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We consider how scalar fields affect the thermodynamic behavior of charged anti-de Sitter (AdS) black
holes. We specifically investigate a class of (3 4 1)-dimensional exact hairy charged AdS black hole
solutions to Einstein-Maxwell-scalar gravity, whose stable ground state and finite horizon area in the zero
temperature limit make it of particular interest. We find that the reverse isoperimetric inequality is satisfied
for this class and that there exists an intermediate range of the charge that admits reentrant phase behavior,
the first example of this type of phase behavior in (3 4 1) dimensions in a consistent theory.
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I. INTRODUCTION

There is considerable ongoing interest in how scalar
fields affect gravitational systems, particularly in asymp-
totically anti-de Sitter (AdS) spacetimes. Scalars can
condense to form “boson stars” (smooth horizonless
compact objects in AdS) [1-3] and can also yield black
hole spacetimes with a single Killing vector [4-9]. Hairy
black hole solutions play an important role in the context of
AdS/CFT duality [10] in understanding various properties
of field theories with a holographic dual, e.g., Refs. [11,12].
Surprisingly, it was recently shown that the self-interaction
of the scalar field is relevant for the stability of black holes
in asymptotically flat spacetime [13-15].

Consequently, the thermodynamic behavior of hairy
black holes is also of considerable importance. It is of
particular interest to understand how the presence of scalars
modifies the phase behavior of charged black holes [16,17],
something well understood in the context of black hole
chemistry [18]. This approach extends the framework of
black hole thermodynamics to allow for a “dynamical
pressure” and its conjugate volume [19]. The AdS cosmo-
logical constant is taken to be a thermodynamic varia-
ble [20,21] interpreted as thermodynamic pressure [22,23].
Its conjugate volume is conjectured to satisfy a relation
called the Reverse Isoperimetric Inequality [24], whose
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violation may be associated with a new kind of instability
for black holes [25,26]. Once embedded in string/M theory,
changing the cosmological constant is equivalent to a
geometrical process, namely one with a variation of the
volume (modulus) of the external sphere.

In this paper, we show that scalar hair can drastically
modify known phase behavior. Specifically, we present the
first example of reentrant phase transitions in four spacetime
dimensions and in a consistent theory describing a class of
exact hairy charged AdS black hole solutions to Einstein-
Maxwell-scalar gravity. These are of particular interest
because they have finite horizon area in the zero temperature
limit [27], whereas without the dilaton potential, these
solutions are singular. This is essential for a correct definition
of the canonical ensemble when the charge of black hole is
fixed [28]. Furthermore, the dilaton potential of the theory
corresponds to an extended supergravity model with dyonic
Fayet-Iliopoulos terms and so has a well-defined (stable)
ground state [29,30]. Such solutions are important in con-
sidering quantum phase transitions [31,32] and merit further
investigation since the dilaton potential modifies the “AdS
box,” suggesting unexpected new features and possible
insight into distinct holographic phases of matter [33].

We show here that this class [27,34] of charged hairy
black holes does indeed exhibit an interesting range of
phase behavior depending on their charge. In particular,
there is an intermediate range of charge for which, as
pressure increases, these black holes go from exhibiting no
distinguishable phases, to a sequence of reentrant phase
transitions, to a standard first-order van der Waals phase
transition, to a critical point, to a state where there are again
no distinguishable phases.
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II. EXTENDED THERMODYNAMICS AND THE
REVERSE ISOPERIMETRIC INEQUALITY

We consider the Einstein-Maxwell-dilaton theory with
the action

I—z—lk/Md“x\/—_g{R—e‘/g‘ﬁFz—%—U}, (1)

where x = 8z in the unit system where G = ¢ = 1. The
self-interaction of the scalar field is

U= g [sinh(\/?qﬁ) + 9sinh (%) — 4V/3¢ cosh <%>}

+2Acosh (%) , (2)

where « is an arbitrary parameter and A is the cosmological
constant. The exact static spherically symmetric solution
can be put in the following form [27],

ds* = Q(—fd* + P f~'dx> + d6* + sin’0dg?), (3)

4x q q
QZ*» A: ) ~ 9 dt, 4
re A= () ©

and ¢(x) = +/31n(x) for the scalar field, where x is a
dimensionless radial coordinate and 7 and g are constants
of integration. Without loss of generality, we can assume
n > 0. As in Ref. [35], the gauge potential has been fixed
such that A,(x, ) = 0, with x, being the horizon coordinate
satisfying f(x,) = 0, where

LSS PR ST S 0 O S
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(5)

The solution is known to admit two different branches,
but we consider the positive branch for which x > 1.
The boundary is located at x — 1, where the scalar
field vanishes, and the singularity is at x = co. We require
the conformal factor Q(x) — r?, with r being the
Schwarzschild radial coordinate, in order to obtain the
canonical AdS boundary. We obtain the Ashtekar-Magnon-

Das mass [36,37],

3 (2¢* - 1) —«a

M =
6n°

(6)

The physical electric charge obtained by the Gauss law is
related to the parameters of the solution by Q = ¢g/n. The
Hawking temperature and entropy can be computed as

s=2_ o). ()

1
T=——f(xp), 4

4zn

Now, by considering the cosmological constant to be a
variable corresponding to a spacetime pressure, we have the
generalized first law dM = TdS + ®dQ + VdP, where

2
A <8M> _Br 34l
0.8

OP),s 3P (xE-1)7

are the respective pressure and its conjugate thermody-
namic volume. Furthermore, the Reverse Isoperimetric
Inequality [24], R > 1, is satisfied:

_(3V\if4n\:  23(3x + 1)
(@) (@) - o

III. CRITICALITY IN CANONICAL ENSEMBLE

In what follows, we shall consider the thermodynamics
in the extended phase space by keeping the electric
charge fixed. The thermodynamic behavior of the black
hole is governed by the thermodynamic potential F =
M — TS obtained from the on-shell action in the Euclidean
section [38],

2 1241
a 19 Ixnd ) (10)

F = —lIE: _ 1= _
P ﬂ<12;73 232 2yt -1

In what follows, we shall rescale all variables in terms of
the fixed positive constant a,

P 3 T
l’]—>\/i&, P—>E, V—’GEV, T*%,
S—aS, Q0-=VaQ, M- JaM, (11)

such that all thermodynamic quantities are dimensionless;
hence, a will not further appear explicitly.

In this setup, we start by studying the equation of state
P = P(T,v), where v = 3V /28§ is the specific volume, at
fixed values of the electric charge Q. The equation of state
cannot be analytically obtained, but it can be expressed
parametrically as 7 = T(x,,P,Q) and v = v(x,, P, Q),
and it is depicted in Fig. 1. As shown, the phase behavior
changes as Q takes different values. There are three
branches each with its characteristic behavior. For small
values of the electric charge, Q < Qui, = 2.622, the
different isotherms exhibit a similar behavior pattern:
they start from a minimum value of » at P = 0, and then,
as v increases, P reaches a maximum, after which it
decreases as v continues to increase. For intermediate
values, Qnin < 0 < Qg~2.712, the behavior is depen-
dent on the temperature, as shown in the second plot in
Fig. 1. Within this interval, two critical points appear. The
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FIG. 1. Equations of state for Q = 1.50, Q =2.65, and
0 =2.90, respectively. Double criticality is observed within
Omin ®2.622 < 0 < Qp = 2.712.

critical point at higher pressure corresponds to that
of a standard van der Waals phase transition, and, for
temperatures just below this, there is a standard first-
order large/small black hole phase transition. The
critical point at lower pressure corresponds to a new feature
whose nature will be clarified later on in this section. For
lower temperatures, there are no longer two distinct phases.
Finally, for Q > Q,, the behavior becomes of the same type
as the Reissner-Nordstrom-AdS (RN-AdS) solution, with
only one critical point. We shall see that one of the critical
points in the region Q,;, < Q < Qy of “double criticality”
corresponds to a transition between two unstable phases
and thus is of no physical interest.
The critical points, denoted as (P, v, T.), satisfy

opP o*P
et (@)= 0

The single critical point for Q > Q, is characterized
by a critical compressibility factor zo = P.v./T, that, in
the limit Q — oo, approaches 3/8, as expected. This
RN-AdS-like critical point extends to Q = Q,;,,» Where
both critical points meet. This is shown in the first plot in
Fig. 2, in which we observe the double criticality within
Omin £ 0 < Qp. As the electric charge continuously
changes, the critical points trace a trajectory in the P-T
plane, as depicted in the second plot in Fig. 2. We also
notice that both critical points meet at 7. =~ 0.0448 and
P.~0.0053 when Q — Q-
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FIG. 2. Top: z¢c = P.v./T, vs Q. Note that z- < 3/8, with
z¢c — 3/8 as Q — 0. Bottom: trajectory of critical points in the
P-T plane, parametrized by Q.
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FIG. 3. Left-hand side: F vs T for Q = 0.10 (< Q,,,) for
which there is no critical behavior. Right-hand side: here, we
consider Q = 4 (> Q) for which the critical behavior is similar
to the RN-AdS black hole.

We now study the phase behavior using the thermody-
namic potential (10). For Q < Q.,, no critical behavior
takes place (see the first plot in Fig. 3), and for Q > Q,, the
behavior is quite similar to the RN-AdS black hole, with
one critical point and a small-to-large first-order phase
transition, as shown in the second plot in Fig. 3. The cusps
at the left in the cases Q < Qg and also Q,;, < O < Q are
indicative of the fact that these black holes have no inner
horizon and hence no extremal limit.

Within the range of double criticality, Q.;, < O < Q,,
the situation is much more interesting. In Fig. 4, we show a
number of snapshots for a relevant range of P for Q = 2.65.
At P, the first critical point appears, after which an
“inverted” swallowtail emerges. This swallowtail does not
signify a phase transition since all points on it are above the
global minimum of the free energy. However, as the
pressure further increases, the inverted swallowtail moves
leftward, and eventually, at Py, it intersects the lower part of
the curve, i.e., the branch of large stable black holes, as
shown in Fig. 4(b) with the intersection marked by a green
circle. For larger pressures, we have the standard large-to-
small first-order phase transition that takes place until
P = P_,. In addition, we observe a zeroth-order phase
transition that consists of a “jump” in the value of the
thermodynamic potential, as shown by the red dotted line in
Fig. 4(c). This phase transition starts from P = P, and
extends until P = Py, when the temperatures of the left
parts of the swallowtails coincide, as shown in Fig. 4(d).
Beyond this, it moves farther left, yielding a second
swallowtail (the standard one). The upper cusp of the
standard swallowtail moves downward as pressure further
increases until it intersects the upper part of the inverted
swallowtail, shown in Fig. 4(f), after which the inverted one
disappears. The standard one continues to shrink as
pressure increases until, at the second critical point
P =P, ~0.0049, the standard swallowtail also disap-
pears, as shown in Fig. 4(g). There is no critical behavior
for P > P,,.
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FIG. 4. F vs T, Q = 2.65, for increasing values of P.
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FIG.5. Coexistence lines for zeroth-order phase transitions and
first-order phase transitions. They meet at the large/small/large
triple point at P = P,,.

This situation is better illustrated in Fig. 5, in which the
coexistence lines for the corresponding phase transitions
are depicted. We see that, for P, > P > P, there are two
coexistence lines and, within this range of pressures, we
have reentrant phase transitions from large to small to large
black holes as the temperature continuously decreases.

IV. DISCUSSION

We have seen that the presence of scalar field consid-
erably modifies the van der Waals behavior previously
observed for charged black holes [16,17]. A phase tran-
sition is said to be reentrant if it involves the transformation
of a system from one state into a macroscopically similar
state via at least two phase transitions through the variation
of a single thermodynamic parameter [39]. By studying a
class of charged hairy black holes that have finite horizon
area in the zero temperature limit [27], we have found that
there is an intermediate range of the charge in which
reentrant phase behavior is exhibited. A different class of
hairy black holes was studied in Ref. [40], but there are no
reentrant phase transitions in this case. This is another
interesting and concrete example on the analogy between
black hole physics and condensed matter.

The scalar field is “secondary hair” in the sense that there
is no associated integration constant and the scalar charge,

which is not conserved, does not appear in the first law
[41]. Previously, we proved that the reverse isoperimetric
inequality is satisfied. The fact that R > 1 has the following
simple interpretation: for a black hole with a given
thermodynamic volume, the charged hairy AdS black hole
carries less entropy than the RN-AdS counterpart. This is
expected because the remaining entropy is taken by the
scalar field (“hair” degrees of freedom) beyond the event
horizon.

The nontrivial thermodynamic behavior and the fact that
there exists a well-defined extremal limit are not due to the
coupling between the electric and scalar fields but rather to
the special scalar potential that is coming from super-
gravity. The physical intuition behind the existence of a
finite horizon area in the extremal limit is that there is a
competition between the effective potential due to the
coupling with the gauge field and the potential of the
theory, which makes the extremal black hole regular. It is
also important to emphasize that the critical behavior
appears for a specific range of the parameters in the
potential. If we restore the constant a, we obtain that
criticality is restricted to theories satisfying

~0.134a SA <0 (13)

in accordance with the second plot in Fig. 2.

To close, we showed that the self-interaction of the scalar
field can change drastically the thermodynamic behavior of
black holes. These examples hint at the fact that in more
realistic scenarios, e.g., if the dark matter is a scalar field
with self-interaction, the phase diagram is richer than that
for black holes with no hair. Our study was done for
theories with negative cosmological constant. Interestingly,
in the limit A — 0, the critical temperature remains finite,
for Q = Q, (as in Fig. 3), which is a sign of criticality in
asymptotically flat spacetime. We hope to report on this in
the near future.
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