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Radiative Dirac neutrino masses and their mixing are linked to dark matter through the non-Abelian dis-
crete symmetry A5 of the 4-dimensional pentatope, softly broken to A4 of the 3-dimensional tetrahedron. 
This unifying understanding of neutrino family structure from dark matter is made possible through the 
interplay of gauge symmetry, renormalizable Lagrangian field theory, and softly broken discrete symme-
tries. Dark neutral fermions are produced through Higgs decay.
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1. Introduction

Two fundamental issues in particle physics and astroparticle physics are neutrinos [1] and dark matter [2]. An important development 
in recent years is the notion that they are intrinsically related, i.e. the origin of neutrino masses is the existence of dark matter. This 
is simply accomplished in the scotogenic model [3], where radiative Majorana neutrino masses are generated in one loop with the in-
ternal particles belonging to the dark sector. Numerous variations and studies of this basic premise have appeared in the past 16 years. 
More recently, the notion that neutrinos are Dirac fermions [4] has received more attention, and the scotogenic mechanism may also be 
applied [5].

Since neutrinos come in three families, their 3 × 3 mixing matrix with charged leptons could be a hint to a symmetry yet to be 
discovered among them. In the context of a renormalizable Lagrangian field theory subject to the SU (3) × SU (2) × U (1) gauge symmetry 
of the Standard Model (SM), this poses a conundrum. How is it that a symmetry may govern mixing and yet all lepton masses are so 
different? This problem was solved 21 years ago [6] using the non-Abelian discrete symmetry A4 and its breaking, which allow three 
arbitrary charged-lepton masses, and yet maintain a specific pattern for the neutrino mass matrix, which results in tribimaximal [7] or 
cobimaximal mixing [8,9], close to what is observed experimentally.

In the original scotogenic model for Majorana neutrinos, the dark sector is distinguished by a dark parity, which may be derived from 
lepton parity [10]. For Dirac neutrinos, lepton number L is considered instead. To prevent neutrinos from obtaining tree-level Dirac masses, 
a lepton family symmetry is used, specifically the non-Abelian discrete symmetry A5 [11]. With the chosen fermion and scalar multiplets 
belonging to its irreducible representations, and the soft breaking of A5 → A4, scotogenic Dirac neutrino masses are obtained, with dark 
number D = L − (2 j)[mod 2] [5], where j is the intrinsic spin of the particle. Note that vector gauge bosons have D = 0.

2. Tetrahedron and pentatope

The tetrahedron is the simplest perfect geometric solid in three dimensions. In Cartesian coordinates, its four vertices may be simply 
put at the positions

(1,0,0), (0,1,0), (0,0,1), (1,1,1). (1)

Each combination of three points forms an equilateral triangle with side 
√
2, and there are four such triangles. The pentatope is the 

simplest perfect geometric solid in four dimensions. In Cartesian coordinates, its five vertices may be simply put at the positions

(2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (ϕ,ϕ,ϕ,ϕ), (2)

E-mail address: ernestma74@hotmail.com.
https://doi.org/10.1016/j.physletb.2022.137104
0370-2693/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2022.137104
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137104&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ernestma74@hotmail.com
https://doi.org/10.1016/j.physletb.2022.137104
http://creativecommons.org/licenses/by/4.0/


E. Ma Physics Letters B 829 (2022) 137104
Table 1
Fermions and scalars in the A5 → A4 model.

Fermion/scalar SU (2)L × U (1)Y A5 A4 L D = L − 2 j

LL = (ν, l)L (2,−1/2) 3 3 1 0
lR (1,−1) 3 3 1 0
νR (1,0) 3′ 3 1 0

EL,R (1,−1) 3 3 1 0

� = (φ+, φ0) (2,1/2) 1 1 0 0

NL,R (1,0) 4 3,1 0 −1

η = (η0, η−) (2,−1/2) 3′ 3 1 1
ζ 0 (1,0) 3 3 1 1

ζ− (1,−1) 3′ 3 1 1

where ϕ = (1 + √
5)/2 = 1.618 is the golden ratio. Each combination of four points forms a tetrahedron with side 2

√
2, and there are five 

such tetrahedrons.
The tetrahedron is invariant under A4, the group of the even permutation of four objects. It has 12 elements and 4 irreducible repre-

sentations, i.e.

1, 1′, 1′′, 3. (3)

The pentatope is invariant under A5, the group of the even permutation of five objects. It has 60 elements and 5 irreducible representa-
tions, i.e.

1, 3, 3′, 4, 5. (4)

The multiplication rules of these A5 representations are [11]

3× 3 = 1+ 3+ 5, (5)

3′ × 3′ = 1+ 3′ + 5, (6)

3× 3′ = 4+ 5, (7)

3× 4 = 3′ + 4+ 5, (8)

3′ × 4 = 3+ 4+ 5, (9)

3× 5 = 3+ 3′ + 4+ 5, (10)

3′ × 5 = 3+ 3′ + 4+ 5, (11)

4× 4 = 1+ 3+ 3′ + 4+ 5, (12)

4× 5 = 3+ 3′ + 4+ 5+ 5, (13)

5× 5 = 1+ 3+ 3′ + 4+ 4+ 5+ 5. (14)

Since A4 is a subgroup of A5, the decompositions of the latter representations to the former are [11]

1 ∼ 1, 3 ∼ 3, 3′ ∼ 3, 4 ∼ 3+ 1, 5 ∼ 3+ 1′ + 1′′. (15)

With the choice of particle content of the model to be described under A5, the above properties of A5 → A4 in the context of a renor-
malizable Lagrangian gauge theory will result in the radiative generation of neutrino masses with a realistic family structure.

3. Model

The idea of this model and its implementation are both very simple. The three copies of SM charged-lepton doublets LL = (ν, l)L and 
singlets lR transform each as 3 under A5, whereas the three neutral singlets νR transform as 3′ . There is one Higgs doublet (φ+, φ0) as in 
the SM, transforming as 1 under A5. The charged-lepton masses are obtained from heavy fermion singlets EL,R ∼ 3 in a seesaw manner. 
For radiative Dirac neutrino masses, four neutral Dirac fermion singlets N ∼ 4 are added, with three scalar doublets (η0, η−) ∼ 3′ and 
three scalar singlets ζ 0 ∼ 3, as shown in Table 1. There are also three charged scalar singlets ζ− ∼ 3′ to allow the decay of the Higgs 
boson to N̄N .

Whereas l̄R�†LL and Ē R�†LL terms (3 × 1 × 3) are allowed, ν̄R�̃†LL (3′ × 1 × 3) is forbidden by A5 and N̄R�̃†LL (4 × 1 × 3) is 
forbidden by both A5 and L. Hence the neutral singlet fermions νR are not tree-level Dirac mass partners to the SM doublet neutrinos νL

even though they both have L = 1. On the other hand, L̄LηNR (3 × 3′ × 4) and ν̄Rζ 0NL (3′ × 3 × 4) are allowed. As for the �ηζ̄ 0 term, it 
transforms as 1 × 3′ × 3 which is not invariant under A5, but it is a dimension-three soft term, so it may be chosen to break A5 → A4 in 
which case 1 × 3 × 3 is invariant under A4. As a result, νL is linked to νR in one loop.

The structure of the 4 ×4 MN mass matrix Mij determines the 3 ×3 Dirac neutrino mass matrix. Assuming that N4 is very heavy from 
the breaking of A5 → A4, the resulting mν is proportional to
2
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Fig. 1. One-loop scotogenic Dirac neutrino mass.

M̃ =
⎛
⎝ ϕ2M12 M11 + M33 ϕ−2M32

M22 + M33 ϕ−2M21 ϕ2M31

ϕ−2M13 ϕ2M23 M11 + M22

⎞
⎠ .

The soft breaking of A4 comes then from having Mii �= M jj and Mij �= 0 for i �= j. Details will be provided in the following sections.

4. Charged leptons

Under A5, the 6 × 6 mass matrix linking (l, E)L to (l, E)R is given by

M =
(

0 MlE
MEl MEE

)
, (16)

where the 3 × 3 entries MlE , MEl , and MEE are all proportional to the identity, with MlE coming from the vacuum expectation value v of 
the SM Higgs doublet �. Since the ELlR coupling is a dimension-three soft term, it is assumed to break A5 in a way compatible with A4

using the procedure of Ref. [12], i.e.

MEl =
⎛
⎝ h1v ′ h2v ′′ h3v ′′
h3v ′′ h1v ′ h2v ′′
h2v ′′ h3v ′′ h1v ′

⎞
⎠ , (17)

which is obtained from E ∼ 3 and lR ∼ 3 and a gauge singlet flavon ∼ 3 under A4. The magic of this matrix is that it decomposes to [12]

UL

⎛
⎝h1v ′ + (h2 + h3)v ′′ 0 0

0 h1v ′ + (h2ω + h3ω2)v ′′ 0
0 0 h1v ′ + (h2ω2 + h3ω)v ′′

⎞
⎠U †

R , (18)

where

UL = UR = Uω = 1√
3

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ , (19)

with ω = exp(2π i/3) = −1/2 + i
√
3/2, is the well-known transformation matrix studied in numerous A4 models. Assuming that the 

singlet 3 × 3 MEE masses to be much heavier than MlE and MEl , the 3 × 3 charged-lepton mass matrix is given by

Mll = MlEM
−1
EE MEl, (20)

which preserves the form of Eq. (18). Hence the charged-lepton mass matrix has three independent eigenvalues, which may be chosen 
to be me, mμ, mτ and yet a definite mixing matrix Uω of Eq. (19) is obtained relative to the neutrino mass matrix, as in the original A4
model [6].

5. Scotogenic neutrino masses

With the A5 assignments of Table 1, Dirac neutrino masses are generated in one loop as shown in Fig. 1. To compute this diagram, 
the first step is to note that the A5 → A4 breaking trilinear coupling η0φ0ζ̄ 0 with 〈φ0〉 = v means that η0 mixes with ζ 0 in a 2 × 2
mass-squared matrix. Hence the two mass eigenstates ψ0

1,2 with m1,2 are

ψ0
1 = η0 cos θ − ζ 0 sin θ, ψ0

2 = η0 sin θ + ζ 0 cos θ. (21)

The second step is to note that the ν̄Lη
0NR and ν̄Rζ 0NL couplings come from the decomposition of 3 × 3′ → 4. Let (a1, a2, a3) ∼ 3, 

(b1, b2, b3) ∼ 3′ , then the four components of N are given by [11]

N = 1√
3

⎛
⎜⎜⎜⎝

ϕ−1a3b2 − ϕa1b3
ϕa3b1 + ϕ−1a2b3

−ϕ−1a1b1 + ϕa2b2
a2b1 − a1b2 + a3b3

⎞
⎟⎟⎟⎠ . (22)

In the A5 limit, all components of N have the same mass, but since the 4 × 4 MN mass matrix is a soft term, it is allowed to break A5. 
The form of Mν may then be chosen as in previous A4 models to obtain cobimaximal mixing for example. This in turn would imply a 
family structure for the dark N fourplet.
3
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The radiative Dirac neutrino mass matrix is

(Mν)i j = sin θ cos θ

16π2

∑
k,k′,a

f Lika f
φ

k′k4 f
R
k′ jaMa[F (m2

2,M
2
a ) − F (m2

1,M
2
a )], (23)

where Ma (a = 1, 2, 3, 4) are the masses of the four N fermions. The function F is given by

F (x, y) = x ln(x/y)

x− y
. (24)

The f ika couplings are as defined by Eq. (22), with i = 1, 2, 3 from 3, k = 1, 2, 3 from 3′ , and a = 1, 2, 3, 4 from 4. If all Ma are equal, all 
three Dirac neutrinos would have the same mass, as expected.

It is now assumed that the 4 × 4 MN mass matrix is not invariant under A5. Note first that η1,2,3, ζ1,2,3 ∼ 3, N1,2,3 ∼ 3 and N4 ∼ 1
under A4. Assume then that N4 is very much heavier than all other masses. As for N1,2,3, they form a mass matrix Mab which softly 
breaks A4 with all entries much lighter than m1,2. This reduces Mν to the form first recognized in Ref. [13], i.e.

(Mν)i j = sin θ cos θ ln(m2
2/m

2
1)

16π2

∑
k,k′,a,b

f Lika f
φ

k′k4 f
R
k′ jbMab, (25)

where Mab links NR to NL . Using Eq. (22), the above is then proportional to

M̃ =
⎛
⎝ ϕ2M12 M11 + M33 ϕ−2M32

M22 + M33 ϕ−2M21 ϕ2M31

ϕ−2M13 ϕ2M23 M11 + M22

⎞
⎠ , (26)

where νL1 has been redefined with a minus sign. If M11 = M22 = M33 and all Mij = 0 with i �= j, this reduces to the A5 coupling of 3 × 3′
to the fourth component of 4, as expected.

To achieve cobimaximal mixing [14], i.e. θ13 �= 0, sin2 θ23 = 1/2, and δC P = π/2, 3π/2, the above mass matrix should be diagonalized 
by an orthogonal matrix O on the left, so that the 3 × 3 neutrino mixing matrix becomes

Ulν = U †
ωO, (27)

where Uω comes from Eq. (19). It was shown 22 years ago [15] that this results automatically in cobimaximal mixing.
An equivalent formulation [9] for Majorana neutrinos is to consider the neutrino mass matrix in the basis of diagonal charged-lepton 

masses, i.e.

U †
ωMν(U †

ω)T =
⎛
⎝ A C E∗

C D∗ B
E∗ B F

⎞
⎠ . (28)

The conditions for cobimaximal mixing are then [16]

E = C, F = D, A, B real. (29)

However for Dirac neutrinos, there are no unique conditions, because the 3 × 3 matrix diagonalizing Mν on the right is not constrained. 
Nevertheless, a suggestive form is [14]

MD =
⎛
⎝ a c c∗

d b e
d∗ e∗ b∗

⎞
⎠ , (30)

where a is real. Assuming M̃ of Eq. (26) to be real, then U †
ωM̃Uω is automatically of this form.

6. Family structure of neutrinos and dark matter

Until 2012, the data were consistent with tribimaximal mixing, i.e. θ13 = 0, sin2 θ23 = 1/2, and sin2 θ12 = 1/3. Now they are closer to 
cobimaximal mixing with δC P = 3π/2. The present world averages are [17]

sin2 θ13 = (2.20± 0.07) × 10−2, sin2 θ12 = 0.307± 0.013, (31)

sin2 θ23 = 0.546± 0.021 (Normal order), (32)

sin2 θ23 = 0.539± 0.022 (Inverted order), (33)

δC P = 1.36 (+0.20/ − 0.16) π, �m2
21 = (7.53± 0.18) × 10−5 eV2, (34)

�m2
32 = (2.453± 0.033) × 10−3 eV2 (Normal order), (35)

�m2
32 = (−2.536± 0.034) × 10−3 eV2 (Inverted order). (36)

With Eq. (26), a connection is predicted between neutrinos and dark matter. As an example, consider the case of cobimaximal mixing, 
with
4
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Ulν =
⎛
⎜⎝

c12c13 s12c13 s13
(s12 − ic12s13)/

√
2 (−c12 − is12s13)/

√
2 ic13/

√
2

(s12 + ic12s13)/
√
2 (−c12 + is12s13)/

√
2 −ic13/

√
2

⎞
⎟⎠ . (37)

Using Eq. (27), the orthogonal matrix O which diagonalizes Eq. (26) on the left is then

O = 1√
3

⎛
⎜⎝

c12c13 + √
2s12 s12c13 − √

2c12 s13
c12c13 − s12/

√
2+ √

3/2c12s13 s12c13 + c12/
√
2+ √

3/2c12s13 s13 − √
3/2c13

c12c13 − s12/
√
2− √

3/2c12s13 s12c13 + c12/
√
2− √

3/2c12s13 s13 + √
3/2c13

⎞
⎟⎠ (38)

For the central values

s13 = 0.148, c13 = 0.989, s12 = 0.554, c12 = 0.832, (39)

the orthogonal matrix becomes

O =
⎛
⎝0.927 −0.363 0.085

0.336 0.714 −0.614
0.162 0.598 0.785

⎞
⎠ , (40)

which diagonalizes M̃M̃T . In terms of the neutrino mass eigenvalues m2
1,2,3, the Mij entries of Eq. (26) are then related to O.

There are nine parameters in M̃ . Assuming the three conditions

ϕ2

⎛
⎝M12

M31
M23

⎞
⎠ = ϕ−2

⎛
⎝M21

M13
M32

⎞
⎠ , (41)

then Mν (which is proportional to M̃) becomes of the form

Mν =
⎛
⎝ y1 x1 y3

x2 y1 y2
y2 y3 x3

⎞
⎠ , (42)

resulting in⎛
⎜⎝

x21 + y21 + y23
x22 + y21 + y22
x23 + y22 + y23

⎞
⎟⎠ =

⎛
⎝0.859 0.113 0.026

0.132 0.510 0.358
0.007 0.377 0.616

⎞
⎠

⎛
⎜⎝
m2

1

m2
2

m2
3

⎞
⎟⎠ , (43)

and ⎛
⎝ y1(x1 + x2) + y2 y3

y3(x1 + x3) + y1 y2
y2(x2 + x3) + y1 y3

⎞
⎠ =

⎛
⎝−0.337 0.240 0.097

0.079 −0.206 0.127
−0.031 −0.438 0.469

⎞
⎠

⎛
⎜⎝
m2

1

m2
2

m2
3

⎞
⎟⎠ . (44)

Assuming normal ordering of neutrino masses, the above six equations may be solved simply for y1 = 0, resulting in

x1 = 0.597× 10−2 eV, x2 = 1.334× 10−2 eV, x3 = 2.711× 10−2 eV, (45)

y2 = 2.850× 10−2 eV, y3 = 0.924× 10−2 eV, m1 = 0.684× 10−2 eV. (46)

This implies m2 = 0.011 eV and m3 = 0.051 eV, for a sum of three neutrino masses = 0.07 eV, comfortably below the astrophysical bound 
of 0.15 eV.

7. Production of dark matter

In Fig. 1, lepton number L is conserved with L = 1 for ν, η0, ζ 0 and L = 0 for N . Defining D = L −2 j as shown in Table 1, dark number 
is also conserved with D = 0 for ν , D = 1 for η0, ζ 0, and D = −1 for N . So far, the charged scalar gauge singlet ζ− ∼ 3′ of Table 1 has not 
been used. It has L = D = 1 and allows N to be produced as freeze-in dark matter [18] through Higgs decay [19] as shown in Fig. 2. It is 
the analog of Fig. 1, but now L circulates in the loop, whereas D flows from N to ζ− to N . Here A5 is unbroken by all the couplings and 
the one-loop diagram is finite because it involves three propagators, two scalar and one fermion. It yields the effective Yukawa coupling 
fh of the Higgs boson h to N̄N .

fh = λζ f Lζ f Rζ vmE

16π2

[
1

m2
ζ −m2

E

− m2
E ln(m2

ζ /m
2
E)

(m2
ζ −m2

N)2

]
. (47)

The decay rate of h to N̄N is
5
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Fig. 2. Higgs decay to N̄N .

�h = f 2hmh

8π

√
1− 4r2(1− 2r2), (48)

where r =mN/mh .
As shown in Ref. [20], if the reheat temperature TR of the Universe after inflation is below the decoupling temperature of N but 

above mh , say TR ∼ 1 − 10 TeV, then N is a feebly interacting massive particle (FIMP), which only production mechanism is freeze-in, 
through Higgs decay, before the latter decouples from the thermal bath. Typical values for this to happen here are mN ∼ GeV, fh ∼ 10−11, 
mζ ∼ 104 GeV, and mE ∼ 105 GeV.

8. Concluding remarks

The non-Abelian discrete symmetry A5 of the 4-dimensional pentatope is used to construct a radiative model of Dirac neutrinos 
through dark matter, with dark number D connected to lepton number L, i.e. D = L − (2 j)[mod 2] . Cobimaximal neutrino mixing is obtained 
from the soft breaking of A5 to A4 which is the symmetry of the 3-dimensional tetrahedron. The complete neutrino mass matrix is linked 
to the dark neutral fermions, with a realistic numerical example showing the normal ordering of neutrino masses. The dark fermions are 
produced by the freeze-in mechanism through the decay of the SM Higgs boson.
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