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1 Introduction

Alpha-alpha (α-α) scattering is one of the most fundamental reactions in nuclear (as-
tro)physics. It is the basic component of the triple-alpha (3α) reaction prevalent in hot old
stars, that leads to the generation of 12C and successively 16O, where the 12C production is en-
hanced through a JP = 0+ resonance at 7.65MeV excitation energy close to the 3α-threshold,
the famous Hoyle state [1]. α-α scattering itself features some fine-tuning, as the large
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near-threshold S-wave results from a state with (JP , I) = (0+, 0) at an energy ER ' 0.1MeV
above the threshold, see e.g. the review [2], with a tiny width of ΓR ' 6 eV. It is precisely
this small width (long lifetime) of the unstable 8Be nucleus that allows for the reaction
with the third α particle in the 3α reaction at sufficiently high temperatures and densities.

The fine-tunings in these (and other) fundamental nuclear reactions together with other
fine-tunings in particle physics and cosmology have led to the concept of the Multiverse, where
our Universe with its observed values is part of a larger structure of universes featuring dif-
ferent sets of the fundamental constants. Related to this are anthropic considerations, which
is the philosophical idea that the parameters governing our world should fit the intervals
compatible with the existence of life on Earth. More details can be found in the reviews [3–7].

Coming back to nuclear physics, the closeness of the Hoyle state energy to the 3α
threshold invites investigations about the stability of this resonance condition under changes
of the fundamental parameters of the strong and the electromagnetic (EM) interactions,
whose interplay guarantees the stability of atomic nuclei. While earlier investigations, see
e.g. ref. [8], suffered from some model-dependence in the description of the nuclear forces,
using the ab initio method of Nuclear Lattice Effective Field Theory (NLEFT) this topic
was re-investigated in refs. [9–11]. More specifically, the quark mass dependence as well as
the dependence on the electromagnetic fine-structure constant of the nuclear Hamiltonian
was worked out, using and combining results from chiral perturbation theory (CHPT) and
lattice QCD simulations for the pion decay constant, the nucleon mass and so on. Here,
we will use the same chiral EFT at next-to-next-to-leading order combined with the so-
called Adiabatic Projection Method (APM), that allows for ab initio calculations of nuclear
reactions, as developed in refs. [12–14]. Using the APM, the scattering of two alpha clusters
has been achieved on the lattice [15], enabled by the fact that the computational effort is
approximately quadratic in the number of nucleons in the scattering clusters. The method
was further refined in ref. [16]. Combining these different works, we are thus in the position
to investigate the sensitivity of the low-energy α-α phase shifts on variations in the light
quark mass m̂ and the EM fine-structure constant αEM. We note that α-α scattering has
also recently been studied using the no-core shell model within a continuum approach [17].

While the investigation of the resonance enhancement in the 3α process due to the
Hoyle state already sets rather stringent limits on the possible variations of the light quark
mass and the fine-structure constant, one has to be aware that these results are afflicted with
some inherent uncertainties, as in the corresponding stellar simulations only the distance of
the Hoyle state to the 3α-threshold is varied. Translating this into a dependence on, say, the
light quark mass assumes that only the nuclei directly involved in the 3α process are subject
to these changes, but of course one should perform the complete stellar simulations (reaction
networks) with appropriately modified masses and reaction rates. At present, this is only
possible for Big Bang Nucleosynthesis, see e.g. refs. [18, 19], but not for the whole nuclear
reaction networks in stars. Therefore, the ab initio computation of the dependence of α-α
scattering on the fundamental parameters of the Standard Model is not subject to such
uncertainties and paves the way for more elaborate network calculations in the Multiverse.

A parameter that has obtained less attention in such anthropic considerations is the
QCD θ-term, as the bounds from the neutron electric dipole moment require θ . 10−10,
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see e.g. ref. [20] for a recent lattice QCD study. Still, it is worth to reconsider bounds
on the θ-angle from observations other than the neutron EDM as well as from anthropic
considerations, as done e.g. in refs. [21, 22]. In particular, it was shown in [22] that nuclear
binding increases with θ and that θ . 0.1 would not upset the world as we know it. It is
thus also of interest to study the reaction rate of the fundamental α-α scattering process as
a function of θ, as will be done here.

In ref. [23], it was shown that symmetric nuclear matter without Coulomb interactions
lies close to a quantum phase transition between a Bose gas of alpha clusters and a nuclear
liquid. Whether one is in the Bose gas phase or the nuclear liquid phase is determined by the
sign of the α-α S-wave scattering length. In turn, the α-α scattering phase shifts depend on
the strength, range, and locality of the nucleon-nucleon interactions. The nucleon-nucleon
interactions need enough attractive strength, range, and locality to overcome the Pauli
repulsion between nucleons with the same spin and isospin [24, 25]. Locality here refers
to interactions that are diagonal when written in position space. The variation of the
light quark masses, electromagnetic fine-structure constant, and θ parameter will produce
changes to the leading-order interactions, and we take these changes to the nucleon-nucleon
interactions to be local. This choice is motivated by studies of Quantum Chromodynamics
in the limit of a large number of colors showing that the nucleon-nucleon interactions reduce
to local interactions with an underlying spin-isospin exchange symmetry [26–28].

The paper is organized as follows. In section 2, we introduce the dependence of the
two-alpha cluster energy on the fundamental parameters of the Standard Model, the basic
framework of NLEFT and give a first glimpse on some of the relevant quark (pion) mass
dependences. The pion mass dependence of the nuclear Hamiltonian used here is presented
in detail in section 3. Then, in section 4 we discuss the inclusion of the electromagnetic
interaction and the dependence of the nuclear Hamiltonian on the fine-structure constant.
Section 5 shows how the θ-dependence of α-α scattering can be inferred from the θ-
dependence of the pion mass. In section 6 we collect the computational tools needed for this
investigations. We give the basic APM formalism needed for our investigation and show
how various quantities are obtained from Auxiliary Field Quantum Monte Carlo simulations.
In section 7, we show how to extract the scattering phase shifts from the adiabatic transfer
matrices. Our results are presented and discussed in section 8. We end with a summary
and conclusions. Some further details of the computations are relegated to the appendices.

2 Basic concepts

We aim to compute the variation of the α-α scattering phase shifts as a function of the
fundamental constants of nature following refs. [10, 11]. Since we compute the scattering
phase shifts from the spectrum, we consider a linear variation in the light quark mass and
the electromagnetic fine-structure constant αEM of the two-alpha cluster energy,

δEαα '
∂Eαα
∂Mπ

∣∣∣∣
Mph
π

δMπ + ∂Eαα
∂αEM

∣∣∣∣
αph

EM

δαEM , (2.1)
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where we have used the Gell-Mann-Oakes-Renner relation, M2
π = 2B0m̂, with m̂ = (mu +

md)/2 the light quark mass and B0 is related to the scalar quark condensate.1 Throughout,
we work in the isospin limit as strong isospin breaking effects are expected to be very
small. Further, the superscript “ph” denotes the pertinent values in Nature (the physical
world). We note that this formula is applicable for changes in the modulus of the pion mass
|δMπ/Mπ| and the electromagnetic fine-structure constant by |δαEM/αEM| . 10%. The
variation with respect to the QCD θ angle will be discussed later in a separate section.

Our computational framework is NLEFT, see refs. [29, 30] for details. In what follows,
we employ a periodic cubic lattice with a spatial lattice spacing of a = 1.97 fm and a
temporal lattice spacing at = 1.32 fm. For free nucleons we use the O(a4)-improved lattice
Hamiltonian,

Hfree = 49
12mN

∑
~n

∑
i,j=0,1

a†i,j(~n)ai,j(~n)

− 3
4mN

∑
~n

∑
i,j=0,1

∑
l=1,2,3

[
a†i,j(~n)ai,j(~n+ l̂) + a†i,j(~n)ai,j(~nl̂)

]
− 3

40mN

∑
~n

∑
i,j=0,1

∑
l=1,2,3

[
a†i,j(~n)ai,j(~n+ 2l̂) + a†i,j(~n)ai,j(~n− 2l̂)

]
− 1

180mN

∑
~n

∑
i,j=0,1

∑
l=1,2,3

[
a†i,j(~n)ai,j(~n+ 3l̂) + a†i,j(~n)ai,j(~n− 3l̂)

]
, (2.2)

where ~n represents the integer-valued lattice sites, mN is the nucleon mass, l̂ = 1̂, 2̂, 3̂ are
unit lattice vectors in the spatial directions, i(j) is a spin (isospin) index, and ai,j and a

†
i,j

denote nucleon annihilation and creation operators.
For the leading-order (LO) nuclear interaction we use an improved action which is

based on the following nucleon-nucleon (NN) scattering amplitude,

ALO = CS=0,I=1 f(~q)
(1

4 −
1
4~σi · ~σj

)(3
4 + 1

4~τi · ~τj
)

+ CS=1,I=0 f(~q)
(3

4 + 1
4~σi · ~σj

)(1
4 −

1
4~τi · ~τj

)
+ g̃2

πN~τi · ~τj
(~σi · ~q)(~σj · ~q)
~q2 +M2

π

, (2.3)

where ~σ and ~τ denote the Pauli spin and isospin matrices, g̃πN is the strength of the
one-pion-exchange (OPE) potential defined as g̃πN = gA/(2Fπ) in terms of the nucleon
axial-vector coupling gA = 1.273(19) and the pion decay constant Fπ = 92.1MeV. CS=0,I=1
and CS=1,I=0 are the coupling constants of the short-range part of the nuclear force which
are adjusted to reproduce the scattering phase shifts for the two S-wave channels, and f(~q)
is a smearing function which is defined to reproduce the effective ranges for the two S-wave
channels. We redefine the low-energy constants (LECs) of the short-range interactions in

1Because of this relation, we can equivalently use the wordings “quark mass dependence” and “pion mass
dependence”.
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terms of linear combinations of C0 and CI ,

C0 = 3
4CS=0,I=1 + 1

4CS=1,I=0 , (2.4)

CI = 1
4CS=0,I=1 −

3
4CS=1,I=0 . (2.5)

From eqs. (2.2) and (2.3) it is obvious that the sources of implicit Mπ-dependence are
the nucleon mass mN , the coupling constant of the OPE potential g̃πN , and the LECs of
the short-range interactions C0 and CI , besides the explicit pion mass dependence in the
OPE. Before discussing these in detail in section 3, let us consider the quark (pion) mass
dependence of the nucleon mass and the pion decay constant to get an idea about the
changes we can expect. At the leading one-loop order O(p3), where p is a generic small
parameter, the chiral expansion of the nucleon mass can be written as

mN (Mπ) = m0 − 4c1M
2
π −

3g2
A(Mπ)M3

π

32πF 2
π (Mπ) +O(M4

π) , (2.6)

where m0 ' 865MeV [31] is the nucleon mass in the (two-flavor) chiral limit and c1 =
−1.1GeV−1 is a LEC from the chiral pion-nucleon Lagrangian at next-to-leading order
(NLO) [32]. Note that the leading correction of order M2

π is intimately linked to the
pion-nucleon σ-term discussed below. At third order, the pion mass dependence of the pion
decay constant and the axial-vector coupling constant is made explicit. For the pion decay
constant we use the expression from the chiral expansion at NLO,

Fπ(Mπ) = F + M2
π

16π2F
l̄4 +O(M4

π) , (2.7)

where F = 86.2MeV is the pion decay constant in the (two-flavor) chiral limit,2 and l̄4 = 4.3
is a LEC, where we use the value from ref. [33] (which is consistent with more modern
determinations). We postpone the discussion of the nucleon axial-vector coupling gA and of
the LECs C0, CI to the next section.

3 Pion mass dependence of the nuclear Hamiltonian

First, let us collect the knowledge about the pion mass dependence of the nuclear Hamilto-
nian. Specifically, the dependence of the energy Eαα on the pion massMπ can be expressed as

Eαα = Eαα(M̃π,mN (Mπ), g̃πN (Mπ), C0(Mπ), CI(Mπ)), (3.1)

where M̃π denotes the explicit Mπ-dependence from the pion propagator in the OPE po-
tential. Without going into the details of the individual terms given here, we write the
variation of the two-alpha cluster energy around the physical point as

∂Eαα
∂Mπ

∣∣∣∣
Mph
π

= ∂Eαα

∂M̃π

∣∣∣∣
Mph
π

+ x1
∂Eαα
∂mN

∣∣∣∣
mph
N

+ x2
∂Eαα
∂g̃πN

∣∣∣∣
g̃ph
πN

+ x3
∂Eαα
∂C0

∣∣∣∣
Cph

0

+ x4
∂Eαα
∂CI

∣∣∣∣
Cph
I

, (3.2)

2Note that throughout we do not consider variations of the strange quark mass ms, as these are expected
to be very small. Hence ms is simply kept at its physical value.

– 5 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
1

where

x1 = ∂mN

∂Mπ

∣∣∣∣
Mph
π

, x2 = ∂g̃πN
∂Mπ

∣∣∣∣
Mph
π

, x3 = ∂C0
∂Mπ

∣∣∣∣
Mph
π

, x4 = ∂CI
∂Mπ

∣∣∣∣
Mph
π

. (3.3)

The partial derivatives in eq. (3.2) are computed using the auxiliary field quantum
Monte Carlo (AFQMC) method [29], see section 6. To obtain an accurate and model-
independent description of the Mπ-dependence of the LO nuclear interaction, we will use
the most recent knowledge from chiral perturbation theory and lattice QCD simulations to
determine the quantities in eq. (3.3).

The partial derivative ∂Eαα/∂M̃π in eq. (3.2) is computed by introducing a small
change in the pion mass in the OPE of the nuclear Hamiltonian, H(M̃π)→ H(M̃π + ∆M̃π),
which corresponds to a perturbative shift in the energy, ∆Eαα(M̃π). In our calculations, the
pion masses are shifted by ∆M̃π = 4.59MeV, which equals to the empirical mass difference
between the neutral and charged pions. Therefore, the partial derivative ∂Eαα/∂M̃π is
defined as

∂Eαα

∂M̃π

∣∣∣∣
Mph
π

= ∆Eαα(M̃π)
∆M̃π

. (3.4)

In what follows, we will also use the so-called K-factors. These are defined via

Ki
X = y

X

∂X

∂y

∣∣∣∣
yph

, (3.5)

where X is an observable and the superscript i = {q, π, α} denotes the quantity
y = {mq,Mπ, αEM}, such that, e.g., Kq

X measures the sensitivity of X to changes in the
light quark mass mq. For more detailed discussion on these quantities, see, e.g., ref. [19].

The parameter x1 can be determined from the pion-nucleon sigma term,

σπN = 〈N |m̂(ūu+ d̄d|N〉 = M2
π

∂mN

∂M2
π

, (3.6)

i.e. the quark mass dependence of the nucleon mass, via

x1 = ∂mN

∂Mπ

∣∣∣∣
Mph
π

= 2
Mπ

σπN . (3.7)

The most recent and precise values for σπN are from the Roy-Steiner-equation analyses of
pion-nucleon scattering [32, 34]. In the calculation with the inclusion of pionic hydrogen
and deuterium data, the reported value is σπN = (59.1± 3.5)MeV, and in the calculation
using only the pion-nucleon scattering data the value is σπN = (58.1 ± 5)MeV. In this
study we use the value of ref. [32] and the uncertainty of ref. [34], which gives

x1 = 0.84(7) . (3.8)

The parameter x2 in eq. (3.3) represents the dependence of the strength of the OPE potential
and is given as,

x2 = 1
2Fπ

∂gA
∂Mπ

∣∣∣∣
Mph
π

− gA
2F 2

π

∂Fπ
∂Mπ

∣∣∣∣
Mph
π

. (3.9)
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For the dependence of Fπ on Mπ we use the results reported in ref. [19]

∂Fπ
∂Mπ

∣∣∣∣
Mph
π

= Fπ
Mπ

Kq
Fπ

Kq
Mπ

= 0.066(16) . (3.10)

The Mπ-dependence of the nucleon axial-vector coupling gA is obtained from the analysis
of the high-precision lattice QCD calculations [35]. We define

∂gA
∂Mπ

= ∂gA
∂M∗

∂M∗

∂Mπ
, (3.11)

where
∂M∗

∂Mπ
= ∂

∂Mπ

(
Mπ

4πFπ

)
= 1

4πFπ

(
1− Mπ

Fπ

∂Fπ
∂Mπ

)
= 0.078(2) l.u. , (3.12)

where l.u. stands for lattice units and ∂gA/∂M
∗|
Mph
π

= −0.08(24). In eq. (3.12) we use the
isospin-averaged pion mass Mπ = 138.03MeV. Putting pieces together, we have

∂gA
∂Mπ

= −0.006(19) l.u. , (3.13)

which gives

x2 = −0.053(16) l.u. . (3.14)

So far we have discussed the quantities x1 and x2 which control the Mπ-dependence
of the pion and nucleon properties as well as their interactions. As has been shown, we
obtained a model-independent description of these quantities utilizing the results from
CHPT calculations and the data from high-precision lattice QCD. Now we turn to the
discussion of the quantities x3 and x4 which are controlling the implicit Mπ-dependence
of the LECs of the short-range NN interactions, C0(Mπ) and CI(Mπ). Since the coupling
constants C0 and CI are adjusted to reproduce the NN scattering phase shifts in the 1S0
and 3S1 partial waves, it is much more convenient to express the x3 and x4 quantities in
terms of the inverse singlet (s) and triplet (t) NN scattering lengths,

Ās = ∂a−1
s

∂Mπ

∣∣∣∣∣
Mph
π

, Āt = ∂a−1
t

∂Mπ

∣∣∣∣∣
Mph
π

. (3.15)

To obtain the desired expressions, we adopt the analysis of ref. [10], which employs the
Lüscher finite volume formula to relate the spectrum of the NN system in a cubic periodic
box to the NN scattering parameters,

x3 = 0.04847 + 0.06713x1 − 0.25101x2 − 0.37652Ās − 0.20467Āt , (3.16)
x4 = 0.04990− 0.00190x1 − 0.01253x2 − 0.12551Ās + 0.20467Āt . (3.17)

We further use the analysis of ref. [11], which determines Ās and Āt from the most recent
available lattice QCD data, see appendix A for details:

Ās = 0.54(24) , Āt = 0.33(16) . (3.18)
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Finally, using the results given in eq. (3.18) with eq. (3.17), we get,

x3 = −0.153(96) , x4 = 0.049(46) . (3.19)

In what follows, we will use the values for Ās,t collected in eq. (3.18), noting that these are
still affected by sizeable uncertainties (for a more detailed discussion, see ref. [11]). This can
only be sharpened by more precise lattice QCD calculation at lower pion (quark) masses.

4 Dependence of the nuclear Hamiltonian on the fine-structure constant

First, we must briefly discuss how the electromagnetic interaction is included in our scheme.
This requires a multi-step procedure. In a first step, we consider 8 nucleons (4 protons and
4 neutrons) in a box of V ' (16 fm)3, from which two α clusters are formed. Here, the EM
interaction is included using the standard power counting, see e.g. [36]. In this counting, the
EM interactions start to contribute at NLO. To account for the infinitely-ranged Coulomb
interaction between these two clusters with charge Z = 2 each, we employ a second box of
about V ' (100 fm)3, which is far beyond the range of the strong interactions. Within this
box, a spherical wall with a radius of about 35 fm is placed subject to Coulomb boundary
conditions. This allows for an exact treatment of the long-range Coulomb forces with the
two α particles. For details on this procedure, we refer to refs. [15, 16].

Now, we are in the position to consider the second term on the right-hand side of
eq. (2.1), which is the αEM-dependence of α-α scattering. To study the αEM-dependence
of α-α scattering we compute the shifts ∆Eαα(αEM) and ∆Eαα(cpp). The former is the
variation of two-alpha cluster energy due to the long-range Coulomb interaction, and the
latter is the variation of two-alpha cluster energy due to a derivative-less proton-proton
contact operator. This operator arises from the fact that the Coulomb interaction on the
lattice becomes singular when two protons are on the same lattice site which requires a
special treatment. Thus, a regularized version of the Coulomb interaction on the lattice
is employed, and the coefficient of the proton-proton contact operator, cpp, is determined
from the proton-proton phase shifts on the lattice. The energy shift becomes,

QEM(Eαα) = ∆Eαα(αEM) + xpp ∆Eαα(cpp) , (4.1)

where xpp is the relative strength of the proton-proton contact term caused by the reg-
ularization of the Coulomb force. The coefficient xpp is computed using the data for
4He [10],

xpp = 0.39(5) . (4.2)

Finally, the partial derivative in eq. (2.1) can be written as

∂Eαα
∂αEM

∣∣∣∣
αph

EM

' ∂QEM(Eαα)
∂αph

EM
. (4.3)
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5 Theta-dependence of alpha-alpha scattering

We also strive to assess the θ-dependence of α-α scattering. To that end, one might be
tempted to again employ a linear variation ∝ δθ around the physical value of θph, similar to
what we do in the case of the Mπ-variation and the αEM-dependence of Eαα, see eq. (2.1).
However, it is well known that “small” variations of θ do not lead to drastic changes of
nuclear physics [21, 22] and after all it is interesting in its own right to assess what is
happening when θ approaches a value of, say, O(1). In this regime, a simple linear variation
clearly would not be applicable any longer.

There is, however, a way to circumvent such a direct calculation of the θ-dependence,
which is based on the observation that in a first approximation any source of θ-dependence
of Eαα can be traced back to the θ-dependence of Mπ, which in the isospin limit is given
by [37]3

M2
π(θ) = 2B0m̂ cos θ2 , |θ| < π . (5.1)

Assuming this approximation is valid, the present calculation of the Mπ-dependence of Eαα
within a range of |δMπ| . 0.1Mph

π can directly be translated into an assessment of the
θ-dependence in a corresponding range of |δθ| . 1.

It is not obvious that this approximation is legitimate, as Mπ and θ in CHPT are in
principle independent parameters, but it can be justified as follows: removing the QCD
θ-term by a suitable choice of an axial U(1) transformation adds a complex phase

M→ ei θ2M =:Mθ, (5.2)

to the quark mass matrix. This θ-dependent matrix enters chiral perturbation theory via
the matrix χθ = 2B0Mθ, which in the isospin symmetric case is simply given by

χθ =
(
M2
π(θ) + i 2B0m̂ sin θ2

)
1 . (5.3)

Hence, inserting this expression into a given chiral Lagrangian of any order will produce
terms that are either proportional to (some power of) Mπ(θ), or proportional to (some
power of) sin θ/2 (or both). While the latter are naturally absent in chiral perturbation
theory at θ = 0, the former simply leads to the known Mπ-dependence of quantities such as
mN , g̃πN , or couplings of nucleons to two or more pions.

As it turns out, at NLO, which is the maximal order we are considering here, the only
term ∝ sin θ/2 that might alter any of the involved quantities, in particular mN or g̃πN ,
comes from the NLO pion-nucleon Lagrangian [40]

L(2)
πN = c5N̄

(
χ+ −

1
2 Trχ+

)
N + . . . , (5.4)

where c5 is another LEC, the ellipses represent other NLO terms that are of no interest
here, and

χ+ = u†χu† + uχ†u , (5.5)
3The physics at θ = π is a bit more involved, see, e.g., [38, 39].
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with u carrying the pion fields. This term adds a contribution to the pion-nucleon coupling
that is explicitly θ-dependent, but it can be shown that its actual numerical impact is
so small (. 1–2%) [21, 41] that it can safely be neglected. The smallness of these effects
can directly be traced back to the suppression of the LEC c5 = (−0.09± 0.01)GeV−1 as
it parameterizes the leading isospin-breaking effects in the pion-nucleon sector [40]. This
means that as long as we stick to a calculation that is of NLO at most, any non-negligible
θ-dependence indeed only appears implicitly in form of Mπ(θ) as a consequence of the first
term of eq. (5.3).

Thus, our approach here is to not perform a separate calculation for assessing the
θ-dependence of α-α scattering, but to simply use the results of the Mπ-dependence analysis
and map them onto the θ-dependence using eq. (5.1).

6 Adiabatic projection method and auxiliary field quantum Monte Carlo
simulations

The adiabatic projection method is a general framework to construct a low-energy effective
theory for clusters. The adiabatic projection in Euclidean time gives a systematically
improvable description of the low-lying scattering cluster states and in the limit of large
Euclidean projection time the description becomes exact. The details of the method can be
found in refs. [12, 16]. The method starts with defining Slater-determinant of two-alpha
initial cluster states |~R〉 parameterized by the relative spatial separation between the clusters
on a periodic cubic lattice with a box size L,

|~R〉 =
∑
~r

|~r + ~R〉1 ⊗ |~r〉2 . (6.1)

To perform the calculations efficiently, we project the initial states onto spherical harmonics
with angular momentum quantum numbers ` and `z. To that end, we bin the cubic lattice
points 〈nx, ny, nz〉 with the same distance |~R| =

√
n2
x + n2

y + n2
z by weighting with spherical

harmonics Y`,`z(R̂),

|R〉`,`z =
∑
~r

Y`,`z(R̂′)δ~R,|~R′| |~R〉 . (6.2)

Here, ` and `z are not exactly good quantum numbers, see the discussion in ref. [43]. Since
the initial cluster states are not necessarily orthonormal, we define the orthonormal initial
cluster states

|R〉`,`z =
∑
R′

|R′〉`,`z [N−1/2
0 ]`,`zR′,R , (6.3)

where [N−1
0 ]`,`zR′,R is the norm matrix defined as

[N−1
0 ]`,`zR′,R = `,`z 〈R′|R〉

`,`z

. (6.4)
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In the next step, the initial cluster states are evolved in Euclidean time by means of
multiplying by powers of the leading order (LO) transfer matrix to form dressed cluster
states,

|R〉`,`znt
= Mnt

LO |R〉
`,`z . (6.5)

This procedure, by design, incorporates all the induced deformations and polarizations of
the alpha clusters due to the microscopic interaction and it gives the true low-lying cluster
states of the transfer matrix MLO. In general the dressed cluster states are not orthonormal,
thus for further calculations we use the following form of the dressed cluster states,

|R〉`,`znt
=
∑
R′

|R′〉`,`znt
[N−1/2

Lt
]`,`zR′,R , (6.6)

where [N−1/2
Lt

]`,`zR,R′ is the norm matrix at Euclidean time Lt = 2× nt. Finally, we define the
radial adiabatic transfer matrix at LO as,

[Ma
LO,Lt ]

`,`z
R,R′ = `,`z

nt 〈R|MLO |R′〉
`,`z
nt

. (6.7)

In our calculation the higher-order (HO) interactions are treated using first-order
perturbation theory, thus we include the perturbative contributions from NLO, next-to-
next-to-leading order (NNLO), isospin-breaking (IB), and Coulomb interactions (EM) to
the leading-order radial adiabatic transfer matrix order-by-order in perturbation theory.
Therefore, we define the radial adiabatic transfer matrix at a given higher order in a closed
form as

[Ma
HO,Lt ]

`,`z
R,R′ = `,`z

nt 〈R|MLO |R′〉
`,`z
nt
− αt `,`znt 〈R| : VHOMLO : |R′〉`,`znt

, (6.8)

where αt = at/a is the ratio of the temporal and the spatial lattice spacings, and VHO is the
higher-potential at the order of interest. The colons : . . . : denote normal ordering, which
means that we reorder the creation and annihilation operators inside the colons and we
move the creation operators to the left of the all annihilation operators with the appropriate
number of anti-commutation minus signs.

So far we have discussed the adiabatic projection method for the chiral EFT Hamiltonian.
Now we turn to the main interest of this paper, which is to construct the two-cluster matrix
elements of the partial derivatives given in eq. (2.1). Due to the fact that we study the effects
of small variations in the fundamental constants of nature on α-α scattering, the partial
derivatives in eq. (2.1) are treated in a similar manner as the higher-order corrections,

[Ma,y
HO,Lt ]

`,`z
R,R′ = `,`z

nt 〈R|MLO |R′〉
`,`z
nt

− αt `,`znt 〈R| : VHOMLO : |R′〉`,`znt

− αt `,`znt 〈R| :
∂Eαα
∂y

∣∣∣∣
yph

MLO : |R′〉`,`znt
δy , (6.9)

we use the superscript y for the observables Mπ, αEM and, in principle, θ. However, as
discussed in section 5, we will not perform explicit differentiations with respect to θ.

– 11 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
1

The two-cluster matrix elements of the LO transfer matrix, the higher order corrections,
and the partial derivatives are computed by means of the auxiliary field quantum Monte
Carlo (AFQMC) method. The non-perturbative quantum Monte Carlo simulations are
performed using the neutral pion mass Mπ and the isospin symmetry breaking effects
are incorporated perturbatively. The calculation of the radial adiabatic transfer matrices
in eqs. (6.7), (6.8) and (6.9) is divided into two separate parts. In the first part of the
calculation, we perform the AFQMC simulation for the system of A = 8 nucleons (4 protons
and 4 neutrons) to construct the radial adiabatic transfer matrices for two interacting α
clusters. Due to the computational cost associated with such simulations, this is done on a
periodic cubic lattice of length L which is not too large to prevent us from computing the
matrices accurately but is not too small so that the length L/2 is much larger than the range
of the interaction, R ∼ 1/Mπ ' 1.4 fm. In the second part of the calculation, the AFQMC
simulations are performed for the system with A = 4 nucleons, and these simulations are
done on a periodic cubic lattice of larger length due to the less computational demand. This
single α cluster adiabatic matrix is used to construct the radial adiabatic transfer matrices
for non-interacting two α clusters. Finally, we connect the radial adiabatic transfer matrices
of interacting α clusters with the radial adiabatic transfer matrices of non-interacting α
clusters in the asymptotic region to extend the radial transfer matrix of interacting α

clusters to a larger volume. The aforementioned two-part approach was studied extensively
for nucleon-deuteron systems in ref. [16], and it was found that the systematic errors due to
extension of the radial transfer matrix are negligible.

The first ab initio calculation of α-α scattering was performed in ref. [15] using the
same chiral Hamiltonian as adopted in this paper. However, in this paper we employ
developments in the adiabatic projection method from refs. [16, 23, 42]. As discussed above,
the first step of the adiabatic projection method is to define the initial cluster states, and on
a periodic cubic lattice of length L the total number of initial cluster states parameterized
by the relative spatial separation is N~R = 3L2/4. In ref. [12] it was shown that it is not
required to use every possible cluster state when we are interested in only a few low-lying
energies of the system of interest. Therefore, for simulating computationally demanding
systems it is advantageous to construct a radial adiabatic transfer matrix defined in the
subspace that is spanned by N~R < 3L2/4 cluster separation states. Following these findings,
in ref. [15] the radial adiabatic transfer matrix for non-interacting two-alpha clusters was
constructed in a smaller subspace of the two-cluster state space. In this paper, taking
advantage of powerful computational resources we perform our simulations using every
possible cluster state and construct the radial adiabatic transfer matrices in full space of
the two-cluster state space.

7 Extracting scattering phase shifts from the adiabatic matrices

What was discussed in the previous section was the first part of the adiabatic projection
method, which is constructing the adiabatic transfer matrix for the two clusters. The second
part of the method is to extract the scattering or reaction parameters for the two clusters.
In the previous section, by projecting the initial cluster states onto spherical harmonics
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with angular momentum quantum numbers ` and `z, we constructed the adiabatic transfer
matrix in radial coordinates, which provides a significant improvement in the computational
scaling [16]. Since our adiabatic transfer matrices are defined in radial coordinates, the best
approach to be used to calculate the scattering parameters is the so-called spherical wall
method [43–45].

In the spherical wall method we employ a hard boundary wall condition at r = Rwall,
which is the relative separation distance between two clusters in the asymptotic region.
In general, the spherical wall method is used to remove the periodic boundary effects
inherited from the cubic lattice and the artifacts due to the periodic boundary condition.
However, in our calculations these effects are already eliminated since we construct the
adiabatic transfer matrices in radial coordinates as explained in section 6. After imposing
the spherical hard wall to the radial adiabatic transfer matrices, we solve the Schrödinger
equation of the system and obtain the spherical scattering wave functions as well as the
spectrum. In principle, due to the imposed spherical hard wall one expects that the spherical
wave functions die out at Rwall, however, as a result of non-zero spatial lattice spacing the
spherical wave functions vanish at R′wall = Rwall + εR, where εR is the correction on the
precise radius of the spherical wall and is defined as |εR| < a/2.

The total wave function of a two-cluster system is decomposed into the radial part
R

(p)
` (r) and the spherical harmonics Y`,`z(r̂),

Ψ(~r) = R
(p)
` (r)Y`,`z(r̂) , (7.1)

where r is the relative spatial separation of the clusters and p is the relative momentum.
The radial wave function in the asymptotic region is given by

R
(p)
` (r) = N`(p) [cos δ`(p)F`(p r) + sin δ`(p)G`(p r)] , (7.2)

where N`(p) is an overall normalization coefficient, and F` (G`) is the regular (irregular)
Coulomb wave function.

The relative momentum p is calculated from the spectrum of the radial adiabatic
transfer matrices and the dispersion relation of the two-cluster system given by,

E = c0
p2

2µ + c1 p
4 + c2 p

6 + . . . , (7.3)

where µ = mα/2 is the reduced mass of the two-cluster system, mα the mass of the α-
particle, and the coefficients ci are determined by fitting eq. (7.3) to the lattice dispersion
relation. We determine the correction εR from the roots of the regular Coulomb wave
function with the relative momentum of the non-interacting two-cluster system, p0, around
Rwall. Finally, we use the corrected radius of the spherical hard wall, R′wall, and the relative
momentum of the interacting two-cluster system, p, and solve eq. (7.2) for the scattering
phase shifts,

δ`(p) = tan−1
[
−F`(pR

′
wall)

G`(pR′wall)

]
. (7.4)
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Figure 1. Left panel: S-wave α-α scattering phase shift δ0 versus the energy in the laboratory
system, Elab. Right panel: D-wave α-α scattering phase shift δ2 versus the energy in the laboratory
system, Elab. The blue circles and red squares represent our predictions at NLO and NNLO,
respectively, while the data are given by the black crosses.

We extract the scattering phase shifts from the radial adiabatic transfer matrices with Lt
time steps and perform Euclidean time extrapolating to the limit Lt →∞. Details of the
extrapolation fit and all associated error estimates are discussed in appendix B.

8 Results

8.1 Our universe

Here, we discuss the results for the S- and D-wave phase shifts and the effective range
parameters in the S-wave as well as the resonance parameters in the D-wave for the physical
values of Mπ and αEM and θ = 0. In figure 1, we show the S-wave phase shift δ0 (left panel)
and the D-wave phase shift δ2 (right panel) at NLO and NNLO in comparison to the data [2].
Note that we do not show the LO result here, as the electromagnetic interaction is not yet
included and therefore the predicted curve is far off the data (as discussed in more detail in
ref. [15]). We find a marked improvement, both for the S-wave and the D-wave, as compared
to the pioneering work in ref. [15], which is due to the improvements in the APM discussed
in the earlier sections. We note that these are parameter-free predictions. Furthermore, the
uncertainties are mostly stemming from the large Euclidean time extrapolation and these
decrease when going from NLO to NNLO, as expected in a well-behaved expansion. Up to
ELab ' 3.5MeV, our description of the S-wave phase shift is as good as the one obtained
using halo EFT in ref. [46]. We note that the uncertainties have somewhat increased as
compared to ref. [15] because, as discussed in the previous section, we use a much larger
subspace of the two-cluster state space, which reduces the number of configurations used
for the matrix entries, resulting in a larger statistical uncertainty. This could eventually be
overcome by utilizing much more HPC resources.
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S-wave D-wave
a0 [103 fm] r0 [fm] P0 [fm3] ER [MeV] ΓR [MeV]

NLO −1.80(93) 1.045(15) −2.297(156) 3.05(4) 2.68(23)
NNLO −1.55(63) 1.061(14) −2.277(158) 2.93(5) 2.00(16)
empirical −1.65(17) 1.084(11) −1.76(22) 2.92(18) 1.35(50)

Table 1. S-wave: the ERE parameters a0, r0 and P0 at NLO and NNLO. D-wave: the resonance
parameters ER and ΓR at NLO and NNLO. The empirical values from ref. [47] are also given.

Next, we discuss the S-wave ERE parameters a0, r0 and P0 (see appendix C for
definitions), collected in table 1. The fit range to determine these is from ELab = 1.0 to
7.7MeV. We see that these parameters are consistent with the empirical determinations,
but they are also afflicted with sizeable uncertainties. Note that there is sensitivity to the
fit range as well as to the position of the 0+ resonance, the 8Be ground state, as discussed in
ref. [46]. In our calculation, 8Be is very weakly bound. This appears to be in contradiction
to the scattering lengths given in table 1, but these values are very sensitive to the fitting
range employed to extract them, see also ref. [46].

The D-wave phase shift shows a clear resonance-behaviour. Due to the large width of
the resonance, the extraction of the resonance parameters (energy and width) is affected
with some model-dependence. As in our earlier work, we fix the resonance energy ER by
the maximum of dδ/dE and its width ΓR from the value of 2(dδ/dE)−1 at ER, see e.g.
ref. [48]. The resonance parameters at NLO and NNLO are also given in table 1. We find
that the resonance parameters at NNLO are much closer to the empirical ones as compared
to our earlier work.

8.2 The Multiverse

8.2.1 Variations of the bound state energies

Before considering the effect of the variations of the fundamental parameters on the α-α
scattering phase shifts, we discuss briefly the variation of the various bound state energies
relevant to the 3α process. This provides some additional information to ref. [11] that
was not explicitly displayed there. Consider first pion mass variations, keeping αEM and
θ at their physical values. In the left panel of figure 2, we display the variation of the
energies of 4He, 4Be, 12C and the Hoyle state 12C? as a function of the varying pion mass
for positive changes in Mπ. These energies are denoted as E4, E8, E12 and E?12, in order,
see the explicit expressions in appendix D. For negative energy changes in Mπ these curves
only differ in the sign, that is the contribution is repulsive rather than attractive as for
positive shifts in the pion mass. These different energies are obviously correlated, as shown
more clearly in the right panel of figure 2, where the various K-factors for the pertinent
eight and twelve particle systems are displayed as a function of the corresponding 4He
K-factor, Kπ

E4
, for independent variations of Ās and Āt over the range {−1, . . . ,+1} are

shown. Of course, the actual range of these parameters as given in eq. (3.18) is smaller, but
these parameters might change when better results from lattice QCD will become available.
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Figure 2. Left panel: variation of the ground state energy of the nuclei 4He, 4Be, 12C and the
Hoyle state 12C?, respectively, under variation of the pion mass (in percent). Right panel: sensitivity
of the ground state energy of the nuclei 8Be, 12C and the Hoyle state 12C?, respectively, to changes
in Mπ as a function of Kπ

E4
under independent variations of Ās and Āt over the range {−1, . . . ,+1}.
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Figure 3. Variation of the ground state energy of the nuclei 4He, 4Be, 12C and the Hoyle state
12C?, respectively, under variation of the fine-structure constant (in percent).

Note that such correlations related to the production of carbon have indeed been speculated
upon earlier [49, 50].

Next, we consider variations of the fine-structure constant for physical pion masses and
vanishing θ angle. The variations of the energies E4, E8, E12 and E?12 with varying αEM
are displayed in figure 3 (for positive shifts in αEM). Naively, one would expect the slopes
of the different nuclei to scale as Z2, that is in the ratio 1 : 4 : 9 for 4He, 8Be and 12C, in
order. The observed difference from this scaling is coming from the proton-proton derivative-
less contact interaction. In fact, removing the contribution from this term, one finds for
δαEM/αEM = 5% the following energy shifts: δE4 = 30.65(10) keV, δE8 = 117.5(10) keV
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and δE12 = 283.5(10) keV, perfectly consistent with the Z2 scaling. We note here that the
results for negative shifts in αEM are of opposite sign, that is pertinent energy shifts δEA
are negative.

8.2.2 Pion mass variations of alpha-alpha scattering

We now consider pion mass variations keeping αEM ' 1/137 and θ ' 0 fixed. In figure 4,
we display the NLO results with variations of the pion mass up to ±3% (inner red bands),
together with the 1σ uncertainty of the 3% variation (outer orange bands) as well as the
variations up to 5% (inner dark green bands) and the 1σ uncertainty of the 5% variation
(outer light green bands). As before, the left panel gives the S-wave δ0 and the right
panel the D-wave δ2 phase shift. The pertinent 1σ uncertainties include all statistical and
systematic errors properly propagated at this order. Consider now in more detail the S-wave.
For positive pion mass shifts, there is very little effect on δ0, however, this is different for
negative pion mass shifts. At around δMπ/Mπ ' −5%, the additional repulsion unbinds
the two-alpha system as seen by the phase shift starting at zero.

In the D-wave, the effects of the pion mass variation are somewhat more pronounced,
as seen in the right panel of figure 4. Here, the upper (lower) part of the band refers to
positive (negative) shifts in the pion mass. The pion mass variation is also reflected in the
parameters of the D-wave resonance, which for a pion mass variation of ±5% are given by

ER = 2.57(6) MeV , ΓR = 1.22(21) MeV δMπ/Mπ = +5% ,

ER = 3.60(13) MeV , ΓR = 3.56(89) MeV δMπ/Mπ = −5% . (8.1)

We now turn to the results at NNLO, showing the pertinent results for the S-wave in the
left panel of figure 5 and for the D-wave in the right panel of that figure. Consider first the S-
wave, where we display results for pion mass variations in the range −7% ≤ δMπ/Mπ ≤ 10%.
The critical value for δMπ/Mπ, where the two-alpha system becomes unbound, is moved to
−7%, where as positive changes of up to 10% do not lead to significant changes in the phase
shift δ0. For the D-wave, we again find a larger sensitivity (see right panel of figure 5). This
is again reflected in the resonance parameters,

ER = 2.52(15) MeV , ΓR = 0.92(33) MeV δMπ/Mπ = +5% ,

ER = 3.22(5) MeV , ΓR = 2.69(26) MeV δMπ/Mπ = −5% . (8.2)

We note that both at NLO and NNLO, the variations of ER and ΓR are almost linear in
the pion mass shift.

As noted, in our calculation at NNLO, the 8Be nucleus is slightly bound, which generates
some of the behaviour of the phase shifts close to zero energy. To overcome this, we also
consider the pion mass dependence of the S-wave effective range function K0(ELab) as well
as the one of the D-wave effective range function K2(ELab), as defined in appendix C.

Let us start with the S-wave. In figure 6, we show the pion mass variation of the S-wave
effective range function with respect to the results for our Universe at NLO (left panel)
and NNLO (right panel). There appears to be little effect on K0(ELab) at NLO, with a
somewhat increased repulsion for negative pion mass shifts. More precisely, there is some
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Figure 4. Pion mass dependence of the α-α phase shifts at NLO. Left panel: S-wave phase shift
δ0 versus the energy in the laboratory system, Elab. Right panel: D-wave phase shift δ0 versus the
energy in the laboratory system, Elab. The black crosses refer to the experimental data, the blue
circles are the NLO results in the limit Lt →∞ at δMπ = 0. The red band corresponds the S-wave
phase shifts with a variation in Mπ within |δMπ/Mπ| ≤ 3%, and the golden band refers to the errors
for |δMπ/Mπ| = 3%. The dark green band corresponds to a variation in Mπ within |δMπ/Mπ| ≤ 5%,
and the light green band refers to the errors for |δMπ/Mπ| = 5%. In the case of variation in Mπ

by −5% in the S-wave, due to difficulty in performing Euclidean time extrapolation at low-energies
we estimate the error band from the spread in phase shifts versus the number of time steps.
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Figure 5. Pion mass dependence of the α-α phase shifts at NNLO. Left panel: S-wave phase shift
δ0 versus the energy in the laboratory system, Elab. Right panel: D-wave phase shift δ0 versus the
energy in the laboratory system, Elab. The black crosses refer to the experimental data, the red
squares are the NNLO results in the limit Lt →∞ at δMπ = 0. The dark gold band corresponds
to the S-wave phase shifts with a variation in Mπ within |δMπ/Mπ| ≤ 5%, and the light golden
band refers to the errors for |δMπ/Mπ| = 5%. The dark blue band corresponds to a variation in Mπ

within −7% ≤ δMπ/Mπ ≤ 10%, and the light blue band refers to the corresponding errors. In the
case of variation in Mπ by −7% in the S-wave, due to the difficulty in performing a Euclidean time
extrapolation at low energies, we estimate the error band from the spread in phase shifts versus the
number of time steps.
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added repulsion for negative mass shifts. This trend is also found at NNLO, with some
increase in strength. We can quantify this by calculating the shift in the first parameter of
the ERE, namely the inverse S-wave scattering length at NLO

1
a0

=



− 0.0017(12) for δMπ/Mπ = −5% ,

− 0.0025(3) for δMπ/Mπ = −3% ,

− 0.0019(1) for δMπ/Mπ = 0 ,
− 0.0016(1) for δMπ/Mπ = +3% ,

− 0.0019(1) for δMπ/Mπ = +5% ,

(8.3)

and at NNLO

1
a0

=



+ 0.0011(6) for δMπ/Mπ = −10% ,

− 0.0016(1) for δMπ/Mπ = −5% ,

− 0.0014(1) for δMπ/Mπ = 0 ,
− 0.0013(1) for δMπ/Mπ = +5% ,

− 0.0021(1) for δMπ/Mπ = +10% ,

(8.4)

all in units of MeV. We note that the shifts at NNLO are a bit larger than the ones at NLO,
which can be traced back to the fact that there is more short-range repulsion in the NNLO
interaction and thus it is less sensitive to the pion mass dependent corrections. Clearly, the
NNLO calculation should be considered more reliable.

Consider now the D-wave. In figure 7, we show the pion mass variation of the D-wave
effective range function with respect to the results for our Universe at NLO (left panel) and
NNLO (right panel). The effect on K2(ELab) is quite pronounced, it is smallest where the
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Figure 7. Pion mass dependence of the D-wave effective range function. Left panel: NLO results.
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phase shift passes through the resonance. We can quantify this by calculating the shifts
in the inverse D-wave scattering length, at NLO first parameter of the ERE, namely the
inverse D-wave scattering length at NLO

1
a2

=



9.30(2) for δMπ/Mπ = −5% ,

6.19(5) for δMπ/Mπ = −3% ,

5.27(5) for δMπ/Mπ = 0 ,
3.79(6) for δMπ/Mπ = +3% ,

2.42(12) for δMπ/Mπ = +5% ,

(8.5)

and at NNLO

1
a2

=



5.49(6) for δMπ/Mπ = −5% ,

4.95(8) for δMπ/Mπ = −3% ,

4.35(10) for δMπ/Mπ = 0 ,
3.02(4) for δMπ/Mπ = +3% ,

1.54(4) for δMπ/Mπ = +5% ,

(8.6)

all in units of 10−5 MeV3. Again, we find somewhat reduced changes at NNLO compared
to NLO.

8.2.3 Alpha-alpha scattering with varying αEM

Here, we consider the influence of variations in the fine-structure constant on the α-α phase
shifts. Despite the various sources contributing to this type of modifications as discussed in
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Figure 8. Dependence of the α-α phase shifts on the fine-structure constant at NNLO. Left panel:
S-wave phase shift δ0 versus the energy in the laboratory system, Elab. Right panel: D-wave phase
shift δ0 versus the energy in the laboratory system, Elab. The black crosses refer to the experimental
data, the red squares are the results for δαEM = 0, the dark blue band corresponds to variations
in αEM/αEM ≤ 7%(5%), for the S-(D-)wave and the light blue band represents the corresponding
1σ error.

section 4, we find that the phase shifts are little affected by variations in αEM, as shown in
figure 8 for the NNLO results. Here, variations of αEM up to ±7% are displayed, where
the upper (lower) part of the band refers to positive (negative) shifts in the fine-structure
constant. We see that the variation in αEM has essentially no effect on the phase shifts.
This can be explained as follows: by far the largest EM effect is the long-range Coulomb
interaction between the two clusters. Now we are measuring the phase shifts with respect to
the Coulomb-modified effective range expansion (see appendix C), and thus this dominant
effect is already taken care of. In contrast to the bound state energies (see section 8.2.1),
the effect of the variation of the remaining, shorter-ranged EM corrections appears to be
insignificant.

8.2.4 Remarks on the θ-dependence of alpha-alpha scattering

In section 5, we had shown that up to NLO, we can get the θ-dependence of the α-α
scattering phase shifts directly from the θ-dependence of the pion mass. Therefore, we can
directly translate the pion mass dependence of δ0,2 into a θ-dependence. The depicted bands
of the S-wave phase shifts for δMπ/Mπ = −3% and −5% in figure 4 correspond to a variation
of θ = 0.7 and 0.9, respectively. At such values of θ, the di-proton and the di-neutron are
bound and element generation would proceed differently, for details see ref. [22].

We also note that a simultaneous variation of the light quark masses and θ can lead to
a mutual (partial) compensation of effects, or to a mutual amplification. The latter case
appears when 0 < |θ| < π and at the same time δm̂/m̂ < 0 as both result in a decrease of
the pion mass. If one the other hand has 0 < δm̂/m̂ ≤ 10% one can always find a value for
θ such that Mπ(m̂, θ) = Mπ,phys and nuclear physics would not be altered drastically (at
least up to the order we are considering here).
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9 Summary and outlook

In this work, we have considered the fundamental process of α-α scattering based on ab
initio calculations in the framework of Nuclear Lattice Effective Field Theory, both for
the physical values of the light quark mass, the fine-structure constant, and the QCD
θ-angle, as well as for variations in these parameters. The main findings of this work can
be summarized as follows:

• Due to improvements in the Adiabatic Projection Method compared to the pioneering
study of α-α scattering in ref. [15], we obtain a very good description of the S- and
D-wave phase shifts up to energies Elab ' 10MeV at NNLO in the chiral expansion.

• For the study of the variations under changes of the pion mass with |δMπ/Mπ| ≤ 10%,
we rely on the pion mass dependent nuclear Hamiltonian worked out in ref. [11]. To
this order, the 8Be nucleus is slightly bound. In the S-wave phase shift, we find a
dramatic effect (unbinding of the two-alpha system) for changes of −5% and −7% at
NLO and NNLO, respectively. We have also considered the pion mass variation of
the S-wave effective range function, which is less sensitive to the binding issue and
shows an added repulsion for negative pion mass shifts. This additional repulsion will
certainly impact the position and the lifetime of 8Be. The pion mass variation on the
D-wave is somewhat more pronounced, as seen by the effect on the corresponding
resonance parameters and also by the D-wave effective range function.

• The dominant electromagnetic effect on the α-α scattering phase shifts is the long-
ranged Coulomb potential that is included exactly by using a spherical wall with
Coulomb boundary conditions. Taking this effect into account via the Coulomb-
modified ERE, we find very small effects of variations of αEM on the S- and D-wave
phase shifts.

• We have shown that up-to-and-including NLO in the chiral expansion, the dependence
of the α-α scattering phase shifts on the QCD θ-angle is entirely given by the θ-
dependence of the pion mass.

In summary, we find that α-α scattering (not unexpectedly) sets weaker constraints on the
variation of the light quark masses and the fine-structure constant than that given by the
closeness of the 3α threshold to the Hoyle state. However, as discussed in detail e.g. in
refs. [8, 11], this requires stellar modelling which introduces some model-dependence. In
contrast to that, the investigation of α-α scattering discussed here is truly ab initio and not
affected by such effects. Still, to further improve these calculations, a better determination
of the pion mass dependence of the singlet and triplet NN scattering lengths from lattice
QCD is mandatory.
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A Details on the NN scattering parameters at varying pion mass

Here, we give some details on how we extract the values of Ās,t from lattice data combined
with EFT methods, closely following ref. [11]. In the earlier work [10] a combination of
EFT and some modelling based on resonance saturation was used to pin down the pion
mass dependence of the singlet and triplet inverse scattering lengths, which unavoidably
induced some uncertainty that is difficult to control. However, ref. [51] proposed to use
low-energy theorems to reconstruct the energy dependence of the NN scattering amplitude in
a large kinematical domain from a single observable (such as the binding energy, scattering
length, effective range) at a given fixed value of the pion mass [51]. Based on this, the
lattice QCD data for the deuteron, the dineutron binding energy and the ERE parameters
from refs. [52–56] are used to extract the quantities Ās and Āt, as these appear to be
mutually consistent. To perform interpolation between these five lattice-QCD points and
the experimental values of the inverse scattering lengths, a simple quadratic ansatz is used:

a−1
s,t (Mπ) = (aph

s,t)−1 + a(Mπ −Mph
π ) + b(Mπ −Mph

π )2 . (A.1)

The coefficients a, b are then determined from a least square fit to the available values of
a−1
s,t at heavier-than-physical pion masses. This leads to the values Ās = 0.54 and Āt = 0.33.

A cubic extrapolation yields Ās = 0.78 and Āt = 0.49, and we take the difference as an
estimation of the uncertainty in Ās,t. In that way, we arrive at the values given in eq. (3.18).
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Figure 9. NLO (left panel) and NNLO (right panel) results for the S-wave phase shift δ0 versus Lt
for the lab energies Elab = 1.0MeV, 2.0MeV, 3.0MeV, 4.5MeV, 6.5MeV, 8.5MeV and 10.0MeV,
respectively. The theoretical errors indicate the 1σ uncertainty due to the MC errors. The dotted
lines are fits to the data and used to extrapolate to the Lt →∞ limit. The hatched areas represent
the 1σ error of the extrapolation.
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Figure 10. NLO (left panel) and NNLO (right panel) results for the D-wave phase shift δ2 versus
Lt for the lab energies Elab = 1.0MeV, 2.0MeV, 3.0MeV, 4.5MeV, 6.5MeV, 8.5MeV and 10.0MeV,
respectively. The theoretical errors indicate the 1σ uncertainty due to the MC errors. The dotted
lines are fits to the data and used to extrapolate to the Lt →∞ limit. The hatched areas represent
the 1σ error of the extrapolation.

B Euclidean time extrapolation

We perform the AFQMC simulations and construct the radial adiabatic transfer matrices
for the S-wave and D-wave channels from Lt = 4 to Lt = 10. Based on that, we compute
the pertinent phase shifts with errors calculated using a jackknife analysis of the MC data.
In figures 9 and 10 we show the NLO and NNLO results for the S- and D-wave phase shifts,
respectively.

The dashed lines in these figures are the exponential curves used in the extrapolation to
the limit Lt →∞. This is achieved by including some residual dependence from an excited
state at an energy ∆E above the ground state, utilizing the ansatz:

δ`(Lt, E) = δ`(E) + c`(E) exp[−∆E` Lt at] , ` = 0, 2 , (B.1)
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where the c`(E) and ∆E` are fit parameters. As the gap between the α-α threshold and
these excited states is rather large, one finds a fast convergence as exhibited in these figures.
There, the hatched areas represent the 1σ deviation errors of the extrapolations, including
the propagated MC errors of the data points.

C The Coulomb modified ERE

Here, we collect the formulas for the Coulomb-modified ERE that was used above at NLO
and NNLO. The Coulomb modified ERE takes the form [57–60]

K`(p) = C2
η,`p

2`+1 cot[δ`(p)] + γh`(p) = − 1
a`

+ 1
2r`p

2 − 1
4P`p

4 +O(p6) , (C.1)

for a partial wave with angular momentum ` and p is the relative momentum of the two
scattering clusters. K`(p) is also called the effective-range function for angular momentum
`. The factor C2

η,` is defined as

C2
η,` = 22`

[(2`+ 1)!]2C
2
η,0
∏̀
s=1

(s2 + η2) , (C.2)

where C2
η,0 is the conventional Sommerfeld factor,

C2
η,0 = 2πη

e2πη − 1 , (C.3)

with η = γ/(2p). Here, γ is the Coulomb parameter given by

γ = 2µαEM Z1Z2 , (C.4)

where µ is the reduced mass of the two-alpha system and Z1 = Z2 = 2 are the charges of
the two α-particles. Finally, the factor h`(p) in (C.1) is given by

h`(p) = p2`C
2
η,`

C2
η,0

(Re[ψ(iη)]− log |η|) , (C.5)

where ψ(z) = Γ′(z)/Γ(z), in which the prime denotes differentiation.

D Bound state energies for varying pion masses

Here, we collect the derivatives of the various ground state energies and the energy of the
Hoyle state with respect to the pion mass as a function of the parameters Ās and Āt, using
the updated values for x1 and x2 collected in section 3 (for details, see ref. [10]),

∂E4
∂Mπ

∣∣∣∣
Mph
π

= −0.339(5) Ās − 0.698(4) Āt + 0.042(10) , (D.1)

∂E8
∂Mπ

∣∣∣∣
Mph
π

= −0.796(31) Ās − 1.584(22) Āt + 0.098(25) , (D.2)

∂E12
∂Mπ

∣∣∣∣
Mph
π

= −1.519(27) Ās − 2.884(19) Āt + 0.174(46) , (D.3)

∂E?12
∂Mπ

∣∣∣∣
Mph
π

= −1.589(12) Ās − 3.025(9) Āt + 0.194(47) , (D.4)

where the error in the parenthesis is the combined statistical one from the AFQMC
calculation and the systematic one due the uncertainties in x1 and x2.
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