
electron operators [66]. The fields of Table 1 correspond
to the , , ,  and  states introduced in Ref. [66].
The latter also includes an  triplet  that we have
omitted  as  we  ignore  the  operator. As  already  men-
tioned in Section II, adding the  operator has no effect
on the subspace associated with the first four dimension-8
operators relevant for  scattering.

By integrating  these  particles  out,  the  resulting  di-
mension-8  operator  coefficients  are  obtained  as  follows,
considering a specific particle species X at a time:

C⃗ (8)
X ≡

∑
i

C⃗ (8)
Xi =

∑
i

wXi c⃗ (8)
X , (29)

wXi

where  one  sums  over  all  generations  of  particles X.  The
“weights”  are defined by

wXi =
g2

Xi

M4
Xi

⩾ 0 , (30)

gXi
MXi ith

c⃗ (8)
X

with  and  being the mass and coupling of  the 
generation  of  type-X particle,  respectively.  The  vectors

 are constant and are given by

c⃗ (8)
D = (0,0,1,0),

c⃗ (8)
ML
= (0,0,0,−1),

c⃗ (8)
MR
= (−1,0,0,0),

c⃗ (8)
V ′ = (0,0,−1,2),

c⃗ (8)
V(κ) = (−κ2/2,−κ,0,−1/2). (31)

S U(2)L U(1)Y

Table 1.    New physics degrees of freedom in our UV setup
aiming  at  illustrating  the  strength  of  the  positivity  bounds  in
inferring  or  excluding  the  existence  of  new  states.  The
quantum numbers refer to  and  , respectively.

Scalar Vector

D ≡ 21/2 ML ≡ 11 MR ≡ 12 V ≡ 10 V′ ≡ 2−3/2
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κ

κ

Unlike all other particle species, the V-type couplings
involve a free parameter , so that different V fields asso-
ciated with different  values are considered as different
particle species.  Summing over all  particle  types,  the di-
mension-8 coefficients are given by

C⃗ (8) =
∑

X

wX c⃗ (8)
X , (32)

wX =
∑

i wXi ⩾ 0

C⃗(8)

c⃗ (8)
X

C1 C⃗(8)

with  being  the  total  contribution  from
each type of particle. This implies that, for any tree-level
UV completions of the SM,  is a positively weighted
sum  of  the  vectors.  Thus,  we  can  define  a  convex
cone  that  consists  of  the  set  of  all  possible  vec-
tors that can be generated at the tree level,

C⃗(8) ∈ C1 ≡ cone
({⃗

c (8)
X

})
, (33)

where X runs through all possible states.
{⃗c (8)

X } {⃗c (8)
r }

r

C1 ⊂ C
C⃗(8) ∈ cone

({⃗
c (8)

r
})

wXi ⩾ 0 C1

C

The set  of  vectors  forms a  subset  of  the 
ensemble  of  vectors  appearing  in  Eq.  (27),  with  being
the irrep of the X particle species up to a positive rescal-
ing.  Therefore,  this  results  in .  Thus,  the  relation

 is a consequence of the positivity of the
weights , and the boundary of  defines the pos-
itivity  bounds  for  the  considered  tree-level  UV-comple-
tion of the SM. In contrast, the boundary of  reflects the
bounds that are relevant for any UV completion.

C C1 C1

C

c⃗ (8)
X

κ

In Fig. 2, we present three-dimensional cross sections
for both the  and  cones. While  has been derived
from Eq. (33),  has been obtained as described in Sec-
tion III,  using the  elastic  scattering of  superposed states.
The  dimension-8  coefficient  vectors  become  points
in  this  three-dimensional  space,  although  in  the  case  of
the V particle  species,  these  points  form a  circle  as  they
are continuously parameterized by varying the  paramet-

C1
C C1

{⃗c (8)
X } {⃗c (8)

r }
C

er.  The  cross  section  of  is  then  the  convex  hull  of
these points. Significant parts of the  and  cones coin-
cide, as  is a subset of , which serves as a non-
trivial check as  is computed with a different approach.

c⃗ (8)
X

C1
C V ′

D′ V ′

D′ D′

VD′

C1

An  important  observation  is  that,  for  tree  level  UV-
completions,  all  listed in Eq.  (31) are extremal, i.e.,
they cannot be split as positive sums of other elements in

. Beyond this tree-level assumption (i.e., on the yellow
 cone),  only  one  of  the  points, ,  becomes  non-ex-

tremal. This  is  related  to  the  appearance  of  one  extra  ir-
rep, ,  so that  can now be expressed as a positively
weighted sum of  and D.  The new irrep  can be in-
terpreted as a new vector  that couples as a dipole mo-
ment  so  that  it  cannot  be  generated  by  a  tree-level  UV
completion (and is thus external to the  cone).

C⃗exp

Let  us  now  assume  that  the  Wilson  coefficients  can
all  be  determined  experimentally,  with  the  measurement
being denoted . We can thus write

C⃗exp =
∑

X

wX c⃗ (8)
X . (34)

wX

C⃗exp

What can we learn about the particles living in the UV of
the theory,  and how important  are their  effects? In other
words, how could we obtain information on the  para-
meters  from  the  knowledge  of  the  l.h.s.  of  the  above
equation? One  may  naively  believe  that  this  is  not  pos-
sible as there is an infinite number of ways to arrange UV
particles  to  satisfy  the  above  equation.  Surprisingly,  the
positivity nature of  the dimension-8 coefficient  paramet-
er space allows for interesting inferences.  While in prin-
ciple,  can only  be  measured  up  to  some  uncertain-
ties, we neglect the latter in this section. We refer instead
to  Section  V.C  for  a  more  realistic  example  including
those  uncertainties,  in  which  we  demonstrate  that  this
does not  prevent  us  from using positivity  to  infer  know-
ledge  on  the  existence  of  potential  BSM  particles  and
their properties.

C⃗exp

c⃗ (8)
X′ C1

C⃗exp = λc⃗
(8)

X′

We  start  by  considering  a  measurement  of  that
would be found parallel to a  vector extremal in . In
this case,  so that the only solution to Eq. (34)
is

wX =

{
λ if X = X′ ,
0 otherwise . (35)

This  follows  from the  definition  of  an  extremal  ray  that
cannot  be  written  as  a  positively  weighted  sum of  other
cone elements. In other words, if the dimension-8 operat-
ors  have  been  generated  by  particles  living  in  a  single
representation, a  “precise ”  measurement  of  the  dimen-
sion-8  Wilson  coefficients  could  not  only  confirm  this
hypothesis but also exclude the potential existence of any

 

C C1

(1,1,0,1)
(1,−1,0,0) (0,0,1,0) (−1,−1,0,2)

Fig. 2.    (color online) Three-dimensional cross section of the
convex  cones  (yellow,  bigger  cone)  and  (green).  The
cross  section  is  taken  to  be  perpendicular  to  the  direction

.  The  three  axes x, y, and z are  defined  along  the
,  , and  directions, respectively.
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c⃗ (8)
X

other  particles  without  making  any  assumption  on  the
BSM details,  and  thus  falsifying  other  alternative  hypo-
theses. This feature can be traced back to the fact that all

 live in a salient cone.

wX ⩾ 0
V ′

ML
κ = 0

In contrast,  the above inference is  not  possible  when
one  truncates  the  SMEFT  expansion  at  the  dimension-6
level, as there would always be an infinite number of pos-
itive  solutions  (with )  for  Eq.  (34).  For  example,
one could consider a D scalar and a  vector with arbit-
rarily large contributions that cancel each other out com-
pletely,  or  similarly  an  scalar  and  a V vector  with

. This  originates  from the fact  that  the  allowed val-
ues  for  the  dimension-6  Wilson  coefficients  do  not  live
within a salient cone, and hence, there are always several
ways to organize them to reproduce any measured coeffi-
cient value. Therefore, an interpretation at the dimension-
6 level  can  only  be  achieved  under  specific  model  as-
sumptions and thus fits within a top-down study.

C⃗exp

wX

More generally,  if  is  not  extremal,  one  can  still
set upper limits on the weights  by starting from

C⃗(λ) ≡ C⃗exp−λc⃗X′ =
∑
X,X′

wX c⃗X + (wX′ −λ)⃗cX′ . (36)

C⃗(0) ∈ C1 limλ→+∞ C⃗(λ) < C1

λmax

C⃗(λ) ∈ C1

wX′ wX′ > λmax λ

wX′ > λ > λmax C⃗(λ) < C1

λ > λmax

X′ C⃗exp

C1 X′

C⃗exp

wX′

C1

Since  and  (by the definition
of a salient cone), there exists a maximum value  be-
low  which  we  have .  This  provides  an  upper
bound  for ,  as  if ,  then  we  can  find  a 
value such that  and for which  (as

), yielding a contradiction. Physically, this indic-
ates  that,  if  we remove some  contribution from ,
the  remaining  vector  still  consists  of  a  positively
weighted  sum that  should  satisfy  tree-level  positivity  by
belonging  to .  Therefore,  the  largest  contribution
that  could  be  removed  from  without  spoiling  these
bounds provides an upper bound on . This can then be
iteratively used to set upper limits on the existence of all
types of  particles.  Again,  such  an  inference  is  not  pos-
sible at the dimension-6 level, as there is no equivalent to

.
wX

X , V

Setting an upper limit on  is important, as this lim-
it  applies  to  not  only  the  total  contribution  from  all
particles of a given type but also each individual genera-
tion  of  a  particle  of  this  type.  While  this  is  evident  for

, as

0 ⩽
g2

Xi

M4
Xi

⩽
∑

i

g2
Xi

M4
Xi

= wX , (37)

X = V c⃗ (8)
V(κ)this  is  also  true  for ,  as  all live  on  a  circular

cone.

C1 C
A similar  reasoning can be achieved beyond the  tree

level by replacing the  cone by . Hence, upper limits

r
can be set on the existence of states in all possible irreps

 and on an individual generation of particles lying in this
irrep.  Moreover,  this  includes  both  one-particle  and
multi-particle  states  (which  yield  loop-level  generated
coefficients), as  their  contributions  are  always  individu-
ally positive.

In summary, we have shown so far that, in contrast to
the dimension-6 case, a measurement of the dimension-8
Wilson coefficients would allow us to rule out or at least
place a lower bound on the mass scale of each individual
particle of a given type X without any model assumption.
If  a  deviation  from  the  SM  is  observed,  these  universal
bounds narrow down the possible range of UV-complete
BSM models that should be considered. On the contrary,
if no  deviation  is  observed,  then  model-independent  ex-
clusion limits on the BSM states can be set, at least up to
certain scales depending on the precision of the measure-
ment. This last point is crucial as a test of the SM. If no
significant  deviation  from  the  SM  is  observed  at  future
colliders, a  global  fit  of  the  dimension-6  Wilson  coeffi-
cients would only allow to set limits on the dimension-6
contributions  without  being  able  to  further  exclude  the
possibility that BSM exists in a way yielding the suppres-
sion of any dimension-6 effect (by virtue of cancellations
or symmetry reasons). Hence, such a fit would not be suf-
ficient to confirm the SM. In contrast,  a global fit  of the
coefficients  of  operators  ranging  up  to  dimension-8
would  allow  for  not  only  the  extraction  of  limits  on  the
coefficients,  but,  more importantly, also the exclusion of
the existence of BSM states, thus confirming the SM.

The  illustration  presented  in  this  section  is  based  on
the  assumption  of  weakly-coupled  UV  completions.
However,  the  conclusions  hold  in  general,  as  positivity
implies  that  any UV completion of  the  SM must  lead to
some non-vanishing dimension-8 effects. This should fur-
ther motivate the study of dimension-8 operators through
precision physics in the future.

wX′

HX′

c⃗X c⃗X′

On different  grounds,  we indicate  that  it  is  also  pos-
sible to set some lower limits on a particular weight .
To  this  end,  we  introduce  the  convex  cone  defined
by all  vectors different from , using instead the op-
posite of the latter as a last element to define the cone,

HX′ = cone
({⃗

cX,X′ ,−c⃗X′
})
. (38)

C⃗exp <HX′ wX′

λ C⃗exp−
λc⃗X′ ∈ HX′

In the case where , the lower limit on  is
given  by  the  minimum  value  such  that 

. However, this also applies at the dimension-6
level.

V.  COLLIDER ANALYSIS

In  this  section,  we  pioneer  a  realistic  study  of  the
feasibility of positivity tests at future colliders and invest-
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igate the  possibility  of  inferring  or  excluding  the  exist-
ence of new physics in the UV. However, a more accur-
ate determination of the impact of dimension-8 contribu-
tions at future colliders (and the estimation of their reach
in the corresponding Wilson coefficient parameter space)
is beyond  the  scope  of  this  paper.  Hence,  we  have  per-
formed  several  simplifications  in  our  analysis.  We  first
restrict ourselves to parton-level simulations and omit any
higher-order  corrections  and  initial-state  radiation  effect.
Second, we assume an ideal detector and thus ignore any
reconstruction and experimental effect.

e+e−→ e+e−

pT > 5
|η| < 5

cosθ θ

We  utilize  FeynRules  [34]  to  generate  a  UFO
model [35] including all the operators introduced in Sec-
tion  II  so  that  we  could  simulate  scattering
with MadGraph5_aMC@NLO [36]. We analyze the res-
ulting  parton-level  events  with  MadAnalysis  5  [67-69],
which  is  also  used  to  define  an  appropriate  fiducial
volume.  The  latter  embeds  a  selection  on  the  final-state
lepton transverse momentum of  GeV and on their
pseudorapidity  of .  We  then  split  the  phase  space
into  25  bins  in ,  with  being  the  lepton  scattering
angle.  Moreover,  we  discard  the  most  forward  bin,  as  it
corresponds to the bin where the SM contribution blows up.

e+e−→ e+e−

cosθ √
N

Given  that  cross  section  measurements
at LEP2 reached a precision of approximately 2%, we as-
sume that  the  systematic  uncertainties  could  be  con-
trolled at the 1% level for each  bin. In addition, we
include  statistical  uncertainties  that  we  estimate  as ,
where N is the projected number of events in a given bin.
We have  finally  verified  the  consistency  of  the  simula-
tion results with analytical calculations.

We have considered several future lepton collider pro-
jects, mostly following the setups presented in Ref. [70].
However,  we  have  omitted  any  operation  run  at  the Z-
pole,  as  the  cross  section  is  dominated  by  the Z-reson-
ance  contribution  instead  of  any  potential  four-fermion
operator effect. In addition, for the ILC case, we focus on a
possible upgrade at a center-of-mass energy of 1 TeV [31].

We refer to Table 2 for details on the center-of-mass en-
ergies, luminosities, and beam polarization options of all
collider configurations studied in this paper.

A.    Future lepton collider sensitivity to
four-electron operators

e+e−→ e+e−

C⃗

The  differential  cross  section  can  be
parameterized as a polynomial in the higher-dimensional
operator coefficients, as shown in Eq. (5). In the follow-
ing, we denote by  the entire set of coefficients,

C⃗ = (Cee,Cel,Cll,C1,C2,C3,C4) , (39)

Λ

χ2

and  the  effective  cutoff  scale  is  set  to  1  TeV,  unless
specified  otherwise.  To  evaluate  the  constraining  power
and  sensitivity  of  the  future  collider  under  consideration
to the  higher-dimensional  operators  introduced  in  Sec-
tion II, we built a  function,

χ2
(
C⃗,C⃗0

)
, (40)

C⃗

C⃗ = C⃗0

C⃗
C⃗ χ2 ⩽ χ2

c χ2
c

χ2 C⃗0

2σ

in  which  we  assume  that  a  would-be  observation 
agrees  with  the  theoretical  predictions  associated  with
some reference hypothesis . The allowed range for

 at some confidence level can then be determined by the
 values for which , where  represents the crit-

ical  value allowing to reach an agreement  with  at
the  required  confidence  level.  For  the  remainder  of  this
paper, all the presented limits have been evaluated at .

χ2(C⃗,0) ⩽ χ2
c

C ∈ [Cmin,Cmax]

Λc

In  the  case  where  the  would-be  observations  would
agree  with  the  SM,  limits  on  the  four-electron  Wilson
coefficients  can  be  set  by  enforcing .  These
limits, cast under a  form for each coeffi-
cient,  reflect  the sensitivity  of  the future lepton colliders
to the considered operators.  They can be further  conver-
ted  into  the  new  physics  characterization  scale  that
represents the BSM scale that is reachable at the various

Table 2.    Different future collider operation runs considered in this study, presented together with the associated center-of-mass en-
ergy, expected luminosity, and beam polarization setup (if relevant).

Scenario P(e−,e+)Beam polarization 
Runs (luminosity @ energy), [ab−1] @ [GeV]

1 2 3 4

CEPC None 2.6@161 5.6@240

FCC-ee None 10@161 5@240 0.2@350 1.5@365

ILC-500
(−80%, 30%) 0.9@250 0.135@350 1.6@500

(80%, −30%) 0.9@250 0.045@350 1.6@500

ILC-1000
(−80%, 30%) 0.9@250 0.135@350 1.6@500 1.25@1000

(80%, −30%) 0.9@250 0.045@350 1.6@500 1.25@1000

CLIC
(−80%, 0%) 0.5@380 2@1500 4@3000

(80%, 0%) 0.5@380 0.5@1500 1@3000
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Λccolliders. We define  by

dimension−6 : Λc ≡
Λ√

Cmax−Cmin

2

,

dimension−8 : Λc ≡
Λ

4

√
Cmax−Cmin

2

, (41)

in the dimension-6 and dimension-8 cases, respectively.
These scales are depicted in Fig. 3. For each collider

and  each  specific  coefficient  (i.e.,  in  each  column),  the
lighter color represents the individual limit obtained when
all other coefficients are enforced to vanish, whereas the
darker  color  represents  the  marginalized  limit  obtained
where all  other coefficients are left  floating.  For an easy
comparison of the strengths of the various machines,  we
show through the darkest color the largest collider center-
of-mass energy reachable for each collider.

Λc

In  the  case  of  the  dimension-6  operator  coefficients,
we observe that all future lepton colliders are sensitive to
very  large  new  physics  scales  (given  in  terms  of ).
Those scales are indeed typically approximately 1 or 2 or-
ders of magnitude larger than the collider center-of-mass
energy.  This  is  more  or  less  expected,  given  that  LEP2
already reached a sensitivity of a few TeV on those oper-
ators [71].

O(1) O(10)
For the dimension-8 operators, the individual sensitiv-

ities  range  from  (CEPC)  to  (CLIC)  TeV.
They  are  roughly  a  factor  of  5  larger  than  the  collider
center-of-mass energy, which also indicates that the EFT
approach  is  robust  in  the  considered  context.  However,
the more  reliable  limits  are  those  obtained  through  mar-
ginalized bounds.  They are reduced by a factor  of  a  few
when compared  with  the  individual  limits.  Nevertheless,

Λc
O1 O4

Λc

O(1)

for  all  scenarios,  the  corresponding  is  sufficiently
higher than the collider energy, except for the  and 
operators  in  the  CEPC  and  FCC-ee  cases.  Here,  the 
scale is observed to be slightly lower than the highest ex-
pected center-of-mass energy (see the discussion below).
In general, the EFT validity is thus not an issue for 
BSM couplings, and the dimension-8 effects can be iden-
tified even in the presence of dimension-6 operators.

O1 O4 Oee Oll

LLLL RRRR

sin2 θW = 0.25 Zee

e+Le−L → e+Le−L e+Re−R → e+Re−R

Oee Oll
O1 O4

sin2 θW = 0.234
mZ = 91.1876 α = 1/127.9

O1 O4 Oee
Oll

For all considered circular colliders, the marginalized
limits  for  the  operators , , ,  and  are  much
weaker  than  their  corresponding  individual  limits.  This
originates from an accidental degeneracy between the lin-
ear-level  contributions  of  the  and  types  of
operators. For a slightly larger electroweak mixing angle
such  that ,  the  coupling  in  the  SM
would be of a purely axial-vector nature, yielding identic-
al  and  cross  sections  (includ-
ing the photon and Z-boson exchanges, as well as their in-
terference).  In  this  hypothetical  case,  the /  and

/  contributions  cannot  be  distinguished,  unless
beam polarization is used (so that the linear collider sens-
itivity  is  much  stronger).  In  practice, 
(from  GeV  and ),  and  hence,
this degeneracy is not exact. However, this leads to an al-
most  flat  direction  in  the  Wilson  coefficient  parameter
space, or equivalently to large differences between the in-
dividual and marginalized limits for the , , , and

 operators.

Oee Oll

O1 O4

As our fit is at the quadratic level for the dimension-6
operator coefficients,  and  are thus essentially con-
strained  by  their  quadratic  contributions.  On  the  other
hand,  and  are only included at  the linear level  so
that some  caution  is  required  when  interpreting  the  cor-
responding limits. It is observed that the numerical simu-
lations are  not  reliable  in  this  case,  as  statistical  fluctu-
ations may artificially lift  the degeneracy.  Therefore,  we
have employed our analytical computations for those two

ΛcFig. 3.    (color online) Limits on the new physics characterization scale  (in TeV) for the various considered future lepton colliders.
"M" denotes marginalized limits (all other coefficients being floating), whereas "F" denotes individual limits (all other coefficients be-
ing vanishing). In addition, we represent by the darkest color the largest center-of-mass energy of each collider project.
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mZ GF mW
sin2 θW = 0.223

O1 O4

operators and the two circular collider cases. We have ad-
ditionally  verified  that,  using ,  ,  and  as elec-
troweak  input  parameters  (yielding ),  the
marginalized  limits  on  and  are  only  impacted  at
the  level  of  approximately  10%,  all  other  limits  being
stable.

O(Λ−4)

O(Λ−4)

Finally, to estimate the error due to the SMEFT trun-
cation at  in Eq. (5), we have assessed the impact
of  the  next  order  contributions,  namely  the  interferences
between the dimension-6 and dimension-8 operators  and
the quadratic contributions in the dimension-8 operators.
The resulting changes in Fig. 3 are quite mild. The limits
at  the  circular  colliders  are  modified  by  less  than  10%,
whereas those associated with the linear colliders are neg-
ligibly affected. Therefore, our truncation at  is re-
liable, and any higher-order contributions will be ignored
in the remainder of this paper.

B.    Testing positivity at future lepton colliders

e+e−→ e+e−

C⃗0

∆−1

We  now  assume  that  some  would-be  observation  at
future colliders in  scattering data is consist-
ent with a coefficient value hypothesis . We aim at in-
vestigating what we could learn, from this measurement,
about the potential amount of positivity violation .

C⃗0

C⃗
χ2(C⃗,C⃗0) < χ2

c

We start from the fact that, for any given , a meas-
urement indicates that the true coefficient vector  of the
theory  is  constrained  by  at some  confid-
ence level. We can thus deduce a confidence interval for
the amount of positivity violation,

∆−1 ∈ [
∆−1

low,∆
−1
high

]
, (42)

with

∆−1
low = min

χ2(C⃗,C⃗0)⩽χ2
c

δ(C⃗)
1
4

Λ

 ,
∆−1

high = max
χ2(C⃗,C⃗0)⩽χ2

c

δ(C⃗)
1
4

Λ

 . (43)

∆−1
low

∆−1

∆−1
low > 0

We  focus  on ,  which  is  a  conservative  estimate  of
,  so  that  we  could  conclude  about  the  existence  of

some positivity violation if .

C⃗(8)
0 = (C1,C2,C3,C4)

We  consider  four  benchmarks  that  differ  by  the
 choice,

B1 : C⃗(8)
0 = (0,0,3,1.2),

B2 : C⃗(8)
0 = (0,0.3,0.2,0),

B3 : C⃗(8)
0 = (0,0.015,0.015,0),

B4 : C⃗(8)
0 = (0,0,0.0006,0.00015). (44)

∆−1The corresponding amount of positivity violation 

∆−1
low

Bi

is  given  in Table  3,  together  with  the  values  that
could  be  reached  at  each  considered  collider  scenario
when assuming that the measurements are consistent with
the  hypothesis.  Those  results  have  been  estimated  by
marginalizing over  all  dimension-6  four-electron  operat-
ors, so that they can be taken as conservative.

B1

2σ
B2

B3 B4

The four  points  have  been chosen to  illustrate  an  in-
creasing sensitivity to positivity violations at the five col-
lider scenarios under consideration. The  setup corres-
ponds  to  a  violation  arising  at  a  scale  of  approximately
700  GeV,  which  can  be  observed  at  the  level  by  all
studied  lepton  colliders  except  for  the  CEPC.  The 
point  allows  for  the  observation  of  a  positivity  violation
at  scales  of  approximately  1.4  TeV,  which  can  only  be
observed at future linear colliders. Finally, the  and 
benchmarks  induce  positivity  violation  scales  that  go  up
to  2.9  and  6.4  TeV,  respectively,  to  which  only  the  ILC
with an energy upgrade at 1 TeV and CLIC are expected
to be sensitive.

B3 B4

δ(C⃗(8)) = (1 TeV/∆)4

C1 C4 B3 C1
C2 B4

To obtain a more intuitive picture, we present a slice
of  the  dimension-8  Wilson  coefficient  parameter  space
for  the  two benchmarks  and  in Fig.  4.  In  the  two
subfigures, we depict by a light green area the parameter
space region allowed by the positivity bounds. Moreover,
we  indicate  through  light  gray  contours  the  amount  of
positivity violation  arising  in  the  remainder  of  the  para-
meter  space,  using  the  dimensionless  parameter

.  Consistent  with  the  definition  of
these two benchmarks  in  Eq.  (44),  the  other  two dimen-
sion-8 coefficients (  and  for the  scenario and 
and  for  the  scenario)  are  taken  as  vanishing.  The
limits that could be imposed from measurements at vari-
ous lepton  colliders  are  given  by  solid  and  dashed  con-
tours. They  respectively  correspond  to  a  derivation  in-
cluding  a  marginalization  over  the  dimension-6  Wilson
coefficients (labeled by “M”) or after fixing them to zero
(labeled by “F”).

We  observed  differences  between  the  solid  and
dashed contours,  which  indicates  that  there  are  correla-
tions between the impacts of the dimension-6 and dimen-
sion-8  operators.  Nevertheless,  even  after  marginalizing
the dimension-6  coefficients,  a  sensitivity  to  the  dimen-

∆−1

∆−1
low

Table 3.    Amount of positivity violation  associated with
each considered benchmark and the corresponding  bound
that  could  be  obtained  at  each  collider  scenario.  The  results
are all given in TeV-1 and at the 95% confidence level.

∆−1

∆−1
low

CEPC FCC-ee ILC-500 ILC-1000 CLIC

B1 1.48 0 0.86 1.45 1.47 1.48
B2 0.74 0 0 0.66 0.73 0.74

B3 0.35 0 0 0 0.29 0.35
B4 0.16 0 0 0 0 0.10
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B3

B4 2σ

∆−1
low > 0

sion-8 operators remains, as illustrated in the case of the
ILC-1000 collider (for the  benchmark) and CLIC (for
the  benchmark).  The  entire  contours  indeed  lie
outside  the  positivity  area  so  that  a  positivity  violation
could be confirmed, regardless of the existence of any di-
mension-6 effect.  On different  grounds,  notably,  the fact
that the marginalized limits do not overlap with the posit-
ivity  area  does  not  guarantee  a  potential  confirmation of

, as  we only  focus  here  on a  slice  of  the  full  di-
mension-8 coefficient space.

∆−1

∆−1

It is evident that a large  value has a better chance
to be confirmed experimentally, but this also depends on
the actual values of all the dimension-8 coefficients. Any
given  amount  of  violation  may  indeed  indicate  different
regions of the parameter space, with some of them being
phenomenologically easier to detect than others. An inter-
esting question would be as follows: how large should the
amount of violation  be for a collider to have a signi-
ficant chance to confirm it?

χ2

δ(C⃗)

(∆−1,∆−1
low)

−1

∆−1 2σ
∆−1

low

∆

A  quantitative  and  accurate  answer  is  difficult  to
provide,  due  to  the  quartic  nature  of  our  fit  and  the
discontinuous nature of the  function. We present be-
low a tentative answer by sampling the dimension-6 and
dimension-8 parameter  space  with  a  Monte  Carlo  meth-
od  and  assessing,  for  each  sampled  configuration,  the

 values. After  restricting  the  values  of  the  di-
mension-6 coefficients to the order of 0.1 TeV  so that
they  are  roughly  consistent  with  LEP-2  constraints  [71],
we show our results in Fig. 5. This figure shows the cor-
relation between the violation scale  and its  lower
bound  as obtained by would-be measurements at the
CEPC, FCC-ee, ILC-500, ILC-1000, and CLIC colliders.
In other words, the results indicate the experimental sens-
itivity to some positivity violation scale  at a given col-
lider.

∆−1

∆−1
low

∆−1 ∆−1
low

2σ

Two particularly important features can be extracted.
First,  the  smallest  value  that  corresponds  to  a
nonzero  value defines the minimum amount of pos-
itivity  violation  that  is,  in  principle,  observable  at  each
collider.  This  corresponds  to  scales  of  0.7,  1.2,  1.8,  4.2,
and 11 TeV for the CEPC, FCC-ee, ILC-500, ILC-1000,
and  CLIC colliders,  respectively.  These  scales  are  much
higher  than  the  corresponding (highest)  expected  center-
of-mass energy,  and  thus,  the  positivity  tests  are  ob-
served to be phenomenologically feasible for all five ma-
chines. Moreover, a positivity violation that should occur
at or below these scales thus has a chance to be detected.
Second, the largest  value associated with a zero 
value corresponds  to  the  minimum  guaranteed  observ-
able amount of positivity violation, regardless of the actu-
al  coefficient  values.  This  corresponds  to  scales  of  0.3,
0.36,  1.3,  2.4,  and  4.8  TeV  for  the  above  five  colliders,
respectively.  These  scales  are  slightly  higher  than,  but
comparable to, the corresponding collider energies. Equi-
valently,  a  violation  occurring  at  these  scales  yields  a
guaranteed  observation.

∆ e+e−→ e+e−

∆

Λ∗ Λ∗ ≳ ∆

Those possible evaluations of  for  scat-
tering at various colliders serve as a proof of concept for
how well collider physics can be used as a novel means to
probe  the  fundamental  principles  of  QFT in  a  model-in-
dependent  way.  As we have argued in  Section III.B,  the
scale  could be viewed as a rough estimate for the scale

 (with ) connected to the violation of the funda-
mental  QFT  principles.  The  results  obtained  in  the

 

B3 B4

2σ

δ(C⃗) = (1 TeV/∆)4

Fig.  4.    (color  online)  Bounds  on  the  pairs  of  dimension-8
operator  coefficients  that  are  relevant  for  the  benchmark
points  (upper) and  (lower). In each case, the other two
dimension-8  coefficients  are  set  to  0,  as  in  the  benchmark
scenario  definitions  from  Eq.  (44),  whereas  the  dimension-6
coefficients are either marginalized over (M, solid) or fixed to
0 (F,  dashed).  We show the  expectations  for  the  reach of
different  future  lepton  collider  projects  as  colored  contours,
and the light green area represents the parameter space region
allowed  by  the  positivity  bounds.  Outside  this  area,  the  gray
isolines depict the dependence of the  quant-
ity, which is thus used as an estimate for the amount of posit-
ivity violation, on the coefficients.
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∆

O(1)−O(10)
present  section  demonstrate  that  scenarios  for  which 
lies  in  a  range  of  TeV have  a  chance  to  be
confirmed.

e+e−

∆

∆

Λ∗

Therefore, we conclude that future  colliders will
be able to test the fundamental principles of QFT up to a
scale of the order of 10 TeV or even beyond, depending
on the exact nature of BSM physics. Moreover, if positiv-
ity  violation  is  observed,  then  unconventional  model
building  approaches,  such  as  those  discussed  in  Section
III.B, will  be necessary.  The measurement of the corres-
ponding  value  will,  in  this  case,  provide  an  important
guidance. However, the actual connection between  and
the  scale  at which  the  QFT  core  principles  are  viol-
ated should be studied on a model-by-model basis.

C.    Inferring/excluding states in the UV
In Section IV, we have argued that the positive nature

of  the dimension-8 parameter  space can be used to  infer
or exclude the possible existence of new physics states in
the  UV,  independent  of  the  nature  of  the  new  physics
model. In this section, this argument is demonstrated with

realistic examples.

gD

C⃗(6)
0 C⃗(8)

0

We  first  consider  an  extension  of  the  SM  where  the
new physics sector of the theory solely includes a D-type
scalar  (see Table 1). For  an illustrative benchmark scen-
ario, we fix its mass to 2 TeV, its coupling  defined in
Eq. (28)  to  0.8,  and  focus  on  the  ILC-1000  collider.  In-
tegrating this heavy field out generates two higher-dimen-
sional operators:  one  of  dimension-6  and  one  of  dimen-
sion-8. The  associated  Wilson  coefficients  can  be  para-
meterized in terms of the  and  vectors of Eq. (4),

C⃗(6)
0 = (0,−0.08,0) ,

C⃗(8)
0 = (0,0,0.04,0) . (45)

χ2

e+e−→ e+e−

C⃗0

C⃗ χ2(C⃗,C⃗0) ⩽ χc

The -fit  introduced  in  the  previous  section  allows
for  the  identification  of  the  coefficient  space  region  that
would  be  reachable  from  measurements  at
the  ILC-1000,  assuming  a  theory  hypothesis.  Such  a
region is defined by the  values yielding 
so  that  one  can  extract  marginalized  limits,  at  the  95%

∆−1

∆−1
low

Fig. 5.    (color online) Correlations between the amount of positivity violation ( ) and the maximal sensititivity that can be reached
at  a  given future lepton collider  ( ).  We present  results  for  the CEPC (upper left),  FCC-ee (upper right),  ILC (center),  and CLIC
(lower) colliders, and each represented point has been obtained through a Monte Carlo sampling of the dimension-6 and dimension-8
Wilson coefficient parameter space.
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confidence level, on all coefficients,

Cee = 0±0.0024, Cel = −0.08±0.0035,
Cll = 0±0.0023,
C1 = 0±0.0074, C2 = 0±0.0077,
C3 = 0.04±0.020, C4 = 0±0.0071.

(46)

Oel

As  already  mentioned  above,  the  interpretation  of
these results  cannot  be  model-independent  at  the  dimen-
sion-6 level.  For  example,  assuming that  the SM is  only
supplemented by a D-type scalar generating the  oper-
ator, one would then obtain as a bound on the new phys-
ics mass scale

MD/gD ∈ [2.45,2.56] TeV. (47)

V ′

gV ′

On the other hand, if we assume that the SM is extended
by  both  a D scalar  and  a  vector  (coupling  with  a
strength  as  in  Eq.  (28)),  then  we  can  only  conclude
that

g2
D

2M2
D

−
g2

V ′

M2
V ′
= 0.08±0.0035 TeV−2. (48)

Moreover,  it  is  impossible  to  disentangle  the  individual
contributions  from  each  particle  type,  and  the  situation
only worsens by making the model more complex due to
other ways by which similar cancellations may occur.

This shows that conclusions can only be drawn under
very specific BSM assumptions, as we do not know a pri-
ori the  exact  particle  content  of  the  theory.  Thus,  this
kind of interpretation is only practical for top-down stud-
ies of specific UV models, as for example the one carried
out in Ref. [14].

κi

wX

One might  naively  believe  that  this  lack  of  informa-
tion  is  due  to  the  fact  that,  at  the  dimension-6  level,  we
only  measure  three  coefficients,  whereas  the  number  of
possible  UV  states  is  infinite  (as  there  can  be  several V
particles  with  different  couplings). Consequently,  in-
cluding  dimension-8  operators  as  well  would  not  help
significantly. On the contrary, this is not the case. As we
have argued in  Section IV,  the  positive  nature  of  the  di-
mension-8  space  allows  us  to  set  an  upper  limit  on  the
total  contribution  (or  weights )  of  any  given  type  of
particles X.

X′

λmax

For example, for a particle species , we can determ-
ine the  value defined by

λmax ≡max
λ

[
C⃗(8)

exp−λc⃗ (8)
X′ ∈ C

]
, (49)

C⃗(8)
exp

c⃗ (8)
X′

where  denotes  the  projected  measurements  of  the
Wilson  coefficients  at  some  collider,  the  vector  is

C

c⃗ (8)
X λmaxc⃗ (8)

X′

X′

given,  for  any  specific  particle  type,  by  Eq.  (31),  and 
consists  of  the  cone  generated  from  the  entire  ensemble
of  vectors. Therefore, the  quantity indicates
an  upper  bound  on  the  contribution  to  the  dimension-8
coefficients that can arise from any set of  states.

C⃗exp X′

X′ C

C⃗exp c⃗ (8)
X′ C

X′

C⃗0

C

This has a simple interpretation at the tree level. If we
remove from  the contribution of all  BSM  states,
then the remaining quantity is  still  a  positively weighted
sum of the contributions of particles from all types differ-
ent  from .  Consequently,  this  should  fall  within .
Therefore,  the  largest  amount  that  can  be  removed  from

 in  the  direction  without  leaving  the  cone 
provides the upper bound on the total  contribution of 
states  to .  Moreover,  this  still  holds  beyond  the  tree
level, as both the existence of the cone  and the reason-
ing provided in Section IV are valid for all orders.

C⃗(8)
exp

C⃗(8)

χ2(C⃗,C⃗0) ⩽ χ2
c

λmax C⃗(8)

However,  the  above  statement  assumes  that  is
ideally  determined,  without  any  uncertainty.  In  practice,
this is not the case, so that one could question the impact
of  the  experimental  uncertainties.  In  our  example,  the
measurement  suggests  that  falls  in  the  dimension-8
coefficient  parameter  space  region  defined  by

.  Therefore,  the  experimental  uncertainties
can be naturally accounted for by evaluating the maxim-
um of all  derived for all allowed  values in this
region,

λmax ≡max
λ

[
C⃗(8)−λc⃗ (8)

X′ ∈ C; χ2(C⃗,C⃗0
)
⩽ χ2

c

]
, (50)

C⃗ ≡ {C⃗(6),C⃗(8)} C⃗0 ≡ {C⃗(6)
0 ,C⃗

(8)
0 }where  and . Thus, we have

also  incorporated  the  dimension-6  coefficients  that  are
marginalized over.

C⃗(6)
0 C⃗(8)

0 χ2

MV κ = 1

λmax = 0.0054
MV C⃗(8)

Let us now apply this general procedure to the bench-
mark  scenario  defined  in  Eq.  (45).  As  the  coefficients

 and  are  known,  the  function  can  be  built
from the  projected  measurement.  Eq.  (50)  therefore  ex-
presses a constrained optimization problem. For example,
for a  new physics vector state with  (as defined
in Table 1 and Eq. (28) so that its  couplings to the elec-
tron  are  of  a  vector-like  nature),  we  find .
Thus, the  contribution to  is constrained to be less
than  approximately  10%  in  magnitude.  In  terms  of  the
new physics mass and coupling, this is given by

MV√
gV
⩾ 3.7 TeV. (51)

κ = 1

We emphasize that such a bound is different from the di-
mension-6 case expressed in Eqs. (47) and (48). The con-
straint  of  Eq.  (51)  is  indeed  universal  and  excludes  any
possible V-type particle featuring a coupling to electrons
of  strength  with  properties  violating  the  bound,
without relying on any specific model assumptions.
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λ

λ = λmax
C⃗(8)

max
C⃗(8)

max−λmaxc⃗ (8)
V

C C⃗(8)
max C⃗(8)

max−λmaxc⃗ (8)
V

C⃗(8)
0

c⃗ (8)
V

For  an  intuitive  understanding  of  this  universal
bound,  we  investigate  what  happens  when  varies to-
ward  geometrically. To this end, we identify two
points  in  the  dimension-8  coefficient  space:  and

. The former corresponds to a saturation of
the  experimental  bounds,  whereas  the  latter  corresponds
to a saturation of the positivity bounds. This is represen-
ted  in Fig.  6, in  which  we  present  a  slice  of  the  dimen-
sion-8 coefficient space that we have extracted in a simil-
ar manner to Fig. 2. The green region is obtained from the
experimental would-be  measurements  (after  marginaliz-
ing  over  the  dimension-6  coefficients),  the  yellow  area
consists of a three-dimensional cross section of the posit-
ivity cone , whereas  and  are shown
as a brown dot and red dot, respectively. We additionally
indicate by a blue dot and black dot the true value of the
Wilson  coefficients  and the  new  physics  contribu-
tions, , that we would like to constrain, respectively.

C⃗(8)
max

C⃗(8)
max−λc⃗ (8)

V c⃗ (8)
V

λmax

c⃗ (8)
V λ

λmax

λ

λmax

The black, brown, and red dots lie on a straight line,
which  stems  from  the  fact  that  is  a  positively
weighted  sum  of  and . This  figure  fur-
ther illustrates that the maximization process yielding the

 quantity corresponds  to  estimating  the  largest  pos-
sible distance between a point consistent with the experi-
mental data and a point allowed by the positivity bounds
in  a  given  direction .  Considering  instead  a  value
larger than  would mean to rely either on a setup ex-
perimentally excluded, or on a theory violating positivity.
As these two options are evidently excluded,  cannot be
larger than .

C⃗0

ML MR κ = ±1

V ′

λmaxc⃗ (8)
X

C⃗(8)
0 = (0,0,0.04,0)

3−4

The same class of universal bounds can be set on all
types of potential states extending the SM in the UV. The
Wilson coefficients  relevant  for  our  benchmark  assump-
tion  of  Eq.  (45)  are  generated by integrating a  scalar
D-field out.  However,  the approach is  most  effective for
all other particle types in Table 1. We present the results
for  the , , V with  (i.e.,  corresponding  to  a
vector and axial-vector coupling to the electron field) and

 states  in Table  4.  This  allows  for  the  derivation,  for
each  particle  type,  of  the  quantity  that  depicts
the maximum possible contribution from X-type particles
to the generated dimension-8 operators .
In  most  cases,  bounds  can  be  set  at  the  10%-20% level.
This corresponds, after converting the results in terms of
BSM  scales,  to  roughly  an  exclusion  of  UV  particles
lighter than approximately  TeV.

λmax

In contrast, for D-type scalars, we obtain a much lar-
ger  value,

λmax ≈ 0.049 . (52)

Using Eq. (38), we could additionally infer a lower limit
related  to  the  existence  of  all  types  of  particles.  Such  a

limit  is  observed  to  be  always  0,  except  for D-type
particles for which we find

λmin ≈ 0.011 . (53)

All these limits suggest that D-type particles should exist
in  viable  UV  completions,  whereas  all  other  types  of
particles are severely constrained. Such a result is not sur-
prising and is consistent with our benchmark assumption.
Such a conclusion thus provides the first steps to obtain-
ing  an  answer  to  the  “inverse  problem”.  We  emphasize
again that the obtained bounds are universal, in the sense
that  they apply  without  any assumption on the  nature  of
the  UV  physics.  Thus,  they  are  useful  to  exclude  BSM
models and guide the model builders adopting a bottom-
up approach.

Perhaps a more practically useful example in the light
of  the  current  LHC  results  is  the  SM  case  itself,  where

λmax

c⃗ (8)
X

Table  4.    Universal  bounds  imposed  with  positivity  on  the
particle species X, and for a BSM setup in which the SM is ex-
tended by a D-type scalar. The bounds, expressed in terms of
the  quantity of  Eq.  (50)  (third  column),  are  also  trans-
lated in terms of the new physics masses and couplings (fourth
column). We additionally recall the values of the different 
vectors (second column).

X c⃗ (8)
X λmax MX/

√
gX

ML (0,0,0,−1) 0.0067 ⩾ 3.5 TeV

MR (−1,0,0,0) 0.0069 ⩾ 3.5 TeV

κ = 1V (with ) (−1/2,−1,0,−1/2) 0.0055 ⩾ 3.7 TeV

κ = −1V (with ) (−1/2,1,0,−1/2) 0.0116 ⩾ 3.0 TeV

V′ (0,−1,2,0) 0.0109 ⩾ 3.1 TeV

 

C

C⃗(8)
0 C⃗(8)

max C⃗(8)
max −λmaxc⃗ (8)

V c⃗ (8)
V

Fig. 6.    (color online) Three-dimensional cross section of the
dimension-8 convex cone  (yellow). This cross section is ex-
tracted  as  in Fig.  2.  The  experimental  bounds,  marginalized
over the dimension-6 coefficients,  are displayed by the green
region.  The  blue,  brown,  red,  and  black  dots  represent  the

, ,  , and  vectors, respectively. We
refer to the text for more details.
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C⃗0 = 0.  In  this  context,  the  bounds  on  the  dimension-6
Wilson  coefficients  are  conventionally  interpreted  as
bounds on the BSM mass scales and couplings, such as

MD

gD
⩾ 16 TeV,

MML

gML

⩾ 17 TeV, . . . (54)

Whilst  these  are  rather  strong  bounds,  they  can  only
be derived under very specific UV-model assumptions in
which the SM is supplemented by a single heavy particle
at a time. Therefore, they can easily be relaxed by consid-
ering  more  complicated  models  so  that  this  one-particle
interpretation is only useful for a top-down approach im-
posing a clear BSM setup in the UV. However, from the
perspective of testing the SM, this is still  insufficient,  as
one can never neither exclude the existence of any given
class of BSM states, nor confirm the SM itself. There are
indeed  models  whose  dimension-6  coefficients  feature
cancellations or are suppressed for various reasons.

Dimension-8  positivity  instead  provides  a  chance  to
exclude the potential existence of any class of UV states
universally in  a  bottom-up  way,  hence  without  any  spe-
cific model assumptions.  Focusing on the ILC-1000 col-
lider, we extract bounds by using the same approach as in
the  previous  example  and  present  the  results  in Table  5,
together with  the  model-dependent  one-particle  dimen-
sion-6 bounds. As expected, the universal bounds extrac-
ted from  the  positive  nature  of  the  dimension-8  coeffi-
cient parameter space are weaker than the one-particle di-
mension-6  bounds.  However,  they  are  still  much  higher
than the collider energy of 1 TeV. Assuming that no devi-
ations from the SM would be observed at  the ILC-1000,
these  bounds  will  allow  for  the  exclusion  of  any  UV
model featuring all types of states up to certain scales. In
contrast to the dimension-6 case, it will not be possible to

remove those constraints by adding or arranging the prop-
erties  of  other  states,  unless  the  latter  is  done  in  a  way
that violates the positivity bounds.

In  summary,  studying  dimension-8  operators  in  the
context  of  future  high-precision  machines  will  pave  the
way  for  universal  exclusions  of  entire  classes  of  BSM
theories  by  forbidding  the  existence  of  specific  types  of
new states in the UV. Moreover, null BSM search results
will  eventually  allow  for  the  confirmation  of  the  SM  at
scales  much  higher  than  the  collider  energies,  providing
the  dimension-8  operators  a  special  role  in  the  precision
test of the SM.

VI.  SUMMARY

e4D2

In this study, we have investigated the positivity fea-
tures  of  the  dimension-8  four-electron  operators.  We
have, in particular, derived the complete set of positivity
bounds  for  the  class  of  operators  using  the  elastic
scatterings of states with arbitrary superpositions. There-
fore, we have reproduced, by using a different approach,
the results of Ref.  [3], the latter having been derived us-
ing  the  extremal  representation  of  dimension-8  positive
convex cones. We have then investigated two phenomen-
ological  aspects  of  four-electron  positivity  at  future
lepton colliders.

The first is the possibility of probing positivity viola-
tions, which,  if  present,  will  revolutionize  our  under-
standing of the fundamental pillars of QFT or the S-mat-
rix  theory.  Practically,  it  would  provide  very  important
information  for  model  building.  We  have  proposed  a
model-independent quantification of the amount of viola-
tion and  discussed  the  implications  of  positivity  viola-
tions  in  terms  of  breaking  the  axiomatic  properties  of
QFT and  paving  the  way  for  non-standard  UV  comple-
tions of the SM. We have observed that positivity viola-
tion  at  scales  of  order  1 –10  TeV  can  potentially  be
probed by all future lepton collider projects currently dis-
cussed  within  the  high-energy  physics  community.  This
includes the CEPC, FCC-ee, ILC (with a possible energy
upgrade), and CLIC colliders. At each collider, positivity
violation effects can be probed up to scales of a factor of
a few higher than the highest expected collider center-of-
mass energy, regardless of the presence of any four-elec-
tron  dimension-6  operators.  This  suggests  an  important
and  novel  avenue  for  testing  the  fundamental  principles
of QFT at future lepton colliders. If their violation is ob-
served, a more tailored description for the violated effect
may be designed, and results could be improved through
further model-specific studies.

The second  aspect  of  our  study  is  that,  if  the  funda-
mental  principles  of  QFT  hold  in  the  UV,  the  positive
nature  of  the  dimension-8  coefficient  space  allows  us  to
infer the existence of new states at the UV scales directly
and characterize  their  quantum  numbers  from  measure-

λmax

Table 5.    Bounds imposed on the existence of a particle spe-
cies X, assuming the absence of BSM physics. The bounds are
provided as  limits  on  model-dependent  one-particle  exten-
sions of the SM extracted from a fit of the dimension-6 coeffi-
cients (second column),  as well  as universal  and model-inde-
pendent  bounds  on  a  given  particle  species X derived  from
positivity. The latter are expressed in terms of the  quant-
ity of Eq. (50) (third column) and in terms of the new physics
masses and couplings (fourth column).

X MX/gX λmax MX/
√

gX

D ⩾ 16 TeV 0.0076 ⩾ 3.4 TeV

ML ⩾ 17 TeV 0.0053 ⩾ 3.7 TeV

MR ⩾ 17 TeV 0.0054 ⩾ 3.7 TeV

V′ ⩾ 23 TeV 0.0056 ⩾ 3.7 TeV

κ = 1V (with ) ⩾ 28 TeV 0.0041 ⩾ 4.0 TeV

κ = −1V (with ) ⩾ 21 TeV 0.0041 ⩾ 4.0 TeV
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ments.  Conversely,  it  allows for  the  exclusion  of  certain
particles up  to  scales  depending  on  the  future  measure-
ment  precision.  This  originates  from several  concepts  in
convex geometry and can be achieved without any BSM
model  assumption,  in  contrast  to  the  conventional
SMEFT interpretation truncated at  the dimension-6 level
that always requires a specific model assumption. There-
fore, while a dimension-6-level approach is useful mostly
for a top-down investigation of any given model,  the di-
mension-8-level  one  is  as  important,  as  it  provides  the
possibility of  setting  model-independent  bounds  on  cer-
tain types of particles in the UV, or in other words, solv-
ing the inverse problem. We have demonstrated this point
with realistic examples, using projected measurements at
the ILC with an energy upgrade at 1 TeV. In particular, if
no deviation from the SM is observed, we have explicitly
shown  how the  existence  of  any  type  of  heavy  particles
up to  scales  much  higher  than  ILC  energies  can  be  ex-
cluded,  regardless  of  the  UV model  setup,  thanks  to  the
requirement  that  any  UV  completion  of  the  SM  has  to
satisfy  positivity.  This  underlines  a  major  difference
between dimension-6 and dimension-8 operators (or the s
and  term in the amplitude). While one can design UV-
complete models that result in vanishing dimension-6 op-
erators  due  to  accidental  cancellations  or  for  symmetry
reasons  (which  makes  it  impossible  to  exclude  reliably
the  presence  of  specific  states  in  the  UV),  this  does  not
hold at the dimension-8 level.  By virtue of the positivity
bounds,  the  dimension-8  operators  are  not  allowed  to
vanish if the theory features extra states in the UV.

Consequently,  it  is  crucial  to  plan  a  comprehensive
study of the dimension-8 operator effects, not only at the
theoretical level but also at the experimental level.

Note  added: After  this  paper  appeared  on  the  arXiv
and  was  sent  to Chin.Phys.C,  Ref.  [72]  appeared  on  the
arXiv.  Its  authors  studied  “explicit  positivity  bounds  on
dimension-six fermionic operators in the SMEFT.” Their
results contrast with our observation in Section IV, where

by  explicitly  integrating  out  all  particle  species  in Table
1, we  observed  that  any  measured  dimension-6  coeffi-
cient values  could  yield  an  infinite  number  of  UV com-
pletions. Therefore, no bound exists. This difference from
the  results  of  Ref.  [72] arises  from  neglecting  the  exist-
ence of new vector bosons in a UV completion.
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APPENDIX A: POSITIVITY BOUNDS FROM
ELASTIC SCATTERINGS

f1 f2

Here, we present details about how to obtain positiv-
ity  bounds  from the  elastic  scattering  of  two superposed
states  and  defined by

f1,2 ≡ ϵi1,2Fi with Fi ≡ (eR,eL, νL, ēR, ēL, ν̄L) , (A1)

ϵ1,2where  are arbitrary  complex  six-vectors  and  the  in-
dex i is summed over. We need to “scan” the full project-
ive space of these vectors to exhaust all  possible bounds
and identify the most constraining ones.

f1 f2→ f1 f2
f1,2 f i

L
f i
R

First, we  show that  mixings  between  fields  with  dif-
ferent chiralities do not provide any new bounds. To this
end, we consider a forward scattering , where

 consist  of  admixtures  of  left-handed  fields  and
right-handed fields ,

f1,2 ≡ ai
1,2 f i

L +bi
1,2 f i

R . (A2)

The amplitude can be decomposed as

M( f1 f2→ f1 f2) =ai
1ak†

1 a j
2al†

2 M( f i
L f j

L→ f k
L f l

L)+bi
1bk†

1 b j
2bl†

2 M( f i
R f j

R→ f k
R f l

R)

+ai
1ak†

1 b j
2bl†

2 M( f i
L f j

R→ f k
L f l

R)+bi
1bk†

1 a j
2al†

2 M( f i
R f j

L→ f k
R f l

L)

+ai
1bk†

1 a j
2bl†

2 M( f i
L f j

L→ f k
R f l

R)+bi
1ak†

1 b j
2al†

2 M( f i
R f j

R→ f k
L f l

L)

+ai
1bk†

1 b j
2al†

2 M( f i
L f j

R→ f k
R f l

L)+bi
1ak†

1 a j
2bl†

2 M( f i
R f j

L→ f k
L f l

R), (A3)

where once again, any repeated index is summed over. In
this expression, the penultimate row vanishes because all
the  considered  operators  conserve  chirality.  Therefore,
the involved fermions cannot flip chirality without a mass
factor,  and  these  contributions  do  not  contribute  to  the
positivity bounds obtained by performing a second-order
s-derivative of the amplitude. Moreover, the last row van-
ishes because  of  the  conservation  of  the  angular  mo-

mentum  in  the  forward  limit.  Thus,  only  the  first  two
rows are nonzero, and each remaining contribution is in-
dividually  elastic.  They  can  then  be  considered  one  by
one,  and they correspond to the four forward and elastic
scattering matrix elements,

M( f1,R f2,R→ f1,R f2,R), (A4)
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M( f1,L f2,L→ f1,L f2,L), (A5)

M( f1,R f2,L→ f1,R f2,L), (A6)

M( f1,L f2,R→ f1,L f2,R), (A7)

fn,L ≡ an
1 f i

L fn,R ≡ bn
1 f i

R n = 1,2where  and  ( )  represent  the
superpositions  of  left-handed  fermions  and  right-handed
fermions  only,  respectively.  The  positivity  bounds  are
then  fully  encoded  in  the  scattering  amplitudes  of  these
fields,  which  have  a  definite  chirality.  Such  a  feature  is
typical  of  four-fermion  scattering  in  the  SMEFT.  In
contrast,  it  does  not  hold  for  vector  boson  scattering,  as
there  is  no  associated  chirality  conservation  law  in  the
SMEFT.

s↔ u

To investigate the amplitudes in Eqs.  (A4)–(A7),  we
utilize  the  crossing  symmetry  that  shows  that  Eqs.  (A4)
and (A5), as well as Eqs. (A6) and (A7), are equal.  Fur-
thermore,  Eqs.  (A4)  and  (A6)  are  related  by  an 
crossing,

M( f1,R f2,R→ f1,R f2,R) =Css2+Ctt2+Cuu2, (A8)

M( f1,R f2,L→ f1,R f2,L) =Csu2+Ctt2+Cus2, (A9)

Cs,t,u
t→ 0 u2 = s2

Cs+Cu > 0

where  denote  generic  coefficients.  Since  in  the
 limit, ,  all  four amplitudes lead to the same

positivity  bound . Thus,  it  is  sufficient  to  fo-
cus on only one of the four cases.

M( f1,R f2,R→ f1,R f2,R)
fR

eR ēL ν̄L

Hence,  we  consider  the  amp-
litude.  In the current problem, the right-handed  fields
consist of mixtures of , , and ,

fn,R = aneR+bnēL + cnν̄L for n = 1,2, (A10)

an,bn,cnwhere  are arbitrary complex numbers. Using the
results presented in Appendix B, the second-order deriv-
ative of the amplitude w.r.t. s is determined to be

1
2

d2

ds2 M( f1,R f2,R→ f1,R f2,R) =

A fA+B fB+C fC +D fD+E fE , (A11)

fA fB fC fD fEwhere the quantities , , ,  , and  are given by

fA=−4C1,

fB=2C2+C3,

fC =−4(C4+C5),

fD=−8C5,

fE =C3, (A12)

and the parameters A, B, C, D, and E are

A = |a1a†2|
2,

B = 2ℜ(a1a†2)(x⃗† ·y⃗),

C =
∣∣∣x⃗ · y⃗†∣∣∣2 ,

D =
∣∣∣x⃗× y⃗

∣∣∣2 ,
E = |a1|2

∣∣∣⃗y∣∣∣2+ |a2|2
∣∣∣x⃗∣∣∣2 . (A13)

x⃗ y⃗In  these  expressions,  the  vectors  and  and  their
various dot and cross products are defined as

x⃗ ≡ (b1,c1), y⃗ ≡ (b2,c2),
u⃗ · v⃗ ≡ u1v1+u2v2, u⃗× v⃗ ≡ u1v2−u2v1 . (A14)

The positivity bounds arise from the requirement that
Eq. (A11) be positive for all possible values of the para-
meters A, B, C, D, and E . It can be observed that

A > 0, C > 0, D > 0. (A15)

In addition,

|B|=2
∣∣∣∣ℜ(a1a†2)

(
x⃗† ·y⃗

)∣∣∣∣<2
∣∣∣∣a1a†2

∣∣∣∣ ∣∣∣x⃗† ·y⃗∣∣∣=2
√

AC, (A16)

and

E= |a1|2
∣∣∣⃗y∣∣∣2+|a2|2

∣∣∣x⃗∣∣∣2>2|a1|
∣∣∣⃗y∣∣∣ |a2|

∣∣∣x⃗∣∣∣=2
√

A(C+D), (A17)

C+D =
∣∣∣x⃗∣∣∣2 ∣∣∣⃗y∣∣∣2where we have used .

an bn cn ϕ =

cos−1 B

2
√

AC
r > 1 r2+ r−2 = E/

√
A(C+D

an bn cn

We  must  then  show  that,  for  each  set  of  parameters
A, B, C, D, and E that  satisfy  the  inequalities  of
Eqs.  (A15) –(A17),  there  exists  a  corresponding  set  of
coefficients ,  , and  . This is achieved by introducing 

 and  such  that .

Then, at least the following values for ,  , and  can
be determined:

a1 =rA1/4eiϕ,

a2 =r−1A1/4,

(b1,c1) =
4
√

C+D(1,0),

(b2,c2) =
4
√

C+D
(

C1/2

(C+D)1/2 ,
D1/2

(C+D)1/2

)
. (A18)

Therefore, we conclude that the positivity bounds re-
quire that

f ≡ A fA+B fB+C fC +D fD+E fE > 0, (A19)
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A,B,C,D,Efor any  that are real and that satisfy

A > 0, C > 0, D > 0,

−2
√

AC < B < 2
√

AC,

2
√

A(C+D) < E. (A20)

Equivalently, this implies that the function f has a minim-
um  in  the  domain  defined  by  Eq.  (A20),  and  that  this
minimum is  positive.  The  existence  of  a  minimum  im-
plies that

fD > 0, fE > 0. (A21)

|B|

B→−sign( fB)2
√

AC E→2
√

A(C+D)

Moreover,  as  has  an  upper  bound and E has  a  lower
bound, the minimum of f obtained by varying B and E is
realized by  and . In
other words,

f > fBE ≡A fA+C fC −2| fB|
√

AC+D fD

+2
√

A(C+D) fE . (A22)

fD > 0
D→ 0

Since ,  we  could  further  decrease  this  function  by
taking ,

f > fBED = A fA+2( fE − | fB|)
√

AC+C fC . (A23)

A,C > 0
Finally, the minimal value of the above function has to be
positive for any , so that

fA > 0, fC > 0, (A24)

fE > | fB| or fA fC > (| fB| − fE)2. (A25)

The last of which is equivalent to√
fA fC > fB− fE and

√
fA fC > − fB− fE . (A26)

Combining the inequalities of Eqs. (A21), (A24), and
(A26)  and  plugging  in  the  actual  Wilson  coefficients
from Eq.  (A12),  we obtain  the  positivity  bounds of  Eqs.
(7)–(12).

APPENDIX B: AMPLITUDES USED FOR DERIV-
ING POSITIVITY BOUNDS

M(eReR→ eReR) = −4s2C1

M(eReL→ eReL) =C3(s+ t)2+2tC2(s+ t)

M(eReL→ eLeR) =C3t2+2(s+ t)C2t

M(eRνL→ eRνL) =C3(s+ t)2+2tC2(s+ t)

M(eRνL→ νLeR) =C3t2+2(s+ t)C2t

M(eRēR→ eRēR) = −4(s+ t)2C1

M(eRēR→ eLēL) = t2C3−2stC2

M(eRēR→ νLν̄L) = t2C3−2stC2

M(eRēR→ ēReR) = −4t2C1

M(eRēR→ ēLeL) =C3(s+ t)2+2sC2(s+ t)

M(eRēR→ ν̄LνL) =C3(s+ t)2+2sC2(s+ t)

M(eRēL→ eRēL) = s2C3−2stC2

M(eRēL→ ēLeR) =C3s2+2(s+ t)C2s

M(eRν̄L→ eRν̄L) = s2C3−2stC2

M(eRν̄L→ ν̄LeR) =C3s2+2(s+ t)C2s

M(eLeR→ eReL) =C3t2+2(s+ t)C2t

M(eLeR→ eLeR) =C3(s+ t)2+2tC2(s+ t)

M(eLeL→ eLeL) = −4C4s2−4C5s2

M(eLνL→ eLνL) = 4stC4−4s(2s+3t)C5

M(eLνL→ νLeL) = 4s(s+3t)C5−4s(s+ t)C4

M(eLēR→ eLēR) = s2C3−2stC2

M(eLēR→ ēReL) =C3s2+2(s+ t)C2s

M(eLēL→ eRēR) = t2C3−2stC2

M(eLēL→ eLēL) = −4C4(s+ t)2−4C5(s+ t)2

M(eLēL→ νLν̄L) = 4(s−2t)(s+ t)C5−4s(s+ t)C4

M(eLēL→ ēReR) =C3(s+ t)2+2sC2(s+ t)

M(eLēL→ ēLeL) = −4C4t2−4C5t2

M(eLēL→ ν̄LνL) = 4stC4−4t(3s+2t)C5

M(eLν̄L→ eLν̄L) = −4t(s+ t)C4−4(2s− t)(s+ t)C5

M(eLν̄L→ ν̄LeL) = 4t(3s+ t)C5−4t(s+ t)C4

M(νLeR→ eRνL) =C3t2+2(s+ t)C2t

M(νLeR→ νLeR) =C3(s+ t)2+2tC2(s+ t)
M(νLeL→ eLνL) = 4s(s+3t)C5−4s(s+ t)C4

M(νLeL→ νLeL) = 4stC4−4s(2s+3t)C5

M(νLνL→ νLνL) = −4C4s2−4C5s2

M(νLēR→ νLēR) = s2C3−2stC2

M(νLēR→ ēRνL) =C3s2+2(s+ t)C2s

M(νLēL→ νLēL) = −4t(s+ t)C4−4(2s− t)(s+ t)C5

M(νLēL→ ēLνL) = 4t(3s+ t)C5−4t(s+ t)C4

M(νLν̄L→ eRēR) = t2C3−2stC2

M(νLν̄L→ eLēL) = 4(s−2t)(s+ t)C5−4s(s+ t)C4

M(νLν̄L→ νLν̄L) = −4C4(s+ t)2−4C5(s+ t)2

M(νLν̄L→ ēReR) =C3(s+ t)2+2sC2(s+ t)
M(νLν̄L→ ēLeL) = 4stC4−4t(3s+2t)C5

M(νLν̄L→ ν̄LνL) = −4C4t2−4C5t2
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M(ēReR→ eRēR) = −4t2C1

M(ēReR→ eLēL) =C3(s+ t)2+2sC2(s+ t)

M(ēReR→ νLν̄L) =C3(s+ t)2+2sC2(s+ t)

M(ēReR→ ēReR) = −4(s+ t)2C1

M(ēReR→ ēLeL) = t2C3−2stC2

M(ēReR→ ν̄LνL) = t2C3−2stC2

M(ēReL→ eLēR) =C3s2+2(s+ t)C2s

M(ēReL→ ēReL) = s2C3−2stC2

M(ēRνL→ νLēR) =C3s2+2(s+ t)C2s

M(ēRνL→ ēRνL) = s2C3−2stC2

M(ēRēR→ ēRēR) = −4s2C1

M(ēRēL→ ēRēL) =C3(s+ t)2+2tC2(s+ t)

M(ēRēL→ ēLēR) =C3t2+2(s+ t)C2t

M(ēRν̄L→ ēRν̄L) =C3(s+ t)2+2tC2(s+ t)

M(ēRν̄L→ ν̄LēR) =C3t2+2(s+ t)C2t

M(ēLeR→ eRēL) =C3s2+2(s+ t)C2s

M(ēLeR→ ēLeR) = s2C3−2stC2

M(ēLeL→ eRēR) =C3(s+ t)2+2sC2(s+ t)

M(ēLeL→ eLēL) = −4C4t2−4C5t2

M(ēLeL→ νLν̄L) = 4stC4−4t(3s+2t)C5

M(ēLeL→ ēReR) = t2C3−2stC2

M(ēLeL→ ēLeL) = −4C4(s+ t)2−4C5(s+ t)2

M(ēLeL→ ν̄LνL) = 4(s−2t)(s+ t)C5−4s(s+ t)C4

M(ēLνL→ νLēL) = 4t(3s+ t)C5−4t(s+ t)C4

M(ēLνL→ ēLνL) = −4t(s+ t)C4−4(2s− t)(s+ t)C5

M(ēLēR→ ēRēL) =C3t2+2(s+ t)C2t

M(ēLēR→ ēLēR) =C3(s+ t)2+2tC2(s+ t)

M(ēLēL→ ēLēL) = −4C4s2−4C5s2

M(ēLν̄L→ ēLν̄L) = 4stC4−4s(2s+3t)C5

M(ēLν̄L→ ν̄LēL) = 4s(s+3t)C5−4s(s+ t)C4

M(ν̄LeR→ eRν̄L) =C3s2+2(s+ t)C2s

M(ν̄LeR→ ν̄LeR) = s2C3−2stC2

M(ν̄LeL→ eLν̄L) = 4t(3s+ t)C5−4t(s+ t)C4

M(ν̄LeL→ ν̄LeL) = −4t(s+ t)C4−4(2s− t)(s+ t)C5

M(ν̄LνL→ eRēR) =C3(s+ t)2+2sC2(s+ t)
M(ν̄LνL→ eLēL) = 4stC4−4t(3s+2t)C5

M(ν̄LνL→ νLν̄L) = −4C4t2−4C5t2

M(ν̄LνL→ ēReR) = t2C3−2stC2

M(ν̄LνL→ ēLeL) = 4(s−2t)(s+ t)C5−4s(s+ t)C4

M(ν̄LνL→ ν̄LνL) = −4C4(s+ t)2−4C5(s+ t)2

M(ν̄LēR→ ēRν̄L) =C3t2+2(s+ t)C2t

M(ν̄LēR→ ν̄LēR) =C3(s+ t)2+2tC2(s+ t)
M(ν̄LēL→ ēLν̄L) = 4s(s+3t)C5−4s(s+ t)C4

M(ν̄LēL→ ν̄LēL) = 4stC4−4s(2s+3t)C5

M(ν̄Lν̄L→ ν̄Lν̄L) = −4C4s2−4C5s2

(B1)
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