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The transport properties of dense QCD matter play a crucial role in the physics of neutron stars and their
mergers but are notoriously difficult to study with traditional quantum field theory tools. Specializing to the
case of unpaired quark matter in beta equilibrium, we approach the problem through the machinery of
holography, in particular the V-QCD and D3-D7 models, and derive results for the electrical and thermal
conductivities and the shear and bulk viscosities. In addition we compare the bulk to shear viscosity ratio to
the speed of sound and find that it violates the so-called Buchel bound. Our results differ dramatically from
earlier predictions of perturbative QCD, the root causes and implications of which we analyze in detail.
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I. INTRODUCTION

Dramatic advances in neutron star (NS) observations,
including the measurement of NS masses in excess of two
solar masses (M⊙) [1,2], the breakthrough discovery of
gravitational waves (GWs) from NS mergers [3,4], and
improvements in simultaneous mass-radius measurements
(see, e.g., [5–7]) have recently cemented the position
of neutron stars (NSs) as the primary laboratory of
dense quantum chromodynamics (QCD) matter. Through
a link between the microscopic and macroscopic worlds
provided by general relativity (GR), these observations
have offered valuable constraints for the properties of
matter well beyond the nuclear matter saturation density
of approx. ns ≈ 0.16 fm−3.
A particularly useful model-independent framework,

designed for implementing these observational constraints,

is provided by controlled extrapolations and interpolations
of the equation of state (EoS) of NS matter [8–22] from the
low-density realm of nuclear theory [23–26] to the high-
density regime of perturbative QCD [27–30]. At the
moment, state-of-the-art studies of this kind are able to
constrain the EoS to a good accuracy at all densities,
including the most problematic region where the system is
expected to transition from nuclear matter (NM) to decon-
fined quark matter (QM). Inside the cores of the most
massive stable NSs, the properties of dense QCD matter
have in addition been shown to lie closer to the expected
characteristics of nearly conformal QM than to those of
low-density NM, indicating the likely existence of quark
cores inside at least some NSs [21].
Despite all the advances described above, what is

currently still lacking is a smoking-gun signal of the
presence of QM inside NSs or of its creation during NS
mergers [31]. Such a dramatic detection of QM may in fact
never come from studies of the NS-matter EoS: should the
deconfinement transition be only weakly first order or even
a crossover at high densities and low temperatures, the EoS
is likely to undergo only smooth and modest changes near
the transition. In the case of a crossover transition, no well-
defined critical density would even exist, but there would
instead be an extended density interval where the system
transitions from the hadronic phase to a deconfined one.
With this possibility in mind, alongside with efforts to
constrain the EoS, one should clearly search for other
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observable quantities that witness more significant changes
when the system enters the deconfined phases of QCD.
One very promising avenue for improving our current

understanding of the high-density EoS and the deconfine-
ment transition region at high densities is a possible future
observation of a GW signal from the postmerger phase of a
NS merger event. This scenario has already been exten-
sively studied using relativistic hydrodynamic simulations,
revealing interesting imprints of strong first-order phase
transitions (see, e.g., [31] for a discussion). As argued in
[32], the dense and hot nonequilibrium system created in a
merger is, however, not only sensitive to the EoS of NS
matter, but also to the transport properties of the system, in
particular its bulk viscosity. Recalling that transport quan-
tities often experience substantial effects when the effective
degrees of freedom in the system change (see, e.g., [33]),
being able to infer the behavior of the most important
transport coefficients in both the confined and deconfined
phases of QCD would be extremely valuable. Combined
with data on the postmerger waveform, such information
may even provide the much-needed smoking gun evidence
for the creation of QM.
A severe restriction for first-principles studies of dense

QCD matter is that the phase structure of the theory is not
properly understood at high densities and small-to-
moderate temperatures. First, the location and order of
the deconfinement transition is currently an open question
due to a lack of nonperturbative ab initio tools applicable at
high densities [34], and second, the precise pattern of quark
pairing in the deconfined phase is only known in the
asymptotic limit [36]. Given these limitations, a sound
starting point is to first consider the unpaired phase when
inspecting a new class of physical quantities and then try to
generalize the results to various paired phases.
In [37], we presented first results for a number of

important transport coefficients—the shear and bulk vis-
cosities and the electrical and thermal conductivities—for
strongly coupled unpaired quark matter. We described the
system via the holographic V-QCD framework, which is
based on adding unquenched quark flavors to the improved
holographic QCD (IHQCD) model [38–40], and addition-
ally via the D3-D7 probe brane model for dense QCD-like
quenched matter [41,42]. This work followed a series of
previous holographic investigations of the bulk thermody-
namic properties of dense and cold quark [43–48] and
nuclear matter [49–52], but was the first one to study
transport in the high-baryon-density regime (for the high-
temperature, zero-density context; see, e.g., [53–56]). We
found dramatic qualitative differences to the earlier per-
turbative results of [57]—the only previous first-principles
results for these quantities—highlighting the need for
caution when using the latter in phenomenological appli-
cations in NS physics.
In the present paper, we provide a significantly more

detailed account of the calculations for the transport

coefficients that were only briefly covered in [37]. We
also extend this work in several new directions: In the
V-QCD setup we, among other things, provide a detailed
analysis of the low-temperature behavior of both bulk
thermodynamic and transport quantities in the QM phase.
The low-temperature physics is governed by a “critical”
AdS2 ×R3 geometry, and we argue that the low-temper-
ature asymptotics of the transport coefficients at small T
can be given in terms of a transseries. We also present
results for the speed of sound at nonzero temperature and
density and extend the analysis of viscosities to nonzero
frequencies. Furthermore, we solve the transport coeffi-
cients analytically at low temperatures in the D3-D7 model;
in particular, we determine the leading contribution to the
bulk viscosity from the flavor degrees of freedom. Finally,
we point out that this result, as well as the results for
V-QCD, violate a conjectured bound for the bulk viscos-
ity [58,59].
Our article is structured as follows. In Sec. II, we review

the V-QCD and D3-D7 models applied in our analysis, after
which Sec. III contains a detailed account of the determi-
nation of the conductivities and viscosities. In Sec. IV, we
then analyze our results, while Sec. V presents a brief
discussion of the implications of our findings and the future
prospects of improving the description of high-density
transport with holographic methods. The appendices of
the article finally contain some supplementary details of the
calculations, necessary for a quantitative reproduction of
our results.

II. HOLOGRAPHIC MODELS

In this section, we present our generic setup that will
allow us to make a connection to holographic models of
QCD containing fundamental matter at nonzero density.
These models include both top-down options like probe
brane configurations [42,60] and bottom-up approaches
such as V-QCD [38,39].
The action we consider consists of two separate pieces,

Stotal ¼ Sg þ Sf; ð2:1Þ

where the two pieces,

Sg ¼
1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂ρϕ∂ρϕ − Vðϕ; χÞ

�
; ð2:2Þ

Sf ¼−
T b

2κ25

Z
d5xZðϕ;χÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgμνþ κðϕ;χÞ∂μχ∂νχþWðϕ;χÞFμνÞ

q
; ð2:3Þ

correspond to the gluonic and fermionic sectors respec-
tively, as indicated by the subscripts [61]. Below, we will
define and discuss the different quantities that we have
decided to consider in this action.
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In top-down setups, the Sg piece descends almost
entirely from the closed string sector of type II supergravity
by reducing on a five-dimensional compact manifold and is
thus related to the glue sector of a gauge theory with gauge
group of rank Nc. We denote by R the Ricci scalar of the
spacetime metric gμν, whose determinant is g. Also, κ5 is
the five-dimensional Newton constant. The scalar field ϕ is
identified with the dilaton, which in holographic contexts
is dual to the Yang-Mills operator and its coupling constant.
The potential term Vðϕ; χÞ originates in the higher-
dimensional Ramond-Ramond and Neveu-Schwarz fluxes
and the compact geometry upon which one reduces; see,
e.g., [62]. This reduction could in principle give rise to
several scalars, φi, that parametrize the compact manifold.
Here we are omitting these in our description for simplicity,
since considering them will not give new insights in our
results, and their inclusion is in principle straightforward
albeit tedious. Notice, however, that the potential depends
explicitly on a second scalar, χ, which wewill refer to as the
tachyon. Its kinetic term is included in Sf, as we shall
discuss shortly. The dependence of the potential on this
field will not have any important consequences in our
results, but we include it explicitly since this dependence is
present in smeared setups [63]. In V-QCD, however, we
will restrict to V ¼ VðϕÞ configurations: The Sg sector of
V-QCD is motivated by noncritical five-dimensional string
theory but with a form for this potential that is chosen to
match with known features of Yang-Mills theory as we will
discuss below.
The second part of the action, given by Sf, corresponds

to the open string sector determined by the Dirac-Born-
Infeld (DBI) action of a set of source branes in a top-down
picture and models the flavor sector of the theory. The
scalar field χ would then describe how the flavor branes,
whose tension we have written as T b=ð2κ25Þ, are embedded
in the higher-dimensional geometry. In bottom-up
approaches, such as V-QCD, this scalar is referred to as
the tachyon, since Sf is inspired by Sen’s tachyonic action
[64–70], and we borrow this nomenclature. The field
strength Fμν ¼ ∂μAν − ∂νAμ in turn gives the dynamics
of the Uð1ÞB gauge field Aμ, corresponding to the con-
served baryonic charge of the dual field theory. The
couplings Z, κ, and W depend on the dilaton and tachyon,
and in top-down setups they are completely determined by
supergravity, whereas in V-QCD they are [in analogy to the
choice of the potential VðϕÞ] chosen to reproduce specific
features of QCD. From now on we will omit the arguments
in the different potentials V, Z, κ, and W.
The key difference between our model [Eq. (2.1)] and

many other holographic models of QCD is the appearance
of the DBI action [Eq. (2.3)] containing a square root. We
believe that polynomial actions representing fundamental
degrees of freedom would lead to results qualitatively
different from those reported here. We also note that we
write our action in five-dimensional language. It should be

relatively straightforward to apply our techniques in higher-
dimensional models if the reduction to five dimensions can
be done explicitly.
Extremizing Eq. (2.1), we obtain equations of motion

that are more concisely expressed in terms of the matrix,

Γμν ≡ gμν þ κ∂μχ∂νχ þWFμν; ð2:4Þ

the inverse components of which we write as Γμν; notice
that this does not equal ðg−1Γg−1Þμν. These equations of
motion are given in Appendix A. In the following, we will
consider a homogeneous, rotationally invariant background
in the presence of a nontrivial potential along the time-
direction for the gauge field, which is a requisite for
systems at nonzero density. Correspondingly, the line
element ds2 reads

ds2 ¼ gttðrÞdt2 þ gxxðrÞdx⃗2 þ grrðrÞdr2;
A ¼ AtðrÞdt; ϕ ¼ ϕðrÞ; χ ¼ χðrÞ; ð2:5Þ

where t and x⃗ are the coordinates along the temporal and
three spatial field theory directions, respectively [71].
Additionally, we have the holographic r coordinate, related
to the energy scale in the field theory side.
A first integration for the gauge field can be readily

obtained. To do this, notice that within our ansatz,

Γ½μν� ¼ g3xx
detΓ

A0
tðδμtδνr − δμrδνtÞ; ð2:6Þ

such that from the equation of motion for the Uð1ÞB gauge
field in (A1) we can define the conserved four-dimensional
current,

Jm¼ T b

2κ25
ZW

ffiffiffiffiffiffiffi
−Γ

p
Γ½mr�; Jt¼ ρ; Ji¼ 0; i¼ 1;2;3;

ð2:7Þ

whose time component ρ is the charge density. From (2.6)
and (2.7) we obtain

Frt ¼ A0
tðrÞ ¼

2κ25ρ

W

ffiffiffiffiffiffiffiffi−gtt
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grr þ κχ02
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ25ρÞ2 þ T 2

bZ
2W2g3xx

q : ð2:8Þ

From the holographic dictionary, the constant of integration
ρ corresponds to the conserved Uð1ÞB charge density,
whereas the chemical potential is given by the value of
the vector potential at the boundary μ ¼ Atð∞Þ.
From now on we assume the presence of a nonzero

temperature, such that our ansatz (2.5) behaves near the
horizon rh as
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Ah
t ≃Oðr− rhÞ; ghtt≃−αð4πTÞðr− rhÞþOðr−rhÞ2;

ghrr≃
α

4πT
ðr−rhÞ−1þOðr− rhÞ0;

ghxx≃ ð2κ25s=4πÞ2=3þOðr− rhÞ; ð2:9Þ

where s is the entropy density, T the temperature, and α an
undetermined constant that can be absorbed in a redefini-
tion of the holographic radius r ∈ ½rh;∞Þ.
We will now proceed to particularize our former expres-

sions to specific cases. In this paper, we will focus on two
different setups: the probe D3-D7 system and V-QCD.

A. Probe D3-D7

First, let us focus on probe brane setups, in which the
action Sg for the glue degrees of freedom is solved without
taking into account the backreaction of Sf, so that there is
no dependence in the potential V on the tachyon χ. The
corresponding background is fixed and given as input when
solving the dynamics associated to the tachyon and the
Uð1ÞB gauge field from Sf. In the field theory dual, this is
interpreted as working in a quenched approximation for
flavors.
The results thus obtained can only be trusted to first

order in a parameter that depends on the ratio between
coupling constants, T b. To include effects from the
backreaction is clearly interesting [72], albeit also con-
ceptually intricate due to the appearance of a Landau pole,
which forces one to set up the holographic dictionary at a
finite cutoff surface [73–77].
It is far from obvious that the action for the D3-D7

intersection can be written in the five-dimensional form
presented in (2.1). We will hence derive it explicitly starting
from ten dimensions. For the D3-D7 intersection, the
background corresponds to a solution of type IIB super-
gravity sourced by a Ramond–Ramond five-form flux and a
constant dilaton (ϕ ¼ 0). The solution reduces to an
AdS5 × S5 metric,

ds210 ¼ GMNdXMdXN

¼ gttdt2 þ gxxdx⃗2 þ grrdr2

þ L2ðdθ2 þ cos2 θdΩ2
3 þ sin2 θdϕ2Þ; ð2:10Þ

with

gtt ¼ −
r2

L2

�
1 −

r4h
r4

�
; gxx ¼

r2

L2
;

grr ¼ −g−1tt ; rh ¼ πTL2; ð2:11Þ

where L is the radius of curvature and the black hole
horizon is located at r ¼ rh. Consequently, the gluonic part
of the action can be written in this case as

Sg ¼
1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2

�
: ð2:12Þ

The value of the five-dimensional Newton’s constant κ5
is related to the ten-dimensional one and the volume of S5

as 2κ25 ¼ 2κ210ðπ3L5Þ−1. The thermodynamic quantities
associated to this black brane solution are

s¼ 4π4L3

2κ25
T3; ε¼ 3π4L3

2κ25
T4; p¼−f¼ π4L3

2κ25
T4;

ð2:13Þ

for the entropy (s) and energy (ε) densities as well as for the
pressure (p) and free energy density (f).
Concerning the flavor sector, we add to this background

a stack of Nf D7-branes wrapping the S3 ⊂ S5, which
introduce Nf flavor degrees of freedom in the field theory
side. We made the three-dimensional sphere S3 explicit in
our expression for the metric (2.10). These D7-branes are
considered extended along the four noncompact spatial
directions [60], and their dynamics are determined by the
DBI action in terms of the pull-back of the metric to the
eight-dimensional worldvolume of the D7-brane,

SDBI ¼−T7Nf

×
Z

d8ξe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det

�
GMN

dXM

dξm
dXN

dξn
þ2πl2

sFmn

�s
:

ð2:14Þ

In the above action, XM refers to the ten-dimensional
coordinates and ξm to the worldvolume coordinates on the
D7-branes. Also, T7 is the tension of a single D7-brane,
given by T7 ¼ 1=ðð2πlsÞ7gslsÞ as a function of the string
length ls and the string coupling gs. The embedding is
fully determined by the functional dependence of the ten-
dimensional angle θ on the worldvolume coordinates. Put
differently, the embedding is described by the profile of the
angle θ in the worldvolume of the D7-branes, which is
taken to depend solely on the radial coordinate r, so
that θ ¼ θðrÞ.
As discussed above, in order to describe dense phases we

need to introduce a Uð1ÞB field in the worldvolume of the
D7-branes given by

A ¼ AtðrÞdt; ð2:15Þ

which will be dual to the chemical potential and charge
density of the system. Taking all these ingredients into
account, the DBI action of the D7-branes (2.14) finally
reduces to
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Sf ¼SDBI¼−N
Z

d4xdrr3cos3θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þfr2θ02−ð2πl2

sÞ2F2
rt

q

¼−NV3β

Z
drr3cos3θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þfr2θ02−

4π2L4

λ
F2
rt

r

≡
Z

Lf ; ð2:16Þ

where

N ¼ 2π2NfT7 ¼
NcNfλ

ð2πÞ4L8
; ð2:17Þ

and V3 and β ¼ 1=T correspond to the volume of three-
dimensional space and the integral over the temporal
component, respectively. In the last equality of (2.17),
we have made use of the holographic dictionary, which
relates the supergravity parameters to gauge theory quan-
tities in the following way:

L4

l4
s
¼ λ; λ ¼ 4πgsNc: ð2:18Þ

From the action we have just presented, we can obtain the
equations of motion that AtðrÞ and θðrÞ have to fulfil. As
usual, we can integrate readily for the electric field by
defining

ðV3βÞ−1
δSf
δA0

t
≡ρ

⇒A0
t¼ ρ

λ

2πL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þfðrÞr2θ02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λρ2þ4π2L4N 2r6 cos6 θ

p ; ð2:19Þ

so that ρ is the charge density in the field theory side. On
the other hand, we get a second order differential equation
for the angle θðrÞ,

δSf
δθ

¼ ∂Lf

∂θðrÞ − ∂r
∂Lf

∂θ0ðrÞ ¼ 0: ð2:20Þ

Even though in some particular cases there are analytic
solutions to (2.19) and (2.20) which wewill discuss later, in
general we will need to solve the differential equations
numerically. Near the boundary, the solutions for the
electric potential and embedding profile read

θ ¼ m̃
r
þ c̃
r3

þ…

At ¼ μ −
λρ

8π2NL4

1

r2
þ…; ð2:21Þ

with μ the chemical potential, ρ the charge density, and m̃
and c̃ related to the mass of the quark and quark condensate
via the standard holographic dictionary, respectively,

Mq ¼
ffiffiffi
λ

p

2π

m̃
L2

; hψ̄ψi¼−
NfNc

ffiffiffi
λ

p

4π3L6

�
c̃−

m̃3

6

�
: ð2:22Þ

Here, by quark mass, we mean constituent quark mass, that
is to say, the energy necessary to introduce an additional
quark over the ground state. Notice that our conventions
differ from those in [78], such that λ½here� ¼ 2λ½there�.
By matching our action (2.3) to the DBI one for the

D7-brane, identifying the tachyon with the embedding
function,

χ ¼ θðrÞ; ð2:23Þ

we obtain (we set already ϕ ¼ 0)

T b

2κ25
¼ T7Nf

Z
S3
ω3 ¼ 2π2T7Nf ¼ N ;

W ¼ 2πl2
s ; κ ¼ 1; Z ¼ L3cos3θ; ð2:24Þ

whose relation to gauge theory quantities is again given
by (2.18).
As mentioned before, in order to find the transport

properties of the D3-D7 probe system, we will need to find
the precise embedding realized in each case (at different
temperatures, charge densities, quark masses, etc.) by
solving Eqs. (2.19) and (2.20). The way this is done
follows [42,78] and is described in Appendix B.

B. V-QCD

V-QCD represents a class of bottom-up models [38],
constructed to reproduce a number of features of full QCD
including both gluon and flavor dynamics with full back-
reaction. The structure of the model is therefore richer than
those of most other bottom-up models studied in the
literature. The model is based on one hand on improved
holographic QCD (IHQCD) [79,80], inspired by 5D
noncritical string theory, for the gluon sector, and on a
mechanism for adding brane actions with tachyon con-
densate [65,67], inspired by a space-filling D4 − D4-brane
configuration, for the flavor sector. As the model is loosely
based on a brane configuration, its action resembles that of
the D3-D7 model in many ways. That is, in the absence of
CP-odd and flavor-dependent sources the action of V-QCD
can be cast in the form of Eqs. (2.1) and (2.2)–(2.3).
The glue part of the action, Eq. (2.2), equals the action

for IHQCD [79,80] if the potential is chosen appropriately.
As already pointed out above, the dilaton field ϕ is dual to
the TrF2 operator. We denote

λ ¼ e
ffiffi
3

p
ϕ=

ffiffi
8

p
; ð2:25Þ

since in this normalization the source term of λ at the
boundary matches the ’t Hooft coupling in QCD. Note that
the definition of λ is therefore quite different from its
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counterpart in the D3-D7 model above. In particular, the
coupling runs in V-QCD; i.e., its value depends on the
holographic coordinate. We have, however, decided to use
the same symbol for different bulk quantities in the two
models, since their interpretation in field theory is the same.
The potential VðλÞ is chosen to only depend on λ, and at

the boundary we require that [81]

VðλÞ → −
12

L2
; ðλ → 0Þ; ð2:26Þ

with corrections suppressed by powers of λ. The resulting
geometry is asymptotically AdS5 at the boundary, and L is
the asymptotic anti–de Sitter (AdS) radius. The physically
more interesting low energy, infrared (IR) domain of the
model is specified by setting the behavior of VðλÞ at
intermediate and large values of λ. In particular choosing
the asymptotics,

VðλÞ ∼ λ4=3
ffiffiffiffiffiffiffiffiffiffi
log λ

p
; ðλ → ∞Þ; ð2:27Þ

this choice produces confinement and magnetic screening
as well as linear radial trajectories for the glueball spectrum
[79,80]. See Appendix C for the specific choice of the
potential used in this article.
The flavor action (2.3) in V-QCD is chosen following

Sen [82]; i.e., the potential is taken to be an exponential of
the squared tachyon field χ2,

Zðλ; χÞ ¼ Vf0ðλÞe−χ2 : ð2:28Þ

Recall that the tachyon field is dual to the quark bilinear q̄q
in QCD. The condensation of the tachyon in the bulk,
driven by the exponential potential, therefore gives rise to
chiral symmetry breaking in QCD [65,67]. The correspond-
ing source is the (flavor-independent) quark mass, which
we set to zero in this article for simplicity.
Apart from the function Vf0ðλÞ, the flavor sector con-

tains the potentials WðλÞ and (even though it will not be
important in this article) κðλÞ. For these potentials, we first
require consistency of the solutions: that the IR singularity
is indeed of the good kind [83], and that the tachyon IR
flow of the chirally broken solutions destroys the flavor
action in the IR, as suggested by the choice of the tachyon
potential in (2.28) [38,84]. This corresponds to the anni-
hilation of the D4 − D4 pair in the deep IR, therefore
realizing the tachyon decay picture of Sen.
We also require that the radial trajectories of the meson

spectra are asymptotically linear [85], that the mass gaps in
the meson spectra grow with the quark mass [86], and that
the phase diagram of the model as a function of T and μ has
qualitatively reasonable behavior [48]. These comparisons
demonstrate that the natural choice for potentials are power
laws in λ with exponents inspired by string theory [84],
potentially modified by logarithmic corrections.

Near the boundary, at the region of the geometry
corresponding to the high-energy ultraviolet (UV) of the
field theory dual, we require, as usual, that the asymptotics
of the bulk fields match with the dimensions of the dual
operators, which constrains the asymptotic values of the
potentials. Moreover, we require that the holographic
renormalization group (RG) flow of the coupling λ (up
to two-loop level) and the quark mass (up to one-loop level)
matches with that in pQCD, which constrain the UV
corrections in λ of the potentials. The idea is that con-
straining the UV behavior “by hand” using pQCD gives the
best possible boundary conditions for the IR physics, where
holography can lead to nontrivial predictions.
In the end, we tune the remaining degrees of freedom in

the glue sector [87] and in the flavor sector [40] by
comparing to the lattice data for the thermodynamics of
pure Yang-Mills and QCD, respectively. The potential sets
we use for the numerical results presented below are those
constructed in [40,48,88]. Specifically, we will present
results for three choices of these potential sets, given by the
fits 5b, 7a, and 8b in [40], respectively (see Appendix C).
For the V-QCD setup, we work in the Veneziano

limit, where the parameter T b ¼ Nf=Nc is kept finite (but
Nf → ∞ and Nc → ∞). In this limit, there is full back-
reaction between the gluon (Sg) and flavor (Sf) sectors,
which also means that—unlike in the probe D3-D7 case—it
is difficult to obtain any analytic solutions even for the
background, including the scalar fields and the geometry.
The temporal component of the gauge field At may be
eliminated analytically in the same way as for D3-D7, but
the other fields are found by using purely numerical
methods, which make use of analytically known expan-
sions of the background in the IR or at the horizon as
boundary conditions. Observables are in turn computed
using known expansions of the fields at the boundary. See
[39,89] for details.
We find that the V-QCD action admits four kinds of

homogeneous background solutions [89]. First, there are
two types of geometries: horizonless “thermal gas” solutions
where the IR geometry ends in a “good kind” of singularity
according to Gubser’s classification [83], and black hole
solutions with a horizon in the IR [90,91]. Second, in the
absence of explicit chiral symmetry breaking realized
through the source of the tachyon, there are solutions with
either zero tachyon or spontaneously formed tachyon “hair”
in the bulk. All of these four types of background solutions
also admit generalizations to nonzero charge [39] due to the
gauge field in (2.3). In the setup wewill study in this article,
only two of these solutions appear in the phase diagram
determined by dominant solutions: the tachyonic thermal
gas solutions (dual to the chirally broken confined QCD
phase) and tachyonless black hole solutions (dual to the
chirally symmetric deconfined quark matter phase).
Apart from these homogeneous phases, the full phase

diagram model may contain additional structure. In
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Refs. [48,52,92], nuclear matter was considered within a
simple approximation [93]. As expected, the nuclear matter
phase appears at low temperatures and intermediate chemi-
cal potentials. The transport properties are, however, only
nontrivial in the black hole phases because nontrivial
thermodynamics is 1=Nc suppressed in the confining
phases. Therefore we will concentrate on the (chirally
symmetric) black hole phase, which is dual to unpaired
quark matter in this article. Since we are working at zero
quark mass, this means that χ ¼ 0 everywhere in this phase.
That is, the relevant V-QCD action simplifies to

SV-QCD ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3

ð∂λÞ2
λ2

− VðλÞ
�

−
Nf

2Ncκ
2
5

Z
d5xVf0ðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þWðλÞFμνÞ

q
:

ð2:29Þ

III. TRANSPORT COEFFICIENTS

In this section, we present the derivation of general
formulas for the conductivities and viscosities in the class
of models we study in this work. This requires only
knowledge of the background geometry at the black hole
horizon, which greatly simplifies the calculation.

A. Conductivities

We are interested in the direct current (DC) transport
coefficients obtained as the response of the charge and heat
currents to homogeneous electric fields and temperature
gradients,

Ji¼ σijEj−αij∇jT; Qi ¼−κij∇jTþTαijEj: ð3:1Þ

The set of coefficients σ, α, and κ correspond to the electric,
thermoelectric, and heat conductivities, respectively. As we
are considering homogeneous and isotropic states, all the
conductivity tensors are proportional to δij. In principle, all
the transport coefficients can be determined through Green-
Kubo formulas [94,95] involving correlators of the current
and energy-momentum tensor. Although the calculation is
straightforward using holography, there is an even simpler
approach that involves evaluating the solutions at the black
brane horizon and can be used even in nonhomogeneous
states [96]. Our derivation will follow closely this work,
with some deviations that we will highlight below.
We start by considering a fluctuation with linear-in-time

sources,

δgμν¼ ½gttζxtþhtxðrÞ�ðδμtδνxþδμxδνtÞ
þhrxðrÞðδμrδνxþδμxδνrÞ

δAμ ¼ ½−ðEx−AtζxÞtþaxðrÞ�δμx; ð3:2Þ

where hμν and ai stand for the perturbations of the metric
and the gauge field. We identify ζx ¼ −∇xT=T with the
gradient of temperature and Ex with the electric field. We
have aligned both of these in the x-direction, as indicated
by the subscript, to be able to cancel the electric and heat
currents against each other, such that a translation-invariant,
static configuration arises, with no change of momentum.
The equations of motion at linear order in the fluctua-

tions are given in the Appendix A; see Eq. (A2). These
equations are two Einstein equations (an equation for htx
and a constraint coming from the radial Einstein equation)
and one equation for the gauge field ax, with no time
dependence once the background is set on shell.
The constraint gives a radially conserved quantity, which

when evaluated at the horizon with the horizon behavior
(2.9) gives rise to the relation,

ρEx þ sTζx ¼ 0 ⇒ Ex ¼
s
ρ
∇xT: ð3:3Þ

In the original derivation of [96], an axion field that breaks
translational invariance in the x-direction is considered, and
the presence of this field suffices to avoid the appearance of
a relation like (3.3). If the translations are only broken
spontaneously, the relationship (3.3) emerges, as shown in
[97]. This condition corresponds to a zero net force from
the combined temperature gradient and electric field, as we
will argue below; a derivation of this result in relativistic
hydrodynamics can be found in Appendix C of [37].
Besides the radial Einstein equation that gave rise to (3.3)

there are other two radially conserved quantities. The first
one is the current in the x-direction as read fromEq. (2.7) and
the second one corresponds to the heat current [96],

Jx ¼ ρ
htx
gxx

þ W
2κ25

ffiffiffiffiffiffiffiffi−gtt
p
gxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ25ρÞ2 þ ðgxxÞ3T 2

bW
2Z2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr þ κχ02

p a0x

Qx ¼ ð−gttÞ3=2 ffiffiffiffiffiffi
gxx

p
2κ25

ffiffiffiffiffiffi
grr

p ∂r

�
htx
gtt

�
− AtJx: ð3:4Þ

The equations of motion can be solved near the horizon by

ax ¼
Ex − AtðrÞζx

4πT
logðr − rhÞ þ…;

htx ¼ −
ζxgttðrÞ
4πT

logðr − rhÞ þ
2κ2Hx

4πTðghxxÞ1=2
þ…; ð3:5Þ

withHx an undetermined constant of integration. Evaluating
at the horizon by plugging (2.9) and (3.5) into these
expressions, we get

Jx ¼ ρHx

sT
þ σEx

Qx ¼ Hx; ð3:6Þ
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where

σ ¼ Wh

2κ25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ25ρÞ2 þ ðghxxÞ3T 2

bW
2
hZ

2
h

q
ghxx

: ð3:7Þ

Near the boundary, we impose that no non-normalizable
mode is turned on to ensure that the explicit sources given
in (3.2) are the only ones. In this case, the expansion of the
tx component of the metric at the boundary reads

δhtx ¼
r2

L2

�
0þ Lκ25

2
ðHx þ μJxÞL

4

r4
þ…

�
: ð3:8Þ

The coefficient of this term determines the momentum
density in the x-direction, T0x ¼ Hx þ μJx, which is
consistent with the identification of Hx as the heat current
[96]. If there was a net force, the momentum density would
increase linearly with time, but the ansatz is consistent with
a time-independent momentum density. This implies that
the net force acting on the plasma by the electric field and
the temperature gradient is zero, as we argued above.
For convenience, we will in the following work in the

rest frame of the fluid, where the momentum density
vanishes. Then, we have the condition,

Qx ¼ −μJx: ð3:9Þ

Taking this into account, we can write

Jx −
ρ

sT
Qx ¼ εþ p

sT
Jx ¼ σEx; ð3:10Þ

which, in turn, gives rise to the DC conductivity,

σxx ¼ sT
εþ p

σ: ð3:11Þ

In relativistic hydrodynamics, there is a single transport
coefficient that determines both the electrical and thermal
conductivities, which fixes the relation [37],

κxx ¼ μs
ρ
σxx: ð3:12Þ

Note that these transport coefficients have a slightly
different interpretation than the one we usually assign
them. The charge conductivity is normally defined in the
absence of a temperature gradient and the heat conductivity
in the absence of an electric field (while the thermal
conductivity is defined in the absence of a charge current).
However, in a clean system with unbroken translation
invariance, the usual DC transport coefficients would be
formally divergent because the forces produced by any of
the sources will introduce an acceleration of the elements of
the fluid that would make the currents grow without bound.

We have avoided this issue by tuning the electric field
and temperature gradient in such a way that the induced
forces compensate each other and the total acceleration of
the fluid vanishes. In this case the induced currents remain
finite, but the definition of the transport coefficients has
been modified.

B. Viscosities

Next, we explain our prescription for determining the
shear and bulk viscosities within the models introduced in
Sec. (2.1). Concretely, we do this by evaluating the
appropriate quantities at the horizon r ¼ rh as speci-
fied below.
The shear viscosity can be computed from the entropy

density following the usual Kovtun-Son-Starinets (KSS)
relation [98], which is valid for any matter coupled to
Einstein gravity [99],

η ¼ s
4π

¼ ðghxxÞ3=2
2κ25

þ sf
4π

: ð3:13Þ

Here, ghxx is the value of the gxx component of the metric at
the horizon, and sf denotes the contribution to the entropy
density of flavor degrees of freedom when they are
considered in the probe approximation. Thus, in the
V-QCD model sf ¼ 0, as the effect of the flavors is already
included in the background geometry. In the D3-D7 model,
the flavor contribution sf is specified in (B7).
The bulk viscosity is on the other hand computed

following the method developed by Eling and Oz [100].
We expect the Eling-Oz derivation to be valid in the D3-D7
model, since flavors are quenched similarly to some
examples studied in [100]. In the V-QCD model, we have
checked that the bulk viscosity computed in this way
coincides with the one obtained through the conventional
method of extracting it from perturbations of the black hole
[101,102]. Below, we present only the Eling-Oz derivation
since it is considerably simpler. The alternative derivation
for the V-QCD model is detailed in Appendix E, as we also
use it to find the frequency-dependence of the viscosities.
The computational framework is based on the fluid/

gravity correspondence [103], where the fields in the
background geometry are given a dependence on the
spacetime coordinates along the field theory directions
and a solution is systematically constructed expanding in
derivatives. Fortunately, in order to obtain the bulk vis-
cosity we do not need to find the explicit form of the
derivative corrections, as they will start affecting transport
coefficients only at second order.
The hydrodynamic equations of the fluid in the field

theory dual are obtained by projecting the Einstein
equations (A1) on the black hole horizon. The projection
is performed with the null vector lμ transverse to the
horizon,
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Rμνlμlν−
1

2
ðlρ∂ρϕÞ2þ

1

2
T bZ

ffiffiffiffiffiffiffi
−Γ

p
ffiffiffiffiffiffi−gp lμlνΓμν ¼ 0; ð3:14Þ

where Rμν is the Ricci tensor. The first two terms are the
same as the ones found in the original derivation [100]. The
last term can on the other hand be cast in a similar form by
specializing to the ansatz (2.5), for which the following
equality holds:

Γμνlμlν ¼ −κ
det g
detΓ

ðlρ∂ρχÞ2: ð3:15Þ

Then, the projected Einstein equations (3.14) become

Rμνlμlν −
1

2
ðlρ∂ρϕÞ2 −

1

2
T bZκ

ffiffiffiffiffiffi−gpffiffiffiffiffiffiffi
−Γ

p ðlρ∂ρχÞ2 ¼ 0:

ð3:16Þ

This is now of the form used in [100] for several scalar
fields. It follows directly from their analysis that the ratio
between the bulk (ζ) and shear (η) viscosities is determined
by the horizon values,

ζ

η
¼
�
s
∂ϕhðs;ρÞ

∂s þρ
∂ϕhðs;ρÞ

∂ρ
�

2

þT bZhκh

ffiffiffiffiffiffiffiffi−gh
pffiffiffiffiffiffiffiffiffi
−Γh

p
�
s
∂χhðs;ρÞ

∂s þρ
∂χhðs;ρÞ

∂ρ
�

2

; ð3:17Þ

which, after using (3.11), gives

ζ

η
¼
�
s
∂ϕhðs;ρÞ

∂s þρ
∂ϕhðs;ρÞ

∂ρ
�

2

þ 2κ25
ðghxxÞ1=2

κh
W2

h

σ

�
s
∂χhðs;ρÞ

∂s þρ
∂χhðs;ρÞ

∂ρ
�

2

: ð3:18Þ

In the two previous expressions, the subscript “h” indicates
that the quantities are evaluated at the horizon.
The above expression is the most general one for the type

of models we are studying. However, in the V-QCD model
we are working in the chirally symmetric phase of the
theory featuring massless quark flavors, so the tachyon
field vanishes χ ¼ 0, and only the first term in (3.18)
contributes to the bulk viscosity. On the other hand, in the
D3-D7 model the dilaton vanishes ϕ ¼ 0, and it is the
second term that produces a nonzero bulk viscosity. In this
second case we work at leading order in Nf=Nc, so in
practice we do not include the entropy density of flavors in
(3.18), and s only contains the glue contribution deter-
mined by the area of the black hole horizon.

IV. RESULTS

Now that the expressions for the DC transport coef-
ficients have been written down, we can determine their

values in the models discussed earlier. We begin this by first
discussing the D3-D7 system and turn to the V-QCD setup
afterwards.

A. Probe D3-D7

The expressions for the different transport coefficients
we are interested in for the D3-D7 system follow straight-
forwardly from the relations we found in the previous
section. Firstly, we can plug the relations between the top-
down parameters and the functions in the five-dimensional
model into Eq. (3.7). Doing so, we obtain

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2ρffiffiffi
λ

p
πT2

�
2

þ N2
fN

2
cT2

16π2
cos6 θh

s
; ð4:1Þ

which coincides with the result in [104] by sending the
electric field there, e, to zero and identifying ρ with D in
that reference. Note that this conductivity is of order NfNc,
which corresponds to a calculation in the probe approxi-
mation. This can be made more explicit by extracting
several factors from the charge density,

ρ ¼
ffiffiffi
λ

p NfNc

8π3
ρ̄; ð4:2Þ

in such a way that ρ̄ is independent ofNf,Nc, or λ, whereby
(4.1) becomes

σ ¼ NfNcT

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρ̄

π3T3

�
2

þ cos6 θh

s
: ð4:3Þ

As we saw in the previous section, this is not yet the
electrical conductivity since an additional prefactor appears
in the final result (3.11), namely,

σxx ¼ sT
εþ p

σ: ð4:4Þ

At nonzero temperature and to leading order inNf=Nc (i.e.,
the background contribution), this prefactor equals 1.
However, at zero temperature the leading order vanishes
and the prefactor is nontrivial. Consequently, we will keep
the next-to-leading order in Nf=Nc in the prefactor in our
plots, given that we expect the contribution from flavors to
overcome the glue contribution at small enough temper-
atures. Note that Nf=Nc corrections to σ play differently, as
the leading part never vanishes and corrections can be taken
into account only after computing the backreaction of the
brane on the background.
Once the electrical conductivity is known, the thermal

conductivity follows directly from (3.12). The results for
thermal and electrical conductivities are subsequently
shown in Fig. 1.
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Once the conductivities have been found, we canmove on
to the computation of the viscosities. Concerning the shear
viscosity, we already mentioned it can be directly obtained
from the relation η=s ¼ 1=ð4πÞ in this case. Therefore, the
contribution to the shear viscosity from the flavor sector,

ηf ¼ sf
4π

; ð4:5Þ

can be directly obtained from its contribution to the entropy
density sf, whose computation in this system is reviewed in
Appendix B.
For the bulk viscosity (3.18), we get a vanishing

contribution from the constant dilaton. Using η=s ¼
1=ð4πÞ and (2.13), we then obtain from (3.18)

ζ ¼ λσT2

4

�
s
∂θhðs; ρÞ

∂s þ ρ
∂θhðs; ρÞ

∂ρ
�

2

; ð4:6Þ

for the probe calculation. Note that only the gluonic
contribution has been considered in η, so that the terms
ðNf=NcÞ2 are properly neglected.

The evaluation of the squared term above can be per-
formed numerically in general, as discussed in Appendix B,
in addition to which analytical expressions can be obtained
in some particular limits. The result for the bulk and shear
viscosities is shown in Fig. 2. Fromnowonwewill restrict to
the case T ≪ Mq, which is relevant for the study of
neutron stars.

1. Probe D3-D7: Leading behavior at low temperatures

The interesting limit of zero temperature is recovered as
rh approaches to zero. Following [105,106], we are able to
provide analytical expressions for many of the quantities
we have been discussing.
First, we perform a Legendre transform which simplifies

the computations. Recall that the grand canonical potential
is proportional to the DBI action,

SDBI
V3

¼ β

Z
∞

rh

drLðθ; _θ; At; _At; rhÞ ¼ −βΩ; ð4:7Þ

where V3 ¼
R
R3 d3x is the volume of three-space.

Consequently, the free energy density is given by

FIG. 1. Electrical (left) and thermal (right) conductivities as functions of temperature in the D3-D7 system in the probe approximation,
forMq ¼ 210.76 MeV and μ ¼ 450 MeV (μ ¼ 600 MeV), corresponding to the solid orange (dashed blue) curve. At low temperatures
and represented by the thicker solid lines, the limiting behavior predicted by Eqs. (4.29) and (4.30), is recovered.

FIG. 2. Shear (left) and bulk (right) viscosities as a function of the temperature in the D3-D7 system in the probe approximation. The
blue (orange) curves correspond to the choiceMq ¼ 210.76 MeV (Mq ¼ 308.55 MeV). We picked two distinct values for the chemical
potential, μ ¼ 450 MeV and μ ¼ 600 MeV; corresponding to dashed and solid curves, respectively. At low temperatures, the constants
predicted by (4.22) and (4.24) as represented by thicker lines are recovered.
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f ¼ Ωþ ρμ ¼
Z

∞

rh

drð−Lðθ; θ0; At; A0
t; rhÞ þ ρA0

tðrÞÞ

≡
Z

∞

rh

drL̃ðθ; θ0; At; A0
t; rhÞ; ð4:8Þ

where we use the identity μ ¼ Atð∞Þ − AtðrhÞ ¼
R
∞
rh
drA0

t.
From this, the entropy density can be computed as

s ¼ −
∂fðT; ρÞ

∂T ¼ −πL2
∂fðrh; ρÞ

∂rh
¼ πL2L̃jr¼rh − πL2

Z
∞

rh

dr

�
d
drh

�
ρ;m

½L̃ðθ; θ0; At; A0
t; rhÞ�;

ð4:9Þ

where the derivative in the last term is defined through a
variation that keeps both ρ and the quark mass (which is the
only source here) fixed.
Because the gluonic contribution to the entropy density

vanishes at T ¼ 0 [see Eq. (2.13)], the expression in (4.9)
corresponds to the flavor contribution to entropy in this
limit. Furthermore, the second piece of this expression
vanishes, as we show in Appendix B. Consequently,

sfðT ¼ 0Þ ¼ πL2L̃jr¼0; ð4:10Þ

so we only need to find an expression for L̃ evaluated at the
limiting solution for which rh ¼ 0. In order to find such
embedding, it is quite convenient to perform the following
change of coordinates in our background metric [105]:

y ¼ r sin θ; z ¼ r cos θ: ð4:11Þ

In these coordinates, the function yðzÞ will describe the
embedding of the D7-branes, whose action reduces to

SDBI ¼ −N
Z

d4xdzz3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂zyÞ2 −

4π2

λ
ð∂zAtÞ2

r
:

ð4:12Þ

Then we have

˜̃Lðy; _y; At; _AtÞ ¼ −z3N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _y2 − ð2πα0Þ2 _A2

t

q
þ ρ _At;

ð4:13Þ

where dots stand for differentiation with respect to z and we
are putting two tildes on L to account for integrating over z
rather that r. Note that the integrand in Eq. (4.12) does not
depend explicitly on AtðzÞ [as Eq. (2.19)] or on yðzÞ. This
implies that there are two conserved quantities,

L−4 ∂ ˜̃L
∂∂zy

¼ −C; L−4 ∂ ˜̃L
∂∂zAt

¼ ρ; ð4:14Þ

the second of which is nothing but the charge density. From
these conserved quantities we get the corresponding equa-
tions of motion,

∂zAt ¼
λρ

2πL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λρ2 þ 4π2L4ðz6N 2 − C2Þ

p
∂zy ¼ 2πL2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λρ2 þ 4π2L4ðz6N 2 − C2Þ
p : ð4:15Þ

Fortunately, the two first order differential equations
above can be integrated exactly in terms of incomplete Beta
functions, giving

y ¼ C
6N r20

B

�
z6

z6 þ r60
;
1

6
;
1

3

�

At ¼
ρλ

24π2NL4r20
B

�
z6

z6 þ r60
;
1

6
;
1

3

�
; ð4:16Þ

where

r60 ¼ N −2
�

ρ2λ

4π2L4
− C2

�
: ð4:17Þ

Since y ¼ r sin θ, its asymptotic value coincides
with m̃ defined in Eq. (2.22), yð∞Þ¼m̃¼Mqð2πÞL2=ffiffiffi
λ

p
. Additionally, the asymptotic value of At is again the

chemical potential, μ ¼ Atð∞Þ. Using the asymptotic
expansion of the solutions, we can then solve ρ and C
in terms of the quark mass and chemical potential,

ρ ¼ 16π

λ2
N γ�μðμ2 −M2

qÞ

C ¼ N
�
2πffiffiffi
λ

p
�

3

γ�Mqðμ2 −M2
qÞ; ð4:18Þ

where γ� ¼ ðBð1=6; 1=3Þ=6Þ−3 ≈ 0.363.
The analytic solution can be expanded about the origin,

which will be crucial to understand the low-temperature
behavior of the entropy,

y ¼ C
z

r30N
þOðz7Þ

At ¼
λρ

4π2L4

z
r30N

þOðz7Þ: ð4:19Þ

In particular, at z ¼ 0,
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tan θh ¼
C

r30N
¼ Mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 −M2
q

q
⇒ cos θh ¼

1

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þM2

q

q
; ð4:20Þ

using which we obtain the contribution of the flavor sector
to the entropy,

sfðT ¼ 0Þ ¼ πL2L̃jr¼0 ¼ cos θh
˜̃Ljz¼0

¼ NfNcγ�
2

ffiffiffi
λ

p μðμ2 −M2
qÞ: ð4:21Þ

Note that the change of radial coordinate from r to z is
responsible for the appearance of cos θh in the latter
expression.
With all this information, the behavior of the transport

properties at small temperatures can be determined in a
straightforward way. First of all, the contribution of the
flavor sector to the shear viscosity is given by

ηf ¼
sf
4π

¼ NfNcγ�
8π

ffiffiffi
λ

p μðμ2 −M2
qÞ: ð4:22Þ

In Fig. 2 (left), we see how the numerical results nicely
approach this value in the low-temperature limit.
Regarding the bulk viscosity, note that we have been able

to write the value of the angle at the horizon in terms of the
chemical potential in Eq. (4.20). With that and the relation
between μ and ρ given by Eq. (4.18), we can compute

ρ
∂θð0Þ
∂ρ

����
Mq constant;T¼0

¼ −
Mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

q

q
3μ2 −M2

q
; ð4:23Þ

which can be substituted into the expression for the bulk
viscosity (4.6). Taking into account that the contribution
from s∂χh=∂s vanishes in the zero-temperature limit, we
obtain the nonvanishing result,

ζ ¼ NcNf
γ�
2π

M2
qμffiffiffi
λ

p ðμ2 −M2
qÞ2

ð3μ2 −M2
qÞ2

: ð4:24Þ

The behavior of the bulk viscosity at low temperatures is
shown in Fig. 2 (right).
Curiously, the ratio ζ=ηf, or equivalently ζ=sf, can be

written in a very compact form in terms of the speed of
sound. This can be seen by analyzing the quasinormal
mode dispersion relations of the gravity dual. The relevant
fluctuation mode originating from the vector gauge sector is
called the zero sound and can be determined analytically at
T ¼ 0 [107], giving

c2s ¼
μ2 −M2

q

3μ2 −M2
q
: ð4:25Þ

We note that this equals the stiffness ð∂p=∂εÞjs, commonly
referred to as the speed of first sound [see Eq. (B24) in
Appendix B] for the D3-D7 probe brane model in the limit
T → 0 [108,109]; the same holds more generally for any
probe brane intersections [110]. Solving for ðMq=μÞ2 from
(4.25) yields for the bulk to shear viscosity ratio,

ζ

ηf
¼ 6c2s

�
1

3
− c2s

�
: ð4:26Þ

Note that we are including only the flavor contribution to
the shear viscosity, since the glue contribution vanishes at
zero temperature. At nonzero temperature the ratio is highly
suppressed ζ=ηf ∼ Nf=Nc.
We can compare the above result with the holographic

bound for the bulk to shear viscosity ratio refer to as
“Buchel’s bound”: ζ

η ≥ 2ð1
3
− c2sÞ. It was proposed in [58]

and later generalized to nonzero density in [59] (fixing
c2s to be the stiffness). The bound is violated for any speed
c2s < 1=3, which according to (4.25) is always the case.
This thus provides yet another example [44,45], where
holographic conjectures are violated at nonzero den-
sity [111].
As already discussed in detail in [113], the dependence

of the viscosity ratio on 1=3 − c2s—a quantity measuring
the deviation from conformal invariance—turns out to
involve a different power in the strong coupling and weak
coupling (kinetic theory) calculations (see [114] for the
latter), although ζ=s ∝ ð1=3 − c2sÞ turns out to have the
same linear dependence in both regimes. It should be noted
that this comparison has been made in the low density, high
temperature regime, while we are working in the opposite
limit of high densities and low temperatures. This does,
however, not seem to affect the qualitative dependence of
the viscosity ratio on 1=3 − c2s .
Finally, let us move on to the analytical expressions of

the conductivities at small temperatures. From (3.11) and
the expression we have for the charge density, Eq. (4.18),
we get

σ ¼ 2NcNfγ�
πλ

3
2

μðμ2 −M2
qÞ

T2
: ð4:27Þ

Recall that the actual conductivity σxx has an additional
prefactor, which at leading order at low temperature reads

sT
εþ p

¼
ffiffiffi
λ

p

2

T
μ
þOðT2Þ: ð4:28Þ

Consequently, the final result for the conductivity at low
temperatures obtains the form,
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σxx ¼ NcNfγ�
πλ

ðμ2 −M2
qÞ

T
: ð4:29Þ

Again, from (3.12), a similar expression can be found for
the thermal conductivity,

κxx ¼ NcNfγ�
2π

ffiffiffi
λ

p μðμ2 −M2
qÞ

T
: ð4:30Þ

These low temperature results for the conductivities are
included in Fig. 1 as the thick asymptotic lines.
Interestingly, at low temperatures we explicitly see that

the Wiedemann-Franz law is violated, i.e., that the ratio κxx

σxxT
is not constant (which would be the Lorenz number),

κxx

σxxT
¼

ffiffiffi
λ

p

2

μ

T
: ð4:31Þ

B. V-QCD

Next, we move on to discussing the results from the V-
QCD setup. This time, we begin from the limit of small
temperatures, which can be handled analytically, moving
only thereafter to the more generic numerical results.

1. V-QCD: Small-T limit as transseries

It is also possible to derive some analytic results for the
transport coefficients in the quark matter phase of V-QCD
in the limit of zero temperature. The methods and results
differ, however, quite a bit from the D3-D7 computation of
the previous subsection. We discuss them in detail below
and in Appendix D.
It is useful to first recall the phase diagram of V-QCD at

low temperatures (and zero quark masses). At small μ, the
dominant phase is the confined chirally broken phase, dual
to the horizonless thermal gas background with nonzero
tachyon condensate, whereas at high μ the dominant phase
is the deconfined, chirally symmetric quark matter phase.
Since we are not considering implementations of nuclear
matter in this article, we take the model exactly as defined
in (2.3). Then the phase transition between the thermal gas
and quark matter phases takes place at μ ≈ 394, 406, and
428MeV (at T ¼ 0) for the potentials 5b, 7a, and 8b, given
in Appendix C. The non-Abelian nuclear matter configu-
rations of [48] appear at intermediate chemical potentials. If
the configurations are matched with traditional models of
nuclear matter at low density as explained in [92], the
nuclear matter phase ranges from μ ≈ 310 MeV to around
500 MeV, with the exact number depending on the details
of the matching.
One should recall that at very low temperatures in the

quark matter phase, one expects to witness the pairing of
quarks, which is absent in our model. The low-temperature
asymptotics may in any case give a reasonable description
of transport above the possible pairing transition. It also

turns out to have an interesting structure determined by an
AdS2 fixed point, which leads to the low-temperature
asymptotics of various observables being described in
terms of transseries.
The IR geometry in the quark matter phase is AdS2 ×R3

at zero temperature, signaling the presence of a quantum
critical line [39]. We discuss the asymptotic geometry of
this phase in detail in Appendix D and present here only
the main results. The flow to the IR fixed point, which gives
the asymptotically AdS2 geometry at zero temperature, is
found in terms of a transseries. That is, the flow of the
dilaton and the metric can be written in the form,

FðrÞ ¼
X∞
i;j¼0

Fijr̂ir̂αj; ð4:32Þ

where F represents a generic background function, r0 −
r ¼ r̂ is the distance from the end of space at r ¼ r0, and α
is a positive parameter that can be computed from the
action (see Appendix D for details). For the three potentials
used in this article we find that

α ≈ 0.3558; ðpotentials 5bÞ;
α ≈ 0.6566; ðpotentials 7aÞ;
α ≈ 0.4850; ðpotentials 8bÞ: ð4:33Þ

By using the transseries, the thermodynamics at low
temperatures in the (unpaired) quark matter phase can be
analyzed. This is done by modifying the geometry near the
AdS2 end through adding a blackening factor (see
Appendix D 3). First we find that the entropy goes to a
constant at zero temperature, with the leading corrections
decaying as T2α or T if α is below or above 1=2,
respectively. For the viscosities and conductivities we find
that

η ∼ T0; ζ ∼
�
T if 0 < α < 1=2

T2α if 1=2 < α < 1
; ð4:34Þ

σxx ∼ T; κxx ∼ T ð4:35Þ

as T → 0, with the subleading corrections to η behaving in
the same way as the corrections to entropy. Note that the
Wiedemann-Franz law is not obeyed, as κxx=ðσxxTÞ ∼ T−1,
similarly to the D3-D7 case of Eq. (4.31).

2. V-QCD: Numerical results

Next, we proceed to study the transport coefficients in
V-QCD at higher temperatures [115]. In this case, they are
extracted from the numerical solution of the background
using the formulas of Secs. III A and III B. Specifically, for
the conductivities we use Eq. (3.11), while the shear
viscosity is simply given by η ¼ s=ð4πÞ with the entropy
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computed form the area of the black hole. The bulk
viscosity is finally found by using the Eling-Oz for-
mula (3.18) or from the Green-Kubo formula with input
from the fluctuations of the metric in the helicity zero sector
(see, e.g., Ref. [101] and Appendix E). In our work, we
carried out both computations and checked that the
results agree.

Before dwelling on the transport properties, we briefly
display results for the adiabatic speed of first sound c2s ¼
ð∂p=∂εÞs as a function of temperature for the three choices
of potentials at μ ¼ 450 MeV and at μ ¼ 600 MeV. As can
be seen from Fig. 3, the speed of sound increases with T at
small temperatures, and typically reaches a maximum
between T ¼ 100 and T ¼ 200 MeV. For the potential
7a at μ ¼ 600 MeV, the speed of sound exceeds the
conformal value cs ¼ 1=

ffiffiffi
3

p
. Upon closer inspection, it

can be seen that the speed of sound keeps increasing with
the chemical potential in all cases, and the conformal value
is exceeded for all three potentials at higher values of μ (not
shown in the figure) even for T ¼ 0.
The electrical and thermal conductivities for V-QCD are

in turn displayed in Fig. 4. We have normalized the results
by using the expected linear behavior at small temperatures
from [Eq. (4.35)], which is well reproduced by the data.
In Fig. 5, we then show the shear and bulk viscosities as

functions of T for the same values of chemical potentials
we inspected above. Note that we have here divided the
bulk viscosity by the temperature in order to more clearly
display the details of this quantity. The thin solid and
dashed gray curves are respectively fits obtained using the
transseries (including powers of the form Tiþαj with integer

FIG. 3. The speed of first sound squared in V-QCD. The green,
red, and violet curves correspond to the potentials 5b, 7a, and 8b,
respectively, while the dashed and solid curves stand for μ ¼
450 MeV and at μ ¼ 600 MeV, respectively. The dashed thin
black line shows the value c2s ¼ 1=3 obtained in conformal
theories.

FIG. 4. The electrical and thermal conductivities in V-QCD. The various colored curves show the data for μ ¼ 450 or 600 MeV and
different potentials with the same notation as in Fig. 3. The thin dashed and solid gray curves are polynomial and transseries fits,
respectively, to the data for potentials 7a.

FIG. 5. The shear and bulk viscosities in V-QCD. The notation follows that of Figs. 3 and 4.

CARLOS HOYOS et al. PHYS. REV. D 105, 066014 (2022)

066014-14



i and j) and a naive Taylor expansion around T ¼ 0. For all
curves, we have fitted four free parameters and used data
for the potential 7a with T ≲ 0.5 MeV. As one can readily
observe, the transseries fit describes the data considerably
better than the Taylor fit, which strongly suggests that its
asymptotics are indeed given by a transseries as we argue in
Appendix D. The leading low-temperature asymptotics of ζ
furthermore agrees with the expectation from Eq. (4.34)
for the potentials 5b and 7a. For the potential 8b the
asymptotic behavior is less clear—this is apparently
the case because the value of α in (4.33) is quite close
to the critical value α ¼ 1=2. Similarly to the D3-D7model,
the Buchel bound for the bulk to shear viscosity ratio would
be violated if one uses c2s (depicted in Fig. 3) to test it.
In Fig. 6 we finally plot the imaginary values of the

retarded energy-momentum tensor correlators GR
η ðωÞ and

GR
ζ ðωÞ, obtained as Fourier transforms of the correspond-

ing configuration space correlators and making them
functions of a frequency ω. The relation to the transport
coefficients is given by the Green-Kubo formulas,

η ¼ −lim
ω→0

ImGR
η ðωÞ
ω

; ζ ¼ −lim
ω→0

ImGR
ζ ðωÞ
ω

; ð4:36Þ

see Appendix E for details and definitions. We normalized
the results using the entropy density [or ℏs=ð4πkBÞ to be
precise] such that the normalized shear viscosity equals
unity at ω ¼ 0. The dependence of the results on the
frequency is strong at small temperatures. Notice that the
bulk viscosity no longer vanishes as T → 0, if the fre-
quency is nonzero, signaling a breaking of conformal
invariance.

V. DISCUSSION

Holography has proven to be a very useful tool in the
description of dense fundamental matter, purportedly
strongly interacting in the environment provided by neutron

star cores. The field has matured to a point where the
predicted equilibrium properties of dense QCD matter are
consistent with known physics and observations across the
phase diagram, from small densities to high, hot and cold,
so it is time to move on to quantities more challenging to
traditional field theory methods. In this paper, we have
done this by extracting holographic lessons for dynamical
dense systems in the regime of linear response. In particu-
lar, we have performed a detailed study of the transport
properties of unpaired quark matter in a state of flux
realizable inside massive neutron stars [21].
In our work we have focused on two particular models,

namely the D3-D7 probe system and V-QCD. Our results
are plotted together in Figs. 7 and 8. We should note that the
V-QCD and D3-D7 predictions only agree for the shear
viscosity. The reasons for the disparate behaviors of the
other three transport coefficients were already discussed in
our previous article [37]. They have distinct origins for the
different quantities, such as the ways in which conformal
invariance is broken or flavor contribution is accounted for.
We refer to that reference for further explanation.
In addition, we found strongly coupled holographic

quark matter to respond to perturbations in a way that
dramatically differs from what one might have expected
based on naive extrapolations of weak-coupling results, as
detailed in [37]. Notice that we have only considered what
is commonly referred to as the unpaired quark matter phase,
where quark pairing does not occur in any form. We
believe, however, that the existence of the said discrepan-
cies is independent of this detail, and that similar
differences will be found in various “color superconduct-
ing” phases once such results become available. The key
distinction between the weak- and strong-coupling
approaches namely stems from the fact that at nonzero
density and strong coupling, there is no quasiparticle
description of the system, and hence the mere existence
of Fermi surfaces that play a pivotal role in perturbative
studies is unclear. Conceptually, and also technically, a

FIG. 6. The dependence of the viscosities on ω in V-QCD with potentials 7a. We show the ratios of the correlators related to shear (left
plot) and bulk (right plot) viscosities to the “standard” value ℏs=ð4πkBÞ (where kB is the Boltzmann constant) at μ ¼ 500 MeV as a
function of T. The values of ω range from 0 (thick curves) to Λ=ℏ (thin curves) in steps of 0.2Λ=ℏ, where Λ ¼ 211 MeV is the
characteristic scale of the model.

HOLOGRAPHIC APPROACH TO TRANSPORT IN DENSE QCD … PHYS. REV. D 105, 066014 (2022)

066014-15



more straightforward extension of our investigation would
be to allow for nonzero magnetic fields in the unpaired
phase. Thiswould open up an avenue for addressing the time
evolution of magnetic fields inside NSs and in particular the
coupling to their thermal evolution as required by magneto-
hydrodynamical simulations of NS mergers. In this case,
many new transport coefficients would appear due to parity
breaking, also accessible by our methods.
At lower densities, below those needed to excite strange

quarks in the medium, various forms of bound states need
to be taken into account. It is currently unknown, whether
the nuclear and quark matter phases are separated by a
discontinuous first-order transition, and if yes, whether
mixed phases are possible. Nevertheless, it is likely that
nucleons, too, are strongly interacting at densities close to
the phase transition, and a description based on treating
their interactions perturbatively becomes invalid. After
several years of hiatus since the early works of [117–
119], a holographic approach to model dense baryonic
matter has recently regained some momentum [48,120],
leading, e.g., to the development of a unified framework
describing both the nuclear and quark matter phases [52] as

well as a mixed phase [51,121,122] resembling quarkyonic
matter [123]. To this end, we find it important that a
holographic investigation of transport phenomena be
launched also in the confined phase of QCD.
While we have here considered a fairly general holo-

graphic setup, there are several models of quark matter that
one might equally well employ. These include a phenom-
enologically deformed D3-D7 model [47,124]; the well-
known Sakai–Sugimoto model [125,126], consisting of
pairs of D8-branes in a Witten background [127]; any non-
DBI type actions such as Einstein–Maxwell–scalar con-
figurations; and backreacted brane configurations in the
smearing approximation [63]. Out of the latter three, the
smeared configurations have the undesirable feature that
the matter sector is sensitive to the lower-dimensional
induced metric, and it is not always easy to find a dimen-
sionally truncated effective action. Similarly, in the Sakai–
Sugimoto model the low-temperature phase is confining, so
that without considering the backreaction of the flavor
D8-branes there is no controlled approximation that
would allow the description of deconfined quark matter
at low temperatures. Instead, one typically extrapolates the

FIG. 7. Comparison between the results for the electrical (left) and thermal (right) conductivities obtained using D3-D7 (green) and
V-QCD (red) models.

FIG. 8. Comparison between the results for the shear (left) and bulk (right) viscosities obtained using D3-D7 (green) and V-QCD (red)
models.
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high-temperature deconfined phase down to small temper-
atures, ignoring the deconfinement transition that is dual to
the Hawking-Page phase transition of the background
geometry [128]. In addition to this, another complication
in the Sakai-Sugimoto context is linked to the fact that the
resulting phase is not translationally invariant but subject to
the decay to an inhomogeneous ground state triggered by
nontrivial Wess-Zumino terms in the brane action
[129,130]. Numerical techniques for solving the resulting
partial differential equations involving square root actions
[131,132] and even for the extraction of transport coef-
ficients therein [133,134] have been developed, but their
implementation in the Sakai-Sugimoto context will likely
be somewhat tedious. Finally, Einstein-Maxwell-scalar
theories have also not been extensively considered at
temperatures relevant for NS matter (for a notable excep-
tion, see [135]), and we hope that our exploration encour-
ages further studies along this path.
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APPENDIX A: EQUATIONS OF MOTION

In this first appendix, we reproduce the equations of
motion for our generic holographic setup discussed in
Sec. II. Using Eq. (2.4), the equations of motion that are
derived from (2.1) read

Rμν −
1

2
gμνR −

1

2
∂μϕ∂νϕþ 1

4
gμν∂ρϕ∂ρϕþ 1

2
gμνV þ 1

2
T bZ

ffiffiffiffiffiffiffi
−Γ

p
ffiffiffiffiffiffi−gp ΓðμνÞ ¼ 0

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ − ∂ϕV −

T bZ
2

ffiffiffiffiffiffiffi
−Γ

p
ffiffiffiffiffiffi−gp

�
2
∂ϕZ
Z

þ Γμνð∂ϕκ∂μχ∂νχ − ∂ϕWFμνÞ
�

¼ 0

1

Z
ffiffiffiffiffiffiffi
−Γ

p ∂μð
ffiffiffiffiffiffiffi
−Γ

p
κZΓðμνÞ∂νχÞ −

ffiffiffiffiffiffi−gpffiffiffiffiffiffiffi
−Γ

p ∂χV

T bZ
−
1

2

�
2
∂χZ
Z

þ Γμνð∂χκ∂μχ∂νχ − ∂χWFμνÞ
�

¼ 0

∂μ

�
T b

2κ25
ZW

ffiffiffiffiffiffiffi
−Γ

p
Γ½μν�

�
¼ 0: ðA1Þ

Plugging in the fluctuations given in Eq. (3.2) we obtain at linear order the following fluctuation equations:

0 ¼ ∂r

� ffiffiffiffiffiffi
gxx

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr
p h0tx

�
þ 2κ25ρ

gxx
a0x þ

0
B@ ffiffiffiffiffiffi

gxx
p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p ϕ02 −
g0xx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gttg3xxgrr
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ25ρÞ2 þ ðgxxÞ3T 2

bW
2Z2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr þ κχ02

p κχ02

3
ffiffiffiffiffiffiffiffi−gtt

p
gxxW

1
CAhtx

0 ¼ ∂r

0
B@W
2κ25

ffiffiffiffiffiffiffiffi−gtt
p
gxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2κ25ρÞ2 þ ðgxxÞ3T 2

bW
2Z2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr þ κχ02

p a0x þ
ρ

gxx
htx

1
CA

0 ¼ ρðEx − AtζxÞ −
ζx
2κ25

g5=2xxffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr
p ∂r

�
gtt
gxx

�
: ðA2Þ
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APPENDIX B: COMPUTATIONS IN
THE D3-D7 SYSTEM

In this second appendix, we provide details relevant for
the D3-D7 system, described in Sec. II A.

1. Numerical embeddings

In this appendix we review the relevant computations we
have to do in the D3-D7 probe system in order to find how
the D7-branes are embedded in the D3-brane background,
which is needed to compute the transport coefficients. We
will be following [42,78] closely.
First of all, we need to introduce a new radial coordinate

ζ, defined in terms of r through

r ¼ rhffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ4

p
ζ

: ðB1Þ

Given that rh is the position of the horizon in the r
coordinate, the new coordinate ranges from zero, corre-
sponding to the boundary, to one, where we can find the
horizon [ζ ∈ ð0; 1Þ]. It is also convenient towork with [136]

SðζÞ ¼ sin ðθðζÞÞ; ðB2Þ

rather than just θ. Using this definition, the first thing we
need to find is the profile of S, by solving its equation of
motion (2.20) in the new variables. Defining

m ¼ m̃
ffiffiffi
2

p

L2πT
; c ¼ ð6c̃ − m̃3Þ ffiffiffi

2
p

3π3L6T3
; ðB3Þ

in terms of m̃ and c̃ from (2.21), the corresponding boundary
conditions will be

SðζÞ ¼ mζ þ cζ3 þOðζ4Þ
SðζÞ ¼ Sh þOðζ − 1Þ1; ðB4Þ

near the boundary and the horizon respectively. Because
(2.20) only depends on SðζÞ once the equation for the
derivative of At (2.19) is assumed, we can easily find
solutions. For this, we choose a value of Sh at the horizon
and solve the equation numerically up to the boundary,
wherewe read off the parametersm and c, related to themass
and quark condensate via (B4) and (2.22).
Once the profile of S is known, it is easy to obtain the

rest of the quantities that we need. Concerning the chemical
potential, note that At must vanish at the horizon, so we can
find it by direct integration of (2.19),

μ ¼ rh
2πl2

s
× 2d̃

Z
1

0

dζ
ζð1 − ζ4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2 þ ζ2ðS0Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ4 þ 1Þð1 − S2Þð8d̃2ζ6 − ðζ4 þ 1Þ3ðS2 − 1Þ3Þ

q ; ðB5Þ

where the new parameter d̃ is related to the density,

ρ ¼ 1

8
d̃NcNfT3

ffiffiffi
λ

p
: ðB6Þ

Following [42,78], the entropy density corresponding to
the addition of unbackreacted flavor is given by

sf ¼
NcNfλT3

64
ð−4G̃ðmÞ þ 12d̃ μ̃þðm2 − 1Þ2 − 6mcÞ;

ðB7Þ

where

G̃ðmÞ¼
Z

1

0

dζ

"
m2

ζ3
−
1

ζ5
þð1−ζ8Þð1−S2Þ

ζ5

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8d̃2ζ6

ðζ4þ1Þ3ð1−S2Þ3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−S2þζ2ðS0Þ2

q #

ðB8Þ

and

μ̃ ¼ 2πl2
s

rh
μ ¼ 2

T
ffiffiffi
λ

p μ: ðB9Þ

For the computation of the bulk viscosity, we will be
interested in the variation of Sh with respect to the entropy
and the charge densities. For the first one, ∂χh=∂s, we
consider the variation of the value of the embedding
function as we vary the entropy of the background, since
including the flavor contribution would be a higher order
correction in Nf. On top of that, the entropy density of the
background is given in terms of

sg ¼
π2

2
N2

cT3; T ¼ 2
ffiffiffi
2

p
Mqffiffiffi
λ

p
m

; ðB10Þ

and therefore,

s
∂χh
∂s ¼ 1

ð1 − S2Þ12
�
s
∂Sh

∂s
�

¼ 1

ð1 − S2Þ12
�
m−1

3

∂Sh

∂ðm−1Þ
�
;

ðB11Þ

where one has to make sure that ρ is kept fixed as Sh and
m−1 are varied. Similarly, since the other derivative
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involved in the computation of the bulk viscosity is
performed at nonzero temperature, it can be easily written
in terms of d̃ as

ρ
∂χh
∂ρ ¼ 1

ð1 − S2Þ12
�
d̃
∂Sh

∂d̃
�
: ðB12Þ

In conclusion, the equation for the bulk viscosity reduces to

ζ

η
¼ 2λ

πN2
c

σ

T

�
m−1

3

∂Sh

∂ðm−1Þ þ d̃
∂Sh

∂d̃
�

2 1

1 − S2
h

: ðB13Þ

2. Low-temperature computations

Next, we wish to discuss some technicalities of the zero
temperature limit discussed in Sec. IVA. Recall that we
were able to write the entropy as

s¼−
∂fðT;ρÞ

∂T ¼−πL2
∂fðrh;ρÞ

∂rh
¼ πL2L̃jr¼rh −πL2

Z
∞

rh

dr

�
d
drh

�
ρ;m

½L̃ðθ;θ0;At;A0
t;rhÞ�;

ðB14Þ

where the derivative inside the integral is defined through
the full variation of the Lagrangian, and we are also
keeping the quark mass fixed (even though this is not
written down explicitly).
As we shall see next, the second term in the last

expression in (B14) vanishes in the limit rh → 0. This
follows from a standard argument: as we are varying the
action around its on shell value, the variation boils down to
boundary terms, which vanish as we are keeping the
sources fixed while varying. We will check this now
explicitly. For that, note that at any nonzero rh,

L̃ðθ;θ0;At;A0
t;rhÞ

¼N r3cos3θ½1− ð4πα0Þ2ðA0
tÞ2þ r2fðθ0Þ2�12þρA0

t

¼N
r

��
ρ2

ð2πα0Þ2N 2
þ r6cos6θ

�
ðr2þðr4− r4hÞθ0ðrÞ2Þ

�1
2

:

ðB15Þ

Consequently, the derivative of L̃ with respect to rh will
give raise to three different terms,

Z
∞

rh

dr

�∂L̃
∂rh þ

∂L̃
∂θ ∂rhθ þ

∂L̃
∂θ0 ∂rhθ

0
�
: ðB16Þ

In our notation, the first term in this expression represents
the derivative of L̃ with respect to the explicit dependence

on rh. Note that it is of order Oðr3hÞ and that it
vanishes when rh is taken to zero. Integrating by parts,
equation (B16) reduces to

Z
∞

rh

��∂L̃
∂θ − ∂r

∂L̃
∂θ0

�
∂rhθ

�
drþ ∂L̃

∂θ0 ∂rhθ

����∞
rh

: ðB17Þ

Here, the integral vanishes on shell. In order to see that the
second term vanishes, we need to examine both limits
separately. On the one hand, recall that the UV behavior of
the embedding function θ was given in Eq. (2.21). There,
the parameter m̃ is related to the mass of the quark and will
not change as we lower the temperature. In contrast, c̃
depends on the quark condensate, which varies as we
change rh. Fortunately,

∂rhθ ¼ ∂rh c̃

r3
þ…; ðB18Þ

vanishes when it is evaluated at the boundary. In the
opposite limit, it is important to recall that θðr ¼ rhÞ≡
θh does not vanish when the limit rh → 0 is taken. This
renders ∂rhθ different from zero at the Poincaré horizon.
However, we can find a series expansion of the embedding
about r ¼ rh of the form,

θ ¼ θh þ θ1ðr − rhÞ þ… ðB19Þ

with

θ1 ¼ −
3

4
·
ð2πα0Þ2N 2r5h sin θh cos

5 θh
ð2πα0Þ2N 2r6h cos

6 θh þ ρ2
; ðB20Þ

which renders ∂L̃=∂θ0 linear in ðr − rhÞ as

∂L̃
∂θ0 ¼

6πα0N 2r6h sinθhcos
5θhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2þð2πα0Þ2N 2r6hcos
6θh

q · ðr−rhÞþOððr− rhÞ2Þ;

ðB21Þ

and therefore it is zero when evaluated at the horizon. Put
differently, the second term in (B17) is also zero at r ¼ rh,
even before taking the rh → 0 limit.
Knowing that the first term in (B14) cancels, the

contribution to entropy density from the flavor sector
at zero temperature can be found. The computation is
finished in Sec. IVA. Moreover, with the zero temperature
embeddings given there it is possible to evaluate SDBI,
which gives [105]

SDBI
βV3

¼ −Ω ¼ p ¼ NcNfγ

4λ
ðμ2 −M2

qÞ2; ðB22Þ

from which the energy density can be also obtained
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ε ¼ μρ − p ¼ NfNcγ

4λ
ð3μ2 þM2

qÞðμ2 −M2
qÞ; ðB23Þ

where we have also used (4.18). From this, the stiffness
(speed of first sound squared) reads [108,109]

c2s ¼
∂p
∂ε

����
s
¼ ∂p

∂μ ·

�∂ε
∂μ

�
−1

¼ μ2 −M2
q

3μ2 −M2
q
: ðB24Þ

APPENDIX C: DEFINITIONS FOR
THE V-QCD MODEL

In this appendix, we write down the detailed
definitions for the V-QCD model. We start from the action
for the glue sector, i.e., the action for the dilaton field
λ ¼ expð ffiffiffi

3
p

ϕ=
ffiffiffi
8

p Þ. The main input is the dilaton potential,
which we choose to be (following [40,88])

VðλÞ ¼ −12
�
1þ V1λþ V2

λ2

1þ λ=λ0

þ VIRe−λ0=λðλ=λ0Þ4=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ λ=λ0Þ

p �
: ðC1Þ

Notice that this definition satisfies the asymptotic require-
ments in Eq. (2.26) and in Eq. (2.27). The parameters V1

and V2 are determined by matching the holographic RG
flow of the coupling with the running of the coupling in
pure Yang-Mills theory [38,79]. That is, the model imple-
ments asymptotic freedom—it is in principle put in by
hand, but arises for a natural choice of potentials, i.e.,
potentials which are analytic in λ at the UV point λ ¼ 0.
The matching leads to

V1 ¼
11

27π2
; V2 ¼

4619

46656π4
; ðC2Þ

where we dropped terms suppressed by 1=N2
c. We stress

that the physically more relevant part is the behavior of the
potential at large λ, and the asymptotics was chosen to
reproduce several known IR features of pure Yang-Mills
theory: confinement, magnetic screening, and linear radial
Regge trajectories for the glueballs. Finally, the remaining
parameters λ0 and VIR are determined by comparing the
behavior of the model at intermediate energies to lattice
data. Specifically, we used the data for the thermodynamics
of the Yang-Mills theory at large Nc from [137], following
the approach of [87]. This fit leads to [40,88,138]

λ0 ¼ 8π2=3; VIR ¼ 2.05: ðC3Þ

We then discuss the potentials of the flavor sector,
i.e., the potentials Z, W, and κ in Eq. (2.3). Writing
Zðλ; χÞ ¼ Vf0ðλÞe−χ2 , we use the following ansatz:

Vf0ðλÞ¼W0þW1λþ
W2λ

2

1þ λ=λ0
þWIRe−λ0=λðλ=λ0Þ2 ðC4Þ

1

κðλÞ¼ κ0

�
1þ κ1λþ κ̄0

�
1þ κ̄1λ0

λ

�
e−λ0=λ

ðλ=λ0Þ4=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þλ=λ0Þ

p �

ðC5Þ

1

WðλÞ ¼ w0

�
1þ w1λ=λ0

1þ λ=λ0
þ w̄0e−λ̂0=λ

ðλ=λ̂0Þ4=3
logð1þ λ=λ̂0Þ

�
:

ðC6Þ

Notice that we do not need the potential κ in this article,
because for V-QCD we only consider chirally symmetric
background solutions with zero quark mass so that χ ¼ 0,
and consequently the results are independent of κ. We
however discuss a consistent choice of κ here for com-
pleteness. As we explained in the main text, the asymp-
totics of the potentials were determined by several
requirements. A “good” kind of IR singularity in the
classification of [83], vanishing of the flavor action at
the bottom for the chirally broken solutions [38], consistent
solutions even at nonzero θ-angle [139], and linear radial
meson trajectories [84] were found when Vf0ðλÞ ∼ λvp with
vp ≈ 2 and κðλÞ ∼ λ−4=3

ffiffiffiffiffiffiffiffiffiffi
log λ

p
. In order for the vector and

axial mesons to have the same slope κðλÞ needs to vanish
faster than WðλÞ at large λ [84], and requiring for a
consistent phase diagram at nonzero density fixes the
power law in the asymptotics of W to be the same as in
the asymptotics of κ, i.e., WðλÞ ∼ λ−4=3 [48].
The parameters of the fits which control the expansion at

small λ were determined by requiring agreement with the
UV dimension of the q̄q operator and the perturbative two-
loop running of the ’t Hooft coupling in QCD in the
Veneziano limit (see the discussion at the end of this
appendix). Setting xf ¼ Nf=Nc to one, this gives

κ0 ¼
3

2
−
W0

8
; W1¼

8þ3W0

9π2
; W2¼

6488þ999W0

15552π4
:

ðC7Þ

The remaining parameters in (C4) and (C6) were
determined by comparing to the lattice data of full QCD
with 2þ 1 flavors from [140,141]. Specifically, the param-
eters of the Vf0 potential (as well as the Planck mass MPl)
to the data for the interaction measure ðϵ − 3pÞ=T4 and the
parameters of the W potential to the data for the first
cumulant χ2 ¼ ∂2

μpðT; μÞjμ¼0 of the pressure, i.e., the
baryon number susceptibility. The parameters of the κ
potential were chosen such that the temperature of the
phase transition is consistent with the fit to the interaction
measure. See [40] for details. As the fit has a flat directions,
it does not fully constrain the parameter values leaving free
what is essentially a one-parameter family of the solutions.
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We have taken this remaining parameter as W0 and chosen
three fits (soft, intermediate, and stiff variants) correspond-
ing to different values ofW0. The fit parameters are given in
Table I. The names refer to the stiffness of the equation of
state for the nuclear matter phase (that we do not discuss in
this article, see [48,52,92,142]), with stiff (soft) equation of
state meaning that the speed of sound is high (low), and the
stiffness increases with W0 [143]. The soft, intermediate,
and stiff variants were labeled as the fits 5b, 7a, and 8b,
respectively in [40] (the values of the κ function were
slightly adjusted in [48,52] to make sure that the chirally
broken solutions are consistent in the IR).
There is one more parameter which needs to be deter-

mined, namely the overall energy scale of the theory. As in
QCD, the energy scale does not appear as a parameter in the
action but is a property of the solutions. We choose to
determine it by using the scale of the UVexpansions of the
background solutions ΛUV, which corresponds to ΛQCD in
QCD, but differs by an unspecified numerical constant. The
QCD scale and running coupling have also been discussed
in a different holographic framework in [145].
In order to define the weak coupling scale ΛUV we

employ the gauge gttðrÞgrrðrÞ ¼ gxxðrÞ2. In this gauge, we
find that

gxxðrÞ ¼
L2

r2

�
1þ 8

9 log rΛUV
þO

�
1

ðlog rΛUVÞ2
��

ðC8Þ

λðrÞ ¼ e
ffiffiffiffiffiffi
3=8

p
ϕðrÞ

¼ −
8π2

3 log rΛUV
−
28π2

27

logð− log rΛUVÞ
ðlog rΛUVÞ2

þO
�

1

ðlog rΛUVÞ3
�
; ðC9Þ

where L ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W0=12

p
is the asymptotic AdS radius,

and the boundary is reached as r → 0 from above. In order

to match these expansions with the RG flow of QCD, we
note that the energy scale is dual to

ffiffiffiffiffiffiffiffiffiffiffiffi
gxxðrÞ

p
[79]. Then it is

straightforward to check that the RG flow of the coupling
indeed matches with the of QCD (which was ensured by the
choice of the parameters V1;2 and W1;2 above). Finally,
comparing to the lattice fit of the interaction measure, we
find the values of ΛUV given in Table I.

APPENDIX D: V-QCD NEAR THE ZERO
TEMPERATURE ADS2 POINT

In this fourth appendix, we specialize to the low-
temperature behavior of the V-QCD model.

1. Analysis of the backgrounds

We discuss here only the case of vanishing tachyon,
χ ¼ 0. Writing the metric as

ds2 ¼ b2ðdr2=f − fdt2 þ dx2Þ
¼ e2Aðdr2=f − fdt2 þ dx2Þ; ðD1Þ

the gauge field equation of motion can be integrated,

−bVfW2A0
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − W2

b4 ðA0
tÞ2

q ¼ n̂; ðD2Þ

where n̂ is a constant related to the charge density through

ρ ¼ 1

2κ25
n̂: ðD3Þ

It turns out to often be convenient to use instead the
dimensionless quantity,

ñ ¼ e−3Ah n̂ ¼ n̂
b3h

¼ 4πρ

s
; ðD4Þ

where the subscript “h” refers to the value at the horizon.
After eliminating the gauge field, the equations of

motion can be written in a simple form in terms of the
effective potential,

Veffðλ;A;n̂Þ¼−VðλÞ−T bVf0ðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n̂2

e6AWðλÞ2x2Vf0ðλÞ2
s

;

ðD5Þ
namely,

f00 þ 3A0f0 ¼ 1

3
e2A

∂Veff

∂A ðD6Þ

A00 − ðA0Þ2 þ 4ðλ0Þ2
9λ2

¼ 0 ðD7Þ

3A0f0

f
þ 12ðA0Þ2 − 4ðλ0Þ2

3λ2
¼ e2AVeff

f
: ðD8Þ

TABLE I. Fit to thermodynamics at small chemical potential:
values of various parameters. Here L is the UV AdS radius and
M3 was normalized such that the tabulated value gives the
deviation from the Stefan-Boltzmann law for the pressure at
high temperatures.

Soft 5b Intermediate 7a Stiff 8b

W0 1.0 2.5 5.886
WIR 0.85 0.9 1.0
w0 0.57 1.28 1.09
w1 3.0 0 1.0
w̄0 65 18 22
8π2=λ̂0 0.94 1.18 1.16
κ̄0 1.8 1.8 3.029
κ̄1 −0.857 −0.23 0
ΛUV/MeV 226 211 157
180π2M3L3=11 1.34 1.32 1.22
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The equation for the dilaton is not independent,

λ00 þ 3A0λ0 þ f0λ0

f
−
ðλ0Þ2
λ

¼ −
3e2Aλ2

8f
∂Veff

∂λ : ðD9Þ

The equations of motions are unchanged under shifts of the
coordinate r, but there is also another symmetry which
takes f ↦ f0f and A ↦ Aþ ðlog f0Þ=2.
The tachyonless black hole solutions are conveniently

indexed in terms of the horizon parameters λh and ñ. After
numerically constructing the full solution, these parameters
can be mapped to the temperature and the chemical
potential [39].
The study the fixed point solutions to the equations of

motion (D6)–(D8) boils down to the properties of the
effective potential Veff at the horizon A ¼ Ah (see [39]).
Notice first that in terms of ñ ¼ n̂e−3Ah , the effective
potential,

Veffðλ;Ah; ñÞ¼−VðλÞ−T bVf0ðλÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ñ2

WðλÞ2x2Vf0ðλÞ2
s

≡ V̂effðλ; ñÞ; ðD10Þ

is independent of Ah. The AdS2 solution is found at the
fixed points satisfying

V̂effðλ�; ñ�Þ ¼ 0 ¼ ∂λV̂effðλ�; ñ�Þ: ðD11Þ

These equations typically have one or zero solutions
ðλ�; ñ�Þ for physically reasonable potentials, but may also
have two (or perhaps even more) solutions. In Fig. 9, we
show the single solution for potentials 7a as the magenta
dot. It is found at the intersection of the blue and red curves,
which mark where V̂eff and ∂λV̂eff vanish, respectively.
Chirally symmetric BH solutions are only found in a region
of the ðñ; λhÞ -plane around the origin [39] (region with
green stripes in Fig. 9). The AdS2 fixed point(s) lie on the
boundary of this region. Therefore all the curves in the
figure pass through this point. Notice that λh > 0 and we
may take ñ ≥ 0 by symmetry.
In general, the zero temperature solutions are found at

the edge of the region where regular BH solutions exist
(green curve in the figure). They are given as holographic
RG flows from the AdS5 geometry in the boundary [given
by Eqs. (C8) and (C9)] to an IR geometry which depends
on the location on the curve. These zero temperature
solutions may be classified as follows:

(i) Zero temperature solutions at the AdS2 points. Even
though these configurations are single points on the
ðñ; λhÞ -plane, they are mapped to nonzero intervals
of the chemical potential. The solutions can be
obtained through a limiting procedure for the BH
solutions (as seen numerically): different values of

chemical potentials are found depending on the
direction on the ðñ; λhÞ-plane from where the fixed
point is approached. The geometry is asymptotically
AdS2 in the IR, as we will discuss in detail below.
Notice that apart from the flow solutions, there is
also an exact AdS2 solution with constant dilaton
which is not identified with any physical phase on
the field theory side.

(ii) The zero temperature solution at ñ ¼ 0 and λh ¼ λ�.
This is a chirally symmetric special solution at zero
temperature and density, which is subdominant for
all potentials which we consider here (as should be
the case for QCD since the vacuum is chirally
broken). This point corresponds to an AdS5 IR
geometry.

(iii) Solutions elsewhere on the edge. We have found
numerically that for some choices of the potentials,
the AdS2 points do not cover all values of positive
chemical potential, but in particular zero temperature
solutions for high values of μ are found elsewhere on
the edge of the region where solutions exist. These
solutions and the transition where one moves away
from AdS2 merits further study which we leave for
future work. It is not even completely clear that
solutions of this type with strictly T ¼ 0 exist—our
studies are currently restricted to numerical BH
solutions with tiny but nonzero temperature, and
taking the T → 0 limit numerically is tricky.

2. Flow to the fixed point solution

Fluctuations around the exact AdS2 fixed point geometry
have been studied in [39]. Two normalizable modes were
found, one having the dimension one and another with a
nontrivial dimensions denoted by αλ− in Sec. III of this
article. In our notation we may define

α ¼ 1

2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

9λ2�∂2
λVeffðλ�; Ah; ñ�Þ

∂AVeffðλ�; Ah; ñ�Þ

s �
: ðD12Þ

FIG. 9. Behavior of the effective potential, and the location of
fixed points for potentials 7a. Blue, and red striped regions have
V̂eff > 0 and ∂λV̂eff > 0, respectively, while the green region
marks where the chirally symmetric BH solutions exist. The left
(orange) and right (magenta) dots mark the (unstable) AdS5 and
(stable) AdS2 fixed points, respectively.
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Notice that here the dependence on Ah cancels after n̂ is
replaced by ñ.
The solution around the fixed point, i.e., the holographic

RG flows ending in the AdS2 geometry, may then be found
in terms of transseries,

gðrÞ ¼
X∞
i;j¼0

gijCjððr0 − rÞΛIRÞiððr0 − rÞΛIRÞαj; ðD13Þ

for the fields g ¼ λ, f, and A. Here r0 is the value of the
coordinate where the fixed point is reached, and ΛIR and C
are constants which appear due to symmetries of the
equations of motion. The constant ΛIR is interpreted as
the energy scale, and C will be mapped to the value of the
chemical potential.
The coefficients gij may be solved iteratively by

inserting the transseries into the equations of motion
(D6)–(D8). The first few terms in the series are

λðrÞ ¼ λ� þ Cr̂α þ
�
−
9λ2�∂3

λV
8α∂AV

þ 3ð−5α2 þ αþ 2Þ∂λ∂AV
2ðαþ 1Þðαþ 2Þð2α − 1Þ∂AV

þ 3αþ 2

λ�

�
C2r̂2α

1þ 3α

þOðr̂3αÞ þ 9λ2�∂λ∂AV
4ðαþ 2Þðα − 1Þ∂AV

r̂þOðr̂1þαÞ þOðr̂2Þ ðD14Þ

AðrÞ ¼ log f0 þ logΛIR þ 2α

9ð1 − 2αÞλ2�
C2r̂2α þOðr̂3αÞ þ r̂ −

2∂λ∂AV
ðαþ 1Þðαþ 2Þðα − 1Þ∂AV

Cr̂1þα þOðr̂2þαÞ

þ
�
1

2
−

9ðλ�Þ2ð∂λ∂AVÞ2
8ðαþ 2Þ2ðα − 1Þ2ð∂AVÞ2

�
r̂2 þOðr̂2þαÞ ðD15Þ

fðrÞ¼ f20r̂
2

�
1

6
∂AVþ ∂λ∂AV

3ðαþ2Þðαþ1ÞCr̂
αþOðr̂2αÞþ

�
1

18
ð∂2

AV−∂AVÞþ
λ2�ð∂λ∂AVÞ2

8ðαþ2Þðα−1Þ∂AV

�
r̂þOðr̂1þαÞþOðr̂2Þ

	
:

ðD16Þ

Here r̂ ¼ ðr0 − rÞΛIR, V ¼ Veff , derivatives of the potential
are evaluated at the fixed point (also setting A ¼ Ah), and f0
is another coefficient related to the aforementioned sym-
metry of the equations of motion for homogeneous
configurations. It will be determined by setting f → 1 at
the boundary for the full solution. Notice that we chose the
coefficients λ01 ¼ 1 and A10 ¼ 1 in order to pin down the
definitions of C and ΛIR. Moreover we used the fact that
V ¼ 0 ¼ ∂λV at the fixed point. The exact AdS2 solution is
obtained from these expansions in the limitΛIR → 0 keeping
the product f0ΛIR fixed so that the flow is suppressed (the
coordinate r should also be kept fixed—recall that there are
also factors of ΛIR hidden in the definition of r̂).
The full solutions ending at the AdS2 fixed point in the

IR can then be constructed numerically by using the
expansions as initial conditions. This way one can obtain
solutions in a range of chemical potentials which have
vanishing temperature.

3. Thermodynamics of small black holes

The relevant geometry for the V-QCD solutions at small
temperature and nonzero density is (in the case an AdS2
fixed point exists) a “small” [146] AdS2 black hole. The
geometry of such black holes is obtained from (D14)–
(D16) by adding the AdS2 thermal factor,

λðrÞ ¼ λ� þOðΛIRÞ ðD17Þ

AðrÞ ¼ logðf0ΛIRÞ þOðΛIRÞ ðD18Þ

fðrÞ ¼ 1

6
∂AVf20r̂

2

�
1 −

r̂h
r̂

�
þOðΛIRÞ; ðD19Þ

where we only included the leading terms in the AdS2 limit
ΛIR → 0. Higher order corrections can in principle be
computed systematically but the computation is quite
tedious and after adding the blackening factor the result
is no longer a transseries.
The Hawking temperature of the black hole is given by

T ¼ −
f0ðrhÞ
4π

¼ ΛIR

4π

df
dr̂

����
r̂¼r̂h

≈
1

24π
∂AVf20ΛIRr̂h ≡ CTr̂h:

ðD20Þ

Inserting this in the zero temperature asymptotic
formula (D15), i.e., neglecting the backreaction of the
blackening factor, we can estimate the leading corrections
to the entropy,
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4G5s ¼ e3AðrhÞ ≈ f30Λ3
IR

�
1þ 2α

3ð1 − 2αÞλ2�
C2C−2α

T T2α

þ 3T=CT þOðT3α; T1þα; T2Þ
�
: ðD21Þ

Taking the backreaction into account is expected to modify
the coefficients but not the powers. Since η=s ¼ 1=ð4πÞ in
our model, the shear viscosity will have the same temper-
ature dependence as the entropy.
Evaluating the low temperature behavior of the bulk

viscosity is a bit more involved. Instead of using the Eling-
Oz formula [100], which expresses the bulk viscosity in
terms of the horizon behavior of the background, we find it
easier to study the fluctuations. In our case the relevant
fluctuation equation reads (see [101,102] and Appendix E)

h00 þ
�
3A0 þ f0

f
þ 2

X0

X

�
h0

þ
�
−
f0

f
X0

X
−
f00

f
−
3λe2A

8fX
∂λ∂AVeff

�
h ¼ 0; ðD22Þ

where we already set the momentum and frequency of the
fluctuations to zero—this is enough for the computation the
bulk viscosity. The field h is the fluctuation of the metric
measuring the change in spatial volume, defined through
δgijðrÞ ¼ e2AðrÞδijhðrÞ and XðrÞ ¼ λ0ðrÞ=ðA0ðrÞλðrÞÞ.
The bulk viscosity is then obtained as

ζ

s
¼ 2

27π

hðrhÞ2λ0ðrhÞ2
λðrhÞ2A0ðrhÞ2

; ðD23Þ

where h is the IR regular solution normalized to h → 1 at
the boundary.
For the zero temperature flow the leading terms close to

the AdS2 point give

d2h
dr̂2

þ 2α

r̂
dh
dr̂

−
2α

r̂2
h ≈ 0; ðD24Þ

with the solution,

hðr̂Þ ¼ C1r̂þ C2r̂−2α; ðD25Þ

where the first term is the IR regular term. Going to nonzero
temperature, we therefore expect hðrhÞ ∼ r̂h ∼ T. Inserting
the results for the asymptotic AdS2 geometry in (D23)
gives

ζ ∼ T; ð0 < α < 1=2Þ; ðD26Þ

ζ ∼ T2α; ð1=2 < α < 1Þ: ðD27Þ

The temperature dependence of the conductivities is
simple: using the above results in the formulas (3.11) and
(3.12) we find that

σxx ∼ κxx ∼ T; ðD28Þ

with corrections suppressed by Tα as T → 0.

APPENDIX E: FLUCTUATIONS AT NONZERO
FREQUENCY

In this final appendix, we discuss fluctuations of the
system and show how the retarded correlators,

GR
η ðωÞ ¼ −i

Z
dtd3x⃗eiωtθðtÞhTxyðt; x⃗ÞTxyð0; 0⃗Þi ðE1Þ

and

GR
ζ ðωÞ ¼ −

i
9

Z
dtd3x⃗eiωtθðtÞhTj

jðt; x⃗ÞTk
kð0; 0⃗Þi; ðE2Þ

which are discussed in Sec. IV B 2, are computed (see,
e.g., [101]).
For the shear sector we consider, assuming the metric

ansatz (D1), fluctuations of the form,

δgxyðr; tÞ ¼ δgyxðr; tÞ ¼ e2AðrÞe−iωthxyðrÞ: ðE3Þ

They satisfy the following fluctuation equation,

h00xyðrÞþ3A0ðrÞh0xyðrÞþ
f0ðrÞh0xyðrÞ

fðrÞ þω2hxyðrÞ
fðrÞ2 ¼ 0: ðE4Þ

Let us construct solutions to this equation with the
boundary conditions hxyð0Þ ¼ 1 and infalling conditions
at the horizon. The retarded correlator is then found to be

GR
η ðωÞ ¼ −

1

16πG5

lim
r→0

e3AðrÞh0xyðrÞ: ðE5Þ

For the bulk sector we consider fluctuations of the form,

δgijðr; tÞ ¼ e2AðrÞδije−iωthðrÞ: ðE6Þ

They turn out to satisfy (assuming chirally symmetric
vacuum, χ ¼ 0) the equation,

h00 þ
�
3A0 þ f0

f
þ 2

X0

X

�
h0

þ
�
ω2

f2
−
f0

f
X0

X
−
f00

f
−
3λe2A

8fX
∂λ∂AVeff

�
h ¼ 0; ðE7Þ

where XðrÞ ¼ λ0ðrÞ=ðA0ðrÞλðrÞÞ and Veffðλ; A; n̂Þ was
defined in (D5). Setting again hð0Þ ¼ 1 at the boundary
and infalling conditions at the horizon, the relevant corre-
lator is found as

GR
ζ ðωÞ ¼ −

1

16πG5

lim
r→0

e3AðrÞh0ðrÞ: ðE8Þ
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