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Gauge invariant operators in the SU(2) Higgs model:
Ward identities and renormalization
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The renormalization properties of two local gauge invariant composite operators (O, Ry;) corresponding,
respectively, to the gauge invariant description of the Higgs particle and of the massive gauge vector boson,
are analyzed to all orders in perturbation theory by means of the algebraic renormalization in the SU(2)
Higgs model, with a single scalar in the fundamental representation, when quantized in the Landau gauge in
Euclidean space-time. The present analysis generalizes earlier results presented in the case of the U(1)
Higgs model. A powerful global Ward identity, related to an exact custodial symmetry, is derived for the
first time, with deep consequences at the quantum level. In particular, the gauge invariant vector operators
Ry, turn out to be the conserved Noether currents of the above-mentioned custodial symmetry. As such,
these composite operators do not renormalize, as expressed by the fact that the renormalization Z-factors of
the corresponding external sources, needed to define the operators Ry, at the quantum level, do not receive
any quantum corrections. Using this Ward identity, one can also prove that the longitudinal component of
the two-point correlation function (R4 (p)R.(—p)) exhibits only a tree level nonvanishing contribution
which, moreover, is momentum independent, thus it is not associated to any physical propagating mode.
Finally, we point out that the renowned nonrenormalization theorem for the ghost-antighost-vector boson

vertex in Landau gauge remains true to all orders, also in the presence of the Higgs field.

DOI: 10.1103/PhysRevD.105.065018

I. INTRODUCTION

In a previous work [1], we studied the SU(2) Higgs
model with a complex scalar field in the fundamental
representation. In particular, we analyzed a set of two-point
Green’s functions of local gauge invariant composite
operators, a scalar O(x) and a triplet (R (x),a =1,2,3)
of vector operators, namely
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O(x) == (2vh(x) + h*(x) + p?p*(x)). (1)

N[ =

1
Ri(x) = -5 {(v + h),p* = p*d,h + e p*0,p¢

g a aoc C
=AU + )2 + ge Aupe (v + h)

+ %Aﬁpbpb — gALp“p” } : (2)
where A is the gauge field, & stands for the Higgs field, p*
(a=1, 2, 3) are the Goldstone bosons, and v is the
vacuum expectation value of the scalar complex field.
These gauge invariant composite operators were first
introduced by ’t Hooft [2] and later on formalized by
Frohlich-Morchio-Strocchi (FMS) [3,4] in order to study
the Higgs phenomenon in a gauge invariant fashion, see
Refs. [5-9] for recent accounts on the subject and [10,11]
for a more historical account. In the U(1) case, a gauge
invariant reformulation of the Higgs model was also
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proposed in [12], see also Ref. [10], but we notice that the
nonlinear field redefinition invoked there misses a (non-
trivial) Jacobian at the quantum level, see Ref. [13], which
complicates matters. That such care is needed can also be
appreciated from the observation that the (classical) refor-
mulation of [10,12] eventually leads to equivalence with the
original model in the unitary gauge, famous for not being
renormalizable.

The relevance of the gauge invariant operators (O, Ry;)
can be captured by noticing that, from Egs. (1), (2) it
follows that

(O(p)O(=p)) ~ (h(P)h(=P))tree +
Pu(Ry(P)RL(=p)) ~ Pu(As(p)AN(=P))yee + -+ (3)

172
where ... denote the higher order loop corrections [1].
Equation (3) show that the two-point functions of (O, R})
are related to those of the elementary fields (%, Ay).

Concerning the quantum corrections, from the one-loop
computations reported in [1] by employing "t Hooft R gauge,
it turns out that (O(p)O(—p)) and P, (R;(p)R;(—p)) are
independent of the gauge parameter &, while sharing the same
pole-mass of the corresponding elementary correlators
(h(p)h(—p)) and P, (A4(p)AL(-p)). Itis worth reminding
here that the independence of the pole masses from the gauge
parameter £ is in fact a consequence of the so-called Nielsen
identities [14-16]. Moreover, both (O(p)O(-p)) and
P (Ri(p)R;(—p)) exhibit a suitably subtracted Killén-
Lehmann representation [17] with positive spectral densities.
These features make apparent the fact that the composite
operators (O, Rj;) provide a fully consistent gauge invariant
setup for the Higgs particle as well as for the vector gauge
boson. These results can be contrasted with those obtained for
the elementary correlators, (h(p)h(—p)), (A%(p)AL(-p)),
which explicitly depend on the gauge prameter ¢ as well as
their spectral densities which, for some values of &, are found
to violate positivity, see Ref. [1].

So far, the investigation of the properties of the composite
operators (O, Ry) in the SU(2) Higgs model remains limited
at the one-loop order, having not yet reached the all order (or
even exact) status achieved in the case of the U(1) Higgs
model [13,18-20], where the analogous of the SU(2)
operators, denoted by (0, V) in [13,18-20], were shown
to obey a set of powerful Ward identities. In particular, in
[13,20], we were able to identify the U(1) vector operator V,,
as the conserved Noether current of the global U(1)
symmetry of the model. This feature has led to a powerful
Ward identity showing that the operator V,, does not get
renormalized, a result consistent with V, being a Noether
current. Moreover, we also showed that the longitudinal
componentof (V,(p)V,(—p)) does not receive any quantum
correction to the tree level value, which is completely

where P, = (5, -~ ;f) is the transverse projector and

independent from the momentum p?. The momentum
independence of the longitudinal component of
(V.(p)V,(=p)) is in fact a necessary condition for a
consistent description of a physical vector massive particle
[21]. Let us underline that, in the U(1) case, the above-
mentioned results hold to all orders, having been established
by means of the algebraic renormalization framework
[22-25].

The aim of the present paper is to fill the gap between the
U(1) and the SU(2) case, investigating the properties of the
operators (O, Ry;) to all orders. As we shall see, most of
the features established in the U(1) case generalize
to SU(2).

More precisely:

(i) a set of Ward identities can be established when the
composite operators (O, Ry) are included in the
starting action by means of a suitable set of external
sources. These Ward identities have major conse-
quences for the renormalization of (O, Ry) to all
orders in perturbation theory;

(ii) similarly to the U(1) case, the gauge invariant vector
operators R;; are the conserved Noether currents of a
global custodial exact symmetry of the SU(2) Higgs
model. This relevant observation will have deep
consequences at the quantum level, implying the all
order nonrenormalization of the currents Rj, in
agreement with their conserved nature;

(iii) as happens in the U(1) case [13,20], the longitudinal
component of the two-point correlation function
(R4(p)RS(—p)) can be proven to not receive any
quantum correction to its tree level value which,
moreover, is momentum independent. As such, the
longitudinal component of (R%(p)R2(—p)) is not
associated to any propagating mode;

(iv) the nonrenormalization theorem of the ghost-anti-
ghost-gauge boson vertex of the Landau gauge
[26,27], which plays a key role in nonperturbative
analyses such as the Schwinger-Dyson setup [28-30],
remains true in presence of the Higgs field.

The paper is organized as follows. In Sec. II, we briefly
review the particular SU(2) Higgs model and its BRST
quantization in the Landau gauge. In Sec. III we present
a study of the operators (O,Ry) in terms of the BRST
cohomology in order to identify other possible operators
with the same quantum numbers which can mix with them
at the quantum level. After that, a tree level action including
all needed composite operators and related external sources
will be written down. Such an action will be taken as the
starting point for the quantum analysis of the model to all
orders. In Sec. IV, we discuss the exact custodial symmetry,
showing that the vector operators (Rj) are nothing but the
corresponding conserved Noether currents, a feature which
will be translated into a quite powerful Ward identity.
Section V collects the whole set of Ward identities obeyed
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by the tree level action. Section VI is devoted to the all
orders algebraic proof of the renormalizability of the
model. We shall characterize the most general local
invariant counterterm compatible with all Ward identities
and we shall show that it can be reabsorbed into the starting
action by a redefinition of the fields, parameters and
external sources. In Sec. VII we look at the longitudinal
part of the two-point correlation function of the vector
operators (R{) by showing that it does not get any quantum
correction beyond a momentum independent tree level one.
In Sec. VIII we present our conclusion and perspectives.

II. THE SU(2) HIGGS MODEL AND ITS BRST
QUANTIZATION

A. The Higgs action

The Euclidean action of the SU(2) Higgs model with a
complex scalar field ¢ in the fundamental representation of
the gauge group reads

1 1}2 2
SHiggs:/d4x |:ZF;ZUF$U—|—(Dﬂqo)T(D”(p)—Fﬂ((pTgo—?> :|7

(4)
with the field strength F7, given by
Fé, = 0,A% — 0,A% + ge®* ADAL, (5)
and the covariant derivative
Dp = 0,0 — 229420, (6)

2

where 7¢ (a = 1, 2, 3) are the Pauli matrices and ¢ the
Levi-Civita symbols. The theory has two coupling con-
stants, namely, the gauge coupling ¢g and the quartic self-
coupling of the scalar field 4. The massive parameter v
stands for the vacuum expectation value of ¢. The action
SHiggs 18 invariant under the gauge transformations

1
A”—>UA”UT+E(8”U)UT, p—-Up, ¢ —o'U", (7)
where U = exp (—ig56*) € SU(2) and 6 are local
parameters. Since we are working in the fundamental

representation of SU(2), we can adopt the following
convenient parametrization for the scalar field

L)+ ip*(x)
v =75 (—p2<x> n ip1<x>>

i (y) ®)

Nia

where 7, p!, p?, and p? are real scalar fields. Looking at the
Higgs potential

Vip) = /1<(/’Tf/’ —%2)2, )

one can see that its absolute (classical) minimum occurs

2 . . o .
when |p|* =%. Choosing the representative minimum

configuration as ¢, = % (3) one can consider ¢ — ¢, as

the relevant field, which leads to

1 ;A a a 1
) = (04 ha) + i) >(0), (10)

where h(x) = z(x) — v. Rewriting (4) in terms of /(x) and
p*(x), one finds

1
SHiggs = / d4x{1 FZ,,FZ,, + I*h? + Avh3 + /Mih/)apa
4 1 2 1 2
+ -t + Eih plpt + Z/l(p“p“)
1 1
(aﬂh)z + 5 (aﬂpa)z + E

1
=590+ h)AL(D,p") + 5 96 Aip” (9p°)

1
3 ngzA,‘jpb PP } )

+ gAsp®(0,h)

— = A=

=N

+ - PALAY (v + h)* + (11)

8
Looking at (11), we can see all the features of the Higgs

mechanism: the gauge field Af(x) and the Higgs field /(x)
have acquired masses given by

1
m = —guv, mh:\/ﬁv

: (12)

respectively, while the Goldstone fields p“(x) remain
massless.

B. Gauge fixing and BRST symmetry

In order to quantize the theory, we shall adopt the Landau
gauge, i.e., 9,4, =0. For the corresponding Faddeev-
Popov term we have

Sy = / dx[ib9,A9 + 29,DP ), (13)
where b is the Nakanishi-Lautrup field implementing the
transversality condition, d,A, =0, and (c?,¢%) are the

ghost and antighost fields. For the gauge fixed action we
thus get

S= SHiggs + ng~ (14)
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As is well known, expression (14) is left invariant by the
nilpotent BRST transformations [22-24]:

sA% = —Dgbc?,

scd = ggabccbcc’

sct = ib?,

sb? =0,

sh = gc“/)“,

spa:__c (’U-f—h) abL hpL’

sv=0 (15)

with
s§ =0, s? = 0. (16)

III. INTRODUCTION OF THE GAUGE INVARIANT
COMPOSITE OPERATORS (O(x), R%(x))

A. The scalar operator O(x)

In order to achieve a better understanding of the gauge
invariant local composite operators (O(x), Ry (x)), Egs. (1),
(2), let us look at them from the viewpoint of the
cohomology [25] of the BRST operator s. Let us begin
with the scalar operator O.

From expression (1), one observes that the operator O
has dimension two. Let us find out the solution of the
cohomology equation

sA(x) =0, (17)

where A(x) is the most general local colorless scalar
polynomial of dimension two in the fields (Af, A,
p*, b?, ¢, ¢") and in the parameter v with vanishing ghost
number. It is not difficult to check out that the most general

solution of Eq. (17) is given by
A(x) = b,O(x) + by1? (18)

with b; and b, arbitrary constants and O # sO for any local
field polynomial O. Equation (18) shows that, apart from
the constant term v2, the operator O is the unique term
belonging to the cohomology of the BRST operator in the
class of the colorless field polynomials of dimension two
and with vanishing ghost number. Let us also notice that, in
terms of the complex scalar field ¢, the operator O can be
rewritten as

2

" v
0=¢‘(ﬂ—? (19)

from which its gauge invariance is apparent.

B. The vector operators Ry (x)

In order to introduce the gauge invariant vector operators
R{(x) let us shortly recall ’t Hooft’s original construction
[2]. The first gauge invariant vector quantity can be
obtained from

Of, = (p*Dﬂq). (20)

Following [2], the remaining two operators can be con-

structed as
0 1
O,‘f :goT(_l O)D”(p,

0 = (03", (21)

the gauge invariance of which easily follows from the group
properties of SU(2). The operators {0;, 0,0, } yield
thus a set of three independent gauge invariant vector
quantities with dimension three. The operators Ry,

a =1, 2, 3, can now be obtained out of {03, 0,;.,0;,} as:
i
Rl‘, = 5(0+ 0;).
1
R, = 5(0;7 +0;),
O (9”0. (22)

The operators R} and R2 are simple combinations of
(0. 0;), while the operator R} is obtained from O; by
subtracting the divergence of the scalar operator O(x),
Eq. (1). As O is gauge invariant, it turns out that Rf, is as
well. Putting all together, we end up with the gauge
invariant expressions {R{} given in Eq. (2). It is worth
underlining that the index a =1, 2, 3 in Eq. (2) can be
associated to the adjoint representation of SU(2). In fact,
as we shall see in the next section, the operators {Rj}
transform as a triplet when both (A{, p*) undergo a global
transformation in the adjoint representation of SU(2) under
which the Higgs field % is a singlet, i.e., left invariant.

As done for the scalar operator O, let us have a look at
the vector operators Ry, in terms of the cohomology of the
BRST operator, amounting to solve the equation

sAf(x) =0, (23)

where Aj(x) is now a local polynomial in the fields and in
the parameter v with dimension three and vanishing ghost
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number. After a rather lengthy algebraic calculation, the
most general solution of Eq. (23) can be written as

A%(x) = RS + s(coe™Abee — ¢3i0,c9)
=c|Rj + cy(—edbe (Df}dcd)EC + ie“bCAsz)

+ ¢3(0,b%), (24)

where ¢, ¢,, and ¢, are arbitrary constants and R # sRy,

for any local polynomial RZ. This Eq. (24) has a deep
meaning. It shows that, apart from the BRST exact terms,
s(cye®ALTe — ¢3id,c"), the operators RY are the unique
nontrivial elements of the cohomology of the BRST
operator in the sector of the field vector polynomials with
dimension three and vanishing ghost number. Since Rj
depends neither on the Faddeev-Popov ghosts (¢, &%) nor
on the auxiliary field b“, this is equivalent to state that R},
are the unique local gauge invariant composite vector
operators of dimension three, a feature which will have
several consequences at the quantum level. Of course, the
same statement holds true for the scalar operator O, Eq. (1),
which, apart from the constant quantity »% is the unique
scalar local gauge invariant field polynomial of dimen-
sion two.

In short, identifying the physical observables with the
nontrivial elements of the BRST cohomology of ghost
number zero, we have identified a physical representation
of the scalar and vector degrees of freedom.

IV. THE VECTOR OPERATORS R; AS THE
NOETHER CURRENTS OF THE CUSTODIAL
SYMMETRY

This section is devoted to the analysis of the vector
operators {Ry;,(x)} which, as we shall see, are the Noether
currents of an exact global symmetry of the action
S, Eq. (14).

More precisely, let us consider the transformations:

SCAL = ge"cwl AS,
&h =0,

5Cpa — ggabcwbpc’
5C'Ca — gEabCa)bCC,
565.11 — ggabcwbz.c’

bt = gE’abca)bbC, (25)

with @ a constant parameter. Equation (25) have a rather
transparent meaning: all fields (Ag, p, b, ¢, ¢*) undergo
an adjoint SU(2) transformation while the Higgs field & is a
singlet. It is almost immediate to realize that the trans-
formations (25) yield an exact symmetry of the action S

*S=0. (26)

We shall refer to Eq. (26) as the custodial symmetry, see
Ref. [1]. An important feature of the transformations (25) is
expressed by
[s,8] =0, {s,...} # &, (27)

which tell us that 6 commutes with the BRST operator s,
while it cannot be obtained as the anticommutator between
s and another suitable operator. When translated in terms
of Noether currents, Eq. (27) imply that the conserved
currents associated to 6¢ belong to the cohomology of the
BRST operator s, i.e., the currents are given by BRST
invariant local operators which cannot be written in a BRST
exact fashion.

The relevance of the Eq. (27) can be captured by
observing that the action § is left invariant by a second
set of global transformations:

5RA;§ = gsab"a)bA,‘,',

1
oRh = Ega)“p“,
1
5Rpa — 5ga)b(_(,u + h)éah + gahcpc)’

5Rca — ggabca)bcc’
5736.41 — ggabcwbz.c’

SRpe = gEabcwbbC, (28)
with
SRS =0, (29)

which we shall call R-symmetry. Nevertheless, unlike the
operator &, Eq. (25), it can be checked that

[s,0%] =0, {69, 5} = %, (30)
where 89 is given by
8942 =0,
8%h =0,
(Sgp" =0,
8§9¢t = w?,
89¢ =0,
89b* = ie"cwbee, (31)
and
898 = 0. (32)
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Therefore, unlike the Noether currents associated to &,
those corresponding to the R-symmetry will be expressed
as an exact BRST variation, as such they are cohomolog-
ically trivial and do not describe observable excitations, in
fact leading to zero norm states.

Let us turn now to the explicit computation of the
Noether currents of the custodial symmetry. To that end
let us rewrite Eq. (26) as

/d“xC“(x)S =0, (33)

where C“(x) stands for the local operator

a — _getbc <y 4 c(x 4
C(2) ==ge (A0 s ) s

0 ) )

+ c"(x)m—l— cé(x) ﬁ—k b¢(x) 55 (x)) . (34)

According to Noether’s theorem, the custodial invariance of
S implies that

C*(x)S = aﬂ(JC)/‘j(x). (35)

The output of a direct calculation reads

S

(JC);Z = gR;, — 5AL - S(Dl‘jbi‘b), (36)
from which we learn that, modulo equations of motion and
a BRST exact term, the local operators Ry are, indeed,
precisely the Noether currents of the custodial symmetry.
We underline that Eq. (36) is in perfect agreement with the
analysis of the BRST cohomology done in the previous
section, according to which the invariant operators {R}
belong to the cohomology of s and cannot be cast in a
BRST exact form. As we shall see in the following,
Egs. (35) and (36) can be translated into a local powerful
Ward identity, which will result into strong constraints on
the quantum correlation functions, including the renorma-
lizability properties of Rj.

V. WARD IDENTITIES

A. Dealing with composite operators at the quantum
level: Identifying the complete tree-level action X

We are now ready to start with the all order analysis
of the renormalization of the composite operators (O, Ry;).
We remind that, in order to construct and renormalize
the Green’s functions of the operators (O, Rf), we have to
introduce them in the starting action by means of external
(local) sources: J and Q¢, respectively. Moreover, follow-
ing the algebraic formalism reviewed in [25], one needs to
introduce external fields for the whole set of quantities

entering the cohomology of the BRST operator, Egs. (18),
(24). In particular, in the case of the vector operators {R{},
we have to take into account the two BRST exact terms
(—eP¢(Dhcd)ee + ie*cAbb¢) and (9,b"). Since

(—ebe(Dhcd)ee) + i Abbe = s(sobAbee),  (37)

it can be introduced by means of a BRST doublet' of
external sources (T,‘j é’;’) namely

a a
sTy =3,

s¢y =0, (39)
so that
s(YaebcAbee)
= (9e®cALTe + Ta(—e®¢(Dhe?)ee + ie°Abbe).  (40)
On the other hand, the term d,,b“ is linear in the quantum
fields, so it can be introduced in a simple way through the
external source ©j.

Therefore, for the whole term accounting for all quan-
tities entering the cohomology of the BRST operator with

the same quantum numbers as the composite operators
(O,Rl‘j), we have

Sy = / d*x{JO + nv* + QRS
+ Z.:ZgabcAzéc + TZ(—Eabc<Dded)Ec
+ e Abbe) + 8 (D,b)} (41)

where the sources (J(x),n(x),€(x),0(x)) are BRST
invariant, i.e.,

sQp = 5O = sJ = sn =0, (42)
a feature which guarantees that
sSp =0. (43)

Nevertheless, in addition to the term S,, a second term, S,
accounting for the nonlinearity of the BRST transforma-
tions of (A,‘j, ¢, h,p*), Eq. (15), needs to be added

S,= [ IR (5A7) + L(sc) 4 H(sh) + P(sp)). (44

"It is worth reminding the reader here that a pair (a, /) is a
BRST doublet if

sa = p,

It can be proven that BRST doublets contribute always to the
trivial part of the cohomology of the BRST operator s, see
Ref. [25].

sp = 0. (38)
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where the external sources (K¢,L“ H,P®) are BRST
invariant

5K = sL® = sH = sP* = 0, (45)
so that

5§ = 0. (46)
Summing up all pieces, we can introduce the complete tree

level action X which will be taken as the starting point for
the quantum analysis, namely

Evidently

sx = 0.

B. Ward identities

The complete tree level action X obeys a huge number of
Ward identities which we enlist below:
(i) the Slavnov-Taylor identity translating at the func-
tional level the BRST invariance of X

=S8+ S5+ Sx. (47) S(XZ) =0, (49)
|
where
0¥ 0¥  OX 6 60X SLSEL X O% 6%
SE)= [ da b e i , 50
®) / x(éK,‘j oAz T srases P sea Tt on T spagye ok 5T;> (50)
(ii) the b* Ward identity expressing in functional form the Landau gauge condition

62 ; a 7 a jaabcC (4

5 i0,Af — 0,04 — i ALY, (51)

Notice that the right-hand side (rhs) of Eq. (51) is a linear breaking. As such, it will be not affected by quantum

corrections [25],

(iii) the antighost equation
oz oz oZ
o abc’rb — abcAb c’ 52
sea + Onga T M sge = €T A (52)
(iv) the local linearly broken ghost Ward identity
ox ox ox oz
_ geabcizb abeyb %) = A4, 53
sca JEKC 5b"+g€ ”5C§+g ”(553) el (53)

where A¢; stands for the local linear breaking

g

A% = —0°¢ — DszZ + gebacLbee — ge“bc(aﬂ(@;)i‘b - EHp“ + gP"(v +h) - geb“CPpr + 8“’@,,(1‘}}6“). (54)

2

It is worth noticing that, unlike the usual ghost Ward identity of the Landau gauge [25,27] which is an integrated
equation, the ghost identity (53) is local, that is nonintegrated. In the present case, this feature is due to the presence

of the external sources (7, (),
(v) the exact R symmetry

(55)
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where
0 0 o 0 0 0
R4 = abcAb o abc b 7 abc b _~ abcLb o abcz=b 7 abcbb
ge ﬂéA;—FQS Jf 5K;+gs c 5cc+g€ 6LC+g€ c 5504—98 5he
1 o 1 o 1 0
—qgp? — L _gP?— 1L _ (=5 h cab .
390 5 TS9P s 5 9(=6 (v h) 4 eCp )5pc
1 0 ) 0
——g(HS — abch o abc’rb 0 abc b _~ , 56
59 ePY) e+ ge nars T s (56)
(vi) the c-¢ Ward identity
1 4, 7a a
7(X) = 5 d*x{5(0,c%), (57)
where
0% or ox 1 _ o% 1 0%
)= [ d*x3c” -1 -ga - {—-(a,74 [(0,0%) | — . 58
") / x{c 5 'sbioLe g 5Kq <g(” w) 0, ”)>(3L“} (58)
(vii) the linearly broken integrated equation of the Higgs field &
> > 0% "
d*x %—2&1)5 ~5, = d*xv(J = 2n), (59)
(viii) the local custodial Ward identity
1
cY(x) = Zgzﬂaﬂﬁﬁ + ieb"caﬂ(Tﬁbc) + 8”““8,,({56’”) - igeb"ca,,(bC@ﬁ) —i0%b°, (60)
where
> ox ox ox ox oz ) ox ox
CHY) = abc b = b = b = b = bh Kb Lb Pb Qb
() =ge ( R P R Rl T KO T oY
oz oz ox ox or 1 ox ox
+ Y+ —+06) C>+ —==9 —a——ga< “—)+ga — (61)
R A Ie " 50y, " 6AL Q27 H\ el A
|
(ix) the external sources 7 and ® Ward identities dimension four in the fields, sources and parameters with
vanishing ghost number. According to algebraic setup [25],
ox =2, (62) the characterization of X is done by requiring that the so-
on called bare action % ,,. defined as
oL ...,
00— [ub" (63) T + €%y = Zpure + O(€7). (64)
"

VI. ALL ORDERS ALGEBRAIC ANALYSIS OF THE
RENORMALIZABILITY

A. Characterization of the local invariant counterterm

From the power counting, the invariant local counterterm
2. which can be freely added at any given loop order in
perturbation theory, is a local, integrated polynomial of

where ¢ is an expansion parameter, satisfies, up to the order
€2, the same Ward identities obeyed by the tree level action X.
At the end, one has to check that X, can be obtained from
the tree level action X by a suitable redefinition of the fields,
coupling constants, mass parameters and external sources.
Notice that this can amount to allowing mixing between
quantities with identical quantum numbers. Requiring thus
that %, fulfills the same Ward identities of Z, it follows that:
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S(Zpare) = 0. (65)
5Zbare ; a a i nabc c
T i0,A4 — 0,04 — i ALY, (66)
O 0% abe 0% abc ¢
5o 0okt T T AL, (67)
() > 1)
d4 bare abe [ _;=b bare Th bare
/ x{aca +oe ( b T e
_ / dxAs, (68)
1 4 .ra a
T(Zbare) = _5 d 'xz:ﬂ (8/46 )» (69)
02y, Oy, 0%y,
/ d4x< 5‘;;“ - 2w (;;Ie) - abv‘“ = / d*xv(J —2n),

1 1., . .
C“(Ebare) = Z Uzaﬂgz + 5 lgbacaﬂ(TZbc)

| .
+—haed), (¢he) — ieh 0, (be®h) — éa%a,

g
(71)
5Zbare 2
D — 2, 72
5Zbare .
=10,b". 73
501 iy (73)

From Eq. (64), the invariant counterterm X is found to obey
the following constraints:

O ™

552; =0, (75)

%2 =0, (76)

%4— 8”%—1—8““1'5% =0, (77)

/ . [% + geabe (_iéb% + Tl i‘z‘)} =0, (78)

5T 5T ox
dx| =2 20— ) - =2 =0, 79
/ x(éh 1) T o (79)

C*(%,) = 0. (80)

Due to the nonlinearity of the Slavnov-Taylor identity, it
follows that

S(Zoure) = S(T) + €Bs(Zer) + O(€?), (81)

where
B_/d4x525+525+525+525
o SK46AY " SAYSKS T SLYSc T 8¢ SLC
b 1) +525+525+62 1)
l —_—— —_—— —_———
oc*  S6Hoh OohSH = 6P° 6p°
0X &6 1)
—+ 82
op° 5P“+C” 5Tﬁ} (82)
is the so-called linearized nilpotent Slavnov-Taylor

operator [25]:
BsBs = 0. (83)
Since S(X) = 0, we have the condition
By (Zq) = 0. (84)

implying that X, belongs to the cohomology of the linearized
operator By in the space of the integrated local polynomials
in the fields and sources with dimension four and vanishing
ghost number, see Tables I and II.

In order to find out the most general expression for X
we start with the condition (84) which enables us to set

Tq=A+BsACD, (85)

where A and ByA(-D identify the nontrivial and trivial
cohomology, respectively, of the linearized Slavnov-Taylor
operator By. Taking already into account the constraints
(74)—(76) and making use of the general results on the
cohomology of non-Abelian gauge theories, see Ref. [25],
we get

TABLE I. Mass dimensions and ghost numbers of the fields.

Dimension 1 1 1 2
Ghost number 0 0 0 1 -1 0
TABLEII. Mass dimensions and ghost numbers of the sources.
K, H Pt L* J n Y5 { 0
Dimension 3 3 3 4 2 2 1 1 1
Ghost number -1 -1 -1 -2 0 0 O 1 1
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1
A= / d4x{aOZF,§‘DFzU + a;0% 4+ a,0*0 + a3J O + a,Jv* + asv* + agQ4RE + a,Q0Q0v? + azQIQL0

+ agjz + alOJQZQz + all(aﬂﬁl‘j)(ayﬁﬁ) + alzgﬁﬁzﬂz + a138“"”Qﬁﬁfaﬂﬂ,§+a14QﬁQ,‘ijfQ’y’ + a15Q,‘jQ§QI’jQ’U’}

and

(36)

AED = / d*x{c[d,0,A% + dr0,Q0 + d30, T4 + dye P ALQS + dse P ANYG 4 dge® Qb

+d7ePe ¢ + dghp + dovp®] + Ki[dyoAf + dy Q4 + dip Ti] + Hldy3v + digh]+disPp® + digL?c*},  (87)
U " U u

where (ay, ...,a;5) and (d, ..

..,d,¢) are free dimensionless parameters.

After imposing all the remaining constraints, a tedious but purely algebraic analysis gives the following results:

1 1 1 1
A= /d‘*x{aozF;qu,zy +a (02 +-JO +—J? —ﬂQ,‘jQ,‘jO ~3p

A 4%

2)? g1 "

1 1
R Wgﬂgﬂgfgm)

4 VY e O Ve

1 1 1 1 1 1 1
+a, <y20 —2J0+ 2—/111;2 — = JF - —QIQU + — JQIQL + — Qe 0 — —Q;jsz;;szfgf>

+ as (U“ - 2%11}2 + %212 + 2—29;95 2 - %JQ;;Q;; + ﬁﬁ;}ﬁzﬂ’;ﬂi’) —%aufzy(ﬁ)f,‘iy(ﬂ)}, (88)
and
ACD = / d4x{—d1 (K% + 8,89 + e Yhee) (A;; —éTﬁ) +d3[H(v + h) + Pp?] } (89)
where
|
Fo,(Q) = 0,08 — 9,00 — eQbQc. (90) Zo=T+ ¥ / d'xd 4. (92)
fields ¢

We see thus that the most general final form of the local
invariant counterterm X, contains seven free parameters,
namely: (ay,a;,d,,as,a;,) and (d;,d,). In particular,
from expression (88), one notices the presence of nonlinear
terms in the BRST invariant external sources (J, €) which
are not present in the tree level action X. Nevertheless, these
terms, which start from one-loop onward [21], are needed
to renormalize the two-point correlation functions
(0(x)0(3)). (RE(x)RL(y)). defined as

87,
(OO = 5796107 |wumence’
. 8z,
(RiCORIOD) = 50060 ) s’

where Z.. is the functional generator of the connected Green
functions of the model:

with I" the generator of the 1P/ Green functions.

Let us also remind the reader that the presence of the
BRST invariant counterterm a,v>0, which also starts from
one-loop onward, is well known in the renormalization of
the Higgs model, see Refs. [22,31]. The free coefficient a,
is fixed, order by order in the loop expansion, so as to kill
the tadpoles, i.e., to ensure that (4) = 0. Notice also that the
expression (88) contains the vacuum counterterm asv*
which is allowed by power counting and dimensionality. As
discussed in [13], the parameter a5 can be chosen in such a
way that the perturbative dimension two condensate (O) o,
vanishes order by order: (O),, = 0. In turn, the Ward
identity (59), taken together with the two conditions (h) =
0 and (O) e, = 0, then ensures that the (quantum) vacuum
energy &, attains its minimum still at » [13], namely
% = (0. We shall come back to this point in Sec. VIL

Finally, let us spend a few words on the nonlinear
counterterm a;,Fj, (€2)Fy, (L) in the external source Qj
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showing up in Eq. (88). As one can easily figure out, its
peculiar form is dictated by the local custodial Ward
identity, Egs. (60), (61), according to which both A and

€2 undergo a similar transformation:

BAL = —0,0° + gl AS,
8Q4 = g(0,0" + e’ Qf), (93)

which gives rise to the invariant term 7, (Q)F,(Q).

B. Identifying the bare action and the
renormalization Z-factors

Having characterized the most general local invariant
counterterm X, Eqgs. (88), (89), compatible with all Ward
identities, we can now proceed to write down the bare action
Zhare from which the Z-factors of all fields, coupling con-
stants, parameters and external sources can be read off. Taking
into account the nonlinear terms in the external sources
needed from one-loop onward as well as the BRST invariant
counterterms to enforce the vanishing of the tadpoles,
(h) = 0, and of the dimension two perturbative condensate,
(O) pere = 0, from Eq. (64) for the bare action Xy, we obtain

1
Zhare (@) = /d4 {4 Fi,(Ao)Fiiy(Ag) + Aovght + Aovohg + Aovohop(pd

1 1 1
+ Aol + 5 AP + 7 20(PGr6)? +

1
+ 3 90AG,P5(Duho)

8

— K&, D% (Ag)ch + Lg% .

1
3 (8,ho)* +

1

5 (aﬂpg)Z

1 1
- 590(”0 + ho)(9,P5)AG, + 5 3 Go&“ A PGO PG
1 1 , B
+ < 95AGAG, (Vo + ho)? + 3 GoAL AL PG + 1b§0,AG, + 60,DiP (Ag)ch

e®cches + HO@CSPS + P§ (—@cg(vo + hy) + @e“bccgpg)

2

+J000 + novg + Qf, R, + YG, (=™ (D (Ag)c§)cf + ie®*Af, b) + C§, e AG, 6 + ©§,0,b

1 1 1 1
+(Z,— 1) (4/12 J: - i Qf,Q4,00 - Y JoL24,Q%, + 64/12 —— Qi Q6 Q6 Of ) + 600v300 (56 — Ag(Z,, — 1))
2 a a a a a a a a b b
X (_ﬁj 81 Q Q 4)]2 J()Q /AQO/J Q Q 00 32/12Q Q Q Q )
1 1
+ day <vo+ e Ji+ 2 e Qgﬂggﬂvo 16/12 93”93”98y93y>
3 =da a r,a a
00 (90) F4 () + Zhp (—KEC8, — (3,015, ~ zboaﬂro,)}, (94)

where {®,} is a short-hand notation for all bare fields, coupling constants, parameters and sources, while

0y = O(hg, vy, pj) (95)

and

Rgﬂ = RZ(AS/,N h’Ov :087 Vo, gO) (96)

Bare quantities and renormalized quantities are found to be related as follow:

A = A+ 28, hg=Zih,  pi=Zop",  wo=Zhv, b =Zich, @ =72,
Bo=Zib%,  go=Z,9.  do=Zih K& —=ZgKS,  Li=Z,L°  Hy=ZyH,

PO=ZpP, QO =ZoQl, T4, =ZyY4 (O =78 ©f, = Ze®l,

Jo=2Z;;J +Zyn, No = ZyyJ + Zyh. S0y = €éo, Say = €éa, 80y = €d0, (97)
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where ¢ is the expansion parameter. For instance, in a loop expansion in power series of 7, where the counterterm is determined
recursively, order by order, the expansion parameter ¢ is nothing but the loop expansion parameter 7.
By direct inspection of the most general counterterm X, Eqs. (88), (89), for the Z-factors we have

1 1 1
Z.ZIA :sz :ZL :Z@ =1 +€§(a0—2d1),

Z,= 1 —e=ay,

1 1 1 -1
Z, =2y,=2y,=Zy = 1+eds,

2
1 1 1
ZiT:__(Z%LXA_FZg_Z)? ZQ:ZT:L Zﬁ:1+€dl,
g
1 1 1 11
Zi = Z% = ZK =1 +€§dl = Z.quAz,
a1 1 a,
ZH:ZP:ZQZZ‘A:‘AZIQZ, ZC:Z‘Z{]ZAZ’ ZJJ:1+€ —74—611 s
Zy=0,  Zy= e<% - 2%+ d13), 66 = (ay +2idy3), 60 = % a = as. (98)
|
One notices that {56y, day, 66} as well as {Z,,. Z,,} start AD(x) = 8Z. (101)
from one-loop onward. In particular, the renormalization TSR (x)

factors {Z,,.Z,,} give rise to a 2 x 2 mixing matrix
between the external sources (J,#) coupled, respectively,
to the operator O and to the parameter v?, a feature already
observed in the case of the U(1) Higgs model [13,20].
Also, due to the introduction of the BRST exact
composite operator [s(e“bCAz ¢“)] coupled to the source
Ty, see Eq. (40), from the expression for Agﬂ in Eq. (97) we
see that there is a mixing between the gauge field A; and
the external source Yj which has precisely the same
quantum numbers of Aj. Both A7 and Y; have dimension
one, vanishing ghost number and are share the property of
being not BRST invariant. Let us elaborate a little bit more
on this point. First, from expressions (98), it turns out that

1 d
Zyx = =€ (99)

from which it follows that the mixing factor Zir starts from
one-loop onward too. The existence of such a mixing
means essentially that the elementary field Aj; has a
nonvanishing overlap with the composite operator
[s(e¢AL€)], namely

5Z,

(A7 (x)[s[(e*Azee) 0)]]) = ST (0)9T20)

#0,

sources=0

(100)

where Z,. is the connected generating functional, Eq. (92),
and

The renormalization factor Zi"r would be needed to take
into account the divergences present in correlation func-
tions of the type of Eq. (100). Though, it is worth it to recall
that the source Y belongs to a BRST doublet:

a a
sTy =3,

s¢y =0,

meaning that it can only enter in the exact part of the BRST
cohomology. As a consequence, the composite operator
[s(e7¢A%¢)] has no overlap with the two local operators
(0, R,‘j) we are interested in, due to

(O(x1)....0(x,)(sQ(y))) = (s(O(x1)....0(x,) Q(y))) =0,
(102)

(Ri (x1)-- Ry (%) (sQ(»)))

= (s(Ryj (x1)....Ry; (x,)Q(v))) = 0. (103)
for an arbitrary quantity Q(y). Equations (102) and (103)
follow from the fact that, as we have seen before in Sec. III,
the operators (O, Ry;) are nontrivial (physical) elements of
the cohomology of the BRST operator s and cannot be cast
in the form of an exact s-variation.

Taking into account that after differentiating the con-
nected functional Z,. with respect to (€2, J) all sources will
be set to zero, we see that the mixing term in the external
source T,‘j present in the bare field A“M, Eq. (97), has in fact
no practical consequences for the BRST invariant correla-
tion functions of Eq. (91).
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Let us end this section by underlining two relevant
results, valid to all orders, which follow from the algebraic
analysis presented here:

(i) the nonrenormalization theorem [26,27] of the
ghost-antighost-gauge boson vertex expressed by
the relationship

1

7,223, =1, (104)
generalizes to the case with a fundamental Higgs
field present as well. As mentioned in the introduc-
tion, this theorem is playing an important role in the
study of the infrared properties of the correlation
functions of non-Abelian gauge theories, see for
instance [28-30] for applications to the study of the
Schwinger-Dyson equations.

(ii) as a consequence of the nonrenormalization of the
source €y, Eq. (98), coupled to the gauge invariant
operator {R;}, i.e.,

Zg =1, (105)
the anomalous dimension of {Rj} vanishes to all
orders: yg = ud,log(Zg) =0 where u stands for
the renormalization scale energy. This result is in
perfect agreement with the fact that {R{} are the

conserved Noether currents of the custodial sym-
metry, see Sec. V.

VII. TADPOLES, VACUUM ENERGY, AND THE
PERTURBATIVE CONDENSATE (0)

For the benefit of the reader, in this section we briefly
recall a few properties related to the Ward identity (59)
which, when written in terms of the 1P/ generating
functional T, takes the following form

or or or
Ay )= = 4 -
/ d x(&h 2%v 5]) 5y / d*xv(J —2n).  (106)

As already emphasized in the case of the U(1) Higgs
model, see Refs. [13,20], this Ward identity can be written
down only when the composite operators (O, Rf;), Egs. (1),
(2), are introduced in the action from the very beginning. In
particular, as shown in [13], the Ward identity (106) has
quite nice consequences on the vacuum energy &, of the
theory. In fact, setting all sources to zero, one gets

o€,
ov

(h) = 24v{0), (107)
implying a relationship between the vacuum energy £, the
tadpoles (h) and the dimension two condensate (O). Notice
that the condensate here is not necessarily the perturbative
one, i.e., the relation (107) is exact.

At the perturbative level, as we have seen, the most
general local nontrivial invariant counterterm, Eq. (88),
contains the two BRST invariant counterterms (a,v?0) and
(asv*), where a, and as are free parameters which start
from one-loop onward. The presence of the counterterm
a,v*0 is a well known property of both U(1) and SU(2)
Higgs models [22,31]. The parameter a, can be chosen so
as to ensure the vanishing of the tadpoles, (h) = 0, order by
order in the loop expansion. On the other hand, as discussed
in [13], the free coefficient a5 can be fixed by requiring the
vanishing to all orders of the perturbative dimension two
condensate, namely (O),., = 0. Therefore, the Ward iden-
tity (107) ensures that the perturbative vacuum energy
keeps its minimum at v during the renormalization process:

aSv,pen o

. 1
Sat=0 (108)

We highlight that Eq. (108) follows from a Ward identity,
Eq. (106), which can be written down only when the
composite operators (O, Ry) are taken into account in the
starting action. To some extent, the gauge invariant setup
for the Higgs particle and the gauge vector boson provided
by (O, Ry) gives us a very nice way to check out, by means
of the Ward identity (107), that the perturbative vacuum
energy &, e displays the desired property of attaining
its minimum at v. Once the perturbative setup is settled
in this fashion, it leads to the interesting question how
the potential generation of a nonperturbative condensate
(O) nonpere Would influence the dynamics, including the new
vacuum, since enforced by the exact identity (107), this will
shift the minimum configuration. We hope to come back to
this issue in future work.

VIII. THE LONGITUDINAL COMPONENT OF THE
TWO-POINT CORRELATION FUNCTION OF

(Ri. ()RS ()

This section is devoted to the study of the consequences
stemming from the custodial Ward identity, Eq. (60), on the
longitudinal component of the two-point correlation func-
tion of (R4(x)R5(y)). At the quantum level, the Ward
identity (60) reads

1
C"(0) = 5900, + ™70, (T}1b?)

FemP Y, (L1EP) — g™, (PO ) —idPb" . (109)

Moving to the connected generating functional Z,,
Eq. (92), one obtains
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oz oZ
_ mnp( J P c mnp(j \p c mnp(J \p
g€ ( A)a 6(JA)Z1 ge ( /)) 5(,]/))"1 g€ ( L)
—+ ggm”pr 5Z + ggm”pr & —+ ggm"PPP & —+ ge
oK SL" spm
6Z. 1 o0Z,
mnp@]’ -0 8 __ a Qr
9 O e uJa)i = ”59" 27 ( Y]

1
4 5(Jp)?

oZ. oz, oZ. oZ.
— 2 n P amn m (5 mn m c _ pmn m _ 92 [4
—gv°0,8), + ie""P 0, (Tﬂ ) + M09, (Cﬂ 5(]5)13) ge™? o, (614 5(Jb)p> i0 50,

67, (g yo % g,y e
m g€ ¢ m g€ m
5(J.) 5(J¢) " 6(7,)
o0Z. o0Z. o0Z.
manP minP mnp ’
U 5Qm =+ ge u 5Tm Q 54‘;’1
YA
8/4 5’I‘n

(110)

where (J4)5, (J,)% (J.)?, (Jz)%, and (J;,)” are the sources of A, p?, ¢?, and ¢, respectively. Acting with 5/8Q¢ on (110)

and setting all sources to zero, we find
X [ R n 1 nt
9ORL (V)R (x)) = 5 98" 95(8(x —

This result can be simplified even more, since:

(@) (RE(y)b"(x)) =

(i) as we have seen in the previous section, we can adjust the vacuum counterterm asv
dimension two condensate (O),., vanishes order by order: (O)

As a consequence, we get the important result that

(R (V)R (x)), =

9,0,
where L, =~

- stands for the longitudinal projector.
Equation (111) states that the longitudinal component of
the two-point correlation function of (R%(x)R2(y)) does
not receive any quantum correction to its tree level
contribution which, moreover, is fully momentum inde-
pendent. This means that the longitudinal component of the
gauge invariant composite operator R;; cannot be associated
to any propagating physical mode. Only the transverse
component of {R§} matters. Equation (111) yields a
nontrivial consistency check of the usefulness of the
conserved operator Ry to provide a gauge invariant picture
for the massive vector bosons.

IX. CONCLUSION

In this work, we have studied the renormalization
properties of two BRST invariant local operators, the scalar
O(x) and the vector R, (x), which were first introduced in
a previous work [18]. These operators provide a BRST-
invariant framework to describe the Higgs particle and
the gauge vector boson in the SU(2) Higgs model. The
renormalization properties of (O(x),R,(x)) were studied
by coupling them to the action via their respective external
sources (J(x),Q(x)), followed by analyzing the renorm-
alization properties by means of the algebraic renormaliza-
tion framework. As could be seen in Sec. VI, the composite
BRST-invariant framework for the physical degrees of

Y){O)pert) =

1 25”f8"6(x y) = L, (R

L g5 9550 - y) + i(07(R

; L) ().

—i(s[R?(y)e"(x)]) = 0, due to the exact BRST invariance of the theory,

4 so as to ensure that the

=0.

pert

LRI, = 5078, (1)

|
freedom of the SU(2) Higgs model is renormalizable to
all orders in perturbation theory.

By choosing the Landau gauge, the system enjoys the
existence of a large set of Ward identities, which ends up
to strongly restrict the set of free parameters needed to
renormalize the theory. One especially interesting Ward
identity is connected to the custodial symmetry, as
discussed in Sec. IV. This symmetry is a generalization
of the custodial symmetry discussed in the U(1) Higgs
case [18]. The particular construction of the vector
operators Rj in Sec. IIl means that these operators are
the conserved currents of the custodial symmetry. As a
consequence, the corresponding source terms Qj does not
receive any quantum corrections, i.e., Zg = 1. This is a
very powerful result, as it is rooted in a Ward identity,
which should also hold nonperturbatively. Our findings
here could also be of relevance to the lattice study of the
gauge invariant vector operators and the corresponding
part of the spectrum they describe. In general, to extract
physical information, one should properly renormalize
lattice correlation functions of gauge invariant operators,
cf. Ref. [32] for a recent account and references. Although
we have now established the nonrenormalizability in the
continuum, due to the discretization on a lattice, (finite)
renormalizations might still be necessary [33], but the
conserved nature of the current should also be of
help here.
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Another consequence of the custodial symmetry is found
in Sec. VIII, where we have investigated the longitudinal
part of the correlation function (R%(x)R2(y)). In line with
the conclusions on the one-loop perturbative corrections
found in [1], we conclude that the longitudinal part is tree
level exact.

In Sec. VII the consequences of introducing the local
gauge invariant composite operator O(x) from the begin-
ning were discussed. Besides the custodial symmetry, the &
Eq. (59) plays a central role in the renormalization of O.
Particularly, we found that the number of free parameters
needed to renormalize the scalar sector is the same as in the
Abelian-Higgs model, i.e., as if O was absent. Furthermore,
the symmetry (106) establishes a connection between the
vacuum energy &, the (O(x)) and (h(x)). In particular, at
any order of perturbation theory, one may choose a suitable
vacuum configuration and renormalization scheme such
that (O),e = 0 and (A(x)) = 0. It will be interesting to
investigate the interplay of the exact Ward identity (106)
and a potential nonperturbative condensate (O)onpers
which will influence both the vacuum energy and corre-
lation functions.

Finally, in [13], in the U(1) case, we also set first steps in
explicitly rewriting the effective action in terms of the

newly defined gauge invariant operators, via means of a
nontrivial path integral transformation. This amounts to
considering the equivalence theorem, [34-38], which we
reinterpreted in terms of an extended (constraint) BRST
cohomology. Albeit that the full scope of this needs to be
established still even in the U(1) case, one can already
speculate that something similar, albeit more complicated,
should also work out for the non-Abelian case, paving the
way toward a potentially novel, explicitly gauge invariant
and renormalizable, scheme to deal with quantum gauge
field theories with a Higgs mechanism.
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