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In this paper, we investigate the cosmological viability of a double scalar field model motivated by warm 
inflation. To this end, we first set up the theoretical framework in which dark energy, dark matter and 
inflation are accounted for in a triple unification scheme. We then compute the overall dynamics of the 
model, analyzing the physical role of coupling parameters. Focussing on the late-time evolution, we test 
the model against current data. Specifically, using the low-redshift Pantheon Supernovae Ia and Hubble 
cosmic chronometers measurements, we perform a Bayesian analysis through the Monte Carlo Markov 
Chains method of integration on the free parameters of the model. We find that the mean values of the 
free parameters constrained by observations lie within suitable theoretical ranges, and the evolution of 
the scalar fields provides a good resemblance to the features of the dark sector of the universe. Such 
behaviour is confirmed by the outcomes of widely adopted selection criteria, suggesting a statistical 
evidence comparable to that of the standard �CDM cosmology. We finally discuss the presence of large 
uncertainties over the free parameters of the model and we debate about fine-tuning issues related to 
the coupling constants.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Interpreting the observational evidence that suggests that the 
universe is currently experiencing an accelerated phase is an out-
standing problem for modern cosmology. In particular, there is 
no consensus about the fluid responsible for the current cosmic 
speed up [1–3]. The standard scenario, pictured by the cosmolog-
ical constant, �, and named the �CDM model, does not provide 
a fully-satisfactory theoretical interpretation due to the large dis-
agreement between quantum field predictions and observations on 
the � magnitude [4–6] and seems to be plagued by alleged cosmic 
tensions [7,8]. Furthermore, the �CDM paradigm is unable to ex-
plain the dark matter nature, which remains not yet understood. 
The evidence for dark energy and dark matter leads to the so-
called dark sector [9,10].

A phase of acceleration is not unique throughout the cos-
mic history. Indeed, at very early stage of universe’s evolution, 
an exponential expansion of space occurred, known as inflation
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[11–13], invoked to explain the tight measurements of the cos-
mic microwave background depicting a present-day universe that 
is homogeneous, isotropic and spatially flat up to a high precision 
[14]. The inflationary paradigm provides the quantitative predic-
tions for density perturbations that seed large scale structures. A 
large amount of data and observational evidences, accumulated 
during the years, seem to confirm this theory over any other possi-
ble alternatives, making inflation the widely-accepted mechanism 
describing the early-time dynamics [15].

As the dark sector nature is unknown, a likely option is to 
describe dark energy and dark matter under the same standard, 
making use of dynamical scalar fields [16–18]. Consequently, one 
may consider to unify the dark sector with inflation, motivated 
by the similar dynamical properties between inflation and dark 
energy and by several attempts toward unified schemes of dark 
energy-dark matter. This would, in fact, provide a common mecha-
nism responsible for both late and early expansion stages [19–21]. 
Thus, as it is possible to identify dark energy, dark matter and in-
flation with scalar fields, one may think of unifying all these three 
different phenomena under a single theoretical scheme [22–24], 
following a multifield approach, firstly developed in order to in-
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vestigate inflationary models within generalized Einstein theories 
[25,26].

Inspired by this approach, a recent model has been proposed 
attempting a triple unification based on two scalar fields, one play-
ing the role of inflation and dark matter, while the other one 
inducing the present acceleration [27,28]. The very early universe, 
in this case, was described by an alternative form of inflation-
ary mechanism, named warm inflation [29,30]. Differently from the 
standard (cold) inflation, in the warm inflation radiation is pro-
duced simultaneously to the inflationary expansion. This implies 
that the transition between the inflationary phase and the ra-
diation dominated era may occur smoothly without reheating. A 
further difference with respect to standard inflation concerns the 
origin of density perturbations. In the warm inflation, they arose 
from thermal fluctuations rather than vacuum quantum fluctua-
tions. Hence, a great advantage of warm inflation is to identify the 
dark sector as inflaton field relic, surviving at late times and dom-
inating over matter today.

In this article, we investigate the cosmological viability of a 
general two-scalar field model based on warm inflation. We first 
set up its general formalism and then investigate the late-time 
evolution of the model, checking its goodness in terms of dynami-
cal variables and the stability of critical points. In view of the most 
recent observations, we work out a Markov Chain Monte Carlo 
(MCMC) analysis to place bounds over the free parameters of the 
model.

The paper is structured as follows. After this introduction, in 
Sec. 2 we describe the theoretical framework and present the 
emerging cosmological model. In Sec. 3, we study the dynamics of 
the model, focussing on its late time evolution through the method 
of dynamical variables. Then, in Sec. 4 we analyze the viability of 
the model in view of the most recent cosmological observations. 
Finally, we discuss our findings, and in Sec. 5 we outline the fu-
ture perspectives of our work.

2. A unified cosmological scenario

Scalar fields represent suitable candidates to construct mod-
els able to describe early and late-time universe dynamics in lieu 
of barotropic fluids, playing an important role also in high en-
ergy physics [31]. In this respect, cosmological models can be 
constructed through a single field only, bringing information able 
to describe the large-scale dynamics. However, the possibility of 
building multiple scalar field cosmological models is not a mere 
complication, but it deserves investigation in view of the unifi-
cation of different cosmic eras [32–34]. Clearly, those fields may 
interact with other components, e.g. dark matter, through particu-
lar couplings [35–38].

We here single out a warm inflation approach by considering 
an action of the form S = SHE + Sϕ , where SHE = ∫

d4x
√−g R

2κ2 is 
the standard Hilbert-Einstein action with κ ≡ √

8πG , while Sϕ =∫
d4x

√−gLϕ is a generic scalar field action.
In particular, motivated by nonstandard kinetic terms and ex-

ponential potential emerging in several contexts, among which 
Kaluza-Klein theories, hybrid metric Palatini theories and f (R)

gravity [39–42], we write down a double scalar field Lagrangian 
model:

L(ϕ,ψ) = 1

2
(∇ϕ)2 + 1

2
e−κλϕ(∇ψ)2 + e−κμϕ V (ψ) , (1)

where μ and λ are dimensionless constants parametrizing the in-
teraction between the scalar fields ϕ and ψ , and the nonstandard 
kinetic term of the field ψ , respectively. Hereafter, we refer to the 
above described double scalar field scenario as DSF model.

Under a suitable choice of V (ψ), the DSF model could give rise 
to a triple unified cosmological picture, in which the scalar field ϕ
2

plays the role of dark energy, whereas the role of inflation and 
dark matter are both played by the scalar field ψ . In particular, 
an appropriate form for the potential can be written in terms of a 
harmonic oscillator with respect to the scalar field ψ as

V (ψ) = V 0 + m2

2
ψ2 , (2)

where V 0 and m are constants related to the vacuum energy and 
the mass of the field ψ , respectively.

The above potential has been considered in the context of 
chaotic inflation [43] and investigated as a possible candidate for 
unified approaches in the string theory [22]. The chaotic inflation 
scenario was introduced to overcome the issues of old and new in-
flation [44]. These theories assume an initial thermal equilibrium 
for the universe, which was large and homogeneous enough to sur-
vive until the inflationary epoch starts. They can be thought as 
an incomplete modification of the big bang theory, where infla-
tion represents an intermediate stage of the universe’s evolution. 
Chaotic inflation, instead, can begin even for densities close to the 
Planck density and in the absence of thermal equilibrium in the 
very early stages of the universe’s evolution. Hence, the advantages 
of such a scenario lie in the fact that inflation can occur even for 
potentials with the simplest form V (ψ) ∼ ψn , and that it can pro-
vide a simple solution to initial conditions problem (we refer to 
[45] for more details). For |ψ | � mP , with mP the Planck mass, the 
potential (2) drives inflation and, under the condition m � 10−6mP , 
generates density perturbations as required by observations. Af-
terwards, the field ψ is subjected to a rapid oscillation over the 
Hubble time scale, behaving on average as cold dark matter.

In the present scenario, a warm inflation is assumed with a 
continuous transfer from the inflaton field ψ to a radiation bath, 
so that the transition to the radiation-dominated epoch occurs 
smoothly without resorting to a post-inflationary reheating phase. 
The warm-type mechanism differs from the cold one as in the 
latter the drastic dilution of radiation during inflation needs the 
presence of a post-inflationary reheating phase to recover the stan-
dard evolution of the universe. Throughout the warm inflationary 
period, instead, the radiation energy density is characterized by a 
continuous energy transfer between the two scalar fields, which 
prevents from the dilution of the radiation bath maintaining the 
universe “warm”. The sufficient condition for having warm infla-
tion is the presence of a remarkable energy quantity continuously 
transferring from the inflaton ψ to radiation, so that one could 
ignore the energy exchange between the radiation bath and the 
dark energy field ϕ . However, nonvanishing values of the param-
eters λ and μ in Eq. (1) imply a direct energy exchange between 
the two fields, which naturally leads to consider energy transfer 
also between radiation and the field ϕ , although this is not strictly 
required in the warm inflation paradigm. To do that, one can in-
troduce in the equation of motion the dissipating coefficients �ϕ

and �ψ . As dissipative effects increase, radiation starts dominat-
ing the universe’s evolution and inflation ends. The dissipating 
coefficients are exponentially suppressed soon after inflation and 
become negligible afterwards. Immediately after the inflationary 
epoch, the inflaton field decouples from radiation and oscillates 
around its potential minimum, showing thus an average behaviour 
which mimics a non-relativistic fluid with no pressure, giving rise 
to cold dark matter. In this case, the scalar field ψ does not provide 
the same evolution of standard baryonic matter due to depen-
dence of its energy density on the scalar field ϕ through the non 
standard kinetic term in the action. Finally, the dark energy be-
haviour is reproduced by the scalar field ϕ , which becomes the 
predominant component at late times and drives the present ob-
served accelerated expansion of the universe. We notice that, for 
very large ϕ , L(ϕ,ψ) ≈ Lϕ = 1

2 (∇ϕ)2, which corresponds to a free 
field that cannot drive the universe to accelerate at future times. 
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In other words, large values of ϕ are needful to speed up the uni-
verse today, albeit far from ϕ → ∞.

3. Dynamics of the model

In order to study the cosmological dynamics of the two-field 
model described above, we proceed by varying action (1) with re-
spect to the metric gμν and the fields ϕ , ψ . In particular, assuming 
a flat Friedmann-Lemaître-Robertson-Walker metric, one obtains 
the Friedmann equations

H2 = κ2

3

(
ρr + ϕ̇2

2
+ ψ̇2

2
e−κλϕ + V e−κμϕ

)
, (3)

ä

a
= −κ2

3

(
ρr + ϕ̇2 + ψ̇2e−κλϕ − V e−κμϕ

)
, (4)

where H ≡ ȧ/a is the Hubble parameter, and a(t) is the cosmic 
scale factor.1

We here consider the equation of state for radiation as wr =
pr/ρr = 1

3 , and the scalar field evolution given by the Klein-Gordon 
equations

ϕ̈ + 3Hϕ̇ + κλ

2
ψ̇2e−κλϕ − κμV e−κμϕ = −�ϕϕ̇ , (5)

ψ̈ + 3Hψ̇ − κλϕ̇ψ̇ + ∂V

∂ψ
eκ(λ−μ)ϕ = −�ψψ̇eκλϕ , (6)

coupled in the initial inflationary phases with radiation by means 
of

ρ̇r + 4Hρr = �ϕϕ̇2 + �ψψ̇2 . (7)

During inflation, the radiation density modifies accordingly to �
friction terms. After the inflationary stage, these terms tend to 
zero, restoring the common radiation behaviour, namely ρr ∼ a−4.

In order to solve Eqs. (3) to (7) and explore the dynamics of the 
DSF model, we need to specify the form of the dissipating coeffi-
cients �ϕ and �ψ . Several forms adopted in the literature usually 
suppose a functional dependence on the temperature [46–50], so 
that we consider �i ∝ T n , where i = (ϕ, ψ) and n ∈ Z. Moreover, 
we assume that the dissipating coefficients are exponentially sup-
pressed and become negligible soon after inflation. Thus, a suitable 
form is given by

�i = ξi ×
{

T n , T ≥ T f ,

T ne1−(
T f /T

)m

, T ≤ T f .
(8)

Here, m ∈ N+ , T f is the radiation temperature at the end of in-
flation, while ξi > 0 are constants that depend on the microscopic 
models utilized to obtain the dissipating terms.

The suppression mechanism plays a key role in the unification 
picture as it has to guarantee, after inflation, the survival of the 
field ψ , which should acquire enough energy to be able of repro-
ducing the observed dark matter features. Among the others, it is 
worth reminding the study done in [27], where it was shown that, 
for n > 2, the dissipating coefficients are naturally suppressed as 
the temperature becomes lower than a given threshold. This allows 
to set m = 0 as the exponential term is actually needless in such 
a particular scenario. Some other possibilities have been explored 
recently in the literature [49,50]. These models propose n ≤ 2 with 
m �= 0 and are as well characterized by solid observational and the-
oretical foundations.

1 The usual convention is to normalize the scale factor at the present time, i.e. 
a0 = 1, which corresponds to redshift z = 0 due to the relation a ≡ 1/(1 + z). 
Throughout the paper, we adopt the notation with a subscript zero to indicate quan-
tities evaluated at the present time.
3

3.1. Late-time evolution

We now focus on late-time dynamics of the DSF model, in or-
der to check whether it is able to reproduce the dark energy effects 
alternatively to the standard cosmological constant scenario. As 
previously discussed, the dissipation coefficients �ϕ and �ψ are 
exponentially suppressed after the inflationary epoch, so that we 
can set these terms to zero in the following. Also, we can neglect 
radiation in Eqs. (3) and (4). Thus, assuming for the potential the 
form given in Eq. (2) and defining the pressure and energy densi-
ties of the scalar fields as, respectively,

pϕ = ϕ̇2

2
− V 0e−κμϕ , (9)

ρϕ = ϕ̇2

2
+ V 0e−κμϕ , (10)

pψ = ψ̇2

2
e−κλϕ − m2

2
ψ2e−κμϕ , (11)

ρψ = ψ̇2

2
e−κλϕ + m2

2
ψ2e−κμϕ , (12)

we can recast Eq. (6) as

ρ̇ψ + 3H(pψ + ρψ) = κ

2
ϕ̇

(
λψ̇2e−κλϕ − μm2ψ2e−κμϕ

)
. (13)

The analysis can be simplified by taking into account a rapid 
oscillation of the field ψ around its potential minimum. Such a 
behaviour is similar to non-relativistic dark matter, so that one 
can assume, over a period of oscillation, pψ = 0. Thus, combining 
Eqs. (11) and (12), we find

ψ̇2 = ρψeκλϕ , ψ2 = ρψ

m2
eκμϕ , (14)

so that Eq. (13) simplifies to

ρ̇ψ + 3Hρψ = Q , (15)

where we obtain the interaction between dark matter and dark 
energy:

Q ≡ κ

2
(λ − μ)ρψϕ̇ . (16)

The solution of Eq. (15) is given by

ρψ = ρψ,0

a3
e

κ
2 (λ−μ)(ϕ−ϕ0) (17)

where a modification of the standard matter scaling is due to the 
term e

κ
2 (λ−μ)(ϕ−ϕ0) . In particular, for λ = μ, the interaction term 

Q vanishes, leading to no energy exchange within the dark sector. 
In this case, the energy density of the field ψ follows the standard 
dark matter evolution, ρψ ∼ a−3, while dark energy evolution is 
dictated by the term V 0e−κμϕ . On the other hand, for λ �= μ, the 
dark matter evolution depends on the energy of the field ϕ , imply-
ing that the amount of dark energy in the matter-dominated era 
is not negligible and induces an earlier time shift in the transition 
from the epoch of radiation to the matter-dominated universe. This 
situation can be avoided by requiring the condition |λ − μ| � 1, in 
order to be consistent with the predictions of primordial nucle-
osynthesis [27].

Our assumptions allow us to rewrite the Friedmann equations 
as

H2 = κ2

3

(
ϕ̇2

2
+ ρψ + V 0e−κμϕ

)
, (18)

Ḣ = −κ2

2

(
ϕ̇2 + ρψ

)
, (19)
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while Eq. (5) takes the form

ϕ̈ + 3Hϕ̇ − κμV 0e−κμϕ = −κ

2
(λ − μ)ρψ . (20)

Furthermore, introducing the density parameters of cosmic flu-
ids as 
i ≡ ρi/ρc , where ρc = 3H2/κ2 is the critical density of the 
universe, from Eqs. (10) and (12), we find


ϕ = κ2

3H2

(
ϕ̇2

2
+ V 0e−κμϕ

)
, (21)


ψ = κ2

3H2

(
ψ̇2

2
e−κλϕ + m2

2
ψ2e−κμϕ

)
, (22)

obeying the constraint 
ϕ + 
ψ = 1, by virtue of Eq. (18).

3.2. Dynamical variables

To study the cosmological behaviour of the DSF model and 
its stability, it is convenient to recast the evolution equations by 
means of dynamical variables. Based on the combination of numer-
ical and analytical techniques, this method is particularly effective 
in extracting quantitative information and has been adopted in 
several cosmological studies, among which [51]. We thus define 
the dimensionless quantities

x ≡ κϕ̇√
6H

, y ≡ κ√
3H

√
V 0e−κμϕ , (23)

so that the dynamics is given by the following autonomous system 
of equations:⎧⎪⎪⎨
⎪⎪⎩

x′ =
√

6

2
μy2 + 3

2
x(x2 − y2 − 1) +

√
6

4
(λ − μ)(x2 + y2 − 1) ,

y′ = 3

2
y(x2 − y2 + 1) −

√
6

2
μxy .

(24)

Here, the symbol prime indicates a derivative with respect to the 
number of e-folds, N ≡ ln a.

Therefore, we can express all the physical quantities inherent to 
the DSF model in terms of the dynamical variables. In particular, 
the density parameter of the field ϕ and the dark energy equation 
of state parameter are given by


ϕ = x2 + y2 , wDE ≡ pϕ

ρϕ
= x2 − y2

x2 + y2
. (25)

Moreover, for the effective equation of state parameter, we find

weff ≡ pϕ + pψ

ρϕ + ρψ

= x2 − y2 , (26)

while the deceleration parameter takes the form

q = − H ′

H
− 1 = 1

2
(3x2 − 3y2 + 1) . (27)

3.3. Critical points

Before proceeding to the observational tests of the model, we 
shall analyze the dynamical system (24) in terms of critical points 
and their stability conditions (see [28] for the details). Specifically, 
it can be shown that there exist five critical points, whose stability 
can be assessed through the centre manifold theory and Lyapunov’s 
method [52–54].

The first critical point (I) is obtained for (x, y) = (1, 0) and is 
characterized by the eigenvalues
4

ε
(I)
1 = 3 +

√
6

2
(λ − μ) , (28a)

ε
(I)
2 = 3 −

√
6

2
μ. (28b)

This implies the presence of an attractor for μ ≥ λ + √
6, a saddle 

point for 
√

6 ≤ μ < λ + √
6 and a repeller for μ <

√
6. Moreover, 

in this case, we have a stiff-matter fluid (weff = 1) in a universe 
completely dominated by the kinetic term of ϕ (
ϕ = 1).

The second critical point (I I) is for (x, y) = (1, 0) and the cor-
responding eigenvalues are

ε
(I I)
1 = 3 +

√
6

2
μ, (29a)

ε
(I I)
2 = 3 −

√
6

2
(λ − μ) . (29b)

The critical point is an attractor for μ ≤ −√
6, a saddle point for 

−√
6 < μ ≤ λ −√

6, and a repeller for μ > λ −√
6. Physically, these 

results describe the same situation of the critical point I , in which 
the dynamics of the universe is entirely unaffected by the pres-
ence of the scalar field ψ (
ψ = 0), whose contribution becomes 
negligible around the critical point.

A third critical point (I I I) is found for x = (μ − λ)/
√

6 and 
y = 0. It exists if |λ − μ| ≤ √

6 and the relative eigenvalues are

ε
(I I I)
1 = 3

2
+ λ2 − μ2

4
, (30a)

ε
(I I I)
2 = −3

2
+ (λ − μ)2

4
. (30b)

Such a point is an attractor for 
√

λ2 + 6 ≤ μ ≤ λ + √
6, and a 

saddle point for λ − √
6 ≤ μ <

√
λ2 + 6. In this case, the cosmic 

dynamics depends on the particular values of the coefficients λ
and μ, since 
ϕ = weff = (λ − μ)2/6. Therefore, if λ = μ, we have 

ψ = 1, so that the universe is dominated by dark matter. On the 
other hand, μ = λ ± √

6 reproduces a stiff-matter behaviour with 

ϕ = 1, while intermediate cases correspond to relative domina-
tion of one field over the other, with 0 ≤ weff ≤ 1. It is worth to 
note that, in the case of a saddle point solution in which the field 
ψ dominates, one has a period of matter domination necessary for 
structure formation.

The fourth critical point (I V ) is obtained for x = μ/
√

6 and 
y = √

1 − μ2/6, and exists for |μ| ≤ √
6. It is characterized by the 

eigenvalues

ε
(I V )
1 = −3 + μ

2
(λ + μ) , (31a)

ε
(I V )
2 = −3 + μ2

2
. (31b)

One thus finds an attractor solution for −√
6 ≤ μ ≤ (

√
λ2 + 24 −

λ)/2, and a saddle point for (
√

λ2 + 24 − λ)/2 < μ ≤ √
6. Here, 

the field ϕ dominates the universe’s evolution (
ϕ = 1), while 
−1 ≤ weff ≤ 1, where the lower bound is obtained for μ = 0 and 
provides an accelerated expansion typical of the cosmological con-
stant. On the other hand, weff = 1 holds if μ = ±√

6, describing 
a stiff-matter fluid dominated by the kinetic term of the field ϕ . 
Moreover, an interesting situation occurs for |μ| < √

2, which cor-
responds to an accelerated expansion with weff < −1/3.

Finally, the fifth critical point (V ) corresponds to x = √
6/(λ +

μ) and y =√
λ2−μ2+6/(λ + μ). It exists for (−λ +√

λ2+24)/2 ≤
μ ≤ √

λ2 + 6, and its eigenvalues are

ε
(V )
1,2 = − 3λ

(1 ± √
1 + C) , (32)
2(λ + μ)
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where C ≡ 2(μ2 +μλ − 6)(μ2 − λ2 − 6)/(3λ2). In this case, within 
its domain of existence, the critical point represents an attractor 
solution. Depending on the λ and μ values, the cosmic evolution 
can be dominated by either fields, as 
ϕ = (λ2 −μ2 +12)/(λ +μ)2

and weff = (μ − λ)/(μ + λ). In particular, taking into account the 
lower bound of the domain of existence, we have a universe with 

ϕ = 1 and weff = −1 for λ → 1. Conversely, for the upper bound 
of the domain of existence of the critical point, we have 
ψ = 1
and weff = 1 as λ → ∞. Here, the interesting case, corresponding 
to an accelerated expansion with weff < −1/3, occurs for μ < λ/2
and μ > (−λ + √

λ2 + 24)/2. Moreover, we note that the ratio be-
tween the densities of the fields is given as


ϕ


ψ

= λ2 − μ2 + 12

2(μ2 + μλ − 6)
, (33)

which represents the so-called scaling solution [55], frequently used 
to heal the coincidence problem. Hence, for the particular condi-
tions μ < λ/2 and μ > (−λ + 2

√
λ2 + 18)/3 (with λ > 4

√
2), we 

would have 
ψ > 
ϕ and, thus, an accelerated expansion driven 
by the field ϕ together with the field ξ behaving as dark energy. 
However, as discussed earlier, the condition |λ −μ| � 1 needed for 
the consistency with big-bang nucleosynthesis requires to consider 
only the values of λ and μ for which dark energy is not described 
by the field ψ .

4. Observational viability

In this section, we present the results of our observational tests 
on the DSF model. Our study is performed through a direct com-
parison with low-redshift data currently available from cosmologi-
cal surveys.

We specifically focus on data that do not rely on any fiducial 
cosmology, in order to avoid possible bias towards preferred phys-
ical outcomes. Due to this reason, for example, we do not take 
into account the most common baryon acoustic oscillations (BAO) 
measurements, which effectively depend on the �CDM model, as-
sumed as a fiducial cosmological basis Instead, we use the type 
Ia Supernovae (SN) data provided by the Pantheon catalogue [56], 
which has been used to construct model-independent measure-
ments of the inverse reduced Hubble parameter, namely E−1(z) ≡
H(z)/H0 [57]. These measurements, indeed, only rely on the hy-
pothesis of a flat universe consistently with what assumed here. 
Moreover, we also consider the cosmic chronometers (CC) data ac-
quired by means of the differential age method [58]. Based on 
spectroscopic estimates of the age of nearby red galaxies, such 
data provide the Hubble parameter as H(z) = −(1 + z)−1dz/dt . 
Therefore, SN and CC data represent reliable and robust model-
independent measurements ensuring unbiased observational tests 
[59].

4.1. Markov Chain Monte Carlo analysis

We numerically solved the autonomous system (24) with suit-
able initial conditions set in the radiation-dominated era. These 
conditions have been chosen to be consistent with the most recent 
measurements [14] suggesting that dark energy represents about 
70% of the total density of the universe today, and that the tran-
sition from matter-dominated era to dark energy-dominated era 
happened at N ≈ −5. Thus, we were able to find the Hubble ex-
pansion rate from integrating the following differential equation:

H ′

H
= −3

2
(1 + x2 − y2) , (34)

with initial condition H(N = 0) = H0, where H0 is the Hubble con-
stant.
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Fig. 1. 1σ and 2σ confidence regions, with posterior distributions, for the param-
eters of the DSF model as a result of the MCMC analysis on the Pantheon+CC 
measurements.

To compare the model with observations, we then applied the 
MCMC integration method through a Bayesian analysis performed 
on the combination of SN and CC measurements. To this end, we 
built the likelihood function of the SN data as

LSN ∝ exp

{
−1

2
vTC−1

SN v
}

, (35)

where CSN is the covariance matrix accounting for the correlation 
among the 6 measurements provided in [57], while the differences 
between the theoretical and observed values are encoded in the 
vector v, such that vi ≡ E−1

obs,i − E−1
th (zi).

Similarly, for the CC data we constructed the likelihood function 
for the 31 measurements collected in [60] as

LCC ∝ exp

{
−1

2

31∑
i=1

[
Hobs,i − Hth(zi)

σi

]2
}

, (36)

where σi are the measurement uncertainties.
Therefore, the constraints on the model were obtained using 

the joint likelihood of the SN+CC data, which is given by

Ljoint = LSN × LCC . (37)

Assuming uniform priors for the free parameters of the DSF 
model, the results of our MCMC analysis at 68% confidence level 
provide.2

h = 0.692 ± 0.018 , (38a)

λ = 0.36+0.18
−0.26 , (38b)

μ = 0.01+0.34
−0.24 . (38c)

We show in Fig. 1 the marginalized two-dimensional contour re-
gions at 68% and 95% confidence levels.

2 In our numerical study, we consider the dimensionless hubble parameter h ≡
H0/(100 km s−1 Mpc−1).
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Fig. 2. Cosmic evolution of the density parameters of the scalar fields for the DSF 
model. The curves are calculated for the mean values obtained from the MCMC 
analysis.

Fig. 3. Evolution of the effective and the dark energy equation of state parameters, 
as a function of the redshift, for the double field unification model corresponding to 
the mean results of the MCMC analysis. The dotted line represents the cosmological 
constant case.

4.2. Cosmological consequences

Using the results presented above, we were able to place 
bounds on the density parameter of the field ψ . In particular, we 
obtained


ψ,0 = 0.244 ± 0.056 , (39)

which is perfectly consistent with the estimated amount of dark 
matter in the present universe [14]. Fig. 2 shows the evolution of 
the scalar fields density parameters as a function of the scale fac-
tor. We notice the ability of the DSF model to reproduce the correct 
sequence of the cosmic evolution:

- early eras are dominated by the scalar field ψ , being responsi-
ble for structures formation and behaving like cold dark mat-
ter;

- the scalar field ϕ dominates the late evolution of the universe, 
mimicking dark energy and driving the accelerated expansion 
era.

We also display in Fig. 3 the late-time evolution of the dark 
energy equation of state parameter and the effective equation of 
state parameter. As one can see, the scalar field ϕ reproduces the 
features of �, approaching the value −1 at recent times.
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Fig. 4. Redshift behaviour of the deceleration parameter for the double field unifi-
cation model assuming the mean values of the MCMC results. The solid black line 
marks the divide between a decelerating universe (q > 0) and an accelerating uni-
verse (q < 0).

Furthermore, the behaviour of the deceleration parameter at re-
cent times is shown in Fig. 4. One can thus calculate the epoch 
of transition between the matter-dominated and the dark energy-
dominated eras. In the case of the DSF model, the mean values 
of the MCMC analysis predict that such a transition occurs at 
a � 0.56.

4.3. Statistical significance

Our results have been compared to the predictions of the stan-
dard �CDM model. In particular, from the combined SN+CC data 
analysis, we found [61]

h = 0.692 ± 0.019 , (40a)


m,0 = 0.296+0.026
−0.029 . (40b)

It is worth to remark that the value of the Hubble constant emerg-
ing from the DSF model (cf. Eq. (38a)) is fully consistent with the 
outcome predicted by the �CDM scenario for the specific choice 
of data used in the present study.

The evidence for the DSF model against standard cosmology 
has been measured by making use of statistical estimators, such as 
information criteria. To this end, we adopted the Akaike informa-
tion criterion (AIC) [62], which corrects the maximum likelihood 
value by the numbers of free parameters of a model, and the 
even more accurate DIC criterion [63], taking into account the ef-
fective number of parameters constrained by the data considered 
in the analysis. Thus, one can select the best theoretical scenario 
that coincides with the lower values of information criteria. This 
is provided by the difference � between the selection criteria val-
ues of the models under comparison. Usually, we can distinguish 
among the following cases: � < 0 indicates statistical preference 
for the specific model over the reference model; if 0 < � < 2, the 
model is weakly disfavoured with respect to the reference sce-
nario; 2 < � < 6 suggests mild evidence against the model; for 
� > 6, the model is strongly disfavoured compared to the refer-
ence model.

In our study, we tested the DSF model against the reference 
�CDM scenario, obtaining the following results:

�AIC = 1.02 , �DIC = −0.61 . (41)

These values show the excellent statistical performance of the DSF 
model at late times.



R. D’Agostino and O. Luongo Physics Letters B 829 (2022) 137070
4.4. Theoretical discussion

Despite the ability of the DSF model to accommodate for low-
redshift cosmic data, its cosmological viability remains, however, 
plagued by the large uncertainties over the free parameters of the 
model. Also, the constraint |λ − μ| � 1 imposed by the observa-
tions of primordial nucleosynthesis, although consistent with the 
results of our numerical analysis, requires a fine tuning on the cou-
pling constants that cannot be ignored.

In addition, to clarify the physical meaning of λ and μ, it is 
possible to work out the limit of very small ϕ . Even if this ap-
proximation does not address experimental evidence, as stressed 
above, it is interesting to notice that, neglecting third and higher-
order field contributions and noticing that linear field terms into 
the Lagrangian provide only a shift in ϕ , one would have L(ϕ�1)

(ϕ,ψ) =
1
2 (∇ϕ)2 + 1

2 (∇ψ)2 − κ2μ2|V 0|
2 ϕ2 + m2

2 ψ2. Here, a further drawback 
of the model arises: the bare mass of the ψ constituent turns 
out to be ill-defined. Indeed, taking negative V 0, it is possible to 
define a physical constituent for ϕ , i.e. m2

bare,ϕ = κ2μ2|V 0|. How-
ever, the opposite happens for ψ , as the psion particle would have 
m2

bare,ψ = −m2, which clearly leads to a tachyon nature of the 
corresponding inflaton and dark matter species3 as ϕ � 1. Conse-
quently, we are forced to take large values of ϕ only. This request 
guarantees inflaton and dark matter to be physical particles, but 
implies a further tight constraint over the underlying model. More-
over, for very small ϕ , the two fields do not interact with each 
other and, thus, the interaction between inflaton and dark energy 
can occur only as ϕ increases.

The above theoretical considerations may imply restrictions on 
the model parameters. However, the infrared limit for ϕ , namely 
ϕ � 1, does not put severe constraints on the fitting parameters, 
but rather suggests the energy regime to handle for ϕ through-
out the entire universe’s evolution. Consequently, we cannot use 
those theoretical bounds as priors for our fits, since the fields are 
not upper-bounded. As emerging from our analysis, the nucleosyn-
thesis requirements are satisfied, guaranteeing |λ − μ| � 1, which 
turns out to be the unique effective constraint to address. Never-
theless, another relevant aspect is related to mbare,ϕ that depends 
on V 0. The offset V 0 is conjectured to fix early vacuum energy [65]
and, in principle, could be jeopardized by the cosmological con-
stant problem [66]. Thus, it appears clear that more sophisticated 
versions of the employed potential could modify the bare masses 
and can fix the above restrictions on the field values. This may 
help in developing a more accurate ultraviolet theory that works 
well even at the infrared energy regime.

5. Conclusions and perspectives

We here investigated the dynamical and late-time properties of 
a cosmological model where two scalar fields produce a triple uni-
fied paradigm able to unify the properties of inflation, dark energy 
and dark matter. The theoretical foundation of the DSF model is 
the warm inflation, which suggests a non-trivial coupling between 
two fields in the gravitational action.

In the present study, we first outlined the evolution proper-
ties of the DSF model, and then we investigated the late-time 
behaviour in terms of dynamical variables. We thus analyzed the 
critical points and their stability conditions, providing a physical 
interpretation of the obtained results. Afterwards, we studied the 
observational viability of the scenario under consideration through 
a comparison with low-redshift data. To do so, we worked out a 

3 A recent study showing how inflaton field can provide a quasi-particle contri-
bution to dark matter has been developed in [64].
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MCMC analysis, obtaining constraints over the free parameters of 
the model. We thus compared our findings with those from the 
standard �CDM cosmology, testing the statistical evidence of the 
DSF model by means of AIC and DIC information criteria.

Our results show that the DSF model is able to reproduce the 
correct sequence of cosmological epochs, and the evolution of the 
scalar fields at recent times mimics the features of the dark sec-
tor in agreement with the latest observational evidences. Moreover, 
statistical criteria certify that the DSF model performs quite sim-
ilarly to the �CDM paradigm, which is considered the favourite 
benchmark for describing cosmology.

However, even though the DSF model is experimentally suit-
able, the underlying free parameters are not well constrained, lim-
iting the numerical analysis itself. Also, the offset V 0, intimately 
related to the cosmological constant problem, is left unconstrained. 
The criterion |λ −μ| � 1 is observationally fulfilled, but poses fine-
tuning issues over the ranges of the underlying free parameters.

For these reasons, it appears evident that the complex cou-
plings proper of the DSF Lagrangian may lead to non-conclusive 
results and deserve particular attention in order to establish the 
goodness of the model. In fact, the poorly constrained coupling co-
efficients could be due to the choice of data sets here involved. 
Therefore, further investigations would be helpful to assess the 
model in more detail at early times. In particular, cosmic mi-
crowave background (CMB) and large scale structure data will 
likely place severe constraints on the model. In this respect, we 
want to emphasize that several cosmological models having a 
scalar field with an exponential potential such that the interaction 
term is of the form Q ∝ ρϕ̇ as in Eq. (16) have been investigated 
at the perturbation level (see e.g. [67–71]), and they proved to 
be in agreement with both CMB anisotropies and observations of 
structure formation. Such an analysis will thus be the main subject 
of upcoming works as it may definitely confirm the viability of the 
DSF model.
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