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ABSTRACT: We study the mechanism of topological mass-generation for 3d Chern-Simons
(CS) gauge theories, where the CS term can retain the gauge symmetry and make gauge
boson topologically massive. Without CS term the 3d massless gauge boson has a single
physical transverse polarization state, while adding the CS term converts it into a mas-
sive physical polarization state and conserves the total physical degrees of freedom. We
formulate the mechanism of topological mass-generation at S-matrix level. For this, we
propose and prove a Topological Equivalence Theorem (TET) which connects the N-point
scattering amplitude of the gauge boson’s physical polarization states (Af) to that of the
transverse polarization states (A%) under high energy expansion. We present a general 3d
power counting method on the leading energy dependence of the scattering amplitudes in
both topologically massive Yang-Mills (TMYM) and topologically massive gravity (TMG)
theories. With these, we uncover a general energy cancellation mechanism for N-gauge
boson scattering amplitudes which predicts the cancellation E* — E*™N at tree level.
Then, we compute the 4-gauge boson amplitudes of Af-states and Af-states, with which
we explicitly demonstrate the TET and establish such energy cancellations for N = 4. We
further extend the double-copy approach to reconstruct the massive 4-graviton amplitude
of TMG from the massive 4-gauge boson amplitude of TMYM. With these, we uncover
striking large energy cancellations in the 4-graviton amplitude: E'?> — E', and establish its
correspondence to the leading energy cancellation E* — E° in the 4-gauge boson amplitude
of TMYM.
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1 Introduction

Chern-Simons gauge theories in (2+1)-dimensional (3d) spacetime play an important role
in studying modern quantum field theories for particle physics and condensed matter
physics [1-4]. Such 3d theories can always contain gauge-invariant mass terms of gauge



bosons through the topological mass-generation a la Chern-Simons (CS) [5], without in-
voking the conventional Higgs mechanism [6-10]! in the 4d standard model (SM).

In this work, we study the dynamics of 3d topological mass-generation for the (Abelian
and non-Abelian) gauge bosons Aj,. A spin-1 massless gauge boson in 3d contains only one
physical degree of freedom (DoF') which is the transversely polarized state A%. Including
the gauge-invariant topological CS term converts this massless transverse polarization state
A% into a massive physical state Af. We formulate this 3d topological mass-generation
mechanism at S-matrix level. For this, we propose and prove a Topological Equivalence
Theorem (TET) which connects the N-point scattering amplitudes of the physical polariza-
tion states of massive gauge bosons (Af) to the scattering amplitudes of the corresponding
transversely polarized gauge boson states (Af) under high energy expansion. This differs
essentially from the conventional equivalence theorem (ET) (for a comprehensive review
of the 4-dimensional ET, [12]) in the 4d SM because the 3d gauge bosons acquire gauge-
invariant topological mass-term without invoking the conventional Higgs mechanism [6-10].
We note that the Kaluza-Klein ET for compactified gauge theories (KK GAET) [13-16]
was formulated for the compactified 5d Yang-Mills theories which realize a geometric Higgs
mechanism with the 5th component of 5d gauge field converted to the longitudinal com-
ponent of the corresponding 4d massive KK gauge boson. But our TET also has essential
difference from the KK GAET, because the 5d gauge symmetry is spontaneously broken
by compactification down to the 4d residual gauge symmetry of the massless zero-modes
and the induced KK gauge boson mass-term is not gauge-invariant. In contrast, the 3d CS
term for the topological mass-generation of gauge bosons can be manifestly gauge-invariant
and the 3d gauge symmetry is unchanged before and after including the CS term.

We present a general 3d power counting method to count the leading energy-power de-
pendence of the scattering amplitudes in both topologically massive Yang-Mills (TMYM)
theory and topologically massive gravity (TMG) theory. Using the TET and power count-
ing method for the 3d TMYM theory, we uncover that despite the individual diagrams in
a given N-particle scattering amplitude (N > 4) of on-shell physical gauge bosons having
leading energy dependence of E* at tree level, they have to cancel down to E4 in the
full tree-level amplitude. We will demonstrate that the TET provides a general theoretical
mechanism to guarantee such nontrivial energy cancellations: E* — E*~N without invok-
ing any conventional Higgs boson. For the massive 4-gauge boson scattering amplitudes at
tree level, we will prove explicitly the large energy cancellations of E4 — E? under high
energy expansion.

Furthermore, using the scattering amplitude of topologically massive gauge bosons in
the 3d TMYM theory, we will reconstruct the topologically massive graviton scattering
amplitude of the 3d TMG theory, by extending the conventional double-copy method of
Bern-Carrasco-Johansson (BCJ) [17-19] for massless gauge/gravity theories to the current
3d topologically massive gauge/gravity theories. The BCJ method was inspired by the
Kawai-Lewellen-Tye (KLT) [20] relation which connects the product of open string ampli-

The conventional Higgs mechanism [6-10] is sometimes also called Brout-Englert-Higgs (BEH) mecha-
nism or Anderson-Higgs mechanismin the literature (cf. [11], its part IV.6).



tudes to that of the closed string at tree level. Analyzing the properties of the heterotic
string and open string amplitudes can prove and refine parts of the BCJ conjecture [21].
Many studies appeared in the literature to test the double-copy conjecture in massless
gauge/gravity field theories [19], and some recent works attempted to extend the double-
copy method to the 4d massive YM theory versus Fierz-Pauli-like massive gravity [22-25],
to the KK-inspired effective gauge theory with extra global U(1) [26], and to the compacti-
fied 5d KK gauge/gravity theories and KK string theories [27, 28]. Double-copies of three-
and two-algebra gauge theories were considered previously for the 3d supersymmetric the-
ories [29-31], and some double-copy analyses for the amplitudes with matter fields in 3d
CS gauge theory as well as the study of 3d covariant color-kinematics duality appeared
very recently [32-34].

We stress that the topological mass-generation for gauge bosons and gravitons in the
3d TMYM and TMG theories can be realized in a fully gauge-invariant way under the path
integral formulation, which is important for the successful double-copy construction in the
massive gauge/gravity theories. In this work, we will use an extended double-copy approach
to reconstruct the massive 4-graviton amplitude of the TMG theory from the corresponding
massive 4-gauge boson amplitude of the TMYM theory with properly improved kinematic
numerators. Our findings demonstrate a series of strikingly large energy cancellations,
E' — E', in the massive 4-graviton amplitude under high energy expansion. With these
we establish a new correspondence between the two types of leading energy cancellations in
the massive scattering amplitudes: E* — E° in the TMYM theory and E'> — E' in the
TMG theory.

This paper is organized as follows. In section 2, we study the mechanism of the
topological mass-generation in the 3d CS gauge theories at the Lagrangian level via path
integral formulation. We identify the conversion of transverse polarization state Af in
the massless theory into the massive physical polarization state A% under the topological
mass-generation of the CS gauge theories. In section 3.1, we propose and prove the TET
which connects the N-point Ag-amplitudes to the corresponding A%-amplitudes under high
energy expansion. Using the TET, we can formulate the mechanism of topological mass-
generation at S-matrix level. Then, in section 3.2, we present the general 3d power counting
rules on the leading energy dependence of the scattering amplitudes in both the CS gauge
theories and the TMG theory. Using the TET and the power counting rule, we prove
in section 3.3 a general energy cancellation mechanism for the N-gauge boson scattering
amplitudes which predicts the cancellation E* — E4~N at tree level. For sections 4.1-4.2,
we first compute the 4-point matter-induced gauge boson amplitudes, and then compute
the pure 4-gauge boson amplitudes for the Ap-states and Af-states in the Abelian and
non-Abelian CS gauge theories. These analyses explicitly demonstrate the TET for the
case of N = 4, and establish the energy cancellations E? — E in the 4-point amplitudes
with just two gauge bosons (either Abelian or non-Abelian CS theories) and the energy
cancellations B4 — EY in the 4-gauge boson amplitudes (TMYM theory). In section 4.3,
we analyze the perturbative unitarity bounds for both the TMYM theory and the TMG
theory. We demonstrate that their partial wave amplitudes can exhibit good high energy
behaviors. In section 5, we further extend the double-copy approach to reconstruct the



massive 4-graviton amplitude of the TMG from the massive 4-gauge boson amplitude of
the TMYM. With these, we uncover strikingly large energy cancellations in the 4-graviton
amplitude: F'?2 — E', and establish its correspondence to the leading energy cancellation
E* — EY in the massive 4-gauge boson amplitude of the TMYM. We conclude in section 6.
Finally, we provide more derivations and formulas in appendices A—E which are used for
the analyses in the main text.

2 Topological mass generation in Chern-Simons gauge theories

We consider the 3d topological massive gauge theories including the Chern-Simons (CS)
Lagrangian with Abelian or non-Abelian gauge symmetry, where the former may be de-
noted as Topologically Massive QED (TMQED) and the latter as Topologically Massive
Yang-Mills (TMYM) theory. In either case, the CS Lagrangian provides a gauge-invariant
topological mass-term for the 3d gauge bosons. The 3d TMQED and TMYM Lagrangians
have their gauge sectors take the following forms:

1 1_
Lovigep = —iFilj + imé‘“ypAH@uAp, (2.1a)
1 2 ~ VP 129
LovyM = _QtrF,uu —+ mer“Ftr AME)VAP — ?AMA,,A/) , (2.1b)

where the non-Abelian gauge field A, = AT, and its field strength ¥, = Fjj, T with
F,. =0,A, —0,A, — ig[Au, A,] and T denotes the generator of the non-Abelian group
SU(N). The gauge coupling g has mass-dimension % The gauge boson acquires a topolog-
ical mass m = |m| from the CS term, and the ratio s = m/m = %1 corresponds to its spin
projection [1-3]. The mass parameter m is related to the CS level n = 47wm/g? € Z [3, 4].
The CS terms in eq. (2.1) violate the discrete symmetries P, T and C'P.

For the TMQED (2.1a), the action [ d?’xETMQED is gauge-invariant up to a total
derivative which vanishes at the boundary for trivial topology. For the TMYM the-
ory (2.1b), under the gauge transformation A, = AL = U_lANU + éU‘lﬁﬂU, the action
changes by

AStamyMm = 2mnw + /de [img_ls“”p&,tr ((%UU_IAPH , (2.2a)

w =

1 e ~ B
24772/01%[5“ “tr(U19,U019,UU19,U) |, (2.2b)

where w is the winding number which follows from the homotopy group II3[SU(N)] = Z [4].

i2rnw _ 1, and the second

Hence, eq. (2.2a) will not contribute to the path integral since e
term is a total derivative (similar to the Abelian case).
With the path integral formulation, we can add the covariant gauge-fixing term and

the Faddeev-Popov ghost term:

1 a2 a a
Lop = =3 (F)%  Fr =04, (2.3a)
Lpp = 0" (570, — gC™eAz) &, (2.3b)



where C%¢ is the gauge group structure constant and (c?, &%) denote the Faddeev-Popov
ghost and anti-ghost fields. Eq. (2.3) can be reduced to the Abelian case by simply setting
C%= 0 and A, = Ay So, hereafter we need not to specify the Abelian case unless needed.
The quantized CS action [d*z(L + Lop + Lpp) is BRST-invariant (Becchi-Rouet-Stora-
Tyutin), with which we can derive the relevant BRST identities.

The equation of motion (EOM) for the massive gauge boson Aj can be derived from
the quadratic part of the CS action,

707 4 (671 = 1)0"0” + metd, | AL =0, (2.4)

which describes the propagation of the free field Ajj. For the on-shell wave solution Af, ~
eu(p)e_ip'x with p#Aj, = 0, the polarization vector should satisfy the equation

(mn™ —1ise"™pp)e, (p) = 0, (2.5)

under the on-shell condition p? = —m? and with s = m/m = £1. The 3d Poincaré group
ISO(2,1) contains the proper Lorentz group SO(2,1) and translations. The little group is
Zo @R for massless particles and SO(2) for massive particles [35]. The Poincaré algebra is
characterized by two Casimir operators (P2, W) = (P, P, P,J"), where W is the Pauli-
Lubanski pseudoscalar and the angular momentum J# can be generally expressed as [36]:

0 sp“ + ntm

JH = _jghve
Pvope  “pn—m’

(2.6)

with n* = (1,0,0). Thus, in the rest frame it gives W = P - J = —sm. We see that the
spin is a pseudoscalar and takes the values s = +1 for gauge fields AZ. The polarization
state with either s = 41 or s = —1 is physically equivalent. (More discussions on the gauge
boson polarization vector are given in appendix A.)

Note that the 3d massless gauge field can be viewed as a scalar field of spin-0 with one
physical degree of freedom (DoF) [35, 36]. Including the CS term does not add any new
field, and the total physical DoF remains as one because the physical DoF of Af, should
be conserved [36, 37]. For the on-shell one-particle state, the 3d massless gauge boson
has a single (transverse) physical polarization state A% = G%AZ. As the physical DoF is
conserved, the CS term could only convert the massless A% state into a massive physical
polarization state Af = ep A%

For the on-shell gauge boson in the rest frame with momentum p* = (m,0,0) = p*,
the physical polarization vector ef(p) can be solved from eq. (2.5):

b(7) = 55(0.1,is), 27)

in agreement with [37, 38]. Then, by making a Lorentz boost we can express ep(p) in the
moving frame:

) 1 <ip1 +5py , pilipi+epy) v +5p2)>7 (2.8)

ep(p) = V2 m m(m — pg) m(m — po)



which agrees with [38] up to an overall factor i. The on-shell physical polarization vector
ek (p) obeys the conditions epef, u= 1 and pue*fg = 0. We can express the general momentum
p* in a familiar form p* = E(1, Bs,, Bcy), where the notations p° = —p, = E, (sp,¢p) =
(sinf,cosf), f = /1 —m?2/E?, and # denotes the angle between the moving direction and

y-axis. With these, we can rewrite the polarization vector (2.8) as follows:

1 - - _
ep(p) = —=(EB, Esy +iscy, Ecy — iss), (2.9)
V2
where E = E/m and we have removed an irrelevant overall phase factor. Inspecting
the structure of the physical polarization vector (2.9), we derive the following general
decomposition:

1
eh = — (el + €', 2.10
b= (e ed) (210)
which contains the transverse and longitudinal polarization vectors (el €]') of the massive
gauge boson Af, )
er = (0,iscy, —issg), € = E(B, 89,¢9)- (2.11)

Thus, we have the relation for the on-shell polarization states of Aj:

1

A = — (A% + A7 2.12
P \/§ ( T L) ) ( )
where (Ag, A%, Af) = (ep, €, e )A%. The gauge boson A? also has an unphysical scalar
polarization state A% = egAz with Eg = p*/m. It is important to note that the polarization
vectors (e, €], €4) are all enhanced by energy and scale as O(E/m) under the high energy
expansion. The 3d gauge boson Af, has 3 possible polarization states in total, including
1 physical polarization and 2 unphysical polarizations. In the massless case (m = 0), Aj
contains 1 physical transverse polarization state AT = G%Az and 2 unphysical (longitudi-
nal,scalar) polarization states (Af, Ag) = (ef A%, egAf) with ef + eg o< p#; while for the
massive case with CS term (m # 0), A, includes 1 physical polarization state Af as in

eq. (2.12) and 2 orthogonal unphysical polarization states

1

A = egAZ, (2.13Db)

where ek = (e — €f')/v/2 and € = p”/m which obey the orthogonal conditions ep - € =

e€p - €§ = €x - €5 = 0. We see that adding the CS term for gauge boson Aj, dynamically
generates a new physical polarization state Af of spin-1 (which has mass m and is composed
of A%+ Af ), and converts its orthogonal combination A% o (A% — Af) into the unphysical
state, while the scalar-polarization state A§ = egAZ (with €f o< p*) remains unphysical as
constrained by the gauge-fixing function F* = —ip*Af in eq. (2.3a).

The above mechanism of 3d topological mass-generation might be called a “topo-
logical Higgs mechanism” to resemble the dynamical conversion of (Af + Af) into the
massive physical state A of the gauge field A}, while making the orthogonal combination



% o (A% — Af) be an unphysical “Goldstone boson” state. However, we stress that this
mechanism of topological mass-generation of gauge bosons differs from the conventional
Higgs mechanism [6-10] in essential ways: (i)topological CS mass-term automatically holds
the exact gauge symmetry in the path integral formulation, without invoking any sponta-
neous gauge symmetry breaking by the vacuum of Higgs potential; (ii)before including the
CS term, the transverse A} is the physical polarization state and is exactly massless as
ensured by the gauge symmetry; while after including the CS term, A% combines with Af
to form the massive physical state A} and makes its orthogonal combination A% become
unphysical; hence there is no spontaneous symmetry breaking invoked to generate massless
Goldstone boson, nor is there any extra physical Higgs boson component; (iii)the massive
physical gauge boson state A% is converted from the massless transverse polarization state

¢ combined with the longitudinal polarization state Af via egs. (2.12) and (2.13a). The

a
n

through the topological conversion A% — A%. Taking the massless limit m — 0, we see

single physical degree of freedom of A% is conserved before and after adding the CS term,
that the massive state Ap disappears and the massless state Af is released to be the
physical transverse polarization, while the longitudinal state A{ becomes fully unphysical
again. As we will demonstrate shortly, in the high energy limit the scattering amplitudes of
the physical polarization states (A%) equal the corresponding amplitudes of the transverse
polarization states (A%.), which means that the A state remembers its origin of A% state
under the limit m/E — 0.

3 Topological equivalence theorem for Chern-Simons gauge theories

As shown above, for the 3d topological gauge theories (2.1), the Chern-Simons (CS) La-
grangian generates a topological mass for gauge boson Aj, by converting the massless
transverse polarization state A% (combined with the longitudinal polarization state A{)
into the massive physical polarization state Af. We will formulate this mechanism of
topological mass-generation at the S-matrix level by proposing a Topological Equivalence
Theorem (TET), which quantitatively connects the scattering amplitudes of A%’s to the
corresponding amplitudes of the A%’s in the high energy limit m/E — 0.

3.1 Topological equivalence theorem for topological mass generation

Inspecting the quantized CS Lagrangians (2.1) and (2.3) and following the method in
refs. [12, 39, 40], we can derive the following Slavnov-Taylor-type identity in momen-
tum space:

(OLF* (p) F*2(pg) - - - F*N (pn) ®[0) = 0, (3.1)

which is based on the 3d gauge symmetry, where F¢ is the gauge-fixing function defined
in eq. (2.3a), and the symbol ® denotes any other on-shell physical fields after the LSZ
(Lehmann-Symanzik-Zimmermann) amputation. Since the function F* contains only a
single gauge field Aj; having no mixing with any other field, it is straightforward to am-
putate each external F¢ line by the LSZ reduction. We impose the on-shell condition
p? = —m? for each external momentum. In the momentum space, we can express the



gauge-fixing function F* = —ip"Af, = —imAg. We also deduce v = ¢f — e = O(m/E).

With eq. (2.10), we can express the scalar polarization vector eg as
ek = V2l — (e +vM). (3.2)
Thus, we derive the following formula for the gauge-fixing function:

Fo = —ivV2m(A% — Q%), (3.3a)
1
V2
where (Ag, A%) = (ep, ep)Af, and v® = vFAY with v = ¢ — ey = O(m/E). With these

and eq. (3.1) after the LSZ reduction, we can derive the following TET identity:

0 = — (A% + %), (3.3b)

T[Aapl,'-- ,AaPN,(I)} =T[Q%, ... Q' &), (3.4)

where we have made use of the fact that an amplitude including one or more external F
lines plus any other external on-shell physical fields (such as A% and/or ®) must vanish
due to the identity (3.1). Thus, we can expand the TET identity as follows:

T[AaP17'” ’A;N’q)} = T[A%la'” ’A%N’q)} +7;)7 (353«)
N

7; — ZT[@M’... 7,l~)aj’ACT‘j+17_.. 7A%N7(I)]7 (3.5b)
j=1

where for convenience we have adopted the notations A"T = %A% and 9% = %v“. Under
the high energy expansion, the residual term behaves as 7, = O(m/E) < 1 due to the
suppression factor v#. Thus, we can derive the Topological Equivalence Theorem (TET):

TIAY o AW B = TIAY, - A%, 3]+ O @Z) , (3.6)
which states that the Af-amplitude equals the corresponding A%-amplitude in the high
energy limit. We note that different from the conventional equivalence theorem (ET) [39-
41)? for the case of the SM Higgs mechanism, the right-hand-side (r.h.s.) of eq. (3.5) or
eq. (3.6) receives no multiplicative modification factor at loop level. This is because in the
present case both A} and A% belong to the same gauge field Aj} and the LSZ reduction on
the left-hand-side (Lh.s.) of eq. (3.1) becomes much simpler.

Finally, we note that our present formulation of the TET (3.6) in the 3d CS gauge
theories differs essentially from the conventional ET [12] in the 4d SM because the 3d gauge
bosons acquire gauge-invariant topological mass-term without invoking the conventional
Higgs mechanism [6-10]. We also note that the KK GAET [13-16] for the compactified
5d Yang-Mills theories formulates the geometric Higgs mechanism at S-matrix level where
the 5th component of 5d gauge field is converted to the longitudinal component of the

2The 4d ET in the presence of the Higgs-gravity interactions was established in refs. [42, 43] which can be
applied to studying cosmological models (such as the Higgs inflation [42-49]) or to testing self-interactions
of weak gauge bosons and Higgs bosons [42, 43, 50].



corresponding 4d massive KK gauge boson. But our TET has essential difference from
the KK GAET because the 5d gauge symmetry is spontaneously broken down to the 4d
residual gauge symmetry of zero-modes by the boundary conditions of compactification and
the induced KK gauge boson mass-term is not gauge-invariant. On the contrary, the 3d CS
term for the topological mass-generation of gauge bosons can be manifestly gauge-invariant,
and the inclusion of CS term does not change the 3d gauge symmetry of the theory.

3.2 Power counting method for 3d Chern-Simons theories

In this subsection, we derive new energy power counting rules on the scattering amplitudes
in the 3d topologically massive gauge and gravity theories. We also present a general
energy power counting rule on the d-dimensional scattering amplitudes in appendix B.

We note that Weinberg proposed a power counting method for the 4d ungauged non-
linear o-model as an effective theory of low energy QCD [51]. The extensions of Weinberg’s
power counting method to the compactified 5d Kaluza-Klein (KK) gauge theories and 5d
KK gravity theory were recently given in ref. [27].> Weinberg’s power counting method
includes the following key points: (i).For an S-matrix element S, its total mass-dimension
Dy is determined by the number of external states (£) and the number of spacetime di-
mensions, Dg = 4 — &, in the 4d field theories. (ii).Consider the scattering amplitude S
having scattering energy F much larger than all the masses of the internal propagators as
well as the masses of the external states. Thus, for the E-independent coupling constants
contained in the amplitude S, their total mass-dimension D, can be counted directly ac-
cording to the type of vertices therein. Based on these, the total energy-power dependence
Dy, of the amplitude S is given by Dy = Dg — D. We note that for our following deriva-
tion in 3d spacetime (or the general derivation in d-dimensional spacetime in appendix B),
we should modify the formula of Dg in point(i) accordingly. As for the point(ii), it should
hold for any high energy scattering with energy E much larger than the involved particle
masses. The nontrivial energy-dependence from the polarization vectors (tensors) of the
gauge bosons (gravitons) can be taken into account accordingly. With these in mind, we
can construct the new power counting rules for the 3d topologically massive gauge and
gravity theories.

Consider a scattering S-matrix element S having £ external states and L loops (L > 0)
in the (2+1)d spacetime. Thus, we can deduce that the amplitude S has a mass-dimension:

Dg=3— %5, (3.7)

where the number of external states £ = E5+Ep, with £5(E) being the number of external
bosonic (fermionic) states. We note that the above eq. (3.7) agrees to the d = 3 case of our
general formula (B.1) in appendix B. For the fermions, we only consider the SM fermions
whose masses are much smaller than the scattering energy E. We denote the number of
vertices of type-j as V;. Each vertex of type-j contains d; derivatives, b; bosonic lines,

3Weinberg’s power counting rule was also extended previously [12, 52] to the 4d gauge theories including
the SM, the SM effective theory (SMEFT), and the electroweak chiral Lagrangian.



and f; fermionic lines. Then, the energy-independent effective coupling constant in the
amplitude S has its total mass-dimension given by

D=3V (3 —d; - %bj — fj) : (3.8)
J

For each Feynman diagram in the scattering amplitude S, we denote the number of the
internal lines as I = Iz + I with I (Ip) being the number of the internal bosonic
(fermionic) lines. Thus, we have the following general relations:

L=1+1-V, > Vibj=2Ip+&z > V;fj=2Ip+E&, (3.9)
j j

where V =3, V; is the total number of vertices in a given Feynman diagram. With these,
we can derive the following leading energy dependence Dy = Dg— D from egs. (3.7)—(3.9):

Dp=21-V)+L+> V, (dj+;fj>. (3.10)
J

Furthermore, we have the following relations:

Zvjdj :Vdv Zvjf] :2VFa V:ZVJ :V3+V4, V3:Vd+VF +V3, (311)
J J J

where V,; denotes the number of all cubic vertices including one partial derivative and Vs
denotes the number of bosonic cubic vertices having no partial derivative.

Then, we consider the topologically massive CS gauge theories. In such gauge theories,
we have the relation 21 + & = 3V5 4 4V,. With these, we can derive the following power
counting rule on the leading energy-power dependence:

Dp=(Es, — &)+ (A —E=Vs) — L, (3.12)

where &€ A, is the number of external gauge boson states with physical polarizations
(Ap = epAf), and &, denotes the number of external gauge bosons v* = v,A%. TIn
eq. (3.12), the terms (SAP — &,) arise from the high energy behaviors e, = O(E/m) and
vt =¢ — ey = O(m/E).

For the sake of later applications, we consider the 3d topologically massive gravity
(TMG) and derive the energy power counting rule for the graviton scattering amplitudes.
The graviton self-interaction vertices from the gravitational CS term (5.1) (cf. section 5)
always contain 3 partial derivatives and contribute to the leading energy dependence of the
graviton scattering amplitudes, which correspond to d; = 3 and fj = 0in eq. (3.10). Thus,
we have >, V,d; = 3V;3 and V = V4 in such leading diagrams, where V,;; denotes the
number of vertices containing 3 partial derivatives. Hence, the leading energy dependence
of the pure graviton scattering amplitudes in (2+1)d arise from the Feynman diagrams
containing the CS graviton vertices with 3 derivatives, and can be derived as follows:
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where &),  denotes the number of external graviton states with physical polarizations (hp =
eph,,,) and the physical graviton polarization tensor scales as ef” = O(E?/m?). For the
leading tree-level diagrams composed of the cubic CS vertices with d; = 3, we derive
a relation &, = 2+ V5. Hence, using eq. (3.13), we can deduce the leading energy

dependence of such tree-level diagrams:
DY, =3&,. (3.14)

For instance, the leading 4-graviton scattering amplitudes of the TMG theory contain
individual leading energy terms of E'2 at the tree level. We will analyze these further in
section 5.

3.3 Energy cancellations for topological scattering amplitudes

In this subsection, we will apply our power counting rule (3.12) to analyze the leading en-
ergy dependence of the pure gauge boson scattering amplitudes in the 3d topological mas-
sive CS gauge theory. We also note that because the 3d CS theory is super-renormalizable,
the leading energy dependence of a given amplitude is always given by the diagrams having
L = 0 (tree level) and V5 = 0. Thus, given the external states of an amplitude, its maximal
energy dependence is realized at tree level:

D™ = (&4, — &) +(4=8), (3.15)

with L =0 and V3 = 0.

According to eq. (3.15), the scattering amplitudes of pure gauge bosons (Af) with
the number of external states £ = &£ A, = N and &, = 0 can receive leading individual
contributions of O(E?) at the tree level. For the pure A%-amplitudes with £ = £ Ay = N
and & A, == 0, its individual leading contributions scale like O(E*~Y) at the tree level.
With these, we find that our TET identity (3.5a) guarantees the energy cancellation in the
N-gauge boson (Af) scattering amplitude on its Lh.s.:

E* - B+, (3.16)

This is because on the r.h.s. of eq. (3.5a) the corresponding pure N-gauge boson (A%)
amplitude scales as O(E*~V) and the residual term 7, (with &, > 1) scales no more than
O(E3~N). We can readily generalize this result to up to L-loop level and deduce the
following energy cancellations based on eq. (3.5a) and eq. (3.12):

ADp = Dgp[NA%] — Dg[NA%] = N. (3.17)

Hence, the TET identity (3.5) [or the TET (3.6)] provides a general mechanism which
guarantees the nontrivial energy cancellations in eq. (3.16) or eq. (3.17).

Before concluding the current section 3, we discuss further the conversion of physical
degrees of freedom during the 3d topological mass-generation, in comparison with that
realized during the 5d geometric mass-generation under the Kaluza-Klein (KK) compact-
ification. For the 3d gauge theories, before including the CS term, the massless gauge
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boson Ay, has only 1 physical transverse polarization state A%; while after including the
CS term, the gauge boson acquires a topological mass and generates a single physical polar-
ization state A% (by absorbing the massless state Af combined with the longitudinal state
Af), without invoking the conventional spontaneous gauge symmetry breaking. Hence,
this topological mass-generation mechanism leads to the conversion of the physical states:
A% — A, which conserves the physical degree of freedom: 1 = 1, as we explained earlier.
In consequence, we observe that both the Lagrangians (2.1a)—(2.1b) and the gauge boson
propagator (A.lla) indeed have a smooth massless limit m — 0, which is similar to the
massive KK gauge theories [13-16]. Based upon this mechanism of the topological mass-
generation, we have newly established the TET (3.6) which connects a given A-amplitude
to the corresponding A%-amplitude under the high energy expansion.

In comparison, we note that the 5d geometric mass-generation for the KK gauge bosons
A% is realized by absorbing (“eating”) the corresponding 5th components A% of the 5d
gauge fields AM at each KK level-n [13-15]. The 5th components A% may be regarded
as a kind of “geometric Goldstone bosons” due to the KK compactification, although
they do not arise from a separate scalar Higgs potential and differs essentially from the
conventional Higgs mechanism [6-10]. The 5d massless gauge boson Aﬁ/l has 3 physical
transverse polarizations and after KK compactification each 4d massive KK gauge boson
A% has 2 transverse polarizations plus 1 longitudinal polarization (from absorbing A%°).
So, the physical degrees of freedom are conserved before and after the KK mass generation:
3 = 2+ 1; and this corresponds to the conversion of one physical degree of freedom at each
KK level-n: A" — Af". This geometric mass generation of KK gauge bosons leads to the
KK Equivalence Theorem for compactified gauge theories(KK GAET) which connects the
high-energy scattering amplitudes of the longitudinal KK gauge bosons A{" to that of the
corresponding KK Goldstone bosons A% [13, 16].*

4 Topological scattering amplitudes and energy cancellations

In this section, we present explicit calculations of the 4-particle scattering amplitudes in the
topologically massive gauge theories including the Abelian QED (2.1a) and the non-Abelian
TMYM theory (2.1b). With these, we demonstrate explicitly the energy cancellation of
E? — E° for the Ap-amplitudes in the TMQED and the energy cancellation of E* — E°
for the pure Ag-amplitudes in the TMYM theory, under high energy expansion. Then, we
verify the TET (3.6) for both the Abelian and non-Abelian CS gauge theories.

4.1 Topologically massive QED and scattering amplitudes

In this subsection, we consider two realizations of the topologically massive QED, namely,
the topologically massive scalar QED (TMSQED) and the topologically massive spinor

4Besides, the study of the geometric mass-generation of 5d KK gravitons and its gravitational equivalence
theorem (GRET) were presented recently in ref. [27], where the KK graviton field k%" becomes massive by
absorbing the scalar-component h2° and vector-component k> from compactification of the 5d graviton
field AN, Note that before compactification the massless 5d graviton MY has 5 physical degrees of
freedom and after compactification the massive KK graviton h%” contains the physical states with helicities
A= 12,41,0. We see that the physical degrees of freedom are conserved before and after the KK graviton
mass-generation: 5 =242+ 1.
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Figure 1. Feynman diagrams for the scattering processes ¢~ ¢t — ApAp (¢~ ¢T — ApAg) and
¢~ Ap = ¢~ Ap (¢~ Ar — ¢~ Ap) in 3d topological massive scalar QED.

QED (TMQED). We will compute the scattering amplitudes in these two models and
uncover the nontrivial energy cancellations in these amplitudes. Then, we will demonstrate
explicitly that the TET (3.6) holds in each model.

4.1.1 Scattering amplitudes of topologically massive scalar QED

We first consider the TMSQED, which is composed by the scalar QED plus the Chern-
Simons term (2.1a). The Lagrangian contains a scalar sector:

Ly = —(Duo)"(D"¢) —mi o> — Alg|", (4.1)

where we choose the metric tensor 7,, = n*¥ = diag(—1,1,1) and denotes the com-
plex scalar field by ¢. The covariant derivative is defined as D), = 9, +ieA,. In the
charge eigenstates, we have (¢, ¢") = (¢, ¢*), with ¢~ (¢1) denoting the scalar electron
(scalar positron).

In the following, we compute and analyze two types of scattering processes ¢~ ¢ —
ApAp (0~ ¢t = ApAg) and ¢~ Ap — ¢~ Ap (¢~ Ap — ¢~ Ap) at tree level, where the
relevant Feynman diagrams are shown in figure 1.

For the annihilation processes ¢~ ¢ — ApAp and ¢~ ¢ — A A, we find that under
the high energy expansion and by using the power counting rule (3.12), the scattering
amplitude T[¢p~¢T — ApAp| scales as E?, while the scattering amplitude T[p~¢T —
A Ap] scales as E°. Thus, we can make high energy expansions for both amplitudes

as follows:
Tlo~ ¢t — ApAp] = TRPE? + TRNE' + TRWE® + O(E™Y), (4.22)
Tlp~ ¢t = ApAq] = To E® + O(E7Y), (4.2D)

where E = E/m and E denotes the energy of the scalar electron (positron). For simplicity,
we set the scalar mass m, ~ 0. The amplitude Tlp~ ¢t — ApAp] contains the contribu-
tions of the Feynman diagrams (a)-(c) of figure 1. According to eq. (4.2a), we compute
the amplitude at each order of the high energy expansion, which is given by the sum of
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Amplitude x E? xE! Amplitude x E? xE!
Tepl(@)] | —e2(14¢,) | —i2e%s, | Typl(d)] —2¢? 0
Topl®)] | —e2(1—cp) | i2¢%, | Tplle)] | A(l+cy) | i2e%s,
Tppl(c)] 2¢” 0 Topl(£)] | €2(L—cp) | —i2es,

Sum 0 0 Sum 0 0

Table 1. Energy cancellations in the scattering amplitudes of 3d topologically massive scalar QED,
Tlo 6" — ABAY] = Tppl(@)] + Topl(5)] + Topl(0)] and Tl6™ A% — 6= A%] = Tonl(@)] + Typl(e)] +
Tspl(f)], where E = E/m and (sy,c,) = (sin, cos#) with 0 being the scattering angle. Each full
amplitude equals the sum of individual diagrams (a) + (b) + (¢) and (c) 4 (d) + (e), respectively, as
shown in figure 1.

the three diagrams (a)-(c). As shown in table 1, we demonstrate explicitly that the sum
of diagrams (a)-(c) vanishes at the O(E?) and O(E'):

Topl(a) + () + ()] = 0, (4.3a)
Tapl(a) + (b) + (¢)] = 0. (4.3b)

Furthermore, we compute both amplitudes T[¢p~ ¢+ — ApAp] and Tp~ ¢ — Ap A at
the O(E°) and obtain:
_ 1 _
Top[670" = ApAp] = STHR 670"+ Apdq] = & (4.4)

Without losing generality, we set the spin s = m/m = +1 in the above calculations and
afterwards.

Similarly, we compute the Compton scattering amplitudes 7T[¢~Ap — ¢~ Ap] and
Tl¢g~Ar — ¢~ Ap]. Then, we make the following high energy expansions for both
amplitudes:

Tlo™Ap — ¢~ Apl = T B + T B + TP E° + O(E7Y), (4.5a)
Tlo~Ap = ¢~ Ag) = ToW E® + O(E™Y). (4.5b)

As shown in table 1, we demonstrate explicitly that the sum of the three diagrams (d)-(f)
of figure 1 vanishes at the O(E?) and O(E"'):

TR1(d) + (&) + (/)] = 0, (4.6a)

TR1(d) + (e) + ()] = 0. (4.6b)

Moreover, we find that both amplitudes T[¢p~Ap — ¢~ Ap] and T[p~ Ay — ¢~ Aq] are
nonzero and equal at the O(E°):

T 6 Ap = 6~ Ap] = 2TQ6™ Ag — ¢~ Ag] = —€?. (4.7)

2
Finally, from eqgs. (4.3) and (4.6) together with egs. (4.4) and (4.7), we derive

Ti6™6" > ApAp) = 5T(676" > Apag] + 0 (). (4.80)

Tlé Ap — 6= Ap] = %T[qf)‘AT A4 O (g) , (4.8b)

which explicitly verify the TET (3.6) for the topologically massive scalar QED.
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(a) (b) (0) (@)

Figure 2. Scattering processes ete™ — ApAp (ete™ — ApAqg) via Feynman diagrams (a)-(b)
and e”Ap — e~ Ap (e” Ay — e~ Ap) via Feynman diagrams (c)-(d) in 3d topologically massive
spinor QED.

4.1.2 Scattering amplitudes of topologically massive spinor QED

In this subsection, we consider the topologically massive QED (TMQED) which includes
the gauge sector Lagrangian (2.1a) (with Chern-Simons term) and the following matter
Lagrangian,

Ly =9 Dy = my), (4.9)

where the covariant derivative is defined as D, = d, + ieA,, and the gamma matrices are
given by (7°,~%,92) = (i0?, 0!, 0). We define the 3d Dirac spinors and solve the 3d Dirac
equation in appendix C.

Then, we analyze the amplitudes of the annihilation process ete™ — ApAp (ete™ —
A Aqp) and the Compton scattering e~ Ap — e~ Ap (e~ Ay — e~ Ap). The relevant Feyn-
man diagrams at tree level are shown in figure 2. Using the power counting rule (3.12),
we find that the scattering amplitudes Tlete™ — ApAp] and Tle”Ap — e~ Ap] have
leading contributions scale as E?, while the scattering amplitudes T[ete™ — ApAp] and
T e~ Ap — e~ Ap] have leading contributions scale as E°. Thus, we can make the following
high energy expansions:

Tle et — ApAp) = iR B> + TRVE' + AW E® + 0(E™), (4.10a)
Tle et — ApAqg] = TRV E® + O(E™Y), (4.10b)
Tle Ap — ¢ Ap] = T E? + T E' + TVE + O(E™Y), (4.10¢)
Tle Ap — e~ Ag] = TR + O(E™), (4.10d)

where £ = E/m and E denotes the energy of the incoming electron (positron). For
simplicity, we set the electron mass m, ~ 0.

Then, we explicitly compute the above scattering amplitudes. We find that all the
O(E?) and O(E?') terms cancel exactly in each amplitude and the final results actually
behave as O(E?). We present these cancellations explicitly in table 2. Hence, we have

M@ + )] =0, T3Pl + (b)) =0 (4.11a)
Tl + (@] =0,  TH () + (@) =0. (4.11b)
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Amplitude | xE? xE' | Amplitude x B2 x E*
. i2¢? 1+c,)(1+s 1/2 2¢e2s 1+s 1/2
Topl(@)] | ie%s, | 2¢%, | Tpl(c)] Crad(irsa) — | 2 el
. i2¢? 14+c 1+s 1/2 2¢e2s 1+s 1/2
Topl®)] | —ie?s, | —2¢%¢, | Topl(d)] | -2tk )
Sum 0 0 Sum 0 0

Table 2. Energy cancellations in the scattering amplitudes of 3d topologically massive spinor QED,
Tlete™ = ApAp| = Tppl(a)] + Tppl(b)] and Tle~Ap — e~ Ap] = T.p[(c)] + Tep[(d)], where the
notations are defined as E = E/m and (s,, cy) = (sin 6, cos f) with 6 denoting the scattering angle.
Each full amplitude equals the sum of individual diagrams (a) + (b) and (c) + (d), respectively, as
shown in figure 2.

Finally, we derive the remaining amplitudes of O(E") as follows:
7}5? [emet — ApAp] = = T(OT) [e"et — ApAp] = ie? cot, (4.12a)

(3+cp)(L+cy+35p)
A1+ cp)(1+ 55)2

For completeness, we also summarize in appendix D the full tree-level amplitudes (without

TOe Ap = e Ap) = TV (e Ay — e Ag] = i?

. 4.12b
7 (4.12b)

high energy expansion) for the scattering processes discussed above and in sections 4.1
and 4.2.1. These exact formulas can provide self-consistency checks for the correspond-
ing expanded scattering amplitudes given in the main text and will also be useful for
future studies.

From the above egs. (4.12a)—(4.12b), we deduce the following relations under the high
energy expansion:

T[€_€+ — APAP] = éT[e_e—i_ — ATAT] =+ O <TE’/IL) y (413&)
Tle™Ap — e~ Ap] = %T[e‘AT e A+ 0O (g) . (4.13b)

These verify explicitly that the TET (3.6) does hold, as expected from our general for-
mulation of the TET in section 3.1. We observe that the TET identity (3.5) [or the
TET (3.6)] provides a general mechanism which guarantees the exact energy cancellations
of the O(E?) and O(E?) contributions in the A%-amplitude and matches the corresponding
AS-amplitude of O(E?).

Before concluding this subsection, we further present an exact verification of the TET
identity (3.4) or (3.5a) without taking the high energy limit and by considering the simplest
case of N = 1. For the scattering process e e™ — Ap Ap, we apply the TET identity (3.5)
to just one external state of Ap:

Tle et = ApAp] = Tle e™ — ApAp] + Tle e™ — 9Ap], (4.14)
where [lT = %AT and ¥ = %v = %’U“AM. Using the basic relation of polarization
vectors in eq. (3.2), we can rewrite the above TET identy (4.14) as follows:

Tle et — AgAp] =0, (4.15)
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where Aq = e A ., 1s the unphysical scalar polarization state of the photon. As we explained
above eq. (3.2), the gauge-fixing function in momentum space can be expressed as F =
—imAg. Thus, the above TET identity (4.15) is equivalent to

Tle et — FAp] =0, (4.16)

which is just the simplest N = 1 case of the Slavnov-Taylor-type identity (3.1). Hence, to
verify the TET identity (3.5) in the case of N = 1, we only need to prove explicitly that
the identity (4.15) holds at the tree level.

The tree-level scattering process e~ et — AgAp contains the same type of diagrams
(a)-(b) via (t,u)-channels, as shown in figure 2. Then, we compute directly the contributions
of the (t,u)-channels as follows:

7;[6_6-1— — ASAP] = —7;[6_64— — ASAP} = \/562 (iE_QSe + ECG) s (417)
which ensures that the full amplitude vanishes:
Tle et — AgAp] =Ty + T, = 0. (4.18)

This explicitly verifies the TET identity (4.15) [and thus the TET identity (4.14)] for the
case of N = 1, without taking the high energy limit.

4.2 Topologically massive QCD and scattering amplitudes

In this subsection, we study scattering amplitudes in the 3d topologically massive QCD
(TMQCD) with non-Abelian gauge group SU(N). This is also called the topologically
massive YM (TMYM) theory in section 2 for the pure gauge sector without matter fields.
We will not discriminate these two terminologies hereafter. The Lagrangian of the TMQCD
can be written as follows:

1
4

m

L= 5

N
(F2,)%+ E‘WpAzayAZ-f-%CabcE“VPAZAgA;—}- ST iy, DL —mdi )iy, (4.19)

ij=1

where D} = 0,,0" — igA**Tf and (i, j) denote the color indices of the quarks. We will
compute the scattering amplitudes of the quark-antiquark annihilation and the pure gauge
boson scattering, from which uncover the nontrivial energy cancellations. Then, we will
demonstrate explicitly that the TET (3.6) holds for the non-Abelian TMQCD.

4.2.1 Scattering amplitudes of quark-antiquark annihilation

In this subsection, we analyze the scattering amplitudes of quark-antiquark annihilation
processes ¢q — A“PAII’D and ¢q — A“TA?F, which include three Feynman diagrams as shown in
figure 3. The non-Abelian cubic gluon vertex generates the s-channel diagram of figure 3(a)
which is absent in the e~e™ annihilation process of the TMQED as shown figure 2(a)-(b).

Applying the power counting rule (3.12), we find that the high-energy scattering
amplitude T[q;q; — A%A%] has leading contributions scale as E?, while the amplitude
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Figure 3. Scattering processes of quark-antiquark annihilation into two gluons, ¢;q; — A% Ab
(9,9, — A% A%) in the 3d topologically massive QCD.

Tla:q; — A% A% scales as E°. Thus, we can make the following high energy expansions:

Tlad; = ApAR) = T B + T B + TREO + O(B ™), (4.200)
Tlad; — A A = TR E® + O(E™), (4.20b)

where E = E/m and E denotes the energy of the incoming quark (anti-quark). For
simplicity, we set the quark mass m, ~ 0. Then, we explicitly compute these scattering
amplitudes, and find that summed contributions in each amplitude cancel exactly at O(E?)
and O(E'), respectively. The final net results could only behave as O(E®). We present

these cancellations explicitly in table 3. From these, we deduce

Te2 (@) + (0) + ()] = 0, (4.21a)
Tapl(a) + (0) + ()] = 0, (4.21D)
where we have applied the commutation relation [T 7% = iC%T* to the sum of the

diagrams (b) + (c), which further cancels the contribution of the diagram (a) at O(E?) and
O(E") respectively.

Next, we compute the remaining ¢g annihilation amplitudes at O(E®) and derive the
following results:

O, - a gby _ L) o qb1_ 197
Top 14:4; — ApAp] = 57-TT (904, — AT AT = ——

226 (TJGkTI?z) + 1?9 (@%ﬂ@)

4 1+¢ Cy
(4.22)
We may further define the color-singlet states of the SU(N) gauge group:
1N
q \/szl 745
1 Nil
04, = s |ApAp), (4.23)
POV2ANE 1) o
1 NZ-1
004, = m—= >_ |AT4%).

V2(N2-1) o
Then, we compute the ¢g annihilation amplitudes of the color-singlet states at O(E?):

T10), —10)4,] = 5 L1100y = 00,1 = 162 F(N) cot, (4.24)
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Amplitude Tppl(a)] Tepl(0)] Tepl(c)] | Sum
x F2 gzseC"’bcTc ig250T“Tb —igzseT”T“ 0
xE! —i2g2000abcTc QQQCGTaTb —2gQCGTbTa 0

Table 3. Energy cancellations in the scattering amplitude 7g;q; — ApAp] = Tpp[(a)]+ Tppl(b)] +
Teppl(c)] of 3d topologically massive QCD, where the relevant Feynman diagrams (a)-(c¢) are shown
in figure 3.

where we have defined the function f(N) = T%m . We note that for the color-
singlet initial and final states, the s-channel contribution vanishes due to C%* = 0, and
the sum of the (¢, u)-channel contributions just differs from the Abelian case of TMQED
by an overall factor (g2/e?)f(IN). This relation holds even without making the high energy
expansion, namely,

2

Topll0)g = 10)4,] = L F(N)Tle™ et — ApAp) (4.25)
2

Tarl0)g = 0)4,) = LF(N)Tle " — ApAq) (4.25b)

After the high energy expansion, only the O(EY) amplitudes survive for the TMQCD and
TMQED, as shown in eq. (4.24) and eq. (4.12a) which obey the above relations (4.25).

Finally, from eqs. (4.20)(4.21) and eqs. (4.22)(4.24), we derive the following equivalence
relation under the high energy expansion:

_ a 1 _ a m
Tlad; - ABAb) = 3Tlag; - 4345+ 0 (7). (1.26)

which demonstrates explicitly the TET (3.6).

4.2.2 Pure gauge boson scattering amplitudes

In this subsection, we study the 4-particle amplitudes of the pure gauge boson scattering
processes AZAY — AL AL and A% A% — A$ AL in the 3d non-Abelian topologically massive
YM (TMYM) theory, where the gauge field Af belongs to the adjoint representation of the
SU(N) gauge group. The relevant Feynman diagrams are shown in figure 4.

We see that the 4-gauge boson scattering amplitudes T[AZAL — AL AL] = T[4AL]
and T[A%A% — AS AL = T[4A%] receive contributions from the contact diagram and the
pole diagrams via (s,t,u)-channels. The kinematics of such 4-particle elastic scattering
processes is defined in appendix A. Using the power counting rule (3.12), we find that
for the scattering amplitude 7 [4A$] the leading contributions of each diagram in figure 4
scale as F*, while for the scattering amplitude T[4A%] the individual leading contributions
scale as EY. Hence, using the TET identity (3.5) [or the TET (3.6)], we predict that
the A%-amplitude should contain exact energy cancellations at the O(E*), O(E3), O(E?),
and O(E") respectively, because the leading energy-dependence of the Ag-amplitude must
match that of the corresponding A%-amplitude of O(E?) on the r.h.s. of the TET iden-
tity (3.5) [or the TET (3.6)].
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Figure 4. Feynman diagrams of the four-gauge boson scattering processes A% A% — A% A¢
and A“TAIZF — A%A% via the contact interaction and (s,t,u)-channels in 3d topologically mas-
sive YM theory.

Then, we compute explicitly the full scattering amplitude of Af’s at tree level and
present it in a compact form:

s—m2 t—m2 u—m?2

ThaAp = o (

where the color factors are defined as usual (Cs,C;,C,) = (CobeCede, CadeCbee Cacedbe)
with C®¢ denoting the structure constants of the gauge group. The numerators
(N5, Ni, N,,) take the following form:

4m? — s Lie 2 (A 2 2

Neg=—+ {4ms2 (5m* + 4s)cy +1(4m™ + 29m“s + 3s )39} ) (4.28a)
16m3s2

c 2

Ny = _1661fb3 <s; +i2mtan Z) (4.28b)
X {4m[13m2 — 35+ (8m* — s)cglcg s + is2 [22m? — 35 + (20m* — 38)69]80/2} ,
Sor2 (1. 6\?

N, = T3 (52 — i2m cot 2> (4.28c¢)

X {4m[13m2 — 35 — (8m? — $)cqlsga — is3 [22m? — 35 — (20m* — 38)69]09/2} .

We note that in the (2+1)d spacetime there is a kinematic exchange symmetry between
the scattering amplitudes of ¢-channel and u-channel, namely, their numerators obey the
relation NV, (m+0) = —N,(0). We have verified that our numerators (4.28b)—(4.28¢) indeed
satisfy this kinematic exchange symmetry.

We note that each term on the r.h.s. of eq. (4.27) scales as E? at most because summing
up each contribution of the contact diagram with the corresponding pole diagram already
cancels O(E*) terms, as we show in table 4. For the high energy scattering with E > m,
we expand the full amplitudes in terms of 1/5,, where s, = 4E%3% and 5, = 4FE?B? with
E=E /m. Thus, we can explicitly demonstrate the exact energy cancellations at each
order of E™ (n = 4,3,2, 1), respectively. We summarize our findings in table 4, from which
we prove the following exact energy cancellations:

T L T® o, (4.29a)
3
3 (frcg.?’) n 7}<3)) = —i248y52 c(Cs + C + Cy) = 0, (4.29b)
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Amplitude X 53 X§3/2 X 50 ><§(1)/2

Tes 854Cs 1325,C;q 64c,Csq 1645,Cq

Tet —(B44cy —cy)Cr | —18(28) — $99)Ct | —32(cy — €9p)Ct | —116(28,) — 55499)Ct
Teu (5—4cy — c9p)Cu | —18(28y5 + S99)Cu | —32(cy + C99)Cu | —116(284 + 5559)Cu
T, —85,Cs —1565,Cs ~192¢,C, —13685,Cs

T (544cy —cg)Ct | —i8(Sy 4 899)Ct | —32(3cy + €99)Cr | —116(17s, + 5544)Cy
Tu —(5—4dcy — co9)Cuy | —18(8y — 899)Cu | —32(3cy — Cg)Cu | —116(17sy — 5554)Cy,

Sum 0 0 0 0

Table 4. Energy cancellations in the 4-gauge boson scattering amplitude of 3d non-Abelian TMYM
theory, T[AZ AL — A% AL] = T+ T+ Tt + T, where the amplitude from contact diagram is further
decomposed into three sub-amplitudes according to their color factors, 7. = Tes + Ter + Tew. The
energy factor is defined as 5, = 4E%3% and E = E/m. A common overall factor (¢2/128) in each
amplitude is not displayed for simplicity.

2 2 _
> (T8 + T2} = —128¢450 (s + Cu + Cu) = 0, (4.29¢)
j
T L 7MY = 13045552 ¢0(Cs + Cp + Cu) = 0 4.29d
Z(cj +j )__1 895060(S+ ¢t + U)_v ( )
J
where j € (s,t,u), ¢ = g°/128, and the superscript (n) in the amplitudes (Tcgn) 7;.(n))
denotes the contributions at the O(E™) with n = 1,2, 3,4. The amplitudes 7, (contributed
by the contact diagram) and T; (contributed by the gauge-boson-exchange in each channel-
j) are given by the sums:

T=XT =X (4.30)
Jn n

where j € (s,t,u) and n = 4,3,2,---. From table 4 and eq. (4.29a), the O(E*) contribu-
tions cancel exactly between the contact diagram and the pole diagrams in each channel
of j € (s,t,u). Furthermore, it is striking to see that the sum of each O(E™) contributions
(n = 3,2,1) also cancel exactly because of the Jacobi identity Cs 4+ C; + C,, = 0, as shown
in table 4 and eqgs. (4.29b)—(4.29d).

After all these energy cancellations, we systematically derive the remaining scattering
amplitude at O(EY). We also compute the amplitude 7 [4A%] which contains terms no more
than O(E®) by the direct power counting. Thus, we present both scattering amplitudes
expanded to O(EP) as follows:

76[414%]—92{03(_909)+Ct(_1_909_4629)+CU<1_969+4020>}7 (4.31a)

4 4(1+¢y) 4(1 —¢p)
~ — 3—c¢ -3 —c
14%] = ¢ CS(CG> C (9> Cy <9)] 4.31b
where we have denoted fl% = %ACT‘ as before. Comparing the two amplitudes above, we
find that they differ by an amount:
Tol4AL] — To[4A%] = —2¢%¢cy(Cs + Ct 4 Cy) = 0, (4.32)

— 21 —



which vanishes identically because of the Jacobi identity Cs+C;+C,, = 0. This demonstrates
explicitly the TET for the 4-gauge boson scattering in the non-Abelian TMYM theory:
TIAp AL — AGAL) = T[AT AL — A5A%) + O (g) : (4.33)
which confirms the general TET (3.6) for the case of N = 4.
To conclude this subsection, we stress that the present study has well understood and
justified the structure of our gauge boson scattering amplitude (4.27) order by order under

the high energy expansion, including the exact energy cancellations at each O(E™) with
n = 4,3,2,1 and the proof of the TET relation (4.32) at O(E?).

4.3 Unitarity bounds on TMYM and TMG theories

In this subsection, we analyze the partial wave amplitudes of the 3d topologically massive
gauge boson scattering and the 3d topologically massive graviton scattering (section 5).
We will demonstrate that the partial waves for either the topologically massive gauge boson
scattering or the topologically massive graviton scattering have high energy behaviors no
larger than O(E), so they can respect the perturbative unitarity bound.
For an SU(N) gauge theory, we define the gauge-singlet one-particle state:
1 N2-1
> |ABAR). (4.34)

0)a, = N e

Thus, we can compute the scattering amplitude for the gauge-singlet state as follows:

_92N(Nt’ N )

TH0)a, = 1004 ) = (s — 0 (4.35)

In d-dimensions, the partial wave amplitude takes the following general form [53]:
54/2—2 r

ag(s)zm i A0 [ (sin0)"~3Cy (cos 0)Tar |, (4.36)

where O} (x) is the Gegenbauer polynomial and
1 1
v=g(d=3), Ag=2r <2d — 1) (16m)4/2~1, (4.37)
The partial wave a, should satisfy the unitarity condition Jm(a,) > |a,|?, leading to [53-55]:

1
lagl <1, [Re(ay)| < 5

5 1Imla)l < 1. (4.38)

For the present study, we have d = 3. Thus, we can compute the real part of the s-wave
amplitude (4.36) as follows:

e(og) = =z [ ORATI0)1, = 10)1,)

_ ¢*N(16m* + 24m?s + s%) N Ng?
N 324/5(s — 4m?2)2 325

(4.39)
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The imaginary part Jm(a,) has collinear divergences around 6 = 0, 7 of the integral. After
adding an angular cut on the scattering angle (6 < 6 < 7m — J) to remove the collinear
divergences of the integral, we find that Jm(a,) vanishes. Eq. (4.39) shows that for high
energy scattering the leading partial wave amplitude 9Re(a,) scales as E~!, which has good
high energy behaviors. This is expected, because the 3d TMYM theory is gauge-invariant
and has a super-renormalizable gauge coupling g with mass-dimension +%. Applying the
unitarity condition (4.38) to s-wave amplitude (4.39), we derive the following perturbative

unitarity bound:

2
g°N

Z —,
Ve o

which puts a lower limit on the scattering energy, in addition to the requirement of high

(4.40)

energy expansion /s > m.

Next, we study the perturbative unitarity bound for the TMG theory in section 5.
Using the high-energy graviton scattering amplitude in egs. (5.13)—(5.16), we compute the
partial wave amplitudes of its real and imaginary parts as follows:

15k2m? (3 cosé — cos 36) 15k2m?
~ — ~ — 4.41
Relao) > —300gn /s sino 1024763/5’ (441a)
247k%*m (3 cos § — cos 39) 247K%m
J ~ — ~ — 4.41b
Iml@0) = =G isar sin®s 2457670%° (4.41b)

where we put an angular cut on the scattering angle (§ < 8 < m—§) to remove the collinear
divergences of the integral. We see that both fRe(ay) and Jm(a,) exhibit good high-energy
behaviors since they scale as E~! and E, respectively. Imposing the perturbative unitarity
condition on the s-wave amplitude (4.41), we derive the unitarity bounds on the real and
imaginary parts:

15k%2m? . 49152763
1024703° S Toqrez

NTP (4.42)

where the first condition places a lower bound on the scattering energy proportional to
x?>m?. The second condition puts an upper bound on the graviton mass m, proportional
to 1/k? which characterizes the ultraviolet cutoff scale of the TMG gravity since the 3d
gravitational coupling k? = 167G = 2 /Mp, has a negative mass-dimension —1, where G

and Mp, denote the 3d Newton constant and Planck mass respectively.

5 Structure of topological graviton amplitude from double-copy

In this section, we will study the extended double-copy construction of the massive gravi-
ton amplitude in the 3d topologically massive gravity (TMG) from the massive gauge
boson amplitude in the 3d TMYM theory. Our focus is to analyze the structure of massive
graviton scattering amplitudes under high energy expansion and newly uncover a series of
striking energy-cancellations of the graviton amplitudes in connection to the corresponding
gauge boson amplitudes through the extended massive double-copy construction. These new
findings were not covered by any previous literature. In section 5.1, starting from the 3d
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action of the TMG we will analyze the equation of motion (EOM) of the 3d graviton field
and identify the physical polarization state of the graviton. Then, in section 5.2 we will
extend the conventional double-copy method for massless gauge/gravity theories [17-19] to
the 3d topologically massive gauge/gravity theories. For this we will improve the original
massive 4-gauge-boson scattering amplitude (4.27)—(4.28) by proper choice of the gauge
transformation on its kinematic numerators. With these we can reconstruct the correct
4-graviton scattering amplitude in the TMG theory. We stress that a key feature of the 3d
TMYM and TMG theories is that these theories can realize the topological mass-generation
of gauge bosons and gravitons in a fully gauge-invariant way under the path integral for-
mulation, which is important for the successful double-copy construction in the 3d massive
gauge/gravity theories.

5.1 3d topologically massive gravity

In this subsection, we first introduce the 3d action of the TMG. Then, we analyze the
equation of motion of the 3d graviton field and identify the physical polarization state of
the graviton. We note that even though the 3d massless Einstein gravity has no physical
content [1, 2, 56-60], including the gravitational Chern-Simons term can make the TMG
fully nontrivial. The TMG action contains the conventional Einstein-Hilbert term and the
gravitational Chern-Simons term [1, 2]:

2 1, 2
StMG = _? /dgw { vV—gR — %Eu prapﬁ (8/$Fﬁau + 3F6M7F’Yua) :| ) (5'1)

where the 3d gravitational coupling constant s is connected to the Planck mass Mp, via
k = 2/\/Mp, with Mp, = 1/(87G) and G as the Newton constant. The parameter m
in eq. (5.1) will provide the graviton mass m = |m|, as shown in eq. (E.6). Under the
weak field expansion g,,, = n,, + kh,, and the linearized diffeomorphism transformation
hyw =l = by, + 0,8, + 0,§,,, the gravitational Chern-Simons term in eq. (5.1) changes
into a total derivative, so the action is diffeomorphism invariant.

The nonlinear EOM is derived as follows [58-60]:

1 1
Rp,z/ - igm/R + ECMV = 07 (52)

L oy — %gUVR) is symmetric and traceless. In

eq. (5.2) and the discussions hereafter, we use the positive branch of the mass parameter

where the Cotton tensor C,, = ¢,/7V,(R

m > 0, which corresponds to the graviton with spin s = +2 [1, 2]. Then, we can ex-
pand the metric tensor around the Minkowski metric g, = n,, + £h,, and impose the
transverse-traceless condition for the graviton field. With these, we obtain the linearized
EOM from eq. (5.2):

1
NuaTlvg + %(eupanuﬂ + gypﬂn,u,a)ap 82h1055 = 0. (53)

We may denote the operator in the square brackets of eq. (5.3) as

~

1
O/u/aﬁ = Npa"vp + %(‘Supany,@ + El/p,@nua)ap' (54)
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Then, we act the operator O 5 twice on the graviton field and impose the transverse-

pro
traceless condition on the physical graviton state, which leads to

(6% —m?) *nt” = 0. (5.5)

This shows that the graviton field obeys a Klein-Gordon-like equation and carries the
physical mass m.
Alternatively, we can “square” the EOM of the TMYM theory (2.5) and arrive at

1€pausP”  1€058Mual”  €upafuopP’P’\ 4 g
NuaMvp — - - D) €€
m m m
i
=2 [nuanuﬂ - %(Sypanyﬂ + 51/p,8np,a)pp} P — 0, (56)

where in the second line we have used the relations:

€ = €u€r, pPley=0, eu“zo,

supasuaﬁpppa = (nuﬁnau_ nuunaﬁ)p2+ naﬂp,u,py_‘_ NuwPaPs— NMuaPuPs— NusPuPa (57)

with the momentum p* obeying the on-shell condition p? = —m?2. Thus, we see that eq. (5.6)
coincides with eq. (5.3) where the graviton field is expressed in the plane wave form
hﬁ” = e’éye*ip'x, with e‘lél' = epep. The graviton polarization tensor e‘lél' is the solution
of the EOM (5.6), where the subscript “p” indicates that it corresponds to the physical
polarization state of the graviton hp”. Then, we impose the following gauge-fixing term:

1 1
EGF — g(fu)2, .F“ — ayh“l’ - iaﬂh (58)
With the above and making the weak field expansion, we can derive the graviton propaga-
tor, which we present in eq. (E.6) of appendix E.

5.2 Double-copy construction of graviton amplitude and energy cancellations

In this subsection, we extend the conventional double-copy method for massless
gauge/gravity theories [17-19] and construct the massive 4-graviton scattering amplitude
in the 3d TMG theory from the 4-gauge boson amplitude in the 3d TMYM theory.

We examine the kinematic numerators {N;} of the original massive 4-gauge-boson
scattering amplitude (4.27)—(4.28), and find that they violate the kinematic Jacobi identity
due to Zj/\/j # 0. Then, we analyze the gauge boson amplitude (4.27) and find that it is
invariant under the following gauge transformation:

Nj = Nj = N+ A(s; —m?), (5.9)

where j € (s,t,u) and A is a coefficient. Thus, by requiring the gauge-transformed nu-
merators {N\]} to satisfy the kinematic Jacobi identity >-; N] = 0, we can determine the
coefficient A as follows:

icsc
A=—07 [(16m43_% + 8m2s? — 35%) - (16m43_% — 24m?s7 — 38%)029 + i16m8829]

32m3
(5.10)
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Then, we apply the gauge transformation (5.9) to the numerators (4.28) and further derive
the following new kinematic numerators (N7, N/, N}):

icscd
N _1e¢ i [8m4 +26m?%s — 75> — (8m* + 18m?s + 5%y
8ms2
- ims%(20m2 + 73)329}, (5.11a)
icscd
N, =— &Cl [16m4 + 52m?s — 14 + (16m4 + 104m?s — 1552) Cy
32ms2
-2 <8m4 + 18m?2s + 52) Cop — (16m4 + 24m?s + 52) C3p
. 1 2 . 1 2
+1ims2(176m* — 20s)sy — ims2 (40m* + 14s)syg
—ims%(32m2 + 85)539} , (5.11b)
icscd
N, =— &Cl [16m4 + 52m?%s — 14s% — (16m4 + 104m?s — 1552) Cy
32ms2

-2 <8m4 + 18m?%s + 52) Cog + (16m4 + 24m?s + 52) C3p
. 1 2 . 1 2
—1ims2 (176m* — 20s)sg — ims2 (40m* 4 14s)s9y
. 1 2
+ims2(32m* + 85)539} , (5.11¢)

which nicely obey the kinematic Jacobi identity Zj./\/'j{ = 0 by construction. With the
above, we can reexpress the gauge boson amplitude (4.27) as follows:

CN!  CN! cu/\f;>
+ - :

s—m?2 t—m2 u—m?2

(5.12)

TiAz = o

As a consistency check, we have also verified that the gauge-transformed numera-
tors (5.11b)—(5.11c) satisfy the kinematic exchange symmetry between the t-channel and
u-channel, namely, N, (7 + ) = —N/(6).

For the 4-particle scattering amplitudes of massive physical gravitons hp = ep’h,,, in
the 3d TMG theory, we can use the power counting rule (3.13) or (3.14) of section 3.2
to count the energy-dependence of the graviton scattering amplitudes and find that the
leading individual contributions to the tree-level amplitudes scale as E'2. But, using
the extended double-copy approach for massive scattering amplitudes, we will prove that
such leading contributions of O(E'2) in the 4-graviton scattering amplitudes must cancel
down to O(E'), namely, the substantial cancellations of O(E'2) — O(E") by an energy
power of E'1.

For this purpose, we extend the conventional double-copy method with the color-
kinematics duality for massless gauge/gravity theories [17-19] to the 3d topologically mas-
sive gauge/gravity theories. Using our improved massive-gauge-boson amplitude (5.12) of
3d TMYM theory and the color-kinematics duality C; — /\/'J’ , we construct the full scatter-
ing amplitude of physical gravitons, M[hphp — hphp| = M[4hp], in the 3d TMG theory:

M{[dhp| = iz W)* + Wo)* + (Vo) ) (5.13)

16 | s—m2 t—m2 u—m?
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where we have made the gauge-gravity coupling conversion g — /4. (The same conversion
factor will work for the 4d double-copy of the massless gauge/gravity theories [17, 18] if
the same normalization of color factors is adopted.) Then, substituting the improved
kinematic numerators (5.11) into eq. (5.13), we derive the following compact formula for
the 4-graviton scattering amplitude after significant simplifications:

n2m2(P0 + Pycog + Pycyp + Pecgy + 152529 + 154849 + ]56869) csc2 6

Mdhp| = — , (b.14
[ P] 4096(3 + 50)(4 + 50)3/2(2 + S0 — 5069)(2 + S0 + goce) ( )
where (P;, ]3]-) are expressed as polynomial functions of the variable 59 = s,/m?,
Py = —4(799252 + 476755 + 69257) (4 + 50)%7
P, = (—221184 — 3041285, — 11404852 — 1092852 + 50554)(4 + 50)2,
Py = 4(55296 + 4531250 + 1320852 + 156357 + 5858) (4 + 50)2,
= =2 =3 4 =\
Ps = —(98304 + 5734450 + 1126455 + 83255 + 1755)(4 + S0) 2, (5.15)

Py = i(—442368 — 66355250 — 30067252 — 460485 + 54053 + 47557),
Py = i4(110592 + 1044485, + 3688053 + 582855 + 37253 + 555),
Ps = —i(196608 4 13926450 + 3532857 + 377655 + 1485 + 57).

Next, we make high energy expansion for the reconstructed graviton amplitude (5.14)—
(5.15) and derive the following leading order (LO) result:

22

2048

1
M,[4hp] = msg (494cy + 19¢s9 — c59) csc>0. (5.16)

It is striking to see that the above LO graviton amplitude actually scales as O(mFE)
under the high energy expansion. Because the direct application of our power count-
ing rule (3.14) to the double-copy graviton amplitude (5.13) gives the scaling behavior
Mg[4hp] = O(m™2E*), we can expect from eq. (5.16) the further nontrivial energy can-
cellations of E* — E', which we will discuss in the following paragraph.

Inspecting the expressions of (N, N]) in egs. (4.28) and (5.11), we find that they
contain individual leading terms scaling as (E®, E®), respectively. This shows that the
gauge transformation (5.9) leads to an energy cancellation of E> — E? in each of the
transformed numerators j\/'J’ . This has an important impact on the energy dependence of
the double-copy amplitude (5.13), namely, in each channel of j\/‘]{2 /(s; — m?), it contains a
leading energy term behaving as E*, rather than E® from ./\/'j2 / (sj —m?). In comparison
with the leading energy-dependence of the individual diagrams contributing to the tree-level
4-graviton amplitude which scales as E'2 by the direct power counting rule (3.13)—(3.14),
our double-copy construction (5.13) demonstrates that the graviton amplitude could have
leading energy dependence of E* in each channel. Hence, this double-copy construction
guarantees a nontrivial large energy cancellation in the original four graviton scattering
amplitude: E' — E* which cancels the leading energy dependence by a large power
factor of E8.
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. _ _3/2 _
Amplitude X 5(2) X 50/ X 80
99428¢,,,+ 2(754326¢,,+47
M, _% —i14(15¢, + c49) csCO _w
26 26
99428 75—107c,+326c,,+268c,,+47c,,+31
M, w (102 + 105¢y + 70cqq + TCgg + 4Cap) csC O Co 132069y 1208 HTC4p T 1050
(T=c,) e
99+28c,,,+c 75+107c,+326¢,, —268¢,,+47c,,—31
M, W i(—102 + 105¢y) — T0cyp + Tezp — Aeyg) csc 0 L e el e e
0 20
Sum 0 0 0

Table 5. Exact energy cancellations at each order of E4, E3, and E? in our 4-graviton scattering
amplitude (5.13) by double-copy construction. Here the notations (s, 59) are defined by 59 = s,,/m>
and s, = 4E?3%. A common overall factor (k?m?/1024) in each amplitude is not displayed for
simplicity.

Furthermore, it is striking to see that our summed full amplitude (5.13) actually scales
as EY under high energy expansion as shown in the above eq. (5.16). We can demonstrate
explicitly this large energy cancellation of E* — E', which includes exact cancellations
of the energy power terms at each order of E4, E3, and E?. We summarize our findings
on these exact energy cancellations of the full amplitude (5.13) into table 5. We may
understand the reason for such energy cancellations of E* — FE' as follows. We first
note that an S-matrix element S with £ external states and L loops (L > 0) in the
(2+1)d spacetime has mass-dimension Dg = 3 — 3€ as given by eq. (3.7). Thus, the 4-
graviton amplitude M[4hp] has mass-dimension D,, = 1. At tree level it contains the
gravitational coupling x? of mass-dimension —1. Hence, we can express the 4-graviton
amplitude M([4hp]| = k2 M[4hp], where M[4hp| has mass-dimension equal +2. The tree-
level amplitude M|[4hp]| contains only two parameters (E,m), each of which has mass-
dimension +1. With these we can deduce the scaling behavior M[4hp]| oc m™ E"2 with
n, + ny = 2, under high energy expansion. Hence, for the energy terms of E™2 with
ny = 4,3,2, we deduce the mass-power factor n; = —2,—1,0, respectively. This means
that in the massless limit m — 0, the physical graviton amplitude M[4hp] would go to
infinity (for ny, > 3) or remain constant (for n, = 2). But, in the m — 0 limit, the 3d
graviton field becomes unphysical and has no physical degree of freedom [58-60]; so the
amplitude M|[4hp] should vanish because the physical graviton hp no longer exists in the
massless limit. This means that the m™ E™? terms with n; = —2, —1, 0 should vanish, and
the physical amplitude M[4hp] has to start with the leading behavior of m'E! under high
energy expansion. Thus, it is expected that the energy cancellations should hold at each
order of £4, E3, and E?, in agreement with what we first uncovered by explicit calculations
in table 5.

In summary, our double-copied graviton amplitudes in egs. (5.13)—(5.16) and table 5
explicitly demonstrate a new type of large energy cancellations in the original 4-graviton
amplitude at tree level for the 3d TMG theory:

O(E') — O(E"Y), (for &,, =4 in 3d TMG). (5.17)

With this extended double-copy construction, we have established a new correspondence
between the two types of leading energy cancellations in the massive scattering amplitudes:
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E* — E in the TMYM theory and E'? — E' in the TMG theory. We also note that
in eq. (5.17) the exact energy cancellations in the 4-graviton amplitude down by a large
power of E'' are even much more severe than the energy cancellations (E'® — E?) in
the massive 4-longitudinal KK graviton scattering amplitudes of the compactified 5d KK
Einstein gravity found before by explicit calculations [61-63] and by the double-copy con-
struction [27].

In passing, during the finalization of the present paper in this summer, we became
aware of a recent new paper [64] which directly calculated the graviton amplitude of the
3d TMG with very lengthy expressions in its eq. (C.1) where all the polarization ten-
sors (vectors) take symbolic forms. We have quantitatively compared our full graviton
amplitude (5.13) (by double-copy construction) with their eq. (C.1) and find agreement
after substituting explicitly all the polarization formulas into eq. (C.1) and making sub-
stantial simplifications of eq. (C.1). This comparison gives an independent verification of
our double-copy result. Our work has fully different focus from [64] and our analyses differ
from [64] in several essential ways. (i).The main part of our work (sections 2—4) is to analyze
the mechanism of topological mass-generation of gauge bosons and uncover nontrivial en-
ergy cancellations in the gauge boson scattering amplitudes. These were not studied by [64].
(ii).For this purpose, we newly formulated the 3d topological mass-generation mechanism
at S-matriz level, and newly proposed and proved the TET for N-point gauge boson am-
plitudes in section 3. We further verified the TET explicitly by computing the four-point
scattering amplitudes of various high-energy processes for both Abelian and non-Abelian
gauge theories (with and without matter fields) in sections 4.1-4.2. These were not consid-
ered by [64]. (iii).Our whole study on the gauge boson amplitudes and the double-copied
graviton amplitudes has focused on the structure of the scattering amplitudes under high
energy expansion and on the mechanism of nontrivial large energy cancellations as sum-
marized in tables 1-5 and eq. (5.17). For this, we newly constructed the general 3d power
counting method in section 3.2, and used it together with the TET to prove the nontrivial
energy cancellations for N-point gauge boson amplitudes in section 3.3. These were not
covered by [64]. (iv).We also note that eq. (C.2) of [64] further gave more compact for-
mula of the 4-graviton amplitude in a very different Briet coordinate system and cannot be
directly compared to our double-copied graviton amplitude (5.14)—(5.15). Their 4-gauge
boson amplitude in eq. (C.3) was also given in the Briet coordinate system and cannot be
directly compared to our eq. (5.11)—(5.12). The egs. (4.12)—(4.13) of [64] gave 4-gauge boson
amplitude with all polarization vectors in symbolic forms. We have further confirmed with
the authors of [64] that our gauge boson amplitude (4.27) and their eq. (4.13) are in good
agreement after substituting all the polarization formulas into their eq. (4.13) and after
taking into account the notational difference in defining the Mandelstam variables.> We
stress that the parts of our study for the four-gauge boson amplitudes and double-copied
four-graviton amplitudes have focused on analyzing their structures of energy-dependence
and on uncovering the striking large energy cancellations in these amplitudes as well as

5 After posting this paper to arXiv:2110.05399, we had helpful discussions with the authors of ref. [64].
We thank them for the comparison between their eq. (4.13) and our eq. (4.28) which confirms the good
agreement between the independent analyses on both sides.
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the mechanism of such energy cancellations. These new findings were not covered by [64]
whose independent study had fully different focus. We also note that the structures of our
non-Abelian gauge boson amplitudes (4.27) and (5.12) are well understood and justified
by nontrivial self-consistency checks as we explained at the end of section 4.2.2 and showed
in tables 4-5.

6 Conclusions

Understanding the mechanism of topological mass-generation and the structure of the
scattering amplitude in the 3d Chern-Simons (CS) gauge and gravity theories is important
for applying the modern quantum field theories to particle physics and condensed mat-
ter physics [1-4]. In 3d spacetime the existence of the CS actions for gauge bosons and
gravitons is theoretically unavoidable and compelling. This generates gauge-invariant topo-
logical mass-terms for gauge bosons and gravitons without invoking the conventional Higgs
mechanism [6-10] and leads to good high energy behaviors for the scattering amplitudes
of topologically massive gauge bosons and gravitons.

In this work, we systematically studied the mechanism of the topological mass-
generations in 3d CS gauge theories and formulated it at the S-matrix level. For this,
we proposed and proved a new Topological Equivalence Theorem (TET) for understanding
the structure of the scattering amplitudes of physical gauge bosons (Af) in the topologi-
cally massive gauge theories. We newly uncovered the nontrivial large energy cancellations
in the N-point gauge boson scattering amplitudes for both the Abelian and non-Abelian CS
gauge theories. We further used an extended double-copy approach to analyze the structure
of the graviton scattering amplitudes in the 3d topologically massive gravity (TMG) theory,
with which we reconstructed the physical graviton scattering amplitudes from that of the
corresponding physical gauge bosons. From these, we newly uncovered a series of striking
large energy cancellations in the four-point physical graviton scattering amplitudes, which
ensure such massive scattering amplitudes to have good high energy behaviors and obey
the perturbative unitarity bounds. We summarize these findings more explicitly as follows.

In section 2, we analyzed the dynamics of topological mass-generation in the 3d CS
gauge theories. In such dynamics, including the CS term (2.1) automatically converts
the gauge boson’s transverse polarization state A (combined with its longitudinal polar-
ization state A{) into the massive physical polarization state Af o (A% + Af) as given
in eq. (2.12), while making its orthogonal combination A% x (A% — Af) in eq. (2.13a)
become an unphysical state. This topological mass-generation mechanism has essential
difference from the conventional Higgs mechanism [6-10], because the CS term generates
gauge-invariant mass term of Af and no spontaneous gauge symmetry breaking and Higgs
boson are invoked.

In section 3, we newly proposed and proved the TET to formulate the topological
mass-generation of gauge bosons at the S-matrix level, which quantitatively connects the
N-point scattering amplitudes of physical gauge bosons A{ to the amplitudes of the corre-
sponding transverse gauge boson states A% in the high energy limit. For this, we established
the general TET identity (3.5), with which we derived the TET (3.6) under high energy ex-
pansion. We presented a new energy power counting rule (3.12) to count the leading energy
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dependence of the N-point scattering amplitudes for the 3d topologically massive gauge
theories and another power counting rule (3.13) to count the leading energy dependence of
the N-point scattering amplitudes for the 3d topologically massive gravity (TMG) theory.
(A generalized power counting method in d-dimensions is given in appendix B.) With these,
we demonstrated that our TET identity (3.5) provides a general mechanism of nontrivial
energy cancellations in the N-point Af-amplitudes because the net energy dependence of
a given N-point Ap-amplitude must match that of the leading A%-amplitude on the r.h.s.
of eq. (3.5a). For the high-energy scattering of N-gauge bosons A (with N > 4), the
TET identity (3.5) [or TET (3.6)] guarantees the nontrivial large energy cancellations in
the A%-amplitude: E* — B4V,

In section 4, we explicitly demonstrated the TET (3.6) for the first time by using var-
ious high-energy four-particle scattering amplitudes in both the Abelian and non-Abelian
topologically massive CS gauge theories. In sections 4.1.1-4.1.2, we computed the scat-
tering amplitudes of the annihilation processes ¢~ ¢* — ApAp (¢ ¢t — ApAg) and
Compton scattering ¢~ Ap — ¢~ Ap (¢~ Ap — ¢~ Aq) in the topologically massive scalar
QED (TMSQED), as shown in figure 1. In parallel, we computed the scattering ampli-
tudes of annihilation processes e et — ApAp (e”e™ — ApAg) and Compton scattering
e"Ap — e Ap (e7 Ay — e~ Ap) in the topologically massive spinor QED (TMQED), as
shown in figure 2. From these analyses, we newly uncovered the nontrivial energy cancel-
lations of E? — E° in each Ap-amplitude, which are summarized in tables 1-2 and in
egs. (4.3)(4.6) and eqs. (4.11a)—(4.11b). We further computed the remaining nonzero scat-
tering amplitudes of O(E®) and proved explicitly the validity of the TET as in eqs. (4.8)
and (4.13).

Next, in section 4.2 we studied the structure of scattering amplitudes in the non-
Abelian topologically massive QCD (TMQCD). In section 4.2.1, we computed the quark-
antiquark annihilation processes ¢;q; — AaPAII’) (qiqj — A“TAPF) for the TMQCD, which are
shown in figure 3 and contain additional s-channel diagram induced by the non-Abelian cu-
bic vertex. We uncovered nontrivial energy cancellations of E? — EY in the A$-amplitude
as summarized by table 3 and eq. (4.21). We further computed the remaining nonzero A%-
amplitude and A%-amplitude of O(E), and proved explicitly that the TET holds for the
TMQCD as in eq. (4.26). Then, in section 4.2.2, we systematically analyzed the 4-gauge
boson scattering amplitudes of A‘IPA% — A%Adp and A“TA% — ACTAdT in the TMQCD,
which are shown in figure 4. We newly uncovered the nontrivial large energy cancellations
of E* — E° in the A%-amplitude, at each order of (E*, E3, E? E') respectively, which
are summarized in table 4 and eqgs. (4.29a)—(4.29d). We further computed the remaining
nonzero A%-amplitude and A%-amplitude at O(E°) as given in eqs. (4.31a)—(4.31b). With
these and the Jacobi identity, we proved explicitly that the TET indeed holds for the
4-gauge boson scattering amplitudes of the TMQCD, as shown in eq. (4.33). Finally, in
section 4.3, we analyzed the perturbative unitarity of the TMYM and TMG theories. We
found that the partial wave amplitudes (4.39) and (4.41) exhibit good high energy behav-
iors as they scale as E~1 or EY in the high energy limit. This is expected for the 3d TMYM
theory since its gauge coupling has mass-dimension —i—% and thus is super-renormalizable.
This issue becomes much more nontrivial for the 3d TMG theory since its Newton constant
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G x k? has mass-dimension —1. But we should expect this theory to exhibit good high
energy behavior because the massive physical graviton scattering amplitudes in the TMG
theory can be reconstructed from the corresponding massive gauge boson amplitudes in
the TMYM theory via extended double-copy approach, as shown in section 5.

In section 5, we extended the conventional double-copy approach to reconstruct the
massive 4-graviton scattering amplitude of the 3d TMG theory by using the massive 4-gauge
boson amplitude of the 3d TMYM theory. We found that the reconstructed tree-level 4-
graviton scattering amplitude scales as E' under high energy expansion. We made the
gauge transformation (5.9) on the kinematic numerators N; of eq. (4.28) in the 4-gauge
boson scattering amplitude (4.27) such that the new numerators ./\/']’ in eq. (5.11) obey the
Jacobi identity. The gauge transformation of /\/'J — /\fj/ leads to the energy cancellations
of E5 — E3 in each kinematic numerator. This determines the individual leading energy
dependence of the reconstructed graviton amplitude (5.13) to be no more than O(E*). By
explicit computations, we further uncovered new energy cancellations of E* — E! in the
graviton scattering amplitude (5.13) as summarized in table 5. Then, we computed the
remaining nonzero graviton amplitude as in eq. (5.16) which scales as O(E'). In contrast,
applying the power counting rule (3.14) we found that the individual contributions to the
4-graviton amplitude have leading energy dependence behave as E'2. From these together,
we demonstrated a new type of striking energy cancellations in the 4-graviton scattering
amplitude as in eq. (5.17), O(E'?) — O(E"), for the 3d TMG theory. Furthermore, with
the extended double-copy construction, we established a new correspondence between the
two types of leading energy cancellations in the massive scattering amplitudes: E* — EY
in the TMYM theory and E*?> — E' in the TMG theory.

Our present findings are highly nontrivial and encouraging. We already generally
proved our TET for the N-point gauge boson scattering amplitudes (section 3.1) and
uncovered the mechanism of large energy cancellations for these N-point amplitudes by
using the TET and the general energy power counting method in 3d (sections 3.2-3.3). It
would be also interesting to extend our current explicit calculations and analyses to the
N-point scattering amplitudes of gauge bosons (gravitons) in the TMYM (TMG) theories
with more external states (such as N =5 and IV = 6). Since the 3d topologically massive
CS gauge theories are super-renormalizable and have good high energy behaviors, it would
be desirable to extend the present tree-level analyses up to loop levels. We will pursue such
extended studies in future works.
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A Kinematics and Feynman rules of 3d CS gauge theories

In this appendix, we present definitions of relevant kinematic variables for the 4-particle
scattering process and the Feynman rules for the 3d topologically massive Chern-Simons
gauge theories.

For the present analysis, we choose the following metric signature and the rank-3

anti-symmetric tensor:

N =" = diag(—1,1,1), "2 = —go10 = 1. (A1)

Thus, we have the momentum on-shell condition p? = —m?.

For the 2 — 2 elastic scattering process, the momenta in the center-of-mass frame can
be defined as follows:

péL = E(laoaﬁ)a pg E(laoa _6)5
pg = E(175307509)7 pZ = E(L _ﬁst% _/860)7 (AQ)

where we have defined f = /1 —m?2/FE?. Thus, we further define the Mandelstam
variables:

s=—(p1+p2)’ =4E?,
t= (o1~ pa)? =~ 551 4 ), (A3)
u=—(p —ps)* =~ 55°(1 ~ cy).

For convenience of our analysis, we can use the relation E? = E23% +m? to define another
set of Mandelstam variables (s, g, ug):

1 1
so=4B°B%,  to = —580(l+c)s up=—550(1 —cp). (A.4)

The summations of (s,t,u) and (s, ¢y, ug) obey the conditions:
s+t +u=4m? So+ 1ty +uy = 0. (A.5)

In the rest frame with 3-momentum p* = (m,0,0) = p*, we can solve eq. (2.5) and
derive the polarization vector:

() = —=(0,1, —is), (A.6)
where s = m/m = £1 and m = |m|. We note that the in the rest frame the gauge boson
polarization vector has zero time-component and its two possible forms are not independent
due to the relation €} = ise}’. Furthermore, by choosing the orthonormal basis €] = (1,0)
and e}, = (0,1) in a plane, we can define a polarization basis:

1

o = %(e{ tie)) = = (1,20, (A7)
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Thus, in the rest frame the spatial part of the polarization vector e*(p) can be decomposed
in terms of the basis {€.}:

e (p) = 6+6i_ +e €, (A.8)
where the coeflicients (e ,e_) satisfy (e ,e_) = (0,1) for s = +1 and (e, e_) = (1,0) for
s = —1 [38]. So, it is clear that in the 3d Chern-Simons gauge theory, the case of s = +1
(or, s = —1) only allows one physical polarization state e_ (or, €,) of the gauge boson,
as expected.

After taking the Lorentz boost along an arbitrary direction, the gauge boson momen-
tum can be generally written as p* = FE(1, sy, Bcy). Thus, we can Lorentz-boost the
rest-frame polarization vector (A.6) to the following general polarization vector:

1/ . .
Gg(p) _ ﬁ (1p1 "‘5]92’ - p1(ipy + spy) 51 Do (ip1 —|—5p2)> 7 (A.9)

m m(m —py) m(m — py)
where €/} = — (" )*. Thus, by substituting eq. (A.2) into eq. (A.9), we derive the following
explicit formulas of the physical polarization vectors:

b ® (BBis, E p— _° (BB, —is,—E A.10
€1 2( ﬁ? ) )7 € \/5( /37 9 )7 ( . )
56159 56159

5 (EB, Esg +iscy, Ecg — issg), ¢f = ——=(EB, —Esq — iscy, —Ecy + issy),

V2

where we have defined E = E/m.
For m > 0, the propagators for the Abelian and non-Abelian topological gauge theories
can be derived as follows:

. 1 PuPv ime, pp) p pll:l
Do(p) = —i | — (g — PuPr  TMEp Puby Al
22 (p) 1 [pg 4 mg (UW pg pg +§ p4 ) ( a)
DY (p) = 6""Dyu (p). (A.11D)

In eq. (A.11a), the pole p?> = 0 is unphysical, for which the EOM (2.5) becomes
metp e, = 0. It can be solved as e/ = f(p)p*, but it can be eliminated by the freedom
of gauge transformations [37]. Hence, the massless mode is a pure gauge artifact [37, 65].
Furthermore, we can derive the following Feynman rule of the cubic gauge boson vertex:

V;fz?;(pbpwps) = gcabc [N (P1 = P2)p + Mwp(P2 — P3)p + Mpu(P3 — P1)v + imeuw,] .
(A.12)

The quartic gauge boson vertex is similar to that of the 4d QCD.

B General power counting method in d-dimensions

In this appendix, extending the 3d power counting method of section 3.2, we present a
general power counting formula for the d-dimensional spacetime.
In d-dimensions, we derive the mass-dimension of a given S-matrix element S as follows:

Dg=d— %5, (B.1)
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where £ denotes the total number of external states as before. We see that the general
formula (B.1) reduces to Dg = 4 — € for d = 4 and Dg = 3 — & for d = 3, respectively.
Then, we can deduce the mass-dimension of all the coupling constants in the S-matrix
element S:

d—2  d-1 ) (B.2)

Dczz:vj(d—dj— 5 b; — 5 5
J

where V; denotes the number of vertices of type-j, and the quantities (dj, bj, fj) denote the
numbers of (partial derivatives, bosonic fields, fermionic fields) in each vertex of type-j,
respectively. We have the following general relations for each Feynman diagram which

contributes to the amplitude S,

J J J

where L denotes the number of loops of a given diagram, (Igz,€p) denote the numbers
of (internal,external) bosonic lines in this diagram, and (I,&p) denote the numbers of
(internal,external) fermionic lines in the same diagram. With these, we derive the leading
energy dependence of the amplitude S:

DE:DS—DC:2(1—V)+(d—2)L+ZVj<dj+;fj). (B.4)
j

Then, we consider the d-dimensional gauge theories (including Chern-Simons term
when allowed). By imposing the relations (3.11), we derive the leading energy dependence
of the amplitude S:

Dp=(Eap — &)+ (@ —-E-V3)+(d—-4)L, (B.5)

where £ A, is the total number of external states of the physical gauge bosons and £, denotes
number of the external states of gauge bosons v* = v, A" with the factor v" = el — €k.
Next, we can apply the power counting formula (B.4) to the topologically massive
gravity (TMG) theory. For this, we can derive the leading energy-dependence of a pure
graviton scattering amplitude S in the TMG theory, which corresponds to setting d; = 3
and f; =0 in eq. (B.4):
Dp =2, +V3+2+(d—2)L. (B.6)

where V5 denotes the number of cubic vertices from the CS term in the TMG action. For
instance, we can check that for the TMG theory of d = 3, the above egs. (B.5) and (B.6)
just reduce to the power counting formulas (3.12) and (3.13), which we derived for the 3d
TMYM and TMG theories in section 3.2.

C Dirac spinors in (241)d spacetime

The anti-symmetric and symmetric commutation relations for the gamma matrices in
(24+1)d spacetime are given by

Ay =20" [AT] = 26", (C.1)
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where we can choose the gamma matrices as the Pauli matrices [29]:

01 0 1 10

0_ ; 1 2

= = =0, = =04 = . 2
T (—1 O) T <1 0) B (O —1) ©2)

The Dirac equation in the 3d spacetime is derived as follows [29, 66]:
(@ - my ) =0, (C.3)

with @ = v#9,,. Its solution takes the plane wave form v ~ u(p)e P + v(p)e!”®. Thus,
the spinors (u,v) satisfy the momentum-space equations:

(p—impu=0,  (p+imspv=0. (C.4)

Then, solving eq. (C.4) gives the spinor solutions for particle and anti-particle:

" 1 p2 +imy v 1 p2 —imy (C.5)
V=po+p1 \—po+p1)’ vV —Po+Pp1 \—Po+p1
They obey the following spinor identities:
ut = —p—imy, uu=—i2my, VU= —p+ims, Vv =i2my, (C.6)

where @ = uf4? and v = v40.

D Topological scattering amplitudes with matter fields

In this appendix, we present the full amplitudes of the scattering processes discussed in
section 4. For the notational convenience of the following scattering amplitudes, we have
defined the parameters B, = 1 + 8 with 8 = /1 — m2/E2.

The scattering amplitudes of pair annihilation in the topologically massive scalar QED
take the following forms:

2e*[1 — B + E*(1 + E?)cyp +12E75,,]
(1 —2E2)2 +4E2(1 — E?)c} ’
2¢? (1- 214 + 2E402_9)
(1 —-2E2)2 + 4E2(1 — E?)c}’

Tl ¢T — ApAp] = — (D.1a)

Tlp~¢" — ApAq] = —

(D.1b)

The Compton scattering amplitudes in the topologically massive scalar QED are given by

62

—1_ B(1+ By) — 282¢, {(2- E*3%)p° (D.2a)
—[1=B(1+B4) + E*B2(1 — 26%)|cy —12ES-B1(1 — 28)se},

2e2[28% — (1 — 28 — 8%)c,]
1 =B+ 61)—28%,

T~ Ap — ¢~ Ap]

T~ Ap — ¢~ Ag] = (D.2b)
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The scattering amplitudes of pair annihilation in the topologically massive spinor QED are
derived as follows:
2e2E[2(1 — E?) + 2E%cyp +iE(1 + E?)sy)]
(1 —2E2)2 +4E2(1 — E?)c} ’
1462E4529
(1 -2E2)2 + 4E2(1 — E2)c}

T[67€+ — APAP] =

(D.3a)

7-[676+ — ATAT] == (D3b)

The Compton scattering amplitudes in the topologically massive spinor QED:
ie?(1 + tan ¢ _
e pL + tom ) C 1+ B2 - 4B,
2 =
2641 — B(L+ B4) — 2B%¢y)(1 + s4)2
— E22(2 — 5%) — 4BPco — (1 + E*B2 5)cyy
—i4BBB_Bysg —i2EB Bisy| (D.4a)
12e2B8(1 — 288+ — cp) (1 + ¢y + 8p)
T
B[l =B+ B4) — 25209](1 + 59)2
The scattering amplitudes of pair annihilation via the color-singlet channel in the topo-

logically massive QCD are connected to that of the TMQED according to eq. (4.25) in
section 4.2.1:

Tle Ap — e Ap| =

T[e_AT — C_AT] =

(D.4b)

2
Top[l0) = 1004, ] =25 F(N)T[e"e* — ApAp], (D.5a)
2
Torl[0)g = 1004, ] =25 f(N)Tle™e" — ApAq]. (D.5b)
where the function f(N) = ﬁ\/(]\ﬂ —1)/N.

E Graviton propagator and scattering amplitude in TMG

From the action (5.1) together with the gauge-fixing term (5.8), we derive the quadratic
term of the graviton fields:

1
Stme = / d*x thD;,}aﬁhaﬁ, (E.1)

where the inverse of the graviton propagator D;Vla 3 takes the following form:

_ 1 1 1
Dﬂz}aﬁ = <1 - 25) 77#!/7704562 ) (nuanu,é’ + nuﬁnua) O + <£ - 1) (nuuaaaﬁ + 770466;;81/)

1 1
+ 5 <1 - £> (nua&/aﬂ + 77#,881/8& + nuaauaﬂ + 771/53,@1)

1
+ 5 [2upal 0,050 = 150°0) + (1 v) ] (2
Then, transforming eq. (E.2) into momentum space and imposing the normalization
condition i
- i
Dpas D7 = 5 (0007 + 0707), (E.3)
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we can derive the massive graviton propagator as follows:

iA
o (E.4)

Dyvap = 2(p2 + m2)

where the numerator is given by

2

m 1
Auuaﬁ =~ Nwllag — F(znuunaﬁ ~ Npalvg — nuﬁnua) - ﬁ(nw/papﬁ + naﬁp,upu)
1 ® +m?) —m?
- Ep,u,pypapﬁ + p4 (nyapypﬁ + nyﬂpz/pa + nl/apy,pﬁ + nyﬁpp,pa)

imp”
W(gpp,anyﬁ + 5,;“57711@ + epuﬂnua + €pua77pﬂ)

imp”
- W(Spuapupﬁ + 6puﬁpypo¢ + Epljﬁpupa + Epuap,upﬁ)' (E5)

PubPv

Using the notation P, = 1, — et

we can further express the propagator (E.4)—(E.5)
into the following form:

i
2(p? +m2)

1
+ 272 (PMOZPV,B + PNBPV 2P Pa,@) 4 (T]w/papﬁ + naﬁpup,/)

Dyvas(p) = = (PuaPup + PupPua _P;wpocﬁ)

i§
+ ﬂ (nyapupﬁ + nuﬁpupoz + nuap,upﬁ + nyﬁpupoz)

mpP
_ W (gp,uapuﬁ + gPHIBP + Epl/aP,uﬂ + Epl/ﬁP ) . (E6)

Under the Landau gauge & = 0, the above propagator reduces to

i

=0 N _
Dyas(p) = W (PuaPus + PupPuo = P Pap)
+ 57 = (PuaPus + PugPra — 2P, Pag)
mp”
T2+ md) (Spueos + EousPoc+ SpuaPrs + EpusPrc)
i
- 4 (ny,l/papﬁ + naﬁp’u,py) . (E?)

If the last term above is removed by contracting with a conserved current or on-shell
physical graviton polarization, the propagator (E.7) agrees with the result of refs. [1, 2].

Next, we note that in section 5 we reconstructed the 4-graviton scattering amplitude
in egs. (5.14)—(5.15) which is expressed in terms of the energy variable 59 = s,/m?. For
the sake of comparison, we further reexpress the 4-graviton amplitude in terms of the
Mandelstam variable 5 = s/m?, which is connected to 5o = s/m? via § = 59 + 4. Thus,
from egs. (5.14)—(5.15), we derive the following equivalent expressions:

KPP (Qp + Qacop + Queyp + Qpcep + Q599 + Qu549 + QpSgg) csc® 0
Mdhp] =

109601 - PR 5 - (-2 -5+ -5
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where (Qj, Q]) are expressed as polynomial functions of the variable 5 = s/m?,

Qo = (256 + 490885 — 6888052 + 252205 — 2768552,

Qy = (—768 — 455685 + 6556852 — 1900857 + 5055%)52,

Q, = 4(192 — 1765 + 205 + 6355° + 535%)57,

Q¢ = — (256 + 28165 + 291252 + 5605° + 175%)52, (E.9)
Qo = (1280 — 2565 + 213125% — 89605° + 4755%)3,

Q, = 14(320 — 5445 + 6765% + 2725° + 55%)3,

Q¢ = —i(1280 + 35845 + 156857 + 1285° + 5%)3.
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